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Abstract. One shortcoming of classic Descriptions Logics, DLs, is their inability
to encode probabilistic knowledge and reason over it. This is, however, a strong
demand of some modern applications, e.g. in biology and healthcare. Therefore,
probabilistic extensions of DLs are attracting attention nowadays. We introduce
the probabilistic DL SHIQP which extends a known probabilistic DL. We in-
vestigate two reasoning problems for TBoxes: deciding consistency and com-
puting tight probability bounds. It turns out that both problems are not harder
than reasoning in the classic counterpart SHIQ. We gain insight into complex-
ity sources.

1 Introduction

Descriptions Logics [1], DLs, are a family of knowledge representation formalisms
that form the basis for popular knowledge representation languages. In particular, they
underly the Web Ontology Language [5], OWL, which is a W3C standard. Logical
theories that encode a domain of interest in such languages are called ontologies. The
last decade has witnessed a rapid growth in the number and size of ontologies which
have become the common way to encode and share information in application areas
such as medicine, biology, astronomy, defence and others.1 Since DLs are essentially
decidable fragments of first-order logic, FOL, ontologies are only capable to encode
certain knowledge. Although some means of uncertainty, in fact, can be encoded, e.g.
“a parent is a human who has some children” and “sky is sunny or cloudy”, there are
no built-in ways to represent probabilistic knowledge.

Successful application areas of DLs, however, often require modelling probabilistic
knowledge which DLs are not able to deal with. The examples showing this appeal are
evident in medicine. For instance, the medical ontology SNOMED CT [17] contains
concepts mentioning “Probable cause”, “Probable diagnosis”, etc. This shortcoming in
expressive power of classic DLs has recently caused non-classic proposals and various
extensions. A recent survey is given in [12].

Two main approaches to probabilistic extensions of DLs differ in the view of prob-
ability. Halpern [4] makes a distinction between statistical and subjective probabili-
ties. He formalizes statistical probabilities in “Type 1” probabilistic FOL and subjective
probabilities in “Type 2” probabilistic FOL. The statistical view considers a probability

1 http://bioportal.bioontology.org/



distribution over a domain that specifies the probability for an individual in the domain
to be randomly picked. The subjective view is based on so-called possible worlds and
specifies the probability distribution over a set of possible worlds [4]. We call the se-
mantics of a probabilistic DL statistical if it uses the statistical view (Type 1 extension)
and subjective if it is based on possible worlds (Type 2 extension).

The contributions of this work are as follows. Firstly, we introduce a new probabilis-
tic extension of the classic DL SHIQ, called SHIQP , with the statistical semantics
inherited from the Type 1 probabilistic FOL that distinguishes it from many existing
extensions whose semantics is based on possible worlds. We discuss relations to other
extensions and some important features of the statistical semantics of SHIQP . Sec-
ondly, we study two reasoning problems for TBoxes in this extension: deciding con-
sistency and computing tight probability bounds. We show that both problems are in
ExpTime in the size of a TBox which implies that they are not harder than reasoning in
the classic DL SHIQ. The algorithm for solving each problem consists of two parts:
detecting satisfiable types and solving a linear program on those types. We show that, in
fact, the linear program can be built on the types over the probabilistic part only. Some
examples and proofs are moved to Appendix.2

2 Syntax and Semantics of SHIQP

The syntax of SHIQP extends classical SHIQ axioms with probabilistic statements
over concepts. We assume the reader to be familiar with the DL SHIQ [6]. As usual, a
classic SHIQ TBox Tc is a finite set of general concept inclusions and role inclusions.

Definition 1. (TBox syntax) A SHIQP TBox T is a set Tc ∪ Tp, where Tc is a classic
SHIQ TBox and Tp is a set of probabilistic statements. A probabilistic statement is a
statement in one of the following forms:

(i)
∑m′

j=1 a
′
j · P(Cj) ./ r′ (unconditional form);

(ii)
∑m′′

j=1 a
′′
j · P(Cj |D) ./ r′′ (conditional form);

where ./ ∈ {<,≤,≥, >}, a′j , a′′j , r′, r′′ ∈ R, Cj , D are possibly complex SHIQ
concepts. We call concept inclusions, role inclusions, and probabilistic statements ax-
ioms of a TBox.

We use the abbreviation C ≡ D for {C v D, D v C} and
∑m′

j=1 a
′
j · P(Cj) = r′

for {
∑m′

j=1 a
′
j ·P(Cj) ≤ r′,

∑m′

j=1 a
′
j ·P(Cj) ≥ r′} in (i) and the analogous one in (ii).

Before defining the semantics we give an illustrative example, see Example 1.

Example 1. (SHIQP TBox) According to statistics on smoking in England in 2010,3

47% of all adults in the sample are men (1); 20% and 25% of all adults (2), 20% and
29% of all men (3), 19% and 22% of all women (4) are current and former smokers,
respectively. Current and former smokers are 17% and 28% of all married adults (5),

2 www.cs.man.ac.uk/˜sazonauv/SazonauDL15.pdf
3 http://www.hscic.gov.uk/catalogue/PUB11454



18% and 33% of all married men (6), 17% and 23% of all married women (7). 34% and
25% of all diseases are caused by smoking for men and women (8), respectively. This
knowledge can be expressed as follows:

T = {S v A, CS v S, FS v S,
FS v ¬CS, S v CS t FS,
M v A, W v A, M v ¬W, A vM tW,
P(M | A) = 0.47, (1)

P(CS | A) = 0.2, P(FS | A) = 0.25, (2)

P(CS |M) = 0.2, P(FS |M) = 0.29, (3)

P(CS |W ) = 0.19, P(FS |W ) = 0.22, (4)

P(CS | ∃m.A) = 0.17,P(FS | ∃m.A) = 0.28, (5)

P(CS |M u ∃m.W ) = 0.18, P(FS |M u ∃m.W ) = 0.33, (6)

P(CS |W u ∃m.M) = 0.17, P(FS |W u ∃m.M) = 0.23, (7)

P(∃d.(D u ∃c.S) |M) = 0.34, P(∃d.(D u ∃c.S) |W ) = 0.25}, (8)

whereA,M,W,S,CS, FS,D are concepts representing adults, men, women, smokers,
current smokers, former smokers, diseases, respectively; m, d, c are roles representing
marriage, having a disease, having a cause, respectively.

The semantics of a SHIQP TBox is based on the statistical view of probability
and inherited from Halpern’s Type 1 probabilistic FOL [4].

Definition 2. (TBox semantics) An interpretation of a SHIQP TBox is a structure
I = (∆I , ·I , µ) where (∆I , ·I) is a standard SHIQ interpretation and µ a discrete4

probability distribution over ∆I . The semantics of concept and role inclusions is de-
fined as usual. For concepts C,D we set P (CI) =

∑
d∈CI µ(d) and

P (CI |DI) =

{
P (CI∩DI)
P (DI)

if P (DI) > 0

0 otherwise

An interpretation I satisfies a probabilistic statement

(i)
∑m′

j=1 a
′
j · P(Cj) ./ r′ if

∑m′

j=1 a
′
j · P (CIj ) ./ r′ holds;

(ii)
∑m′′

j=1 a
′′
j · P(Cj |D) ./ r′′ if

∑m′′

j=1 a
′′
j · P (CIj |DI) ./ r′′ holds.

An interpretation I is called a model of a TBox T = Tc ∪ Tp, written I |= T ,
if it satisfies each concept inclusion and role inclusion in Tc and each probabilistic
statement in Tp. A TBox T is equivalent to a TBox T ′ if T and T ′ have the same
models. A TBox T entails an axiom α, T |= α, if all models of T satisfy α. Given
probability distribution µ, a TBox T entails an axiom α under µ, written T |=µ α, if
all models of T with probability distribution µ satisfy α.

4 A discrete function has a finite or countably infinite set of inputs.



Since µ is a probability distribution,
∑
d∈∆I µ(d) = 1. Hence, P(>) = 1 because

> has the standard DL definition. It also follows from Definition 2 that P(⊥) = 0.
Halpern [4] presents an axiom system, which includes standard probabilistic laws, for
the Type 1 probabilistic FOL and shows that it is sound. Since the semantics of SHIQP
is derived from the Type 1 probabilistic FOL as its fragment, it follows that all standard
probabilistic laws hold.

The syntax of SHIQP allows arbitrary linear combinations of probabilities with
the same conditioning concept, e.g. considering (2) in Example 1 we could express
P(FS | A) = 1.25 · P(CS | A), or “former smokers are 25% more likely than current
smokers to be met among adults”.

One may notice that C v D and P(D|C) = 1 are semantically different. For
example, an interpretation I with CI = ∅ is a model of C v D and not a model of
P(D|C) = 1. On the other hand, interpretation I = {∆I = {a, b}, CI = {a, b}, DI =
{b}, µ(a) = 0, µ(b) = 1} is a model of P(D|C) = 1 and not a model of C v D.

An unconditional probability P(C) is a special case of the conditional probability
P(C|D) withD ≡ >, i.e. P(C) = P(C|>). We can also write all conditional statements
in the unconditional form. The following lemma states this.

Lemma 1. Each probabilistic statement in SHIQP has an equivalent unconditional
form

∑m
j=1 ajP(Dj) ./ r where ./ ∈ {≥, >}, aj , r ∈ R, Dj is a SHIQ concept.

Proof. See Appendix.

Therefore, we further assume without loss of generality that each statement in Tp is
in unconditional form

∑m
j=1 ajP(Dj) ./ r, i.e. a linear combination of unconditional

probabilities. Thus, a probabilistic TBox Tp that consists of n probabilistic statements
is written as follows: ∑mi

j=1 aijP(Dij) ./ ri, i = 1..n.

The signature of Tc, Tp is the set T̃c, T̃p of all concept names and role names occur-
ring in Tc, Tp, respectively. Thus, T̃ = T̃c ∪ T̃p. We call |T̃ | the size of T . This way of
measuring TBox size underestimates the usual size.

3 Illustration and Comparison of the Semantics

Now let us discuss representation capabilities of the statistical and subjective seman-
tics. As mentioned above, the statistical semantics specifies a probability distribution µ
over a domain ∆I , i.e. P (CI) =

∑
d∈CI µ(d), whereas the subjective one specifies a

probability distribution µ over a set W of possible worlds (which correspond to realiz-
able types), i.e. P (C) =

∑
I∈W | C∈I µ(I) [9]. In other words, the statistical semantics

represents proportions of domain elements while the subjective one represents degrees
of belief. Importantly, in this section the probability distribution µ is fixed, i.e. uniform,
and reasoning under restricted distribution may be harder than under unrestricted one
due to the reasons discussed in [14]. Let us illustrate some differences between the
statistical semantics and the subjective semantics of [9].



Example 2. The following TBox is given:

T = {H ≡ (= 1m.W ), W ≡ (= 1m−.H),

P(H) = 0.3},

where H,W are concepts representing husbands and wives, respectively, m is a role
representing marriage.

In Example 2, the TBox T implies that there are exactly as many husbands in the
domain as there are wives. Hence, given µ is uniform, i.e. all individuals in the domain
have the same probability µ0 to be randomly picked, one can expect T |=µ P(W ) =
0.3. However, the subjective semantics is not able to handle this because relationships
between individuals within a single world are ignored by the semantics since it operates
on a set of possible worlds. As a result, the following is entailed: T |= P(W ) ≥ 0. On
the other hand, the statistical semantics does capture this:

P (W I) =
∑
d∈WI µ(d) = µ0 · |W I |

= µ0 · |HI | =
∑
d∈HI µ(d) = P (HI).

Example 3 illustrates that there are at least as many pets in the domain as there
are pet owners. Given µ is uniform, under the statistical semantics the following is
entailed: T |=µ P(Pe) ≥ 0.2. In contrast, the subjective one gives T |= P(Pe) ≥ 0
due to similar reasons as in Example 2.

Example 3. The following TBox is given:

T = {PeO ≡ ∃o.Pe, Pe ≡ (= 1 o−.P eO),

P(PeO) = 0.2},

where Pe, PeO are concepts representing pets and pet owners, respectively, o is a role
representing ownership.

Example 2 and 3 show the capabilities of the statistical semantics to handle statis-
tics. The statistical semantics allows for incorporating prior information about the prob-
ability distribution over the domain in a natural way that leads to possibly interesting
entailments. In contrast, the subjective semantics ignores relationships between individ-
uals within a single world and is not able to handle proportions.

4 TBox Reasoning in SHIQP

In the context of TBox reasoning in SHIQP we investigate two reasoning problems:
deciding consistency and computing tight probability bounds. We state the problems,
develop decision procedures, investigate computational complexity and its sources.



4.1 Deciding Consistency

As usual, a SHIQP TBox T = Tc ∪ Tp is called consistent if it admits a model and
inconsistent otherwise. We call PCon the problem of deciding consistency of a SHIQP
TBox. Further description requires the definition of types similar to (complete) types in
classic DLs (see e.g. [1]). This should not be confused with the Type 1 and Type 2 logic
given by Halpern.

Let T be a SHIQP TBox. Let sub(T ) be the set of all subconcepts of concepts
occurring in T , nsub(T ) = {¬̇C | C ∈ sub(T )} the set of their negations in negation
normal form, i.e. ¬̇C = NNF (¬C), and clos(T ) = sub(T ) ∪ nsub(T ).

Definition 3. A type of T is a set t ⊆ clos(T ) such that the following conditions are
satisfied:

(i) C ∈ t iff ¬̇C /∈ t, for all C ∈ clos(T );
(ii) C uD ∈ t iff C ∈ t and D ∈ t, for all C uD ∈ clos(T );

(iii) C tD ∈ t iff C ∈ t or D ∈ t, for all C tD ∈ clos(T );
(iv) C v D ∈ T and C ∈ t implies D ∈ t.

Given I |= T and e ∈ ∆I , we set type(e) = {D ∈ clos(T ) | e ∈ DI}. We say that
a type t of T is realized in a model I |= T if there is e ∈ ∆I such that type(e) = t.

Definition 4. A type t of T is realizable if (uC∈tC) is satisfiable w.r.t. T .

From now on, we consider only realizable types and omit “realizable”. It is well-
known that satisfiability w.r.t. a SHIQ TBox is decidable in ExpTime [19]. Lutz et
al. (see Appendix in [15]) state the theorem for complexity of deciding consistency of
a Prob1-ALC TBox and sketch the proof. It can be extended to a SHIQP TBox.

Theorem 1. Deciding consistency of a SHIQP TBox T is ExpTime-complete.

Proof. Given a SHIQP TBox T = Tc ∪ Tp, we can compute the set Tc of all types
of Tc in ExpTime. It is well-known for DLs with expressivity up to SHIQ that models
are preserved under disjoint union (see e.g. [13]). This implies that there is always a
SHIQ model (∆I , ·I) |= Tc where all (realizable) types are realized. If T̃p\T̃c 6= ∅,
Tc is trivially extended to match T̃ and denoted T .

Let a variable xt be associated with each type t ∈ T . Then, by Definition 2 and
Lemma 1, the TBox T induces the system of linear inequalities:

E(T ) :=
{∑

t∈T xt = 1; xt ≥ 0 for each t ∈ T ;∑mi

j=1 aij
∑
Dij∈t xt ./ ri, i = 1..n

System E(T ) can be solved using linear programming with the constant objective.
Since linear programming is in P [18] and E(T ) is of exponential size in T we can
decide in ExpTime whether there is a solution. It is sufficient to show that E(T ) has a
solution iff T is consistent.

“If”. Assume that E(T ) has a solution Ẋ = {ẋt | t ∈ T}. There is a classic model
(∆I , ·I) |= Tc where all types are realized. Choose any µ satisfying

∑
type(d)=t µ(d) =



ẋt, d ∈ ∆I , e.g. if type(d) = t then µ(d) = ẋt/(#{e ∈ ∆I | type(e) = t}). Let
I = (∆I , ·I , µ). Then, by Definition 2 of the semantics and Lemma 1∑

Dij∈t ẋt =
∑
Dij∈t

∑
type(d)=t µ(d)

=
∑
d∈DI

ij
µ(d) = P (DIij).

This implies that all probabilistic statements in Tp are satisfied. Hence, I |= T .
“Only If”. Assume T is consistent, i.e. there is a model I = (∆I , ·I , µ) |= T . Let

ẋt :=
∑

type(d)=t µ(d) for each t ∈ T . By Definition 2 of the semantics and Lemma 1,
each probabilistic statement

∑mi

j=1 aijP (D
I
ij) ./ ri, i = 1..n holds. We observe that

P (DIij) =
∑
d∈DI

ij
µ(d)

=
∑
Dij∈t

∑
type(d)=t µ(d) =

∑
Dij∈t ẋt.

Therefore, Ẋ = {ẋt} is a solution of E(T ). ut

Reduction of a TBox entailment T |= C v D to consistency is analogous to
SHIQ. By Lemma 1, a probabilistic TBox entailment is reduced to consistency as
follows:

T |=
∑m
j=1 ajP(Dj) ./ r iff

T ∪ {(−1)
∑m
j=1 ajP(Dj) .̇/ − r} is inconsistent,

where .̇/ =

{
> if ./ is ≥
≥ if ./ is >

.

Thus, deciding TBox consistency, and consequently TBox entailment, in SHIQP
is not harder than in SHIQ. The procedure is based on solving a system of linear
inequalities over variables representing types.

4.2 Computing Tight Probability Bounds

In addition to consistency checking, one may be interested in probabilistic entailments
that come in form of tight bounds T |= P(C|D) ≥ p` and T |= P(C|D) ≤ pu. For
example, tight bounds can identify possible data flaws, see Appendix. We define the
reasoning task of computing tight probability bounds in SHIQP .

Definition 5. (Tight bounds) Let T be a consistent SHIQP TBox.

– A real value p` ∈ [0, 1] is a lower bound for P(C|D) w.r.t. T if T |= P(C|D) ≥ p`.
p` is a tight lower bound for P(C|D) w.r.t. T if p` is maximal.

– A real value pu ∈ [0, 1] is an upper bound for P(C|D) w.r.t. T if T |= P(C|D) ≤
pu. pu is a tight upper bound for P(C|D) w.r.t. T if pu is minimal.

– A real value po ∈ [0, 1] is called a tight bound for P(C|D) w.r.t. T if po is a tight
lower or upper bound.



– TEnt is the problem of computing a pair p`, pu for P(C|D), written T |=tight
{P(C|D) ≥ p`, P(C|D) ≤ pu}. We set `[P(C|D)] = p` and u[P(C|D)] = pu for
a tight lower and upper bound of P(C|D), respectively.

We now state TEnt as an optimization problem.

Lemma 2. Given a consistent SHIQP TBox T , tight bounds p`, pu for P(C|D) are
computed by solving the optimization problem, called OP (T ):

maximise s ·
∑
CuD∈t xt∑
D∈t xt

subject to E(T ),

such that p` = −p′, pu = p′′, where p′, p′′ are optimal values of OP (T ) when s = −1
and s = 1, respectively.

Proof. See Appendix.

As one can see, the objective function in OP (T ) is not linear. Fortunately, OP (T )
can be translated into an equivalent linear program using a substitution xt = yt/z [2]:

maximise s ·
∑
CuD∈t yt

subject to
∑
t∈T yt − z = 0; yt ≥ 0 for each t ∈ T ;∑mi

j=1 aij
∑
Dij∈t yt − riz ./ 0, i = 1..n;∑

D∈t yt = 1; z > 0

In case of unconditional probability, a substitution is not required (i.e. it is trivial),
since the objective function is already linear:

maximise s ·
∑
C∈t xt

subject to E(T )

Thus, the optimization problem OP (T ) is reducible to a linear program. Since lin-
ear programming is in P [18], finding a solution of OP (T ) requires a polynomial num-
ber of iterations in the size of OP (T ). Nonetheless, the optimization problem OP (T )
is of exponential size w.r.t. the TBox T due to exponentially many types t ∈ T . There-
fore, computing TEnt is in ExpTime in the size of T which is stated by the following
theorem.

Theorem 2. Given a consistent SHIQP TBox T , computing tight probability bounds
is in ExpTime in the size of T .

4.3 More Detailed Complexity Analysis

One can notice that signatures of classic T̃c and probabilistic part T̃p do not necessarily
coincide. In particular, a probabilistic T̃p can be much smaller than classic T̃c, |T̃c| �
|T̃p|, e.g. for medical knowledge bases. Once realizable types are obtained from Tc,



Tp produces an optimization problem OP (T ) which includes variables for each type
from Tc. If |T̃c| � |T̃p|, this makes OP (T ) unreasonably large and, consequently,
reasoning over relatively simple probabilistic parts hard. Fortunately, as the following
lemma shows, this can be avoided via a refinement of OP (T ).

Lemma 3. Given a consistent TBox T = Tc ∪ Tp, there is a refinement of OP (T ),
OPp(T ), that gives the same tight bounds as OP (T ) and has exponentially many vari-
ables in the size of Tp.

Proof. Let T be the set of all types of T as above and Tp the set of all types of Tp
alone. Let T ′ be the set of types of Tp “allowed” by Tc, i.e. T ′ := {τ ∈ Tp | there is t ∈
T s.t. τ ⊆ t}. Then, sums in the optimization problem OP (T ) can be rewritten as
follows: ∑

C∈t xt =
∑
C∈τ

∑
τ⊆t xt =

∑
C∈τ xτ ,

where t ∈ T, τ ∈ T ′. Thus, every sum in OP (T ), except
∑
t∈T xt, is potentially

“squeezed” via substitutions, since |T ′| ≤ |T |. Let T ′′ = {t ∈ T | there is no τ ∈
T ′ s.t. τ ⊆ t}. Then

∑
t∈T xt =

∑
τ∈T ′ xτ +

∑
t∈T ′′ xt =

∑
τ∈T ′ xτ +x. Constraints

{xt ≥ 0 | there is τ ∈ T ′ s.t. τ ⊆ t} are substituted by corresponding constraints
{xτ ≥ 0}. Constraints {xt ≥ 0 | t ∈ T ′′} are substituted by single constraint {x ≥ 0}.

Let OPp(T ) be the optimization problem obtained from OP (T ) via the aforemen-
tioned substitutions. Since |T ′| ≤ |Tp| = 2|T̃p|, the number of variables in OPp(T ) is
at most 2|T̃p| + 1. ut

The result of Lemma 3 also holds for deciding TBox consistency in SHIQP .

Corollary 1. Given a TBox T = Tc ∪ Tp, there is a refinement of E(T ), Ep(T ), that
gives the same consistency result as E(T ) and has exponentially many variables in the
size of Tp.

Lemma 3 gives a procedure to reduce, possibly massively, the number of variables
in the linear program for both computing TEnt and deciding PCon. This is achieved via
substituting suitable sums of type variables by fresh variables. As a result, the number
of variables is reduced from exponentially many w.r.t. T to exponentially many w.r.t.
Tp only.

It should be noted that Lemma 3 and Corollary 1 do not provide new complexity
results: one has to compute the set of realizable types which is still in ExpTime. Never-
theless, it gives insight into complexity sources and may lead to a significant optimiza-
tion because otherwise the size of a probabilistic part has to be significantly limited,
e.g. in [16].

5 Related Work

There are several criteria to distinguish the existing approaches. Firstly, we distin-
guish loose and tight proposals to handle probabilities. Loose ones are mainly based



on the combination of logic with probabilistic graphical models such as Bayesian net-
works [10, 20, 3]. They mainly admit a single model. The influence in one direction is
typical for them: logical knowledge affects probabilistic knowledge but not the other
way around. Among their drawbacks is limited expressivity: the syntax is restricted due
to underlying graphical models. In addition, the graphical models often have large sizes
that make them hardly manageable. They can also require non-domain assumptions
such as probabilistic independences.

By tight proposals we mean those which attempt to deal with uncertainty in purely
logical ways. In contrast to loose proposals, they admit multiple models. Influence
works in both directions between logical and probabilistic knowledge. The probabilistic
DL SHIQP is a tight proposal by this definition.

Probabilistic extensions differ in their syntax and semantics. One of the major syn-
tax differences is how and where probabilities can occur. In particular, probabilistic
statements can be added to classical DL axioms [11, 9] or probabilities can be em-
bedded into axioms via application to concepts and roles [15], e.g. P=0.2(A) v CS
expresses “20 % of adults are current smokers”. The syntax of SHIQP is an example
of the first approach.

As pointed out above, there are two views of probability that separate the existing
probabilistic DLs by their semantics: statistical and subjective. The statistical view has
been intensely used by non-logic extensions where a probability distribution is typically
represented by graphical models [10, 20, 3]. The examples of logic extensions taking
the statistical view are [7, 15]. The subjective view is associated with possible worlds
which are, in fact, the core of the semantics for many existing extensions [11, 15, 9].
Lutz et al. [15] obtain the probabilistic DL Prob-ALC with the subjective semantics
from Halpern’s Type 2 probabilistic FOL and study its expressivity and computational
properties. They also derive Prob1-ALC from Halpern’s Type 1 probabilistic FOL. The
statistical semantics of SHIQP is similarly inherited from Halpern’s Type 1 probabilis-
tic FOL. A TBox in SHIQP admits linear combinations of conditional probabilities
which are not explicitly permitted in Prob1-ALC.

TBox reasoning in SHIQP is the combination of classic DL reasoning and linear
programming. The extensions with the subjective semantics [11, 15, 9] also perform
reasoning via solving systems of linear inequalities, commonly over possible worlds.
This has been implemented and used for medical applications [8].

6 Summary and Future Work

In this work, we study the probabilistic extension of the DL SHIQ that we call SHIQP .
It has the statistical semantics inherited from the Type 1 probabilistic FOL [4]. We in-
vestigate two reasoning problems for TBoxes in SHIQP : deciding consistency PCon
and computing tight probability bounds TEnt. We obtain the ExpTime complexity
bounds for deciding consistency of a SHIQP TBox. While deciding consistency of
TBoxes is already explored for Prob1-ALC, to the best of our knowledge, no studies
are carried out for the problem of computing tight probability bounds for any exten-
sion with the same semantics. We state this problem for SHIQP as an optimization
problem. We also show that solving this optimization problem is, in fact, reducible to



linear programming and, hence, is in P w.r.t. its size. Therefore, computing TEnt is in
ExpTime in the size of the TBox T . Thus, both PCon and TEnt are not harder than rea-
soning in the classic DL SHIQ. Moreover, we show that the size of a linear program
for PCon and TEnt can be (significantly) reduced since it depends on the probabilistic
part only which is an important insight into the sources of computational complexity.

In Section 3 we discuss abilities of the statistical semantics to handle the statistical
knowledge and observe that it is naturally suited for this purpose. As noted by several
authors [4, 11, 15], the main shortcoming of the statistical semantics, however, is its
inability to represent probabilistic assertional knowledge, i.e. degrees of belief. For ex-
ample, there is no way to encode “Martin is a smoker with probability 0.7” since he is
either a smoker or he is not, according to the statistical view. Lutz et al. [15] state that
“only TBox reasoning is relevant” for the statistical semantics and exclude ABoxes.

Nevertheless, we argue that ABox reasoning may be relevant for the statistical se-
mantics if it is extended to capture population wide, incomplete data, i.e. it is of suf-
ficient size and spread w.r.t. the whole population. Reasoning over such data might
help to answer the question how well the data fits the background knowledge including
probabilistic statements, i.e. whether they are compatible with the proportions of indi-
viduals in the data. In case of incomplete data, the incompatibility might show whether
and which information is missing. Thus, we plan to further study ABox reasoning in
the statistical semantics and its possible extensions.

As Example 2 and 3 show, prior knowledge about probability distribution acts as
an additional parameter to the reasoning procedure. We plan to further investigate how
restrictions of a probability distribution affect entailments and their complexity. We
also consider extending expressivity of probabilistic statements in TBoxes, e.g. with
probabilistic independence constraints, and investigate related complexity issues. We
plan implementations of developed procedures and their optimizations.
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