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Ontology-based query answering (OBQA) has long been an important topic in
applied and foundational research, and in particular in the area of description logics
(DLs). Query answering has been studied for every major DL, but the most prominent
use of DLs in query answering is based on the DLs of the DL-Lite family. In particular,
these have widely been used in ontology-based data access (OBDA), e.g., to integrate
disparate data sources or to provide views over legacy databases [3,14,4,9]. DL-LiteR is
also the basis of the W3C OWL 2 Web Ontology Language profile OWL QL, which was
specifically designed for OBDA applications [12].

On the other hand, research on query languages has led to a range of expressive
features beyond basic pattern matching, e.g., by supporting navigational constructs
or other forms of recursion. These developments have also affected practical query
languages. SPARQL 1.1, the recent revision of the W3C SPARQL standard, introduces
significant extensions to the capabilities of the popular RDF query language [7]. Even at
the very core of the query language, we can find many notable new features, including
property paths, value creation (BIND), inline data (VALUES), negation, and extended
filtering capabilities. In addition, SPARQL 1.1 now supports query answering over OWL
ontologies, taking full advantage of ontological information in the data [6,5]. Thus, with
the arrival of SPARQL 1.1, every aspect of OBQA is supported by W3C technologies.

In practice, however, SPARQL and OWL QL are rarely integrated. Most works on
OBDA address the problem of answering conjunctive queries (CQs), which correspond
to SELECT-PROJECT-JOIN queries in SQL, and (to some degree) to Basic Graph
Patterns in SPARQL. The most common approach for OBDA is query rewriting, where
a given CQ is rewritten into a (set of) CQs that fully incorporate the schema information
of the ontology. The answers to the rewritten queries (obtained without considering the
ontology) are guaranteed to agree with the answers of the original queries (over the
ontology). This approach separates the ontology (used for query rewriting) from the
rest of the data (used for query answering), and it is typical that the latter is stored in a
relational database. Correspondingly, the rewritten queries are often transformed into
SQL for query answering. SPARQL and RDF do not play a role in this.

In a recent paper [1], we took a fresh look on the problem of OBQA query rewriting
with SPARQL 1.1 as our target query language. The additional expressive power of
SPARQL 1.1 allows us to introduce a new paradigm of schema-agnostic query rewriting,
where the ontological schema is not needed for rewriting queries. Rather, the ontology
is stored together with the data in a single RDF database. This is how many ontologies
are managed today, and it corresponds to the W3C view on OWL and RDF, which does
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not distinguish schema and data components.4 The fact that today’s OBQA approaches
separate both parts testifies to their focus on relational databases. Our work, somewhat
ironically, widens the scope of OWL QL to RDF-based applications, which have hitherto
focused on OWL RL as their ontology language of choice.

Another practical advantage of schema-agnostic query rewriting is that it supports
frequent updates of both data and schema. The rewriting system does not need any
information on the content of the database under query, while the SPARQL processor that
executes the query does not need any support for OWL. This is particularly interesting if a
database can only be accessed through a restricted SPARQL query interface that does not
support reasoning. For example, we have used our approach to detect an inconsistency of
DBpedia under OWL semantics, using only the public Live DBpedia SPARQL endpoint
at http://live.dbpedia.org/sparql (the problem has since been corrected).

The main contributions of our work are:

– We expressed standard reasoning tasks for OWL QL, including consistency checking,
classification, and instance retrieval, in single, fixed SPARQL 1.1 queries that are
independent of the ontology. It turned out that SPARQL 1.1 property paths are
powerful enough for OWL QL reasoning.

– We showed how to rewrite arbitrary SPARQL Basic Graph Patterns (BGPs) into
single SPARQL 1.1 queries of polynomial size. This task was simplified by the fact
that SPARQL does not support “non-distinguished” variables as used in CQs.

– We presented a schema-agnostic rewriting of general CQs in SPARQL 1.1, again
into single queries of polynomial size. This rewriting is more involved, and we used
two additional features: inline data (VALUES) and (in)equality checks in filters.

– We showed the limits of schema-agnostic rewriting in SPARQL 1.1 by proving that
many other OWL features cannot be supported in this way. This includes even the
most basic features of OWL EL and OWL RL, and mild extensions of OWL QL. It
also is not possible to rewrite regular path queries (and thus basic graph patterns of
SPARQL 1.1) into SPARQL 1.1, even for RDFS knowledge bases with assumption
of standard use. This would require a more expressive query language, such as
monadically defined queries [15].

Worst-case reasoning complexity remains the same in all cases, yet our approach
is certainly more practical in the case of standard reasoning and BGP rewriting. For
general CQs, the rewritten queries are usually too complex for today’s RDF databases
to handle. Nevertheless, we think that our “SPARQL 1.1 implementation” of OWL QL
query answering is a valuable contribution, since it reduces the problem of supporting
OWL QL in an RDF database to the task of optimizing a single (type of) query. Since
OWL QL subsumes RDFS, one can also apply our insights to implement query answering
under RDFS ontologies, which again leads to much simpler queries.

The full details of our rewritings are beyond this abstract, as the length of the rewritten
queries – polynomial or not – is too long to include full examples here. However, our
basic approach to reasoning with SPARQL 1.1 can be motivated by some very simple

4 Nevertheless, it is also true that some RDF stores treat terminological triples in special ways,
e.g., by keeping them in a dedicated named graph.
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observations. Consider a situation where our TBox is guaranteed to contain only axioms
of the form A v B with A and B class names. Such axioms are encoded in RDF using
triples of the form A rdfs:subClassOf B. Clearly, one can now query for all (inferred)
instances of a class A using the graph pattern

{?X (rdf:type / rdfs:subClassOf∗) A},

which looks for elements ?X that are connected to class A through property rdf:type
followed by zero or more uses of property rdfs:subClassOf. The queries used in our
work are significantly more involved, since they need to take into account a much larger
vocabulary used in OWL, including equivalent classes, subproperties and equivalent
properties, inverses, n-ary class intersections, and existential restrictions. Moreover, the
queries need to take into account the special semantics of > and the universal property,
as well as the potential inconsistency caused by ⊥ and the empty property.

An interesting observation here is that syntactic sugar can make schema-agnostic
query rewriting more difficult. Clearly, taking into account many possible syntactic en-
codings must lead to larger queries, which will usually affect execution times. However,
the OWL feature owl:SymmetricProperty even makes query rewriting impossible alto-
gether. This is surprising, since property symmetry can easily be expressed using inverses
and subproperties, which are fully supported by our approach. Such effects can occur
since SPARQL 1.1 is not a universal computing formalism (for its complexity class).
Note that these problems vanish if one allows even the most basic kinds of normalisation,
but this is not always practical (e.g., when querying the DBpedia SPARQL endpoint).

An interesting side effect of our work is that it provides a simple, worst-case optimal
method for terminological reasoning in OWL QL (and thus DL-LiteR). As we treat TBox
axioms as data, we can actually formulate queries over terminological knowledge, or
even answer conjunctive queries where some class or property names are replaced by
variables, with the intended meaning that these “meta-variables” range over vocabulary
symbols of the ontology.5

Future steps in this line of research include empirical evaluations, where the main
challenge is to identify OWL QL benchmarks with non-trivial TBoxes. It should not
be assumed that the good theoretical properties of the approach translate directly into
good performance, and further optimisations and adjustments might be needed. Imple-
mentation techniques such as partial materialisation would lead to a form of combined
rewriting (cf. [8] for a different approach to combined rewriting). Moreover, it is in-
teresting to extend our work towards more expressive ontology and query languages.
On the one hand, one can look towards more expressive DLs, such as EL, which have
also been considered in query rewriting [13]. A schema-agnostic approach in this case
would resemble Datalog-based reasoning calculi for these logics [10], and indeed one
could view Datalog as a query language here. On the other hand, one might consider
ontology languages that extend the expressiveness of DL-Lite by using existential rules,
e.g., linear TGDs [2]. Such cases might actually be somewhat simpler to handle, since
one is free to choose a (possibly normalised) database representation of rules, given that
there is not standard RDF encoding available.

5 The term higher-order query has been used in this context [11], although true higher-order
variables would rather represent arbitrary sets without any relationship to the vocabulary.
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