
Massively Parallel kNN using CUDA on Spam-Classification
Joshua M. Smithrud

Computer Science Department
Central Washington University

Ellensburg, WA, USA
Email: jsmithrud37@gmail.com

Patrick McElroy
Computer Science Department
Central Washington University

Ellensburg, WA, USA
Email: mcelrp@gmail.com

Răzvan Andonie
Computer Science Department
Central Washington University

Ellensburg, WA, USA
and

Electronics and Computers Department
Transilvania University

Braşov, Romania
andonie@cwu.edu

Abstract

Email Spam-classification is a fundamental, unseen element
of everyday life. As email communication becomes more pro-
lific, and email systems become more robust, it becomes in-
creasingly necessary for Spam-classification systems to run
accurately and efficiently while remaining all but invisible to
the user. We propose a massively parallel implementation of
Spam-classification using the k-Nearest Neighbors (kNN) al-
gorithm on nVIDIA GPUs using CUDA. Being very simple
and straightforward, the performance of the kNN search de-
grades dramatically for large data sets, since the task is com-
putationally intensive. By utilizing the benefits of GPUs and
CUDA, we seek to overcome that cost.

1 Introduction
A study estimated that over 70% of today’s business emails
are Spam (see (Blanzieri and Bryl 2008)). The purpose of
email Spam is advertising, promotion, and spreading back-
doors or malicious programs. The cost of sending Spam
emails is much lower than the cost of automatically de-
tecting and removing these emails. The processes of Spam-
detection and filtration have become everyday occurrences
within the average person’s life. Though unbeknownst to
most, each and every instance of digital communiqué goes
through a series of automated filters to determine whether or
not the user would have any interest in that particular item.

Because Spam-filtering systems are expected to be trans-
parent to the user, there are two key aspects a good Spam-
filter must contain: accuracy and efficiency. As the volume
of email correspondences increases, so too does the amount
of data required to properly classify emails into the cate-
gories ”Spam” and ”Ham” (non-Spam). The larger these
training-sets become, the more time is consumed by the
process. As a result, in order to prevent the process from
becoming a burden to the user, Spam-filters must also be
implemented more efficiently in order to compensate for
the increased workload. No one wants to have to deal with
Spam; the email client should handle it on its own. Our
goal is to demonstrate the feasibility of an email client with
hyper-accurate and hyper-efficient Spam-filtration capabili-
ties, such that the standard email-user need not worry about
the process.

A Spam-filter needs to sort incoming mail into wanted
and unwanted, and it needs to do it accurately, which can

be difficult. Machine Learning can help solve this problem:
the email client can be trained to learn where to put each
email. There are many Machine Learning techniques avail-
able to filter emails, including: Bayesian methods, Neural
Networks, Support Vector Machines, and Deep Belief Net-
works, kNN, see: (Cormack 2008), (Tretyakov 2004), (Pan-
igrahi 2012), (Blanzieri and Bryl 2008), (Sallab and Rash-
wan 2012). Actually, the most popular and well-developed
approaches to anti-Spam are Machine Learning-based.

Filte et al. (Firte, Lemnaru, and Potolea 2010) proposed
a kNN-based Spam-detection filter. In this scheme, mes-
sages are classified with the algorithm based on a set of fea-
tures extracted from the properties and content of the emails.
The training set is resampled to the most appropriate size
and positive class distribution determined by several experi-
ments. The system performs a constant update of the data set
and the list of most frequent words that appear in Spam mes-
sages. The main reason for selecting the kNN algorithm was
that it does not require a training step for each query. How-
ever, the method is offline and the authors focus on accuracy,
rather than execution time. Actually, the kNN method can
run quite slow, especially for larger values of k and when
the input dataset is very large.

But how can we classify in real-time (online) incoming
emails? Do we have to start the whole process from scratch
each time? This is practically impossible when we have to
deal with very large sets of emails. One solution would be
to use incremental and parallel processing. Good scalabil-
ity can be achieved by efficiently using parallel computer
architectures like GPUs. Presently, GPUs are widely avail-
able and relatively inexpensive. In this context, the high-
parallelism inherent to the GPU makes this device especially
well-suited to address Machine Learning problems with pro-
hibitively computationally intensive tasks. An increasing
number of machine learning algorithms are implemented on
GPU’s (Lopes and Ribeiro 2011). At this moment, one of
the universally accepted programming languages for GPUs
is CUDA (Compute Unified Device Architecture) created
by nVIDIA. Since its introduction in 2006, CUDA has been
widely deployed through thousands of applications and pub-
lished research papers, and supported by an installed base of
over 500 million CUDA-enabled GPUs in notebooks, work-



stations, compute clusters and supercomputers1.
Our goal was to design an email client with a highly-

accurate, highly-efficient Spam-filtration capability. We
propose a massively parallel implementation of Spam-
classification using the kNN algorithm on nVIDIA GPUs
using CUDA. The system we created can incrementally add
new email samples to improve its accuracy. The proposed
approach is not only fast but also scalable to large-scale in-
stances. It also has the potential to scale for future devices
with increasing number of compute units.

The rest of the paper is structured as follows. Section 2
describes how we extract features from emails. In Section 3,
we introduce our parallel implementation of the kNN algo-
rithm. Section 4 presents the architecture of the Spam filter,
both from the designer and user perspectives. In Section 5
we describe experiments, discussing execution time and ac-
curacy. Section 6 concludes with final remarks.

2 Feature Extraction from Email
An email message does not fall neatly into the domain of text
classification. Email messages are much more than simple
text, and must be handled accordingly. In addition to raw
text, emails contain various elements of formatting (HTML
tags being a notable example), meta-data, etc. In order to
properly classify and filter emails, all of these elements must
be taken into account.

In order for an incoming email to be classified as ei-
ther Spam or Ham, it is first processed into quantifiable at-
tributes. The attributes used are based on previous work in
Spam Classification (Firte, Lemnaru, and Potolea 2010). Us-
ing MailSystem.NET’s open source libraries, we extract the
different components of the email message including:
• The number of recipients in the ”To”, ”CC”, and ”BCC”

fields
• The validity of the addresses in the ”To” and ”From”

fields
• The validity of the ”Message-ID” field
• The length of the ”Subject” field
• The over use of capitalization
• The length of the message body
• The number of attachments
• The number of phony/suspicious HTML tags present in

the email text
• The number of occurrences of the 50 most common Spam

keywords in the message
These account for a total of 63 attributes. After being cal-
culated, these attributes are normalized to weighted values
between 0 and 1 based on the min and max values present
for that attribute, such that no individual attribute contributes
more to classification than another (this could be adjusted to
fit specific environments if certain attributes are identified to
be more useful than others).

The 50 keywords used for matching are determined based
on the 50 most common terms found in emails classified as

1https://developer.nvidia.com/

Spam within the user’s account. In order to maintain an ac-
curate list, the training set must be rebased with some regu-
larity. Depending on the environment in which the applica-
tion is being used, this can be done on an absolute schedule,
or could be done as specified by the user.

The rebasing process accomplishes a couple things. First,
the list of 50 keywords is re-evaluated. Using Lucene.NET’s
open source text analytics libraries2 , we determine the
50 most common keywords found within the user’s Spam
folder. Once the new 50 keywords are found, the keyword
counts for preexisting elements in the training set are recal-
culated. Second, training set values are normalized again (as
new emails are added to the training set, it is possible for
attribute values to exceed 1, so rebasing regularly becomes
important to maintain consistency).

Basing the 50 keywords on the emails within the user’s ac-
count allows for better personal accuracy. One man’s Ham
is another man’s Spam (and vice-versa), so personalizing the
training set is a valuable tool. There is a notable downside,
however. Without a general consensus defining the differ-
ence between Ham and Spam, this system requires that the
initial training set be adequately comprehensive, while be-
ing small enough that the user’s preferences take precedence
quickly. This makes the structure of the initial training-set
used by new accounts critically important.

3 kNN Implemented in CUDA
Once an incoming email has been processed into its quan-
tifiable attributes, it is used as the query point in our kNN
classifier.

The kNN algorithm was implemented on almost all par-
allel architectures. A CUDA implementation of the kNN
algorithm is described in (Arefin et al. 2012)). Under spe-
cific conditions, speed-ups of 50 to 60 times compared with
CPU implementation were achieved, but this largely de-
pends on the dataset and the GPU characteristics. There are
also parallel kNN implementations which use the MapRe-
duce paradigm (Yokoyama, Ishikawa, and Suzuki 2012). We
will use here our own kNN CUDA implementation, specifi-
cally designed for the spam-classification problem.

For our work, we use sample emails from the SpamAs-
sassin dataset3 and stored them, after being processed, in an
SQLite database4. Our implementation is divided into three
phases: a distance calculation phase, a sorting phase, and a
voting phase. Though the second phase is the primary focus
of this work, we will examine each phase in detail.

The first phase is determining the distance between each
point in the training set and the query point. Since this step
is embarrassingly parallel, the process to determine the dis-
tances is simple and efficient. The query point and training
set are transferred to the GPU, where the distance calcula-
tion kernel allocates a single thread for each data point in
the training set. Each thread then simply calculates the Eu-
clidean distance between its assigned point and the query
point. The results of each calculation are stored in a struct

2http://lucenenet.apache.org/
3http://csmining.org/index.php/spam-assassin-datasets.html
4http://www.sqlite.org/



Figure 1: The input is divided among the executed blocks,
with each block executing a reduction and returning the k
smallest distances. Once all outputs have been collected,
they are used as new inputs and the process repeats.

within the GPU’s memory containing just the distance from
the query point and the item’s own classification. Since the
attribute data itself is no longer of any use, we free it up such
that the next phase of the algorithm can work on smaller data
points. Additionally, the k data points we end up returning
to the CPU are smaller and therefore reduced the overhead
produced by transmitting over the PCIe Bus.

The next phase is the sorting phase. To improve the ef-
ficiency of the sorting process, we implemented a parallel
reduction to determine the k smallest distances. Initially, the
array of distances stored in the GPU’s memory is used as in-
put for the reduction. The array is divided among the blocks,
and then the threads in each block perform a parallel reduc-
tion to find the smallest k distance within that block. Since
we don’t know where the smallest values are located among
the blocks, and because threads cannot intercommunicate
between blocks, each block must be reduced to its own min-
imal k. Once a block has determined its k elements of min-
imal distance, the results are stored in a secondary array on
the GPU, of size equal to k * the number of blocks used. Af-
ter all blocks have stored their results into the secondary ar-
ray, the reduction is run again with the output of the previous
reduction as the new input (juggling the reduced quantity of
data points between the 2 previously allocated storage ar-
rays (Fig. 1). This process is repeated until only k elements
remain, at which point those elements are returned to the
CPU.

The final phase is the voting phase. Since the number of
data points used in the voting phase is k, which is generally
set to a small value in order to maintain accuracy and avoid
over-fitting, the computation for this step is negligible. For
this reason, we execute this step on the CPU. The weighted
distance for each of the k data points is added to its classifi-
cation’s total. Once each of the k data points has contributed
its vote, the classification with majority would generally be
determined to be the correct classification. However, since
our implementation is designed specifically for use in Spam-
Classification systems, a simple majority vote is not ideal.
Generally speaking, it is preferable to have Spam emails
incorrectly classified as Ham rather than the opposite (we
prefer false-negatives over false-positives). As a result, our
implementation utilizes a threshold value (θ), that the vote
must exceed in order for an email to be classified as Spam.

4 System architecture
To demonstrate the functionality of the email classifica-
tion scheme we developed, we created a lightweight email
client, which we dubbed ”SpamSystem.NET”5. The appli-
cation provided both full email functionality with Gmail ac-
counts and used our own customizable kNN email classifi-
cation scheme for Spam-filtration.

To achieve email client functionality, we relied on some
aspects of the MailSystem.NET open source libraries6.
MailSystem.NET provided functionality that allowed us to
easily open connections to Gmail’s servers. For our pur-
poses, we modified the Gmail account settings so that Gmail
automatically sent all messages to the inbox, even those
messages identified as Spam by Google’s filters. This al-
lowed us to test our own implementation without outside
interference. It is worth noting that this is not necessary,
and both filters could be used in tandem. We did this strictly
for the purpose of testing. MailSystem.NET’s libraries al-
lowed us to send and receive email messages, create our
own functions to manage the user’s Gmail account, maintain
bidirectional synchronization with Google’s servers). It also
allowed the system to detect changes to the user’s account,
which happen outside of our application. The main user in-
terface can be seen in Fig. 3, with the user’s different email
folders and options for standard email client actions. Mail-
System.NET also provided functionality for creating email
objects, which allowed us to more easily parse emails for the
classification metrics we required.

Additionally, our application provides easy options for
managing the kNN Spam-filter. Fig. 4 shows the options-
screen of our SpamSystem.NET application. In addition to
managing the user’s email account, there are options for
maintaining a Black-List and a White-List, which specify
keywords, phrases, domain names, and email addresses that,
should they appear in an email, indicate that the email should
automatically go to the Spam folder (for Black- List items)
or the inbox (for White-List items). There are also nec-
essary features for maintaining the kNN Spam-filter itself.
There are options for determining the time interval between
training-set rebasings, as well as options for determining
which GPU(s) should be used to run the kNN classification,
should more than one GPU be present in the system.

To summarize how the system operates, first an unclassi-
fied incoming email is received from the Gmail server in the
form of an IMAP message. It is then parsed by our applica-
tion into quantifiable attributes. Next, it is sent to the kNN
classifier, which determines whether it is Ham or Spam. Fi-
nally, the email is moved to the appropriate email folder in
our application, and the application notifies the Gmail server
to do the same. A detailed diagram representing the compo-
nents and how they interact can be seen in Fig. 2.

Our system runs locally on the user’s machine. Our goal
in developing this local implementation was to demonstrate
its efficiency and scalability.

5For this implementation stage, we gratefully acknowledge the
contribution of our student colleague Leonard Patterson.

6http://mailsystem.codeplex.com/



Figure 2: The overall system architecture for SpamSystem.NET.

Figure 3: Main screen of SpamSystem.NET’s user interface.

5 Experiments
A significant amount of previous research has been done
showing that the kNN algorithm can be highly accurate (see,
for example, (Firte, Lemnaru, and Potolea 2010)). The algo-
rithm’s real deficit lies in the cost of its computation. As a
result, the primary focus of our research and resulting bench-
marks relate to demonstrating the efficiency gained by im-
plementing kNN in CUDA. That being said, one cannot dis-
cuss a classification algorithm without discussing accuracy.
This section details both time and accuracy benchmarks.

Our implementation was designed and tested on a
GeForce GTX 260 (PCIe 2.0) on a Windows 7 PC with an
Intel i7 950 CPU. All of our tests were run on this configu-
ration.

Figure 4: Option screen of SpamSystem.NET’s user inter-
face.



1 2 3 4 5

0

2,000

4,000

6,000

8,000

N (millions)

Ti
m

e
(m

s)
,l

eg
en

d
po

s=
no

rt
h

w
es

t Sequential Implementation
Cuda Implamentation

Figure 5: Performance of CUDA implementation on GTX
GPU versus Sequential implementation on CPU.

Efficiency Benchmarks
All efficiency benchmarks are the result of 10 trials on a
dummy dataset.

Fig. 5 shows the efficiency in terms of time as the size of
the training set (N ) increases. Here we compare a naı̈ve, se-
quential implementation of kNN versus our implementation
on the GTX 260. For these tests we used a k value of 10.

Fig. 6 shows the speedup gained by the CUDA implemen-
tation on the GTX 260 over the sequential implementation
as N increases.

Accuracy Benchmarks
All accuracy benchmarks are the result of a 10-fold cross-
validation (10:90 test-set to training-set ratio) on the Spa-
mAssassin dataset.

Fig. 7 shows the accuracy (in terms of false-negatives and
false positives) for varying threshold values (θ). For this ex-
periment, a k-value of 10 was used. The results show that
while higher θ-values yield fewer instances of false-positive
classifications, it also yields more instances of false-negative
classifications (as one would expect). Depending on the en-
vironment in which this application was being used, a proper
θ could be easily determined via training to fit the desired
false-positive to false-negative ratio, but a ”best” value to
use is not necessarily apparent.

Fig. 8 shows the accuracy (in terms of false-negatives and
false positives) for varying values of k. For this experiment,
a θ-value of 0.7 was used. Based on our results, we deter-
mined that k = 3 was optimal for our purposes based on
its false-positive to false-negative ratio. Additionally, since
smaller k-values tend to yield faster computational perfor-
mance, this choice was obvious. That being said, an optimal
k value could also be determined via training for any envi-
ronment using this application based on the specific needs
of that environment.

1 2 3 4 5

3

4

5

6

7

N (millions)

Sp
ee

du
p:

C
U

D
A

vs
Se

qu
en

tia
l

Figure 6: Speedup of CUDA implementation on GTX GPU
versus Sequential implementation on CPU.

0.5 0.55 0.6 0.65 0.7 0.75 0.8

0

5

10

15

20

θ

Pe
rc

en
tE

rr
or

False Negative False Positive

Figure 7: Accuracy of classification on varying θ values.



1 2 3 4 5 6 7 8 9 10 11 12 13 14

5

10

15

k

Pe
rc

en
tE

rr
or

False Negative False Positive

Figure 8: Accuracy of classification on varying k values.

6 Conclusions
Although many email Spam-filtering tools exists in the
world, due to the existence of spammers and adoption of
new techniques, email Spam-filtering becomes a challenging
problem to researchers. Automatic email filtering seems to
be the most effective method for countering Spam at the mo-
ment and a tight competition between spammers and spam-
filtering methods is going on: as anti-Spam methods become
more refined, so too do those of the spammers (Tretyakov
2004).

In this work, we have demonstrated an efficient imple-
mentation of the kNN algorithm utilizing CUDA-enabled
GPUs. Under our scheme, an incoming email is parsed into
its quantifiable attributes and is then sent to the classification
system. Here, the distances between the newly-processed
email and each email in the training set are quickly calcu-
lated on the GPU. Afterwards, a parallel reduction process
is used to identify the k training set emails with the smallest
distances from the query email. These k email cast weighted
votes for their own classification. If the Spam-vote exceeds
the required threshold (θ), then the query email is classi-
fied as Spam. Otherwise, it is classified as Ham. Our ex-
perimental results show that our implementation is highly
efficient and scalable. This efficiency, coupled with kNN’s
previously demonstrated accuracy for classification, makes
it potentially beneficial for large-scale Spam-filtration, and
could be easily adapted to tackle other similar problems.

References
Arefin, A. S.; Riveros, C.; Berretta, R.; and Moscato, P.
2012. GPU-FS-kNN: A software tool for fast and scalable
kNN computation using GPUs. PLoS one 7(8):e44000.
Blanzieri, E., and Bryl, A. 2008. A survey of learning-
based techniques of email spam filtering. Artif. Intell. Rev.
29(1):63–92.

Cormack, G. V. 2008. Email spam filtering: A systematic
review. Found. Trends Inf. Retr. 1(4):335–455.
Firte, L.; Lemnaru, C.; and Potolea, R. 2010. Spam de-
tection filter using kNN algorithm and resampling. In In-
telligent Computer Communication and Processing (ICCP),
2010 IEEE International Conference on, 27–33.
Lopes, L., and Ribeiro, B. 2011. GPUMLib: An efficient
open-source GPU machine learning library. International
Journal of Computer Information Systems and Industrial
Management Applications 2150–7988.
Panigrahi, P. 2012. A comparative study of supervised
machine learning techniques for spam e-mail filtering. In
Computational Intelligence and Communication Networks
(CICN), 2012 Fourth International Conference on, 506–512.
Sallab, A. A. A., and Rashwan, M. A. 2012. E-mail clas-
sification using deep networks. Journal of Theoretical and
Applied Information Technology 37:241–251.
Tretyakov, K. 2004. Machine learning techniques in spam
filtering. Technical report, Institute of Computer Science,
University of Tartu.
Yokoyama, T.; Ishikawa, Y.; and Suzuki, Y. 2012. Process-
ing all k-nearest neighbor queries in hadoop. In Gao, H.;
Lim, L.; Wang, W.; Li, C.; and Chen, L., eds., Web-Age In-
formation Management, volume 7418 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg. 346–351.


