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Abstract. We investigate the computational cost of combining the open and
closed world assumptions in Description Logics. Unlike previous works, which
have considered data complexity and focused mostly on lightweight DLs, we
study combined complexity for a wide range of DLs, from lightweight to very
expressive ones. From existing results for the standard setting, where all predicates
are interpreted under the open world assumption, and the well-known relationship
between closed predicates and concept constructors like disjunction and nominals,
we infer bounds on the combined complexity of reasoning in the presence of
closed predicates. We show that standard reasoning requires exponential time even
for weak logics like EL, while answering conjunctive queries becomes hard at
least for coNEXPTIME, and in most cases even for 2EXPTIME. An important
stepping stone for our results, that is interesting on its own right, is to prove
that conjunctive query answering in (plain) ALCO is hard for coNEXPTIME

in combined complexity. This singles out nominals as a previously unidentified
source of additional complexity when answering queries over expressive DLs.

1 Introduction

As fragments of classical first-order predicate logic, description logics (DLs) have an
open-world semantics. That is, knowledge bases (KBs) are interpreted as the set of
all relational structures that satisfy what is explicitly stated in the KB, and where any
statement whose truth is not directly implied by the knowledge base can be interpreted
in an arbitrary way. However, this open-world view of DLs is not the most adequate in
all cases, and in particular, when DLs are used to describe domain-specific knowledge to
be leveraged when querying data sources, but the sources stem from traditional (closed-
world) databases that fully describe the instances that are to be included in a relation.
For example, when the students enrolled in some course are extracted from a database,
this information should be considered complete, and query answering algorithms should
exploit this to exclude irrelevant models and infer more query answers.

Combining open and closed world reasoning is not a new topic in DLs [3], but it
has received renewed attention in recent years [20,19,7,30]. A prominent proposal for
achieving partial closed world reasoning is to use DBoxes instead of ABoxes as the
∗ This work has been supported by the Austrian Science Fund (FWF) projects T515 and P25207.



assertional component of KBs [30]. Syntactically, a DBox looks just like an ABox, but
semantically, it is interpreted like a database: the instances of the concepts and roles in
the DBox are given exactly by the assertions it contains, and the unique name assumption
is made for the active domain of the individuals occurring in it. We follow a recent
generalization of this setting, where instead of replacing ABoxes by DBoxes, we enrich
the terminological component of KBs with a set of concepts and roles that are to be
interpreted as closed predicates [19]. In this way, some ABox assertions are interpreted
under closed semantics, as in DBoxes, while others are considered open, as in ABoxes.

There are not many works studying the complexity of reasoning with closed pred-
icates. For the DL-Lite family and for EL, the data complexity of ontology mediated
query answering has been considered [7,19]. The authors of these works consider a
conjunctive query together with a terminological component (a TBox and possibly a set
of closed predicates), and study the complexity of answering such a query over an input
data instance (an ABox or a DBox). Under the standard open-world semantics for all
predicates, this is a central problem that has received great attention in the last decade in
the DL community. Most research focuses on the cases where the problem is tractable,
or even first-order rewritable. Unfortunately, the tractability of query answering is lost
in the presence of DBoxes, even for the core fragments of DL-Lite and EL [7]. In a
nutshell, closed predicates cause the convexity property to be lost, allowing a KB to
entail a disjunction of facts without entailing any of the disjuncts. An in-depth analysis
of this and a careful classification of tractable cases can be found in [19].

In this paper, we take a closer look at the computational complexity of reasoning
in the presence of closed predicates. Unlike previous works, we consider the combined
complexity of reasoning, that is, not only the data is considered as an input, but also
the terminological information, and in the case of query answering, the query. Rather
than focusing on a few lightweight DLs, we consider a range of logics including very
expressive ones, and use existing results in the literature to infer many tight bounds on the
computational complexity of query answering. It was shown already in [30] that closed
predicates can be simulated, under the standard open world semantics, in any extension
of ALC that supports nominals, and conversely, nominals can be simulated by closed
predicates (the latter does not depend on any of the availability of any the constructs
of ALC). It is also easy to show that closed predicates suffice to easily express full
disjunction and atomic negation in any logic supporting qualified existential restrictions,
hence adding closed predicates to plain EL already results in the full expressiveness of
ALCO, and makes standard reasoning require exponential time in the worst case.

For query answering, we build on the reduction from ALC to EL to show that the
constructors that make query answering 2EXPTIME-hard in extensions of ALC (namely
inverses [17], or transitive roles together with role hierarchies [6]), have the same effect
in the analogous extensions of EL in the presence of closed predicates (i.e., ELI and
ELHtrans). However, since the precise complexity of query answering inALCO remains
open, we cannot infer tight bounds for the extensions of ELwith closed predicates that do
not support these additional constructs. This leads us to the main technical contribution
of the paper: we show that conjunctive query answering over ALCO (with the standard
open-world semantics) is coNEXPTIME-hard. Hence the same holds in the presence
of closed predicates for EL and its extensions. Although we leave a matching upper



bound open for future work, we exhibit nominals (or closed predicates) as a previously
unidentified source of increased complexity for query answering in expressive DLs.

2 Preliminaries

We assume the reader is familiar with DLs and, in particular, with EL and ALCO.
We use NC and NR for concept names and roles, respectively. The notions of a TBox
T , an ABox A, and an interpretation I = (∆I , ·I) are defined in the usual way. The
notions of satisfaction I |= T and I |= A are also as usual. We make the standard name
assumption (SNA), i.e., aI = a for all I and individuals a. For combining the open- and
closed-world semantics, we enrich KBs with a set Σ of closed predicates. That is, we
consider knowledge bases (KBs) K = (T , Σ,A), where T is a TBox, Σ ⊆ NC ∪NR,
and A is an ABox. We call Σ the set of closed predicates in K. For such a K and an
interpretation I, we write I |= K if
(a) I |= T and I |= A,
(b) for all concept names A ∈ Σ, if e ∈ AI , then A(e) ∈ A, and
(c) for all roles r ∈ Σ, if (e, e′) ∈ rI , then r(e, e′) ∈ A.
In case Σ = ∅, K is boils down to a usual DL KB and I |= K captures the usual notion
of satisfaction. In this case, we may simply write K = (T ,A).

Note that in this paper KBs with closed predicates have the semantics as in [19],
which relies on the SNA. However, all complexity results of this paper can be recast for
the semantics of [7] that employs a weaker form of unique name assumption.

3 Standard Reasoning

Interpreting some predicates as closed allows one to simulate negation, disjunction, and
nominals in plain EL, making it as expressive as full ALCO.

Theorem 1. Assume a consistent ALCO KB K = (T ,A). For every nominal {a} that
appears in K, let Da be a fresh concept name. Then we can construct in linear time an
EL KB K′ = (T ′, Σ,A′) with closed predicates such that:

1. Every model I of K′ is a model of K. Moreover, DIa = {a}I for every {a} in K.
2. Every model I of K can be transformed into a model of K′ by modifying the

interpretation of concept names and roles that do not appear in K.

Proof. The extension of EL with atomic negation (i.e., negation is applied to concept
names only), denoted EL¬, is known to be a notational variant of ALC [1]. Hence we
simply show how to construct K′ = (T ′, Σ,A′) for a given ELO¬ KB K = (T ,A).
We do this in two steps: first we eliminate nominals and obtain from K = (T ,A) an
EL¬ KB K1 = (T1, Σ1,A1). Then we transform K1 = (T1, Σ1,A1) into the desired
K′ = (T ′, Σ,A′) in EL. Let

Σ1 = {Da | {a} appears in K}, A1 = A ∪ {Da(a) | {a} appears in K}.

This ensures that DIa = {a}I in every model of A1 where the predicates in Σ1 are
interpreted as closed. Hence we can simply replace each concept {a} by Da in T to
obtain the desired T1. Next, for eliminating negation from (T1, Σ1,A1), we let



Σ = Σ1 ∪ {D⊥, D1, D2, Du} A′ = A1 ∪ {Du(a1), Du(a2), D1(a1), D2(a2)}

To obtain T ′ from T1, we replace every negated concept name ¬A by a fresh concept
name Ā, and add the following axioms, where rA is a fresh role name:

A u ĀvD⊥ (1)

>v ∃rA.Du (2)

∃rA.D1 vA (3)

∃rA.D2 v Ā (4)
Note that, since there are no assertions of the form D⊥(a) in A′, we have DI⊥ = ∅ in
every model I of K′, and hence D⊥ behaves as the special concept ⊥. This and axiom
(1) ensure disjointness of A and Ā, while axioms (2) – (4) together with the assertions
for the closed predicates Du, D1 and D2 ensure that e ∈ AI or e ∈ (Ā)I for every
e ∈ ∆I . Indeed, let I be a model of K′ and let e ∈ ∆I be arbitrary. Then by axiom (2)
there exists e′ ∈ ∆I such that (e, e′) ∈ rI and e′ ∈ DIu . But since Du is closed, then
e′ ∈ {a1, a2}. If e′ = a1, then e′ ∈ DI1 , so e ∈ (∃rA.D1)I and e ∈ AI by axiom (3).
Analogously, if e′ = a2, we can use axiom (4) to infer that e ∈ (Ā)I . This ensures that
Ā has exactly the same extension as ¬A in every model of K, and the claim follows.

This easy reduction allows us to extend to EL hardness results known for ALC. We
can also infer upper bounds for logics with closed predicates, from known results under
the standard open-world semantics, by exploiting the fact that in DLs that contain ALC,
closed predicates can be simulated using nominals (see [26] and Prop. 1 in [30]):

Theorem 2. For every DL KB (T , Σ,A) there exists a logically equivalent KB of the
form (T ∪ T ′, ∅,A), where T ′ is a set of ALCO axioms whose size is polynomially
bounded by the size of A.

This already allows us to obtain an almost complete picture of the landscape for
standard reasoning tasks. The following theorem is stated for KB satisfiability, but note
that it also applies to other traditional reasoning tasks like subsumption and instance
checking since they are mutually reducible to each other in ALC, and hence also in any
logic containing EL with closed predicates.

Corollary 1. The following bounds for deciding satisfiability of (T , Σ,A) hold:

1. EXPTIME-complete if T and A are in any DL containing EL and contained in
SHOQ or SHOI.

2. NEXPTIME-complete if T and A are in any DL containing ELIF and contained in
SHOIQ.

3. N2EXPTIME-complete if T and A are in SRIQ or SROIQ, and in 2EXPTIME

if T and A are in SROQ or SROI.

Proof. The lower bound of item (1) follows from Theorem 1 and the well known
EXPTIME-hardness of KB satisfiability inALC [29]. Similarly, the hardness of items (2)
and (3) follows from Theorem 1 together with the NEXPTIME-hardness of ALCOIF
[31], and the N2EXPTIME-hardness of SROIQ [13]. For the upper bounds, we use
Theorem 2 and the fact that KB satisfiability is decidable in the mentioned bounds for
the listed logics: SHOQ and SHOI in EXPTIME, SROQ and SROI in 2EXPTIME,
SHOIQ in NEXPTIME, SROIQ in N2EXPTIME (see [4,13] and references therein).



4 Query Answering

In this section we consider the query answering problem over DL KBs. We cannot easily
transfer complexity upper bounds from known KB satisfiability since, in general, queries
are not naturally expressible in the syntax of DLs, and encoding them as part of a KB
usually requires exponential space. We focus in conjunctive queries (CQs), whose syntax
and semantics are defined in the usual way. In a nutshell, a CQ is a conjunction of atoms
of the forms A(x) or r(x, y), for a concept name A or a role name r, and variables x, y.
In what follows, all queries are Boolean queries with all variables existentially quantified.
The decision problem we consider is query entailment: deciding whether a given query
q is true in all the models of a given KB (T , Σ,A).

It is well known that, under the classical open-world semantics, CQ entailment is
hard for 2EXPTIME in most expressive DLs, but the complexity drops to EXPTIME in
Horn fragments that disallow disjunction. Unfortunately, since the presence of closed
predicates causes disjunction to be expressible, 2EXPTIME-hardness extends to many ex-
tensions of EL. For CQs, 2EXPTIME-hardness can be shown whenever the DL supports
inverse roles [17], or a single left-identity axiom r ◦ tv t, or a transitive super role of
some role [6]. If we consider query languages that extend CQs, like positive queries or
(fragments of) conjunctive (2-way) regular path queries (C(2)RPQs), the same hardness
holds already for plain ALC [25], and hence for EL with closed predicates.

Below we denote by ELLI the extension of EL with a single left-identity axiom
r ◦ tv t, and by ELHtrans the extension of EL with role inclusions and a transitive role.
Note that both logics are sublogics of EL++.

Theorem 3. Deciding (T , Σ,A) |= q is hard for 2EXPTIME in all the following cases:

1. T and A are in ELI and q is a CQ.
2. T and A are in ELLI or in ELHtrans, and q is a CQ.
3. T and A are in EL and q is either a positive query, a ∗-free CRPQ, or a ∗-free

C2RPQ with only two variables.

Proof. We have shown in Theorem 1 that for every ALC KB K there is an EL KB
K′ that has essentially the same models, and may only differ in the interpretation of
symbols not occurring in K. Hence, for every query q, we have K |= q iff K′ |= q. This
translation can be applied to extensions of ALC, and results in a KB with the same
properties in the analogous extension of EL. In particular, anALCI KB is rewritten into
a ELI one, and an SH KB into an ELHtrans one. From this an existing results for ALC
and its extensions, we obtain the desired lower bounds: item 1 follows from [18], item 2
follows from [6], and item 3 follows from [25].

Matching upper bounds are known, even for significantly more expressive queries
and logics: in the standard setting, with no closed predicates, entailment of positive
two-way regular path queries (P2RPQs) is in 2EXPTIME for any DL contained in ZIQ,
ZOQ, ZOI, SHIQ, SHOQ, or SHOI [4]. From this and Theorem 2, we get the
same upper bound for ZOQ, ZOI, SHOQ, SHOI and their sublogics.



Corollary 2. Let q be a P2RPQ. Then deciding (T , Σ,A) |= q is 2EXPTIME complete
for T and A in any DL containing EL and contained in ZOQ, ZOI , SHOQ, SHOI .
The same holds for q a CQ if T and A are in a DL containing ELI or ELLI.

Corollary 2 implies that query entailment in the presence of closed predicates is
almost always 2EXPTIME-complete in combined complexity. But there are some excep-
tions. On the one hand, the interaction of nominals, inverses, and counting makes query
entailment very challenging. In the plain open-world setting, entailment of conjunctive
queries is coN2EXPTIME-hard for ALCOIF [10], and it has been shown to be decid-
able [28], but no elementary upper bounds on its complexity are known. For its extension
with transitive roles, and for the well known SHOIQ, decidability remains open. Hence,
in the presence of closed predicates, we do not get any interesting upper bounds for DLs
that simultaneously support inverses and counting, like ALCIF and SHIQ. Moreover,
obtaining such bounds seems very hard. We remark that the authors of [7] proved that
query entailment in ALCIF with closed predicates and query entailment under the
standard open-world semantics in ALCOIF are mutually reducible.

On the other hand, the mentioned 2EXPTIME lower bounds for CQs require the
presence of either inverse roles, left identity axioms, or transitivity and role hierarchies.
For EL (with closed predicates), ALC, and their extensions that have neither inverses
nor left identities, we only have the EXPTIME lower bound from KB satisfiability, and
the 2EXPTIME upper bound of Corollary 2. Without closed predicates, CQ entailment
for plain ALC, and even for ALCHQ, is feasible in single exponential time [18,24]. A
natural question is whether nominals, or equivalently, closed predicates, can be added to
ALCHQ without increasing the worst-case complexity of CQ entailment. Unfortunately,
the answer is negative (unless coNEXPTIME = EXPTIME), as we show next.

A coNEXPTIME lower bound for CQ entailment in ALCO

In this section, we show that deciding whether (T ,A) 6|= q for a given CQ q and a
given ALCO KB (T ,A) (with the standard open-world semantics), is hard for non-
deterministic single exponential time. By Theorem 1, the same applies to EL in the
presence of closed predicates.

Before we start with the proof, we recall a useful property of ALCO: for query
answering, it is enough to focus on forest-shaped models. A forest is a set F of non-
empty words such that w · c ∈ F with w non-empty implies w ∈ F . An interpretation I
is forest-shaped if there is a bijection f from its domain to a forest, such that

– f(aI) has length one for every individual a, and
– (e, e′) ∈ rI implies that either e′ = a for some individual a, or f(e′) is of the form
f(e) · c for some symbol c.
For many DLs and query languages, it has been shown that query entailment can be

decided over forest shaped interpretations. This applies also to CQs over ALCO KBs:

Lemma 1 ([9,4]). Let K be a given ALCO KB and let q be a CQ. Then K 6|= q iff there
is a forest shaped interpretation I such that I |= K and I 6|= q.

Now we show our lower bound. The proof is by reduction from the following
coNEXPTIME-complete variant of the tiling problem:



Definition 1 (Domino System). A domino system D is a triple (T,H, V ), where
T = {0, . . . , k − 1}, k ≥ 0, is a finite set of tile types and H,V ⊆ T × T rep-
resent the horizontal and vertical matching conditions. Let D be a domino system
and c = c0, . . . , cn−1 an initial condition, i.e. an n-tuple of tile types. A mapping
τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → T is a solution for D and c iff for all
x, y < 2n+1, the following holds (where ⊕i denotes addition modulo i):

– if τ(x, y) = t and τ(x⊕2n+1 1, y) = t′, then (t, t′) ∈ H
– if τ(x, y) = t and τ(x, y ⊕2n+1 1) = t′, then (t, t′) ∈ V
– τ(i, 0) = ci for i < n.

For the reduction, we do not need a full ALCO knowledge base, but a simple ABox
with single concept assertion CD,c(a) for a complex ALCO concept CD,c. We show
how to translate a given domino system D and initial condition c = c0 · · · cn−1 into an
assertion CD,c(a) and query qD,c such that each forest-shaped model I of CD,c(a) that
satisfies I 6|= qD,c encodes a solution to D and c, and conversely each solution to D and
c gives rise to a model of CD,c(a) with I 6|= qD,c.

Our reduction is based on the proof of coNEXPTIME-hardness of rooted query
entailment inALCI [17], and also resembles the similar proof for S [6]. In fact, the first
part of the concept CD,c, which generates forest models that encode a potential solutions,
is essentially as in [17]. The second part and the query are quite different, since they
exploit nominals to detect errors in potential solutions.

Constructing the ABox. We now define the complex concept CD,c, and the desired
ABox is {CD,c(a)}. We assume that CD,c is a conjunction of the form C1

D,c u C2
D,c.

For convenience, letm = 2n+2. The purpose of the first conjunct C1
D,c is to enforce

a binary tree of depth m, whose edges are labeled with a single role r, and whose leaves
are labeled with the numbers 0, . . . , 2m − 1 of a binary counter C, implemented using
concept names B0, . . . , Bm. Intuitively, each of these leaves ` stores a position in the
2n+1 × 2n+1-grid to be tiled: the bits B0, . . . Bn encode the horizontal position x, and
the bits Bn+1, . . . Bm encode the vertical position y. We also use a concept name Di for
each tile type i ∈ T . Each leaf g storing a position (x, y) has as r-children three ‘grid
nodes’ gh, gright , and gup labeled G, which satisfy all the following conditions:

1. gh represents the grid node with position (x, y), and stores the same bit address as g
(that is, gh and g coincide on the interpretation of all Bi).

2. gright and gup represent the right- and up-neighbor of g, and respectively store the
addresses (x⊕2n+1 1, y) and (x, y ⊕2n+1 1).

3. gh is labeled Gh, while gright and gup are labeled Gs.
4. gh (resp., gright , gup) satisfies exactly one concept Di, representing the assigned tile

type τ(x, y) (resp., τ(x⊕2n+1 1, y), τ(x, y ⊕2n+1 1)).
5. The tiling of the gh nodes respects the initial condition, that is, if `h stores the

position (i, 0), then it satisfies Dci .
6. The tiling of gright and gup respect the matching conditions, that is, if gh satisfiesDi,
gright satisfies Dj , and gup satisfies Dj′ , then (Di, Dj) ∈ H and (Di, Dj′) ∈ V .

The tree we have described almost describes a solution for D, except for the crucial
fact that different copies of the same node in the grid may have different types assigned.



That is, for an address (x, y), the gright and gup nodes with address (x, y) need not
satisfy the same Di as the gh with address (x, y). We call a model I of C1

D,c(a) proper
if it satisfies the following condition:

(?) For every pair g ∈ GIh , g′ ∈ GIs such that g ∈ Bi iff g′ ∈ Bi for all 0 ≤ i ≤ m,
there exists some i < k such that {g, g′} ⊆ DIi .

We can use an ALC concept C1
D,c to enforce a tree as above, such that deciding the

existence of a solution for D and c reduces to finding a proper model of C1
D,c. Such

constructions exist in the literature, and in fact, the concept we described is just a minor
modification of the conjunction C1

D,cu · · ·uC6
D,c given in [17], hence we omit its rather

technical definition. Instead, we rely on the following claim:

Lemma 2 (implicit in [17]). Let D be a domino system and c an initial condition. Then
we can build an ALC concept C1

D,c such that there exists a solution for D and c iff there
exists a proper model of C1

D,c(a). Moreover, the size of C1
D,c and the time needed to

construct it are polynomially bounded by the size of D.

We construct below a query qD,c that does not match a forest model of C1
D,c(a) iff

(?) is satisfied. By Lemmas 2 and 1, this suffices to decide whether there exists a solution
for D and c. But before defining qD,c, we define the second conjunct C2

D,c of CD,c. Its
purpose is to add nodes and labels to the forest models of C1

D,c(a) that allow us to test
for (?) using a CQ.

For defining C2
D,c, we use the following additional alphabet symbols:

– two individual names ai and āi and one concept nameAi for each bitBi, 0 ≤ i ≤ m,
– an individual name tj for each tile type j < k,
– a concept T stating that some individual stands for a tile type.

Each G node g is linked via r-arcs to the individuals ai, āi that encode its bit address.
We also link g nodes to the individuals that stand for the tile types, but we do it differently
for the Gh nodes and the Gs nodes, as follows:

– If g is a Gh-node with tile type Di, then g has an r-arc to ti.
– If g is a Gs-node with tile type Di, then g has an r-arc to each tj with j 6= i.

Finally, we make both ai and āi instances of Ai, for each bit i, and we make all tile
types tj instances of T . Formally, this is all ensured using the conjunction C2

1 u C2
2 of

the following two concepts:

C2
1 = ∀rm+1.

( l

0≤i≤m

(
Bi → ∃r.{ai} u ¬Bi → ∃r.{āi} u

l

0≤i<k

Di →
(
(Gh → ∃r.{ti}) u (Gs → (

l

0≤j<k,j 6=i

∃r.tj))
)

C2
2 = ∀rm+2.

(
(

l

0≤i≤m

{ai, āi} → Ai

)
u
(
{t0, . . . tk−1} → T

))
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Fig. 1: The query qD,c

Now we are ready to define our ABox {CD,c(a)}, by taking C2
D,c = C2

1 u C2
2 as

defined above, C1
D,c as in Lemma 2, and CD,c = C1

D,c uC2
D,c. Every model of CD,c(a)

is a model of C1
D,c(a), and every forest model of C1

D,c(a) can be extended to a model of
CD,c(a) while preserving properness, hence from Lemma 2 we get:

Lemma 3. D and c have a solution iff there exists a proper forest model of CD,c(a).

It is only left to define a query qD,c that matches a forest model of CD,c(a) if and
only if it is not proper. We will rely on the following properties ensured by C1

D,c. First,
the connections to the individuals representing the bit address ensure the following:

(†) Let g, g′ be two G-nodes. Then g and g′ share an r-arc to a common individual from
ai, āi for each 0 ≤ i ≤ m iff they have the same bit address.

Since the links to the tile types for the Gh-nodes and for the Gs-nodes are inverted, we
also have:

(‡) Let gh be a Gh-node and gs be a Gs-node. Then there exists some tj such that both
gh and gs have an r-arc to tj iff gh and gs have different tile types.

Hence, to establish non-properness it suffices to find a Gh-node and a Gs-node that
share an r-arc to a common individual from ai, āi for each 0 ≤ i ≤ m (and hence share
the same address), but also share a link to a tj node (and hence have different tile type).
This is done with the following query:

qD,c =∃x1, x2, yA0 , , . . . , yAm , yT .Gh(x1), Gs(x2),

r(x1, y
A0), A0(yA0), . . . , r(x1, y

Am), Am(yAm), r(x1, y
T ), T (yT ),

r(x2, y
A0), A0(yA0), . . . , r(x2, y

Am), Am(yAm), r(x2, y
T ), T (yT ).

The query qD,c is illustrated in Figure 1. To see that qD,c has a match iff (?) fails, we
first note that x1 can only be matched to a Gh node and x2 to a Gs node. Each yAi

must be matched to an instance of Ai, which is one of ai and āi. Since x1 and x2 are
connected to all the yAi , then they need to have either ai or āi as common successor, for
each i, in every model where the query has a match. By (†), this is the case exactly when
they have the same bit address. The variable yT can match instances of T , which are
only the tile type individuals tj , and since x1 and x2 are both connected to yT , we have



that x1 and x2 can only be matched to nodes sharing a link to a common tj . By (‡), and
since the matches of x1 and x2 are a Gh node and a Gs node, they must have a different
tile type. Hence the query has a match iff there are a Gh node gh and a Gs node gs that
have the same bit address and different tile types, that is, there is a pair violating the
condition of (?) and the model is not proper. Hence we get that there is a model I of
CD,c(a) where there is no match for qD,c, and iff there exist a proper model of CD,c(a)
iff there is a solution for D and c.

Lemma 4. CD,c(a) 6|= qD,c iff there is a solution for D and c.

From this, the hardness of the given tiling problem, and Theorem 1, we get:

Theorem 4. The following problems are hard for coNEXPTIME:

– deciding (∅, {C(a)}) |= q for q a CQ and C an ALCO concept, and
– deciding (T , Σ,A) |= q for q a CQ and T ,A in EL.

Unfortunately, we do not have matching upper bounds. We believe that both problems
are likely to be solvable in coNEXPTIME, but we are still working on a suitable algorithm.

5 Discussion and Outlook

In this paper we have given several bounds on the combined complexity of reasoning in
various DLs in the presence of closed predicates, for standard reasoning problems like KB
satisfiability, as well as for answering queries ranging from CQs to P2RPQs. Unlike the
data-complexity, that is coNP-complete in practically all cases (from DL-Litecore [7,19]
to expressive DLs likeALCHOQ andALCHOI [21]), the combined complexity offers
a complex landscape. We summarize some results in Table 1, emphasizing the cases in
which closed predicates have an interesting effect on the complexity.

Apart from establishing the precise complexity of query answering in DLs between
ALCO and ALCHOQ (without closed predicates), and in all DLs between EL and
ALCHOQ with closed predicates, other problems remain open. Notably, in this paper
we have not considered the DL-Lite family. An algorithm for CQ entailment in DL-LiteF
was developed in [7] to obtain a coNP upper bound in data complexity, but it only yields
very high bounds on the combined complexity that are likely not to be optimal. That
algorithm deals with the intricate interactions of inverse roles, functionality, and closed
predicates, that behave as nominals, and it may be possible to use the characterization of
countermodels given there as a starting point for a better combined complexity upper
bound. In the DL-Lite variants that do not support functionality, countermodels are likely
to have a simpler structure. However, even in these simpler languages, it is not apparent
whether interesting upper bounds can be obtained by simple adaptations of existing
techniques. In particular, it has been shown that singleton nominals do not increase
neither the data nor the combined complexity of DL-Lite [11], but the effect of the
combination of nominals and (restricted) disjunction that results from closed predicates
remains to be studied for the DL-Lite family.

Finally, we have seen that in general, the disjunctive information encoded by closed
predicates has a negative effect on the complexity of reasoning. In the light of this, it



Without closed predicates With closed predicates

KB
consistency

CQ
entailment

KB
consistency

CQ
entailment

EL P
[1]

NP
[14,27]

EXPTIME

(Cor. 1.1)
≥ coNEXPTIME (Th. 4 )
≤ 2EXPTIME (Cor. 2)

ELHtrans P
[1]

≥ NP,≤PSPACE

[15]
EXPTIME

(Cor. 1.1)
2EXPTIME

(Cor. 2)

ELI EXPTIME

[2]
EXPTIME

[5]
EXPTIME

(Cor. 1.1)
2EXPTIME

(Cor. 2)

Horn-SHOI
Horn-SHOQ

EXPTIME

[16,22]
EXPTIME

[23]
EXPTIME

(Cor. 1.1)
2EXPTIME

(Cor. 2)

ELIF
Horn-SHIQ

EXPTIME

[16]
EXPTIME

[5]
NEXPTIME

(Cor. 1.2)
≥ N2EXPTIME [10]

decidable [28] / ≤ open∗

ELOIF ,
Horn-SHOIQ

EXPTIME

[22]
EXPTIME

[23]
NEXPTIME

(Cor. 1.2)
≥ N2EXPTIME [10]

decidable [28] / ≤ open∗

ALCO EXPTIME

[32,8]
≥ coNEXPTIME

(Th. 4)
EXPTIME

(Cor. 1.1)
≥ coNEXPTIME (Th. 4 )
≤ 2EXPTIME (Cor. 2)

SHOQ,SHOI EXPTIME

[32,12,8]
2EXPTIME

[4,9]
EXPTIME

(Cor. 1.1)
2EXPTIME

(Cor. 2)

SHOIQ NEXPTIME

[31]
≥ N2EXPTIME [10]

≤ open∗
NEXPTIME

(Cor. 1.2)
≥ N2EXPTIME [10]

≤ open∗

Table 1: Combined complexity of reasoning in description logics with/without closed
predicates. By ≥ we indicate lower bounds, by ≤ upper bounds, and the rest are all
completeness results. For the cells marked with ∗, decidability if only simple roles
occur in the query follows from [28], but no complexity upper bounds are known.

seems particularly interesting to study criteria that allow to identify instances of TBoxes
and queries for which the complexity does not increase. Major contributions in this
direction can be found in [19]. In particular, the authors propose safety criteria that
ensure specific TBoxes have the convexity property, guaranteeing data tractability of
queries. It seems that this criteria may also be useful for establishing the existence of
a universal model for query answering, and when a suitable representation of such a
model can be built in single exponential time, query answering is likely to be feasible in
single exponential time. This seems a promising direction for further investigation.
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