
 
 

System RDC: Relevant Data Condenser 

A Knowledge System for a Cloud-immersed Culture 

Eric Ciminelli and Jennifer Seitzer 
Department of Mathematics and Computer Science 

Rollins College, Winter Park, FL 32789 
eciminelli@rollins.edu,  jennifer.h.seitzer@gmail.com 

http://myweb.rollins.edu/jseitzer 
 
 

Abstract 
Knowledge representation is an area of artificial intelligence 
that manages knowledge by most efficiently making the 
knowledge internally and externally representable, 
accessible, and usable. Among many other things, this 
management entails the acquisition, translation, longevity, 
and structural representation of the knowledge being 
represented.  Our world has become one immersed in its 
knowledge by the plethora of physical repositories, sources, 
and subjects.  This research addresses the ramifications of 
this immersion by asking the question of “how do these new 
characteristics of knowledge affect our computer system 
specifications and implementations?” 
 
In this work, we delineate the characteristics of knowledge 
in the 2010s and present our response to them.  System 
“Relevant Data Condenser (RDC)” is a cloud-savvy app for 
a smartphone that symbolizes the new computer system that 
is globally informed, locally understandable, lean, and 
portable. This endeavor is part of an overall project that 
involves knowledge representation in the Cloud. In this 
paper, we present the development framework and system 
architecture of RDC, including the incremental steps of its 
development process. 

 Introduction   

Frameworks for knowledge representation methodologies 
have been proposed since the late 1960s.  Logic, frames, 
semantic networks, graphs, as well as many others, have all 
been effective tools to accomplish the four requisites of 
any knowledge representation technique:  representational 
and inferential adequacy, and representational and 
inferential efficiency [Russell 2010].   If we fast-forward 
50 years, we find ourselves in a cyber world where we are 
literally immersed in our knowledge.  The Von Neumann 
cycle of fetch-decode-execute driving our computational 
devices has seemingly been expanded to drive us at the 

                                                
Copyright retained by the authors.   

macro level.  We now fetch somewhere in the Cloud, 
decode into tweet-like morsels condensing unmanageable 
amounts of data into ingestible portions, and along with 
“executing” the knowledge in its problem-specific domain, 
we also log meta-knowledge of the information’s time, 
date, source, and user-base.  Our work presented here 
embraces this new paradigm by presenting a software 
system that is portable, cloud-driven, and accessible to all. 
 
One of the newest genres of software systems is the app for 
the smartphone. Our research reported here integrates 
various techniques of artificial intelligence into a mobile 
app that is accessible to anybody who has a smartphone. 
Artificial intelligence (AI) is the area of computer science 
that attempts to put human thinking into computer 
programs. Our application eliminates the need for users to 
constantly “check the net” for new and relevant 
information on any topic they choose. It generates “Alerts” 
containing useful information that will come in a succinct 
text-message-like fashion (phone notification).  AI 
techniques employed include smart web crawling 
(scanning the Web for valuable patterns) and automatic 
language generation related to natural language 
understanding (such as what Siri does).  We illustrate the 
efficacy of RDC by using the topic of cryptocurrency 
trading (digital money). 
  
The main producible from this work is a computer system 
comprised of the following components: 1) a web crawler, 
2) an AI inference engine that performs web page ranking, 
parsing, and language generation, 3) a server that pushes 
relevant information to 4) a smartphone client app that 
displays the information. The topology of these 
architectural components can be seen below in Figure 1. 
 



Characteristics of Knowledge in 2015 
Today’s knowledge is distributed, expansive, ephemeral, 
elusive (search engines may or may not capture it) and 
plentiful beyond belief. The great positive is the increased 
richness of our world-perception; the negative, however, is 
that contained in this plentitude, is the likelihood that 
inconsistencies and contradictions along with defunct data, 
is greatly increased. 
 
Like the “brittle” knowledge of the 1980s’ expert system 
that inspired us to endow our intelligent systems with 
machine learning capabilities, we are finding that the 
immense, distributed, ephemeral knowledge of today is 
also nudging us to augment our computer systems with 
new capabilities such as custom client-server relationships, 
GPS services, dedicated web-crawlers, and search engine 
access. Responding to this nudge, we created RDC. 
 

System Relevant Data Condenser (RDC) 
The RDC application is grounded in an internal engine 

that constantly scans through a repository of pre-specified 
web sites for keywords. Once those keywords are found, 
the page that contains the keyword is stored locally. Then, 
using a number of AI methods including a context-based 
ranking algorithm, the usefulness of each page based on 
the keyword is determined. Then, a brief message 
summarizing the information is generated and sent to the 
smartphone user. This is called “pushing” information to 
the user.   In Figure 1 below, the overall system 
architecture of RDC is presented. Using this architecture, 
there are five basic steps that stay in a repetitive loop in the 
behavioral framework as shown in Figure 2. 
 

Figure 1:  System Architecture of RDC 
 

 
 

 
Figure 2:   Top-Level Algorithm of System RDC 

 
 
 

Software components of RDC 
There are five main software components to the RDC that 
are cyclically invoked in the general operation of the RDC 
as shown in Figure 3 below. These activities do not include 
the formidable development work that was done to 
establish the underlying infrastructure of this operational 
cycle.  This infrastructure includes the definition and 
maintenance of a user data base, the networking 
conundrums experienced when establishing any client-
server relationship (three of which are to be discussed), and 
last, the considerable development required for GUI 
presentation on the iPhone (which were required to be 
coded in Objective-C). 

 
One of the fascinating aspects of software development for 
the Cloud, is that the typical application assumes many 
roles including the seemingly opposite roles of client and 
server.  RDC assumes the roles of client and server many 
times in its cycle of operation.  The cycle begins with RDC 
crawling the web for information requested by its 
subscribers. 
 

 
 
 
 



 
 

 
Figure 3:  Software Components of RDC 

 
 
 
(1) The Web Crawler requires that the AI inference 
engine become a client to many prospective web servers. A 
client is a program that, over a network, invokes a server 
for some file, message, or action.  As a crawler, the client 
invokes many web servers requesting pertinent web pages.  
The web crawler of RDC was written with Java using well-
known crawling packages available in the JDC (Java 
Development package). 
 
(2)  The Filter determines which of the procured web 
pages are pertinent to the topic currently being pursued and 
uses many of the techniques delineated in [Brin 1998] and 
[Shestakov 2013]. This is where future links of pages are 
either kept and enqueued on the crawler frontier, or 
discarded. 
 
(3) The Parser is a Java program that searches through 
HTML and related code to find morsels of information 
that can be used as small messages to be pushed to users. 
 
(4) The Translator is responsible for transforming the 
verbose to the succinct. In particular, it is the message 
generator to be served to the clients of RDC. 
 
(5)  The Notifier is a message pusher that notifies users 
of important information that was just found then delivers 
the messages to the smartphone users. 
 

Subscribers to RDC choose a topic(s) of their choice.  This 
topic then forms one of the queries that RDC regularly 
“checks.”  We exemplify this notion by presenting how 
one might use RDC to keep up to date on the topic of 
cryptocurrency. 
 
 

Example: Cryptocurrency (aka Digital Money) 

Cryptocurrency is beginning to have a presence in the 
economic and social world [Alstyne 2014]. Traders are 
taking advantage of how volatile the cryptocurrency 
market is right now. Cryptocurrencies are just beginning to 
be used in the world.  There are now automated teller 
machines that allow withdrawals of cryptocurrency for 
actual cash [Jervis 2014]. Until they gain a wide popularity 
and recognition, however, their exchange rates will 
continue to fluctuate greatly on a daily basis.  
 
In this example domain, our system is helpful because of 
its ability to report these fluctuations by being the first to 
know about any news that goes on in the world of 
cryptocurrency.  One must realize that the exchange rates 
for cryptocurrencies normally change after news gets out 
of a certain event that can affect the price. For instance, 
when a popular business begins to accept a cryptocurrency, 
it seems that as soon as the news spreads, the price rises. 
Similar to stock market trading, a societal custom tells us 
that those who are the first to know the news are the ones 
who are most likely to succeed in the trading world.   
 
An important part of this work is that the topic of interest 
can be changed. We choose to exemplify our software 
system using the topic of cryptocurrency. However, as in 
many artificial intelligence applications, the underlying 
software infrastructure can be extracted and applied to 
virtually any other subject. For example, intelligent expert 
systems originally written for medical diagnosis were 
decomposed and then applied to computer system 
configuration [Russell 2010]. Other areas of application 
beyond trading include disaster alert systems, institution- 
specific local data such as ‘deadline to drop classes’ 
messages, and any other uses where immediate information 
is important.  
 

The RDC User Experience 

The users of the application interact with the RDC via their 
smartphones. Inside the application, the user selects the 
type of cryptocurrency they want to monitor from a list. 
Each currency selected will have its own tab where the 
current price along with a graph displaying the price over 
time can be seen. At the top of the interface there is a news 
feed where any relevant news that the web-crawler finds is 
displayed. If the user clicks on the news scroller it will 



bring them to a page where a list of relevant articles found 
will be displayed. Selecting an item will open an iPhone 
browser and bring the user to the source web page where 
the data was found by RDC. 
 
The most powerful feature of the app is the sending of 
notifications to its subscribers. Depending on the type of 
cryptocurrency the user selects to monitor, alerts 
discovered by the crawler will appear on the home screen 
in a form such as, “PC World says that LiteCoin is 
expanding. Now is a good time to buy.” or “LiteCoin hit a 
low for the week at $742.”  
 
In future work, the app will also include notifications for 
significant price drops or gains. The user will be able to 
dictate the price at which they want to be alerted and the 
app will do so accordingly. 
 
 

RDC User Client and Graphical User Interface 
 
The graphical user interface (GUI) and network client 
communication software was written in objective-C.  The 
GUI is organized so that the top shows the news scroller 
followed by the different types of currencies. Under this 
top portion is the current price in green along with other 
useful information including a price graph.  Figure 4 shows 
a rendering of the interface for the topic of cryptocurrency. 
 

 
 
 

Fig. 4: RDC Smartphone GUI. 
A screen mockup of the ticker page in 
the application. The top shows the news 
scroller followed by the different types 
of currencies. Under that is the current 
price in green along with other useful 
information including a price graph. 

 
 

Clients and Servers in System RDC 
The process of getting operational communication of RDC 
on the Internet was multi-faceted and one that entailed 
writing many preliminary clients and servers using socket 
calls and socket libraries for C, C++, Java, and Objective-
C. There were many versions that had to be discarded in 

our path to a functional cloud-savvy app.   The first author 
(who was the main developer) built several different 
versions of web-interfaces – experimenting with many 
programming languages including PHP.  The main AI 
inference engine server is a customized server (that 
evolved out of an Apache server) running on a computer 
(the server machine) that the main developer built himself.  
 
Incremental Development of Cloud-savvy programs 
 
In [Freeman 2013], the author discusses the notion of 
TSTMTCTMI:  the simplest toy model that captures the 
main idea of the problem. This was a guiding principle for 
us in our pursuit.  Because there are so many facets, 
functional units, internal and external links in any one 
system, we approached our endeavor incrementally.  That 
is, we built a fully functional (yet an extremely primitive 
version) of RDC in a few months. Then, module by 
module, we improved and replaced each part to attain a 
more satisfying version of RDC. 
 
 

Current Version and Status of RDC 
The RDC is a fully functional system consisting of five 
components:  (1) the Crawler, (2) the Filter (3) the Parser 
(4) the Translator, and (5) the Push-Server (Notifier). 

 
The crawler has been revised many times and is now 
designed to cooperate with Bing. The software method 
implementing this cooperation is called bingResults. On 
invocation to the crawler, the method returns the top three 
news results (sorted by relevance from the past hour). 
Once the HTML from the page returned is loaded into a 
string, the program picks it apart to get the title, URL, and 
a short description from each news story. This 
information is stored in the News class. Moreover, this 
latest version of the crawler has implemented multi-
threading where it is possible for multiple crawler threads 
simultaneously running for multiple search words at the 
request of the user. 

 
The parser successfully performs both filtering and 
translation.  This involves condensing possibly verbose 
information into succinct messages.  The newest version of 
the RDC parser effectively cooperates with the commercial 
search engine, Bing although the material of [Meyerzon 
2000] was used extensively in earlier versions. The current 
version returns the top three news results (sorted by 
relevance from the past hour). Once the HTML from the 
returned page is loaded into a string data structure, the 
program decomposes it to extract the title, URL, and a 
short description from each news story. This information is 
then inserted into the Java implementation “News Class” 
(internally represented as a linked-list).  
 



Upon insertion to the News Class, the story is checked to 
verify non-duplication. If it is a fresh story, the title, URL, 
and description of the story are concatenated into a single 
string separated by a unique character that enables the 
string to be pushed to all of the clients in one message. 
When the client receives this string, it performs processing 
invisible to the iPhone user.  In particular, it can extract the 
title, URL, and description from each of the new stories 
because it knows the unique separation character. Once the 
client receives the message, it then displays the message in 
the form of a notification and adds it to the news page of 
the App.  
 
 

Conclusion 
 
Today’s knowledge is ubiquitous, ephemeral, and massive. 
It is becoming apparent that most applications will involve 
interaction involving many clients, servers, and web 
services. The Relevant Data Condenser is one such 
application that is able to access, represent, and deliver 
knowledge both adequately and efficiently.  Additionally, 
we believe that the RDC system serves as a model for the  
software application that is cloud-savvy, portable, 
ubiquitous, connected, communicating, and intelligent.  
These characteristics are lofty and convenient.  And, alas, 
they are difficult to implement.  We have shown, by proof 
of construction, that it is possible to create these successful 
systems using an incremental and varied approach.  In our 
endeavor, we had many modules that failed or that were 
not adequate before we found the language and/or 
technique that worked. 
  
In future work, we intend to expand this system to the 
Android smartphone platform.  Additionally, we hope to 
actively expand our iPhone user-base to test and augment 
the RDC to scale up to a much larger number of clients. 
 
Acknowledgements 
We are greatly indebted to the reviewers of this paper, and 
to the Rollins College Student Faculty Collaborative 
Scholarship program for funding this project. 
 
 
 
 
 
 
 
 
 
 
 
 

References  
 
[Alstyne 2014] “Why Bitcoin has Value” Communications 
of the ACM , 57  No. 5, pages 30-32, 2014. 
 
[Brin 1998]. Brin, Sergey, and Lawrence Page. "The 
Anatomy of a Large-Scale Hypertextual Web Search 
Engine." The Anatomy of a Search Engine. Computer 
Networks & ISDN Systems, 30 (1998, pages 107-117). 
Web. 13 Feb. 2014. 
 
[Freeman 2013]. Freeman, W.   "How to do Research." 
http://people.csail.mit.edu/billf/publications/How_To_Do_
Research.pdf. 
 
[Jervis 2014]. Jervis, Rick. "Bitcoin ATMs Come to 
USA." USA Today. Gannett, 20 Feb. 2014. Web. 22 Feb. 
2014. 
 
 [Meyerzon 2000]. Meyerzon, Dmitriy, and Sankrant Sanu. 
"Method of Web Crawling Utilizing Address Mapping." 
Microsoft Corporation, Patent granted 11/7/2000.  
Downloaded using Google Patents on 2/12/2014. 
 
[Russell 2010] Russell, Stuart J., Peter Norvig, and Ernest 
Davis. “Intelligent Agents Artificial Intelligence:  A 
Modern Approach” 3rd Edition.  Prentice Hall, Upper 
Saddle River NJ, 2010. 
 
[Shestakov 2013]. Shestakov, Denis. Intelligent Web 
Crawling.  IEEE. Intelligent Informatics Bulletin, Dec. 
2013. Web. 12 Feb. 2014. 
 


