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Abstract

Instance reduction methods are popular methods that re-
duce the size of the datasets to possibly improve the
classification accuracy. We present a method that re-
duces the size of the dataset based on the percentile of
the dataset partitions which we call IPRed. We evalu-
ate our and other popular instance reduction methods
from a classification perspective by 1-nearest neighbor
algorithm on many real datasets. Our experimental eval-
uation on the datasets shows that our method yields
the minimum average error with statistical significance.
Keywords: instance reduction, nearest neighbor, clas-
sification, statistical significance.

Introduction
Instance reduction methods are popular methods used in
machine learning and data mining that reduce the size of
the datasets to possibly improve the classification accur-
acy of the classification algorithms(Wilson and Martinez
2000). Among many methods the condensed nearest neigh-
bor(CNN)(Hart 1968) is a popular algorithm. CNN out-
puts a reduced training set Z from the original training set
S where Z classifies all instances in S correctly using 1-
nearest neighbor (1NN)(Alpaydin 1997) . For given valida-
tion instance v = (x

′
, y

′
), prediction is given by(Wu et al.

2008)

y
′
= argmax

l′∈L
I(l

′
= y1) (1)

where l
′

is the label, the set of all labels is denoted by
L, y1 is the label for the closest instance x obtained by se-
lecting the label for the instance x ∈ Z that gives the min-
imum distance from x

′
, I(.) is an indicator function that out-

puts 1 if its argument is true and 0 otherwise, and y
′ ∈ L

is the predicted label for the validation instance for which
I(y

′
= y1) attains its maximum. Reduced nearest neigh-

bor(RNN)(Gates 1972) is a modification to improve CNN
which includes additional step that is removing instances
from reduced training set Z that do not cause any misclassi-
fication on the training set S(Bhatia and others 2010). Gen-
eralized condensed nearest neighbor rule(GCNN) is another
variant of CNN which iteratively constructs reduced train-
ing set Z from training set S by selecting instances from

S according to criterion(Chou, Kuo, and Chang 2006). All
the previously mentioned algorithms significantly reduce the
storage requirement for the training set used by the classi-
fication algorithms(Wilson and Martinez 2000; Chou, Kuo,
and Chang 2006). However, the classification accuracy de-
grades most of the time on the validation set compared to
the classification accuracy of the classification algorithms
using the original training set(Chou, Kuo, and Chang 2006;
Wilson and Martinez 2000).

In this paper we consider approach that partitions the data-
set into training partitions Sk for k = 1...9 and a valida-
tion partition V to compute the sum of minimum distances
between the validation partition V and each training parti-
tion Sk. We then construct reduced training set Z by select-
ing the training partitions that are less than the pth percentile
of all the training partitions for specific p value. The goal is
to select the training partitions that contain similar instances
to the validation instances and remove those with dissim-
ilar instances. The idea behind the strategy is that instances
dissimilar with validation instances will have little, if not ad-
verse, effect on predicting validation instances, and thus can
be removed with little, if not positive, effect on classifica-
tion. An example in real life is that a professor gives stu-
dents a take-home exam (i.e. validation set without labels)
and students will look for chapters (i.e. training partitions)
of the book (i.e. training set) which contain similar inform-
ation (i.e. instances of the training partitions) to the exam
questions (i.e. instances of the validation set) and skip irrel-
evant chapters. For given reduced training set Z the predic-
tion is given by using 1NN(Equation 1). Compared to other
popular instance reduction methods our experimental evalu-
ation on 30 datasets shows that our method IPRed yields the
minimum average error with statistical significance.

The rest of this paper is organized as follows. In section II
we review related work. In section III we present our method
IPRed. Following that we present experimental evaluation
and discussion before concluding.

Related Work
Condensed Nearest Neighbor Rule
The CNN outlined in Algorithm 1 works as fol-
lows(Alpaydin 1997). CNN recieves training set S and
empty subset Z(lines 1-2). At each iteration of the for loop



of lines 6-13 instance x is selected randomly from the train-
ing set S(line 7). Lines 8-9 perform 1NN classification as
follows. In line 8 the instance zc is obtained by selecting the
instance zj in the stored subset Z that gives the minimum
distance from x. Lines 9-10 store the instance x in the sub-
set Z if it is incorrectly classified. The do-while loop of lines
4-14 terminates when the instances in the training set S are
correctly classified by the stored subset Z with 1NN. Line
15 returns the reduced training set Z. For given Z the pre-
diction on the validation set V is given by 1NN(Equation
1).

Algorithm 1 Condensed Nearest Neighbor algorithm
(CNN)

1: CNN(S,Z)
2: Z ← ∅
3: Pre add← 1

4: do
5: add← 0

6: for all instances in training set S do
7: Randomly select x from S

8: Find zc ∈ Z such that D(x, zc) = minj D(x, zj)

9: if label(x) 6= label(zc) then
10: Z ← Z ∪ x

11: add← 1

12: end if
13: end for
14: while (Pre add == add)
15: return (Z)

Reduced Nearest Neighbor Rule
The reduced nearest neighbor(RNN)(Gates 1972; Wilson
and Martinez 2000) is a modification to CNN which starts
with training set S and reduced training set Z where all in-
stances are copied from the training set S to the reduced
training set Z. The RNN algorithm iteratively removes each
instance from Z if the removal does not lead to any mis-
classification of the other instances in S using the remaining
instances in Z. Prediction is performed on the validation set
using Z.

Generalized Condensed Nearest Neighbor Rule
The generalized condensed nearest neighbor(GCNN)(Chou,
Kuo, and Chang 2006; Olvera-López et al. 2010) sequen-
tially adds instances from the training set S to the reduced
training set Z when the instances are not absorbed by Z. In-
stance x ∈ S is absorbed when |x− a| − |x− b| > δ where
a ∈ Z is the nearest instance to x with the same class la-
bel(i.e. label(x) = label(a)), b ∈ Z is the nearest instance to
x with different class label(i.e. label(x) 6= label(b)), and δ is
the threshold. Prediction is made on the validation set using
Z.

IPRed
As shown in Algorithm 2 the DP algorithm receives as an
input a dataset D ∈ Rk×d+1 of size k where the label as-
sociated to the instance xk ∈ Rd is yk(line 1). In line 2 we

divide the dataset size k by 10 and take the floor of the res-
ult. Lines 3-4 initialize the variables. The for loop of lines
5-18 creates 9 training partitions Pk for k = 1...9 by tak-
ing subsamples without replacement from dataset D where
the size of each Pk is the same. The for loop of lines 20-28
creates the validation partition V1 by taking the remaining
subsamples without replacement from the dataset D. Line
29 assigns the 9 training partitions to S. In line 30 we assign
the validation partition V1 to V . In line 31 our algorithm
outlined in Algorithm 3 is called by taking partitions in S
and V as inputs. IPRed algorithm outputs a training set Z
of reduced size to guide the 1NN algorithm for better classi-
fication performance on the validation set V . The IPRed al-
gorithm which is outlined in Algorithm 3 works as follows.
Line 2 stores the size of the validation partition V1. The for
loop of lines 3-12 iterates 9 times to store the sum of the min-
imum euclidean distances(line 11) between the partitions as
follows. At each iteration of the for loop of lines 5-10 we
store the computed euclidean distances(line 7) between the
nth instance in V1[n, j] and each instance i in the kth par-
tition Pk[i, j] for i = 1...p size and j = 1...d(for loop of
lines 6-8).

Algorithm 2 Dataset Partitioning algorithm (DP)
1: DP(D = {(x1, y1), ..., (xk, yk)})
2: size← b k

10c
3: b← 1
4: c← size
5: for k = 1 to 9 do
6: q ← 1
7: r ← 1
8: for i = b to size do
9: for j = 1 to d do

10: Pk[q, r]← x[i, j]
11: r ← r + 1
12: end for
13: Pk[q, r]← y[i]
14: q ← q + 1
15: end for
16: b← b+ c
17: size← size+ c
18: end for
19: q ← 1
20: for i = b to k do
21: r ← 1
22: for j = 1 to d do
23: V1[q, r]← x[i, j]
24: r ← r + 1
25: end for
26: V1[q, r]← y[i]
27: q ← q + 1
28: end for
29: S ← {P1, P2, ..., P9}
30: V ← {V1}
31: Z ← IPRed(S, V )

We then store the minimum distance(line 9). After the for
loop of lines 5-10 terminates, we store the sum of the min-



imum distances between the kth partition Pk and V1(line
11). Thus, the for loop of lines 3-12 iterates 9 times to store
the results for the 9 training partitions(line 11). In line 13
we use the percentile as a robust measurement of the loc-
ation of the data to store the 75th percentile of all training
partitions. Line 14 initializes j to 1. The for loop of lines
15-20 selects the ith training partition that is less than 75th

percentile of all training partitions for i = 1...9. We store
the index of the ith training partition that satisfies the con-
dition(line 16) in Partitions index(line 17). After the for
loop of lines 22-31 terminates we return the reduced training
set Z(line 32) which contains the selected training partitions
in Partitions index. Prediction on the validation set V is
given by 1NN(Equation 1) using Z.

Algorithm 3 IPRed algorithm
1: IPRED(S = {P1, P2, ..., P9}, V = {V1} )
2: v size← V1.size
3: for k = 1 to 9 do
4: p size← Pk.size
5: for n = 1 to v size do
6: for i = 1 to p size do

7: distances[i]←

√
d∑

j=1

(Pk[i, j]− V1[n, j])2

8: end for
9: nearest instances[n]←Min(distances)

10: end for
11: Partitions[k]←

v size∑
t=1

nearest instances[t]

12: end for
13: Q4← Percentile(Partitions, 75%)
14: j ← 1
15: for i = 1 to length(Partitions) do
16: if Partitions[i] < Q4 then
17: Partitions index[j]← i
18: j ← j + 1
19: end if
20: end for
21: n← 1
22: for m = 1 to length(Partitions index) do
23: k ← Partitions index[m]
24: p size← Pk.size
25: for i = 1 to p size do
26: for j = 1 to d+ 1 do
27: Z[n, j]← Pk[i, j]
28: end for
29: n← n+ 1
30: end for
31: end for
32: return (Z)

Experimental Evaluation
We experimentally evaluate the performance of our instance
reduction algorithm and compare it against others from a
classification perspective(Japkowicz and Shah 2011) by 1-
nearest neighbor(1NN) algorithm on 30 real datasets shown
in Table 1. This section describes the datasets, experimental

.
Code Dataset Classes Dimensions Instances

1 Soy Bean 4 35 47
2 Colon Cancer 2 2000 62
3 Leukemia 2 7129 72
4 Breast Tissue 6 9 106
5 Appendicitis 2 7 106
6 Iris 3 4 150
7 Hayes-Roth 3 4 160
8 Global Cancer Map 14 16063 190
9 Glass Identification 6 10 214
10 Heart 2 13 270
11 Haberman 2 3 306
12 Ecoli 8 6 336
13 Liver Disorders 2 6 345
14 Bci 2 117 400
15 Saheart 2 9 462
16 Musk 2 166 476
17 Led 10 7 500
18 Climate 2 18 540
19 Breast Cancer 2 30 569
20 Digits 2 63 762
21 Diabetes 2 8 768
22 Vowel 11 13 990
23 Statlog German Credit Card 2 24 1000
24 Banknote Authentication 2 4 1372
25 Contraceptive 3 9 1473
26 Wine Quality Red 11 11 1599
27 Ozone 2 72 1847
28 Steel Plates Faults 7 27 1941
29 Insurance Company COIL 2000 2 85 5822
30 Magic Gamma Telescope 2 10 19020

Table 1: Datasets from the UCI(A. Asuncion 2007),
KEEL(Alcalá et al. 2010), and Bioinformatics repositor-
ies(Jesús S. Aguilar-Ruiz ) that we used in our experimental
evaluation

methodology, then presents the experimental results.

Datasets
We use 30 real datasets in our experiments for classification.
The information on datasets is tabulated in Table 1 which
are ordered in terms of increasing number of instances. The
datasets are obtained from three different sources. The ap-
pendicitis and saheart are obtained from KEEL-dataset re-
pository(Alcalá et al. 2010). The colon cancer, leukemia,
and global cancer map are obtained from BioInformatics
Research Group-dataset repository (Jesús S. Aguilar-Ruiz ).
All the remaining datasets are from the UCI machine learn-
ing repository(A. Asuncion 2007).

Experimental Methodology
We evaluate four classification algorithms: IPRed+1NN,
CNN+1NN, RNN+1NN, and 1NN where the four al-
gorithms are 1-nearest neighbor applied to IPRed, 1-nearest
neighbor applied to condensed nearest neighbor, 1-nearest
neighbor applied to reduced nearest neighbor, and 1-nearest
neighbor respectively. We use the 10-fold cross-validation
on each dataset ensuring the same splits for each algorithm.
For each instance reduction method we reduce the size k
on the original training set from S ∈ Rk×d+1 to Z ∈
Rk

′
×d+1 where k

′
< k . We then apply 1NN for the

given Z on the validation set. Recall that 1NN is given by
y

′
= argmax

r
I(r = y1)(Equation 1). We wrote our code in

R.



Code Dataset IPRed+1NN % CNN+1NN % RNN+1NN % 1NN %

1 Soy Bean 2.5 64.4681 5 15.5319 5 14.6809 2.5 100
2 Colon Cancer 15.417 60.6452 18.75 35.4839 18.333 26.9355 15.417 100
3 Leukemia 10 60 16.8254 28.8889 20.794 24.5833 15.397 100
4 Breast Tissue 35.625 59.434 39.375 54.717 36.75 49.6226 41.75 100
5 Appendicitis 18.125 61.6981 21.125 33.3019 23.5 26.6038 18.5 100
6 Iris 4 60 6 12.1333 8 9.8667 4 100
7 Hayes-Roth 29.375 60 30 48.875 30.625 44.9375 29.375 100
8 Global Cancer Map 38.947 60 40 49.7368 41.579 44.7895 39.474 100
9 Glass Identification 0.8 60.5607 0.8762 7.2897 0.952 4.8131 0.876 100
10 Heart 39.259 60 41.1111 52.8519 41.852 47.4444 42.222 100
11 Haberman 29.444 59.4118 33.5556 47.4837 37.444 45.1961 29.111 100
12 Ecoli 22.867 60.1786 25.8042 37.5 27.063 33.869 23.823 100
13 Liver Disorders 34.472 60 41.9306 52.9275 39.578 47.3333 36.674 100
14 Bci 44 60 45.75 55 42.5 49.275 45.5 100
15 Saheart 42.88 59.9134 43.5507 53.5498 44.629 46.9048 43.551 100
16 Musk 15.905 60.1261 13.9904 27.563 15.054 21.9748 15.66841 100
17 Led 28.2 59 29 42.34 26.8 41.64 28.6 100
18 Climate 11.111 60 16.6667 24.1667 18.704 19.7963 11.111 100
19 Breast Cancer 9.316 60.1582 9.8764 14.9736 9.698 11.9332 9.008 100
20 Digits 0.128 60.0787 1.046 3.9895 1.704 3.1102 0.256 100
21 Diabetes 32.832 59.8958 34.8872 46.0026 35.207 39.3229 32.531 100
22 Vowel 36.263 60 37.7778 19.0202 40.101 17.5758 36.263 100
23 Statlog German Credit Card 34.5 60 34.6 49.38 36.7 47.39 33.4 100
24 Banknote Authentication 0.073 60.0437 0.219 1.7274 0.219 1.5306 0.073 100
25 Contraceptive 51.942 59.9593 53.9116 67.3999 54.314 67.1079 51.943 100
26 Wine Quality Red 54.552 60 56.7105 54.7154 57.697 49.7311 55.37 100
27 Ozone 11.323 60.0758 15.9808 22.1765 18.195 17.8073 11.162 100
28 Steel Plates Faults 61.619 60 62.443 65.4044 62.907 61.6383 61.722 100
29 Insurance Company COIL 2000 10.821 59.9966 13.1751 23.0831 13.243 22.6984 10.564 100
30 Magic Gamma Telescope 14.732 60 27.6656 35.469 28.465 30.643 24.022 100

Average 24.701 60.1881 27.253 36.0894 27.92 32.3585 25.662 100

Table 2: Average cross-validation error and average storage percentage % of the algorithms on each of the 30 real datasets from
the UCI(A. Asuncion 2007), KEEL(Alcalá et al. 2010), and Bioinformatics repositories(Jesús S. Aguilar-Ruiz ). The algorithm
with the minimum error is shown in bold.

CNN+1NN RNN+1NN 1NN
IPRed+1NN 0.000007 0.00001 0.02088
CNN+1NN 0.0226 0.00018
RNN+1NN 0.00044

Table 3: P-values of Wilcox rank test(two-tailed test) between all pairs of algorithms.

Experimental Results on Thirty Datasets
For each training-validation split in our classifications tasks
we measure the error on the validation split as the number
of instances incorrectly predicted divided by the number of
instances. We then take the average result of 10 folds to be
average cross-validation error. For each dataset we measure
the storage percentage as the number of instances in the re-
duced training set divided by the number of instances in the
training set and take the average result of 10 trials in the
cross-validation to be average storage percentage. In Table 2
we tabulate average cross-validation error and average stor-
age percentage % results on each dataset.

Over the 30 datasets IPRed+1NN yields the minimum av-
erage error of 24.701% and has the minimum error in 14
out of 30 datasets. The second best is 1NN that gives an
average error of 25.662% and has the minimum error in 6
out of 30 datasets. The third best is CNN+1NN that gives

higher average error of 27.253% and has the minimum er-
ror in 1 out of 30 datasets. RNN+1NN gives an average er-
ror of 27.92% and has the minimum error in 2 out of 30
datasets. RNN+1NN has the best average storage require-
ments of 32.3585%. The second best is CNN+1NN that
gives average storage requirements of 36.0894%. The third
best is IPRed which gives average storage requirements of
60.1881%. 1NN uses the original training set. Thus, 1NN
gives average storage requirements of 100%.

To verify that differences in classification accuracy on
the datasets are statistically significant we use Wilcoxon
rank test(Japkowicz and Shah 2011; Kanji 2006) which is a
standard test to measure the statistical significance between
two methods in many datasets. It shows that one method is
considered statistically significant than the other method if
it outperforms the other method in many datasets. The p-
values in Table 3 show that our method IPRed+1NN outper-



forms the other methods on the 30 datasets with statistical
significance.

Discussion
IPRed+1NN divides the training set into 9 partitions each
of the same size. For each training partition obtained from
the training set we store the sum of the minimum distances
between the training partition and the validation partition.
We then construct the reduced dataset from the selected
training partitions that are less than 75th percentile of all the
training partitions. Finally, we measure the performance of
1NN on the validation set using the given reduced training
set. This approach outperforms CNN+1NN and RNN+1NN
in terms of accuracy(results shown in Table 2 and Table 3).

In this study we chose 1NN as a classification algorithm
due to its popularity and its efficiency for CNN and RNN
algorithms. Other classifiers such as support vector ma-
chine(SVM) can be used which may outperform 1NN. How-
ever, optimizing SVM by performing cross-validation to se-
lect the best parameters increases the runtime. IPRed+1NN
gives higher average storage percentage than CNN+1NN
and RNN+1NN on the datasets except for steel plates faults
and contraceptive datasets(results shown in Table 3). Thus,
It is the slowest algorithm in the conducted experiments
but still computationally tractable for the large real data-
sets. However, It gives better classification accuracy than the
other methods most of the time. We used the standard pack-
age for CNN+1NN and RNN+1NN in R(Ripley, Venables,
and Ripley 2013).

Conclusion
We present instance reduction algorithm based on the per-
centile of the partitions that outputs dataset of reduced size
used by 1-nearest neighbor algorithm for classification. Our
algorithm leads to better classification performance than the
other popular methods by obtaining the minimum average
error with statistical significance on many real datasets.
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Alcalá, J.; Fernández, A.; Luengo, J.; Derrac, J.; Garcı́a,
S.; Sánchez, L.; and Herrera, F. 2010. Keel data-mining
software tool: Data set repository, integration of algorithms
and experimental analysis framework. Journal of Multiple-
Valued Logic and Soft Computing 17:255–287.
Alpaydin, E. 1997. Voting over multiple condensed nearest
neighbors. Artificial Intelligence Review 11(1-5):115–132.
Bhatia, N., et al. 2010. Survey of nearest neighbor tech-
niques. arXiv preprint arXiv:1007.0085.
Chou, C.-H.; Kuo, B.-H.; and Chang, F. 2006. The gener-
alized condensed nearest neighbor rule as a data reduction
method. In Pattern Recognition, 2006. ICPR 2006. 18th In-
ternational Conference on, volume 2, 556–559. IEEE.
Gates, G. 1972. The reduced nearest neighbor rule
(corresp.). Information Theory, IEEE Transactions on
18(3):431–433.

Hart, P. 1968. The condensed nearest neighbor rule
(corresp.). Information Theory, IEEE Transactions on
14(3):515–516.
Japkowicz, N., and Shah, M. 2011. Evaluating Learning
Algorithms. Cambridge University Press.
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