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Abstract 

This paper describes a novel framework for context-based 
object-recognition/pose-estimation. High-level geometric 
constraints are used to optimize fitting of a 3d model to a 2d 
image through a process termed “back-projective priming”. 
A practical problem in robotics, electrical outlet discovery, 
is used for testing. The robot, experimental setup, and ongo-
ing/future work are described. 

Introduction 

Robust object recognition is one of the central goals of the 

discipline of Computer Vision. Yet object recognition is an 

AI-complete problem, its solution ultimately depending on 

solving the broader problems of general perception, inde-

pendent of any particular modality. To this end, much can 

be learned from work in the areas that comprise Cognitive 

Science. However, most computer vision research is con-

ducted solely within the domain of Computer Science, and 

seeks to produce targeted solutions to specific problems. 

Consistent with the software engineering best practice of 

creating modules with high cohesion and low coupling, 

these solutions focus on the intrinsic features of objects, 

and rarely take advantage of context. 

 Taking general inspiration from Gestalt psychology, 

Neuroanatomical findings, and the success of Hierar-

chical/Deep Machine Learning approaches, I seek to ex-

plore possible object recognition frameworks that utilize 

context for improved efficiency and accuracy. Mobile Ro-

botics provides an excellent test-bed for said frameworks 

given the abundance of diverse contextual information to 

draw from. As a specific, well-studied, problem within 

mobile robotics, “electrical outlet discovery” was chosen to 

make it easier to benchmark the performance of my sys-

tem. An experimental setup consisting of a mobile robot 

with a “plug arm”, and a collection of interchangeable 

prop-walls and outlets, was constructed for validation. De-

velopment and testing of the system is currently in-

progress. 

Problem Scenario 

A mobile robot in an unknown building must recharge it-

self by locating an electrical outlet and recovering the pose 

of said outlet with sufficient accuracy so as to be able to 

guide its arm to plug in. Sensors consist of joint/wheel en-

coders and a single on-board camera. There are no laser 

scanners or other depth sensors. 

 What the robot knows a-priori is essentially a subset of 

North American building code. This provides it with a 

general set of constraints without a detailed map of the 

building or expectation of outlet visual characteristics such 

as specific configuration, shape, or color. The lack of depth 

sensors requires the robot to actively perceive the 3d struc-

ture of the world based off the stream of 2d images from 

the single camera, a perceptual task known to be easy for a 

human teleoperating the robot. 

Related Work 

Several notable electrical-outlet-seeking robots have been 

developed since 2000. Most recently, (Meeussen et al. 

2010) and (Eruhimov et al. 2011), were developed at Wil-

low Garage using the PR2 robotics platform. (Meeussen et 

al. 2010) uses stereo-vision to identify outlet candidates on 

a texture-less wall, followed by perspective rectification of 

candidates using wall pose obtained from a laser range-

finder (lidar). To identify outlets, template matching is 

used on the candidates in the rectified image. Pose estima-

tion is accomplished by using color tracking to find the 

centers of four orange sockets, and then applying PnP 

Solve. (Eruhimov et al. 2011) is notable for the sub-

millimeter accuracy of its pose-recovery, but also requires 

the wall-pose obtained from a lidar in addition to sufficient 



contrast between the outlet holes and socket. In order to get 

within the general region of an outlet, both systems utilize 

a map of the building, pre-annotated with approximate 

positions of outlets. The use of a map and depth sensors 

means that neither of these systems address the problem 

scenario of the previous section. 

 The systems described in (Torres-Jara 2002) and 

(Bustamante and Gu 2007) both wander around without a 

map and so perform actual outlet discovery as opposed to 

mere pose-recovery. (Torres-Jara 2002) uses a Viola Jones 

cascade detector trained on a manually-labeled dataset of 

846 positive and 1400 negative instances. (Bustamante and 

Gu 2007) scans along walls with the aid of a lidar that is 

used in conjunction with a zoom camera to maintain a con-

sistent field-of-view. This enables it to use a single fixed-

size socket template for pattern matching. Both systems are 

thwarted by perspective distortion of more than 30 degrees 

relative to the frontal view, as well as partial occlusion, and 

deviation from the training-set/template. It should also be 

noted that neither system integrates outlet-discovery with 

pose-recovery, instead achieving the latter with separate 

custom-tailored algorithms. The use of a depth sensor and 

specialized camera places (Bustamante and Gu 2007) out-

side of our problem scenario. All things considered, the 

problem solved by (Torres-Jara 2002) is the most similar to 

our own. 

Experimental Setup 

The robot (Fig. 1) consists of a differential drive platform 

for mobility, elevator to adjust the height of the plug, and 

pivoting arm to control the pitch angle of the plug. When 

eventually completed, the arm will include a gripper as-

sembly and provide general pick-and-place capabilities. 

This is why it features the otherwise unnecessary pitch 

control. Its senses include monocular vision and basic pro-

prioception provided by a collection of encoders, limit 

switches, and a potentiometer. The plug is directly mount-

ed to the end of the arm, in view of the single arm-mounted 

camera. 

 Marvin was constructed from used power-wheelchair 

parts plus various odds-and-ends obtained from local 

hardware stores. It's main electrical components include 

two 12V, 31Ah SLA gel cell batteries wired in parallel, 1 

Deltran 12V/5A smart charger, 3 Dimension Engineering 

dual-channel Sabertooth motor drivers, 1 Arduino Uno, 1 

Arduino Mega, 3 Fairchild photo-reflectors, 6 Maxbotix 

EZ0 ultrasonic range-finders, and 1 Freescale 3-axis accel-

erometer. Note that the range-finders are for safety only 

and do not supply any depth information to the vision sys-

tem. The camera is a 720p Microsoft LifeCam Cinema 

with adjustable focal length (kept fixed at 980mm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Robot (“Marvin”) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: URDF model of Marvin rendered in RViz 

 The on-board computer is a System 76 laptop running 

Ubuntu 12.04 with 8GB of DDR3 and a 2.5GH i7 CPU 

with 8 logical cores. The Robot Operating System (ROS) 

framework is used for concurrency and inter-process 



communication. The system is self-contained with all pro-

cesses running inside the laptop. ROS tools/packages used 

include the OpenCV computer vision library, ROS-TF 

(TF) coordinate frame transform library, and RViz for 3d 

visualization. TF serves a central role in keeping track of 

the robot's kinematic chain as well as the poses of external 

objects. The kinematic model of the robot was built using 

the Unified Robot Description Format (URDF). 

 ROS's robot_state_publisher package automatically 

translates changes in joint position to changes in the URDF 

kinematic tree in TF (Fig. 2). This enables us to query TF 

for useful information such as the pose of the camera rela-

tive to any other feature of the 3d world that happens to be 

bound to a TF coordinate frame. A relative pose between 

two TF frames is referred to as a transform. Transforms in 

TF have a translational and rotational component. The 

translational component is represented as X=forward 

Y=left Z=up. Instead of TF's native representation of rota-

tion as quaternions, I use Euler angles with yaw/pitch/roll 

about ZYX respectively. 

 To represent the 3d position of a detected external fea-

ture such as an electrical outlet, a TF frame for the outlet is 

spawned relative to the camera frame (Fig. 2). TF could 

then be queried for the pose of said outlet relative to other 

important frames such as that of the differential drive base, 

or the plug. We can also use TF to spawn “hypothetical 

frames” and subsequently get their poses relative to the 

camera for use in back-projecting hypotheses (more about 

that later). 

 In order to capture a reasonable amount of variability in 

attributes such as wall texture, outlet appearance, and light-

ing, a prop-wall was constructed with interchangeable parts 

(top of Fig. 1). Ground truth for outlet pose in each image 

frame will be calculated from tracking a set of colored 

markers placed at specific spots on the prop-wall. Prepro-

cessing will remove the markers from the image so the 

robot can't use them to cheat during test runs. 

Drawing from Cognitive Science 

There is strong experimental evidence that people recog-

nize objects with greater speed and accuracy when they 

occur within the expected context (Auckland et al. 2007). 

This is also supported by introspection. When one attempts 

to actively locate an outlet, the minds-eye is flooded  with 

associations including visual/spatial memories of past de-

tections, but also things only indirectly related to outlets 

such as structural components of a typical building, plugs, 

appliances, extension cords, and maybe forks. This can be 

taken as subjective evidence of priming, not just for out-

lets, but for contextually related items. Note also the search 

pattern one uses, which consists of first locating a wall and 

then scanning across the section of it about a foot above 

the floor where outlets typically occur. These suggest an 

active, top-down, context-drive mode of perception. 

 The notion of top-down is certainly not new, being espe-

cially prominent in the unified “whole is greater than sum 

of parts” view of perception put forth in Gestalt psycholo-

gy. Take for example illusory contours such as in Kanizsa's 

Triangle. Since most would con-

sider line detection to necessarily 

precede triangle detection, illusory 

contours suggest that higher level 

pattern recognizers exert top-

down influence on lower level 

modules. (Murray et al. 2002) 

believe this effect is due to feed-

back modulation of areas V2 and 

V1 from “higher-tier lateral-occipital areas, where illusory 

contour sensitivity first occurs.” Indeed, there is a growing 

body of evidence and general consensus among neurosci-

entists for the importance of top-down feedback connec-

tions in the human visual system (Gilbert and Li 2015). 

There have even been machine learning algorithms directly 

inspired by the wiring diagram of the cerebral cortex, for 

instance Jeff Hawkins Hierarchical Temporal Memory 

(Hawkins and Blakeslee 2007). 

 While deep neural networks and other non-symbolic 

hierarchical learning systems show great promise (Cadieu 

et al. 2014), the downside is that it isn't explicitly obvious 

what features or rules they use. This black box effect 

makes it difficult to integrate them with other systems, 

presenting a barrier to synergy. However, it's relatively 

easy to go the other direction, taking an existing symbolic 

system and augmenting it with non-symbolic machine 

learning. For this reason, I choose to first see how far I can 

get with an explicit constraint-based approach to modeling 

context. 

Back-Projective Priming 

It can be useful to view a building as a hierarchy of 3d 

structural features. At the top of the hierarchy is the build-

ing as a whole, which can be decomposed into the floor, 

ceiling, and walls. Walls, in turn, may contain other fea-

tures such as doors, windows, baseboards, light switches, 

phone jacks, and electrical outlets, which themselves can 

be broken down further. 

 Some features, such as the outlet cover, are easily de-

scribed by a static 3d model. Others, like walls, have some 

invariant attributes (ex: planar, rectangular, span floor to 

ceiling), but do not have a fixed 3d structure, instead being 

defined by a set of structural constraints yielding the space 

of possible 3d configurations of a wall. Perhaps this im-

plies the concept of “wall” should be discarded in favor of 

a set of features that can each be assigned a fixed 3d mod-



el. Solving these subtle ontological problems will be rele-

gated to future work. For now we will look at an easily 

defined subset of building features to demonstrate the gen-

eral concept. 

 The important point is that, given knowledge about the 

relative locations of some of these map features, we can 

constrain the space of possibilities in the search for other 

features. Take, for instance, the constraint that any wall 

should have a pitch angle exactly 90 degrees greater than 

that of the floor, and an outlet, in-turn, will have the exact 

same rotational vector as the wall that it's in. Since a wall 

will always have a fixed roll value of 0, both the pitch and 

roll values of any potential outlet are known a-priori. The z 

coordinate of the outlet is expected to be 12 inches above 

the floor plane, so that, over-all, there are only three varia-

ble components of pose for any outlet, x, y, and yaw. If, 

however, we've already found a wall, then, relative to the 

wall's coordinate frame, the outlet can only vary in terms 

of the y component of translation. Finding a wall dramati-

cally shrinks the space of possible outlet poses, and, con-

trariwise, finding an outlet would automatically indicate 

the presence/pose of a wall. When searching for objects in 

isolation, each new object added to the database reduces 

speed and accuracy in the search for any one object. But 

when the constraints between objects are also modeled, a 

larger object database actually increases speed and accura-

cy. 

 Modeling the 3d structural constraints within a building 

is one problem, while establishing correspondences be-

tween a given 3d configuration and 2d image is another. 

Back-projective priming is a technique that works at the 

interface between these two problems. Given a 3d model 

for a target object, plus constraints on its pose space, we 

can generate a representative sample of its possible poses 

and back-project them to 2d. The rendered back-

projections are then run through a set of 2d image feature 

extraction algorithms. The resulting collection of 2d mod-

el-pose-feature correspondences forms an “expectations 

map”. The process of building an expectations map is re-

ferred to as “priming.” The same set of feature extraction 

algorithms are than run on the input image and the expecta-

tions map is used to guide model fitting. Pose estimation of 

the detections is refined through additional back-projective 

iterations with finer granularity. 

Implementation 

For the outlet-detection problem, a very minimalistic 3d 

model of the outlet cover is used, which is a simple rectan-

gle consisting of four points and four edges. Initially, no 

wall poses are known, which produces a space of possible 

outlet poses based on different combinations of the un-

bound variables x, y, and yaw. A sufficiently large sample  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Back-Projections Produced for “Weak” Priming 

of this pose space is required to capture the variation in 2d 

features produced from different combinations of position, 

orientation, and scale of the outlet. The requisite sample 

size is very large, easily requiring hundreds of back-

projection operations, a computational cost outweighing 

the gains in model fitting efficiency. We could, of course, 

do this computation only once and cache the result. How-

ever, if any of the geometric constraints were to change, 

such as camera z, an entirely new set of back-projections 

would need to be computed. 

 In order to avoid the large overhead of “strong” priming, 

we can select a subset of the pose space that captures vari-

ability in perspective while neglecting scale and position. 

Five translational vectors (Fig. 3) are selected to adequate-

ly sample the effects of translation on perspective. At each 

of these translations, 7 values of yaw are sampled, produc-

ing a manageable total of 35 back-projections. One caveat 

of this is that, in order for matching to work, the 2d fea-

tures used must be scale invariant. For polyhedra, oriented-

edges work well, given that their midpoint and orientation 

components are scale-invariant, yet scale can still be 

known from their length component. The 35 poses are used 

to build an expectations map (exp-map) as follows: 

 

For each of the 35 poses: 

 Render pose. 

 Extract features from render. 

 Store model render points and features into a  

  model-pose-feature-binder object. 

 Add binder object to exp-map: 

  For each feature in binder: 

   Add feature to exp-map feature-index. 

 

 

 

 

 

 

 



Once the expectations map has been built, we attempt to 

find the target model in the input image as follows: 

 

For each feature extracted from input image: 

 Get k best matches from exp-map feature-index. 

 For each match above a certain confidence threshold: 

  Retrieve model-pose-feature-binder that matching  

   feature belongs to. 

  Create a copy of the binder, denoted b2. 

  Scale b2's model points and feature points to  

   match the scale of the matching input image  

   feature. 

  Translate b2's points so the pair of matching  

   features overlap (Fig. 4). 

  After translating the binder, calculate the feature- 

   space distance between the other feature-points of  

   the binder and their nearest neighbor in the input  

   image. 

  These distances are aggregated to produce a  

   composite score determining the overall strength  

   of  the hypothesis.  

  If the hypothesis score is above the required  

   confidence threshold, then apply PnP solve to the 

   transformed 2d model points to recover the 3d pose 

   of b2, and add it to the hypothesis collection. 

For each hypothesis returned: 

 Validate pose based on geometric constraints (Fig. 5). 

 Discard hypothesis if it deviates by more than tolerance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Model Fitting 

 All remaining hypotheses are considered detections. For 

any detections, a process of iterative refinement can be 

applied to improve pose estimation accuracy. 

 

Preliminary Results 

The robot is mechanically and electrically complete and 

has successfully plugged itself in under teleoperation. Out-

let pose recovery (Fig. 5) and geometric constraint post-

validation with TF has been demonstrated using a color-

coded outlet. 

 

 

 

 

 

 

 

 

Figure 5: Tracking and Pose Constraint Post-validation 

Future Work 

 Complete implementation and testing of “weak” 

priming/model-fitting. 

 Make use of constraint programming in generat-

ing pose-space samples. 

 Explore the feasibility of “strong” priming.  

 Find a faster alternative to TF for generating and 

calculating the relative poses of hypothetical 

frames.  

 Add OpenGL integration allowing use of more 

detailed CAD models for back-projection render-

ing.  

 Model light switches, phone jacks, walls, and oth-

er context. 
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