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Abstract

Instructing intelligent agents in team-based, multi-agent en-
vironments to respond to dynamic events is a lengthy and ex-
pensive undertaking. In this paper, we present a framework
for modeling the decisions and behaviors of ball carriers in
American Football using the Axis Football Simulator. While
offensive strategies in football employ the use of prescribed
plays with specific spatio-temporal goals, players must also
be able to intelligently respond to the conditions created by
their opponent. We utilize a two-part substate framework for
ball carriers to advance downfield while avoiding defenders.
Unlike existing football simulations that employ variations
on professional football rules and regulations, our method is
demonstrated in a realistic football simulation and produces
results that are consistent with actual competitions.

Introduction
When creating simulations or games with the intent to teach,
it is necessary to provide the user with an environment that
closely matches the real-world counterpart [1]. This in-
cludes not only an appropriate visual representation, but also
an accurate resemblance of the decisions and actions of the
self-governing agents in the environment. In sports simula-
tions, additional challenges exist in creating a realistic en-
vironment due to the added strategy, coordination, and dy-
namic nature that is inherent to sporting competitions.

While there are several published works related to con-
trolling players or overall team decisions — such as coach-
ing responsibilities — in sports simulations, there does not
yet exist a framework for managing the behaviors of players
in American Football (football). The sports-based method-
ologies that do exist are either too generic or not applicable
to football and are therefore unable to be utilized. Addition-
ally, much of the published research pertaining to football
exists in simulations that do not accurately reflect the rules,
regulations, or conditions for professional football.

The goal of this paper is to present a framework for mod-
eling the decisions and actions of an offensive ball carrier.
The methods used in the framework will be implemented us-
ing the Axis Football Simulation (Axis) — a 3D American
Football simulation created with Unity. Since the simulation
can be used as a tool to train football coaches and players,
the overall objective of the agents, under direction of var-
ious algorithms, is to collectively provide an environment

that closely matches the decisions, actions, and capabilities
of players in an actual football competition. Therefore, in
an effort to maintain the validity of the simulation, behav-
iors that extend beyond normal human ability (e.g., process-
ing information faster than possible, using data that an ac-
tual player would not have access to, and so forth) will be
avoided. Additionally, Axis’ rules and regulations (e.g., field
size, player capabilities, active participant numbers, and so
forth) are intentionally designed to be consistent with actual
football competitions.

While Axis is running, the user will always control a sin-
gle character, leaving 21 other agents to be controlled by
intelligent scripts. Agents can be categorized into one of
a finite number of states based off of their current goal(s).
Those goals are established by combining the prescribed
instructions of the selected play and dynamic adjustments
made in response to the changing conditions of the environ-
ment (i.e., the states and positions of the surrounding players
and the location and possession of the ball). While on of-
fense, an agent will fall into one of four goal-oriented states:
RUNNING, THROWING, RECEIVING, or BLOCKING. On
the defensive side, agents will also be grouped into one of
four states: ZONE COVERAGE, MAN COVERAGE, BLITZ-
ING, or TACKLING. While this paper will focus only on the
RUNNING framework, we believe the combination of the in-
dividual methodologies will produce behaviors that closely
resemble the actions of professional football players at both
the individual and team level.

The RUNNING state will function independently as a hier-
archical state machine divided between positions of behind
and in front of the imaginary line on the field where the play
begins (i.e., line of scrimmage). When the player receives
the ball behind the line of scrimmage, a series of raycasts
will be performed in the surrounding area in order to deter-
mine the best place to run. If the runner crosses the line
of scrimmage, they switch to a different substate that detects
and avoids nearby defenders. We proposed that this two-part
framework for controlling offensive ball carriers provides a
realistic simulation of decisions and behaviors taken by ac-
tual players in football competitions.

Related Work
In demonstrating proposed models or methodologies for a
particular set of agents in a sports environment, it is neces-



sary to have a simulation in which they can be applied. Rush
2008, a research extension of Rush 2005, simulates play in
an eight player variant of American football (football) [7].
While it was originally developed as a platform for evalu-
ating game-playing agents, several researchers have utilized
the simulation to produce papers related to modeling or de-
veloping learning strategies.

Laviers et al. presented an approach for online strat-
egy recognition [6]. Using information about the defense’s
intent (i.e., play history aggregated from spatio-temporal
traces of player movements), their system evaluates the com-
petitive advantage of executing a play switch based on the
potential of other plays to improve the yardage gained and
the similarity of the candidate plays to the current play. A
play switch, unlike an audible that changes the play be-
fore it starts, makes adjustments to the prescribed move-
ments and responsibilities of selected agents after the play
has started. Their play switch selection mechanism outper-
forms both the built-in Rush offense and a greedy yardage-
based switching strategy, increasing yardage while avoiding
mis-coordinations induced by the greedy strategy during the
transition from the old play to the new one.

Laviers and Sukthankar later created a framework for
identifying key player agents in Rush 2008 [5]. They dis-
covered that in football, like many other multi-agent games,
the actions of all the agents are not equally crucial to game-
play success. By automatically identifying key players from
historical game play, the search space can be focused on
player groupings that have the largest impact on yardage
gains in a particular formation. Within the Rush football
simulator, they observed that each play relied on the success
of different subgroups — as defined by the formation —
to gain yardage and ultimately touchdowns. They devised
a method to automatically identify these subgroups based
on the mutual information between the offensive player,
defensive blocker, and ball location and the observed ball
work flow. Laviers and Sukthankar concluded that they can
identify and reuse coordination patterns to focus the search
over the space of multi-agent policies, without exhaustively
searching the set partition of player subgroups.

Li et al. took a different approach and outlined a system
that analyzed preprocessed video footage of human behav-
ior in a college football game and used it to construct a se-
ries of hierarchal skills[7]. The learned skills incorporated
temporal constraints and provided for a variety of coordi-
nated behavior among the players. They used the ICARUS
architecture as the framework for play observation, execu-
tion, and learning, which is an instance of a unified cognitive
architecture [8]. Since reasoning about the environment is a
principal task for intelligent agents, ICARUS supplies agents
with a combination of low-level perceptual information (i.e.,
attributes of a single environmental object) and higher-level
beliefs(i.e., relations among objects). After inferring that set
of beliefs about its environment, ICARUS next evaluates its
skill knowledge to determine which actions to take in the
environment. For this, the architecture uses a goal memory,
which stores goals that the agent wants to achieve.

The method Li et al. used for acquiring the constructed hi-
erarchal skills was divided into three steps. First, the system

observes the entire video-based perceptual sequence on ac-
tors achieving the intended goal and infers beliefs about each
state. Next, the agent explains how the goal was achieved us-
ing existing knowledge. Finally, the algorithm constructs the
needed skills along with any supporting knowledge, such as
specialized start conditions, based on the explanation gen-
erated in the previous step. Those skills were tested using
Rush 2008, and although the level of precision in ICARUS’
control was found to need improvement, the results sug-
gested that their method was a viable and efficient approach
to acquiring the complex and structured behaviors required
for realistic agents in modern games.

Figure 1: Sample player formation from the Rush 2008 foot-
ball simulator.

While all of these studies produce improvements to mod-
els or frameworks associated with football strategies, they
make no mention of the specific decisions that the individual
players use while the simulation is running. Additionally, as
shown in figure 1, a main problem exists that the simula-
tion in which their strategical improvements are found does
not accurately represent a football environment (e.g., Rush
2008 uses eight players instead of eleven). Removing three
players from each team has a drastic effect on not only the
strategic planning process, but also on the dynamic spatio-
temporal aspects of live play. As stated in a sports-based
game simulation research report, the development of a pro-
gram for playing a sports game presents a problem in that
the simulation of the game itself must be done in such a way
so that the physical interaction of the game is represented
accurately [1]. Some have addressed this problem not by
representing the physical performance (i.e., decisions and
actions) of the player, but rather by using statistical data to
determine the success or failure of a play based on actual
National Football League statistics.

Gonzalez and Gross use this approach in their coaching
football simulation. The objective of the program — which
provides two basic decisions to make: what offensive play
to execute (if on offense), and what defensive formation to
use (if on defense) — is to make the best selection possible



based on the rules of the game, on a priori knowledge about
strategy, and on learning from the opponent’s play selection
[1]. When the program is faced with selecting an offensive
play from a set of defined plays, it will first ascertain the con-
ditions — taking into account the field position, down, yards
to go for a first down, and the score. Those game conditions
will then be compared with the ideal conditions defined for
every play, and the difference in each element will be desig-
nated as a delta value. The set of ideal conditions is part of
the a priori knowledge derived from experts and the close-
ness of the current conditions to the ideal conditions defined
for each play is the main influence on the play selection.
The statistical history used by the program, which describe
how successful each play has been, also has a major impact
on play selection. On the other side, the program chooses
the most appropriate defensive formation by attempting to
guess what the opponent will try to do under the present
game circumstances. It uses the historical database to for-
mulate the opponent’s tendencies by employing a heuristic
function that determines which offensive play the opponent
is most likely to select. The program then selects the defen-
sive formation that is most effective against that play. While
this type of intelligent formation control and learning is an
important aspect of football simulations, it relates only to the
play selection component and does not address the specific
actions of the individual players.

Related research has also been conducted in the area of
complex multi-agent probabilistic actions where complex
means the actions contain many components that typically
occur in a partially ordered temporal relation and proba-
bilistic refers to the uncertain nature of both the model and
data. Essentially, the work surrounds the idea of evaluat-
ing whether an observed set of actions constitutes a partic-
ular dynamic event. Intille and Bobick presented a model
for representing and recognizing complex multi-agent prob-
abilistic actions in football [3]. Using prior work in track-
ing football players from video, they first define a temporal
structure description of the global behavior (i.e., a football
play) [2]. The basic elements of this structure represent indi-
vidual, local goals or events that must be detected. For each
basic element of the temporal structure, they define a visual
network that detects the occurrence of the individual goal
or event at a given time accounting for uncertain informa-
tion. Temporal analysis functions are then defined to evalu-
ate the validity of the set of temporal relationships (e.g., does
one action typically precede another). Finally, a large multi-
agent belief network is automatically constructed reflecting
the temporal structure of the action. Uncertain evidence of
temporal relationships between goals is sufficient to cause
the play detector’s likelihood value to quickly rise above the
other plays shortly after the play action begins at frame 90.

While Intille and Bobick’s work can detect — with rela-
tive uncertainty — the goals and perhaps future actions of
the offensive agents, doing so requires knowledge of the of-
fense’s playbook (i.e., complete set of available plays the of-
fense can run), something that is not only dynamic, but also
secretive. Without the set of predefined temporal-action re-
lationships, the defensive agents would be forced to build
the dataset from observed plays during a game, and would

then only be able to properly identify — again with uncer-
tainty — plays that it has already observed. Additionally,
as the number of plays the offense has the ability to run in-
creases, the number of options the defensive agents must
consider — and ultimately the complexity of the decision
— also increases. Still, their work provides a building block
that could serve as a framework for instructing individual de-
fensive agents attempting to determine the offense’s intent.

Stracuzzi et al. build on that work by proposing an appli-
cation of transfer from observing raw video of college foot-
ball to control in a simulated environment. The goal is to
apply knowledge acquired in the context of one task to a
second task in the hopes of reducing the overhead associ-
ated with training in the second task [10]. In the initial task,
the system must lean to recognize plays, including the pat-
terns run by individual players. The second task requires the
system to execute and improve upon the plays observed in
the source in a simulated football environment (Rush 2008).
Their transfer system consists of three distinct parts. The
first part, which corresponds to the source-learning task,
takes the raw video along with labeled examples as input
and applies statistical machine-learning techniques to distin-
guish among the individual players on the field and to recog-
nize the activities of each player. In the second part, the sys-
tem maps recognition knowledge acquired in the source into
the procedural knowledge required by the target. For this,
the system uses the ICARUS architecture discussed above.
In the third part, the system uses ICARUS to control players
during simulation and adds a heuristic search mechanism to
support adaptation of the learned plays to the simulated en-
vironment. Their work provides a clear framework for ac-
tion recognition in a complex environment, transfer of ac-
tion recognition into procedural knowledge, and adaptation
of the constructed procedures to a new environment. Over-
all, research in transfer of learning has great potential to af-
fect the manner in which we train intelligent agents. How-
ever, a major limitation to their approach is that it utilizes, as
the source, only passing plays, so the offense has no ability
for an application of transfer to running plays. Additionally,
the implementation of their strategy is done using the Rush
2008 simulator. We previously mentioned the rule variations
between American football and Rush 2008 with regard to the
number of active players, but another important distinction
between the two is the size of the field. Rush 2008 uses
a wider field than regulation, allowing for additional open
spaces with which to complete passes. This naturally has
an effect on the success of those plays. Finally, the transfer
system controls only the offensive players, while the sim-
ulator is left to control the defense. This means that the
defensive strategies utilized by the simulator may be very
different from that of an actual player.

A last piece of related work focuses on the pursuit of
human-level artificial intelligence and its application to in-
teractive computer games. Laird and van Lent describe
human-level AI as being able to seamlessly integrate all
the human-level capabilities: real-time response, robustness,
autonomous intelligent interaction with their environment,
planning, communication with natural language, common-
sense reasoning, and learning [4]. Additionally, they pro-



pose that the increasing realism in the graphic presentation
of the virtual worlds has fueled — and even necessitated —
the corresponding increase in more realistic AI. Indeed, their
work validates our claim that increasing the visual realism in
sports simulations (i.e., 2D pixel graphics in Rush 2008 to
3D modeled players in Axis), there has to be an accompa-
nying increase in the sophistication and capabilities of the
intelligent agents present in the environment.

Methodology
In American Football (football), the goal of the ball carrier
is to advance as far down field as possible — with the ulti-
mate goal of reaching the end zone. Our system places the
ball carrier in a hierarchal RUNNING state, which happens
whenever an offensive player receives the ball (e.g., hand-
off, completed pass, or recovered fumble), the quarterback
crosses the line of scrimmage with the ball, or a defensive
player gains possession of the ball (i.e., a turnover).

Figure 2: Ball carriers in the Running state will be placed
in the Hole Selection substate while they are behind the line
of scrimmage and will transition to the Avoidance substate
once they cross it.

The methodology for advancing down field under the
RUNNING state is divided into two substates: HOLE SE-
LECTION and AVOIDANCE. As shown in figure 2, the sub-
state is determined by the position of the player in relation
to the line of scrimmage. If an offensive player receives the
ball behind the line of scrimmage, they enter the HOLE SE-
LECTION substate. All other conditions — including the
player crossing the line of scrimmage while in the HOLE
SELECTION substate — will result in the player entering the
AVOIDANCE substate. While the focus of this paper is on
the running aspect of the simiulation, it is also important to
note that a player who catches a pass will immediately en-
ter the AVOIDANCE substate regardless of their position in
relation to the line of scrimmage.

Hole Selection
The goal of the HOLE SELECTION substate is to find the
best hole (i.e., gap between players) through which to run.

It is important to note that while designed running plays
have prescribed paths that runners are instructed to follow,
it is impossible to predict the defensive player’s actions.
Therefore, in order to maintain acceptable levels of intel-
ligence, actual paths — and ultimately holes — must be de-
termined dynamically. When an offensive player receives
the ball behind the line of scrimmage, they determine the
best hole through which to run by factoring the size of the
available holes with the player’s proximity to those holes.
Holes themselves are determined by decomposing a rectan-
gular area of the field surrounding the blockers at the line of
scrimmage. As shown in figure 3, the raycasts are spaced at
a static interval slightly smaller than the approximate shoul-
der width of an average player. We will discuss the effec-
tiveness of various raycast spacing strategies in subsequent
sections.

Figure 3: The runner (number 33) selects the best hole
through which to run. Red lines indicate raycasts that collide
with at least one player.

Once the raycasts are executed, the area is decomposed
into a single dimension Boolean structure reflecting whether
or not the casts collided with any player. The structure is
then transformed to reflect the number of consecutive empty
positions at each hole. The player’s position is normalized
along the width of the decomposition area to determine the
index of the structure closest to the player. The system then
generates a value for each hole within five positions to the
left and right of the player’s index. The value is calculated
by taking the size of a hole and subtracting from it the dis-
tance in positions from the player. The largest resulting
value is chosen as the hole through which to run, and the
player selects the midpoint of that hole at the line of scrim-
mage as the goal position. The entire algorithm for the pro-
cess can be seen in algorithm 1. Once the runner reaches the
goal position, it transitions to the AVOIDANCE substate.

Three important notes are worth mentioning with respect
to the methodology used during the HOLE SELECTION sub-
state. First, when the initial raycasts are made to decompose
the area around the line of scrimmage, collisions with ei-
ther offensive or defensive players will flag that position as
non-empty. Logical arguments can be made that only defen-



Algorithm 1 Runner Hole Selection
1: function FINDHOLE(decSize, spacing, vision)
2: startPos ← runnerPos.x − (spacing ∗

decSize/2)
3: holes[ ]← new [decSize]
4: for i← 0 to decSize− 1 do
5: castLoc← startPos+ (i ∗ spacing)
6: if Raycast(castLoc) then
7: holes[i]← 0
8: else
9: holes[i]← 1

10: for i← 0 to decSize− 1 do
11: if holes[i] = 1 then
12: j ← 1
13: while j+1 < decSize and holes[j+1] 6= 0

do
14: j ← j + 1

15: v ← j − i+ 1
16: for j ← i to i+ v do
17: holes[j]← v

18: i← v + i
19: index← (player.x− startPos) / spacing) + 1
20: start← max (index− vision, 0)
21: end← min (index+ vision, decSize)
22: bestPos← 0, bestV al← −1
23: for i← start to end do
24: v ← (vision− abs(index− i)) + holes[i]
25: if i > bestV al then
26: bestV ale← v
27: bestPos← i
28: if bestPos < index then
29: return startPos + (bestPos ∗ spacing) −

((holes[bestPos]/2) ∗ spacing)
30: else
31: return startPos + (bestPos ∗ spacing) +

((holes[bestPos]/2) ∗ spacing)

sive players pose a threat to the runner, and that offensive
players should be ignored during decomposition. When at-
tempting to determine the best approach to selecting a hole
for the runner, we ran tests with casts that both collided with
and ignored offensive players. However, ignoring offensive
players provides information to the runner beyond what they
have the ability to observe. Because the runner is behind the
offensive linemen at the time that the raycasts are made, the
line of sight to potential defenders directly in front of those
linemen will be obscured. Therefore, it is unrealistic to ex-
pect the runner to be able to accurately see the positions of
those players. Additionally, ignoring offensive player col-
lisions with the raycasts caused the runner to unnecessarily
collide with a lot of their blockers, reducing their ability to
advance downfield.

The second important distinction relates to the lateral dis-
tance with which the runner is able to view when determin-
ing which hole to select. The average human has a peripheral
vision extending 120 degrees, so holes beyond five positions

from the runner were beyond their perceived vision and were
ruled out as unrealistic choices. On the other hand, reduc-
ing the lateral visibility distance to four or fewer positions
caused the runner to miss holes of a larger size that were
perceived to be in their field of view. Ultimately, extending
five raycast positions was found to produce results that were
the most consistent with the perceived vision limits of the
runner.

Finally, it is also important to note that the decomposi-
tion and hole selection occurs only once at the time of the
handoff. Our initial approach utilized a continuous check
(i.e., the runner would decompose and select the best hole at
each game step), but this produced erratic behavior from the
runner that was inconsistent with actual player behaviors.
Furthermore, we believe that continuously decomposing the
environment using our algorithm extends beyond normal hu-
man processing and reaction abilities and places unneces-
sary stress on the simulation.

Avoidance
The goal of the AVOIDANCE substate is to advance as far
downfield as possible while avoiding defending players. The
runner employs the use of a 120 degree field-of-view reac-
tion radius for the basis of its running direction. The bounds
of the cone-shaped radius are determined by the dot product
of the runner’s normalized forward vector and the normal-
ized vector to potential tacklers. Defenders outside of the
cone — including those that are behind the runner — will
be ignored under the premise that the runner would not be
able to see them. If the runner’s reaction radius yields no
threats, the player is instructed to run straight forward to-
wards the end zone at their current lateral position on the
field.

Figure 4: The dashed red line coming from the runner (num-
ber 82) identifies the closest defender, and the blue arrow
shows the angle he will take in an attempt to avoid being
tackled.

If there are defenders inside the radius, one of two scenar-
ios can occur. First, if there is only one defender or all of the
defenders are on only one side of the runner, the runner will
attempt to avoid the threat by taking an angle away from the



closest defender. This is shown in figure 4. Second, if there
are threats on both the left and right side of the runner, the
player concludes that collision is unavoidable and attempts
to gain as much yardage as possible prior to being tackled.
This, like when there are no threats, is achieved by running
straight forward along the runner’s current lateral position.

Experimentation
For the two substates of RUNNING, a series of tests were
run to determine the specific values that yielded the highest
results for each of the individual methodologies. For all of
the tests, a series of 100 plays were run with all other factors
(defensive play calls, agent behavior, and so forth) remain-
ing constant.

Hole Selection
The first set of tests was designed to determine the most ac-
curate and efficient way to decompose the area where the
ball carrier is attempting to run. Decomposition refers to
the structuring, at the variable level, of the physical objects
present in the simulation. Our goal was to identify the spe-
cific locations of the players — and ultimately the spaces
between them — while minimizing the processing require-
ments on the simulation.

Figure 5: The results of 100 test plays at a variety of raycast
spacing values. The width of one unit is approximately one-
fourth the width of a player.

Our first goal was to determine the maximum lateral spac-
ing between each raycast that would produce an appropriate
environmental representation. Figure 5 shows the accuracy
of a variety of raycast quantities within the same decompo-
sition area in determining the existence of a player at that
position. Each of the raycast spacing distances was tested
by executing 100 plays and the accuracy of the raycasts in
identifying the actual location of the players was recorded.
For the purpose of testing, an arbitrary unit spacing value
was defined with the value of a single unit approximating
one-fourth the width of an in-game player. The results show

Figure 6: Increasing the distance at which ray casts extend
towards the sideline will result in larger perceived holes on
the outsides.

a high amount of diminishing returns in the accuracy of the
raycasts when performed at intervals smaller than the ap-
proximate shoulder width of the players (four units).

Figure 7: The result of 100 test plays at a variety of different
decomposition sizes.

Once the appropriate raycast spacing was determined, the
next goal was to specify the lateral bounds of the decompo-
sition area — specifically regarding the horizontal distance
that the raycasts were extended toward the sideline. Because
part of the decision for selecting the hole is based upon its
size, increasing the width of the decomposition area places
extra emphasis on running outside of the tackle box (i.e., the
area between the far left and right offensive tackles) since
that area is not typically occupied by defenders at the time
of a handoff and the larger perceived hole will be more at-
tractive to the runner. That is not to say that one-sided holes
will be ignored or under-emphasized. Indeed, figure 6 shows
an environment state that presents an outside run as a desir-
able path option. Finally, because the intent of the algorithm
is to produce behavior that closely resembles the decisions



and actions of professional players, our goal was to closely
match the number of inside (i.e., between the tackles) and
outside paths that were ultimately taken with data compiled
from the National Football League (NFL). According to Pro
Football Focus, the ratio of inside to outside runs in the
2013-2014 NFL season was 55:45 [9]. Figure 7 shows the
number of inside and outside runs that resulted from a vari-
ety of different decomposition sizes as compared to the NFL
statistics. Each size was tested using 100 balanced rushing
plays with an even mix of designed inside and outside runs.
The player’s decision to run inside or outside was recorded.
We selected the 31 raycast decomposition size as it produced
results that were the most similar to the NFL’s ratio.

Figure 8: The average net yardage gain of 100 test plays run
at a variety of avoidance angles.

Avoidance
The final set of tests executed was related to the AVOIDANCE
substate. When the runner is attempting to avoid defenders,
several tests were run to determine the angle — calculated
by rotating the vector from the runner to the defender — at
which to avoid the threat. Figure 8 shows the average net
yardage (i.e., yards gained once avoidance is necessary) of
100 sample plays run at each avoidance angle from 50 to 90
degrees at five degree intervals. Angles at the lower end of
the spectrum proved to be insufficient adjustments to threats,
and a right angle avoidance approach not only yielded the
lowest net yardage for the runner, but also produced illogical
reactions when the runner faced a single defender directly
in line with their forward vector. Our tests found the best
approach was an 80 degree avoidance angle which yielded a
higher net yardage gain for the runner than any other angle.

Conclusion
In this paper, we presented a framework for the decisions
and actions of ball carriers in American football using the
Axis Football Simulator. We divided the overall task of ad-
vancing downfield into two substates: HOLE SELECTION
and AVOIDANCE, each with individual goals. During HOLE
SELECTION, the runner attempts to find the best space be-

tween nearby players through which to run. Our tests con-
clude that a decomposition area of 31 raycasts, spaced at
four units (roughly the width of a player) around the line of
scrimmage, produces the most accurate results in identify-
ing the location of players while minimizing the frequency
of raycasts. Additionally, our tests proved the consistency of
inside to outside runs that resulted from that decomposition
methodology as it relates to National Football League data
collected from the 2013-2014 season.

In the AVOIDANCE substate, the ball carrier attempts to
avoid nearby threats by running at angles away from defend-
ers. Our tests conclude that the best angle at which to avoid
threats on a single side of the runner is 80 degrees. Overall,
this framework provides specific and flexible methods for
instructing ball carriers in games and simulations that uti-
lize or implement the rules, regulations, and restrictions of
American Football.

Future Work
For future work, in terms of providing a comprehensive
framework for controlling all players in a football simula-
tion, our work relating to ball carriers is only one piece of
a much larger puzzle. While the Axis Football Simulation
provides a set of instructions for all player positions that is
consistent with actual football competitions, we believe that
they can be iteratively improved to provide a more realistic
simulation.
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