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Abstract 

Traditionally, iris recognition systems capture iris images in 
the 700 to 900nm range. It is within these ranges that 
researchers have found the most viable iris textures for iris 
recognition. Recently, there has been an interest for 
exploration of spectrum ranges that falls outside of these 
traditional ranges. In this work, we will explore the 
performance of feature extraction techniques on a wider 
spectrum, specifically ranges between 400nm to 1550nm. 
More specifically, we apply the traditional Local Binary 
Pattern (LBP) technique & a hybrid LBP technique (Genetic 
and Evolutionary Feature Extraction (GEFE)) in an effort to 
elicit the most important iris information. We also perform 
intra-spectral and cross spectrum analysis on the iris images 
captured in different wavelengths. Results show that GEFE 
outperforms the LBP technique on all spectrums.  

Introduction   

Biometric technologies are becoming the predominate 

form of access control. Physiological and behavioral traits 

are aspects of biometrics that allows for unique forms of 

identification. The physiological traits (face, iris, 

fingerprint, etc.) have many advantages over the traditional 

techniques such as knowledge and/or token based access 

control. Knowledge can be forgotten and tokens can be 

easily stolen, whereas physiological traits cannot be 

forgotten or easily stolen. Biometrics is a subarea of the 

broader field of identity science. “Identity Science is the 

field of study devoted towards the understanding of how 

the dynamic nature of ‘self’ interacts with a possibly 

intractable number of dynamic environments in an effort to 

observe, track, and identify ‘self’ (in terms of its beliefs, 

desires, intentions, regression, progression, etc.) via a set 

of external witnesses. (Dozier 2015)”. An external witness 

can be viewed as any entity that has the ability to: perceive 

an interaction between ‘self’ and an environment, process 

the observed interaction, and track and/or identify ‘self’ 

with respect to that environment. 

 The iris biometric has been shown to be a viable 

biometric for verification and identification (Ross 2010, 
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Masek 2003). Daugman developed the first iris recognition 

algorithm (Daugman 2004), and many researchers have 

further extended the work of iris recognition (Verma et al. 

2012, Bowyer, Hollingsworth and Flynn 2008, Sanchez-

Avila and Scanchez-Reillo 2005). Google headquarters 

uses iris recognition access control systems for identifying 

individuals (Adam, Neven and Steffens 2010), and the 

company M2SYS Technology has patented an iris 

identification system that can link hospital patients to their 

medical records (Archbold 2014). In the Penobscot 

Country Jail, iris scanners are being implemented in order 

to eliminate improper inmate releases (Ricker 2006).    

 The iris biometric has advantages over other types of 

biometrics. The accuracy of recognition is generally better 

than the accuracy of other biometrics such as facial or 

fingerprint (Masek 2003). An iris is also well protected by 

wear and tear, as opposed to one’s fingerprint. There are 

disadvantages in that the iris is small and intricate, which 

makes it difficult to obtain from any significant distance 

without missing vital information. Individuals who may 

have eye issues such as blindness or cataracts could also 

difficult to recognize. Environmental issues can also be a 

factor in regards to poor lighting or shade. Finally, the iris 

can often be covered by eyewear such as glasses or shades.  

 Images captured in the near infrared (NIR) wavelength 

band contains more iris textural information than images 

captured in the visible wavelength. Most of the current iris 

recognition schemes capture iris images in the NIR 

wavelength band.  This range is generally from 700nm to 

900nm. Though iris recognition using NIR wavelengths 

has an acceptable recognition rate, there are still 

vulnerabilities such as faking iris images (Park and Kang 

2005). Researchers are interested in exploring the 

wavelengths outside of the 700nm-900nm range. 

   Most of the existing multispectral iris recognition 

systems use Gabor filters as a feature extraction technique 

(Daugman 2004). There has been research done using 

texture based feature extraction methods such as a 

Modified Local Binary Pattern (MLBP) algorithm 

(Popplewell et al. 2014). This variation of the Local Binary 

Pattern (LBP) algorithm (Shelton et al. 2011) segments an 



image into even sized regions and extracts features from 

each region. Each region can be referred to as a patch. 

MLBP segments a biometric image into sub-regions and 

extracts more features from each patch than traditional 

LBP. A Cooperative Game Theory (CGT) based patch 

selector was implemented in (Ahmad, Roy and Popplewell 

2014). Though the CGT with MLBP method showed 

promise, the approach reported in (Ahmad, Roy and 

Popplewell 2014) utilized only the patches based on the 

image partition of LBP. It is possible that noisy data may 

be included if patches from the entire image space are 

considered. To mitigate this, we propose the application of 

a genetic algorithm-based feature extraction technique. 

This feature extraction method evolves Feature Extractors 

(FEs) that can have patches of varying sizes in various 

positions on an image and applies them in an overlapping 

fashion. 

 In the past, a feature extraction technique known as 

Genetic and Evolutionary Feature Extraction (GEFE) was 

created at the Center for Advance Studies in Identity 

Science (CASIS) (Shelton et al. 2011, Shelton et al. 2014). 

GEFE was initially applied on facial images (Shelton et al. 

2011) but has been recently applied on iris images (Shelton 

et al. 2014).    

 GEFE is an instance of a Genetic and Evolutionary 

Computation (GEC), an algorithm that uses natural 

selection techniques to evolve a population of candidate 

solutions for a problem (Engelbracht 2007, Davis 1991, 

Goldberg 1989). GEFE would allow sub-regions to be any 

location on an image and to be any size. Previous research 

has shown success of GEFE when testing on a single 

modality; GEFE outperformed traditional LBP in terms of 

recognition accuracy as well as the number of features 

used. In this work, we will apply GEFE towards 

multispectral iris recognition (O’Connor et al. 2014). More 

specifically, we will conduct inter-spectral and cross-

spectral recognition on a wide range of spectrums (450nm-

1550nm) to determine the effectiveness of GEFE on this 

dataset.  

The remainder of this paper is as follows. In Section 2, 

we will discuss the feature extraction methods used. In 

Section 3, we will describe the experimental setup. Section 

4 will contain the results of the experiments and Section 5 

provides the conclusions and future remarks. 

Feature Extraction Methods 

Local Binary Patterns 

The Local Binary Pattern (LBP) feature extraction 

algorithm is a method that is used for texture 

classification(Ojala, Pietikainen and Maenpaa 2002, 

Ahonen, Hadid and Pietikainen 2006). This technique can 

be used to classify textures patterns in images and it uses 

these textures to create Feature Vectors (FVs) for images. 

For biometric recognition, the LBP technique works by 

segmenting an image into uniform sized, non-overlapping 

regions, as shown in Figure 1. Each region has a histogram 

associated with it, where the bins in the histogram 

correspond to the texture patterns found in each region. A 

FV is created by concatenating the histograms from all 

regions of a segmented image. 

Texture patterns are created by comparing center pixels, 

a pixel that is surrounded by i number of neighboring 

pixels on all sides, with the i neighboring pixels. A texture 

pattern can be represented as a binary string, and that string 

can be decoded into a decimal value, denoted as LBP(Ni, 

c), where c is the pixel intensity value of a center pixel, N 

is a set of neighboring pixel intensity values and i is the i
th

 

neighboring pixel of c. LBP(Ni, c) is computed in (1) and 

(2), where the difference is taken between each 

neighboring pixel and a center pixel. The equation s(Ni, c) 

computes the difference and returns the appropriate bit. 
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The total number of texture patterns that can exist 

depend on the number of neighboring pixels, i, where the 

number of possible patterns are 2
i
. However, the common 

way to create FVs with the LBP technique is to use mostly 

uniform patterns for bins in the histograms. A uniform 

pattern is one where the bit transitions in a texture pattern 

changes two or fewer times when traversing the texture 

pattern circularly.  

The common variation of the LBP technique is popular, 

but it is also possible to simply consider all of the possible 

patterns as opposed to just uniform patterns. In this case, 

histograms would be length 2
i
, or, for a neighborhood size 

of 8, 2
8
 = 256. 

During the process of recognition, a probe template, p, is 

compared to a gallery set of vectors G ={g0, g1, ..., gk-1} 

using the (Manhattan) City Block distance metric. This 

distance is a numerical representation of the distinction 

between two biometric instances and can be calculated 

using the following formula:  
 

𝑑 = ∑ |𝑝𝑖 − 𝑔𝑘,𝑖|𝑛
𝑖=0              (3) 

 

where d is the distance between two subjects, p is the probe 

feature template, g is the gallery feature template in set G, 

n is total number of features, i is the index of the feature, 

and k is the k
th

 individual in the gallery. The subject, gk, is 

considered a match to p when distance between the two 

vectors is the smallest compared to all other subjects in G.  

 



 

Figure 1: Image partitioned into patches 

GEFEML 

GEFE is an instance of a GEC that evolves LBP-based FEs. 

Whereas a traditional LBP FE uses even sized, non-

overlapping patches over an entire image, GEFE evolves 

FEs that can have patches of varying sizes in various 

positions on an image. Because GEFE is an instance of a 

GEC, a FE must be represented as a candidate solution. We 

use a 6-tuple with 5 sets and 1 single value, represented as 

<Xi,Yi,Wi,Hi,Mi,fi>. Each of the patches in a particular FE, 

fei, are designed using the values in the 6-tuple. The Xi and 

Yi sets hold the <X,Y> points of the center of each patch in 

fei, while the sets Wi and Hi holds the width and heights of 

the patches. The set Mi denotes a masking value for each 

patch in fei. Though there can be multiple patches defined 

by the 6-tuple, a patch’s specific masking value determines 

whether the features extracted by that patch are included in 

the resulting FV.  

The fitness, fi, is determined by applying fei towards a 

dataset of subject’s iris images. A subject has a number of 

images that vary, and these images are separated into a 

probe set and a gallery set (G). The fei is applied on these 

images to create FVs, and the FVs in the probe set are 

compared to all of the FVs in the gallery set using the 

Manhattan distance measure. The two FVs that have the 

least Manhattan distance are considered to be matches. If a 

probe FV is incorrectly matched with a gallery FV, then fei 

is said to cause an error.. The resulting fi is the number of 

errors (𝜀) added to the percent of patches not masked out 

(ζ), shown below. 

 

𝑓_𝑖 = 10𝜀 +  ζ       (4)                      
 

Previous research in (Shelton et al. 2011) has shown that 

GEFE instances with uniform patch sizes had a statistically 

better performance than GEFE instances with non-uniform 

patches. This means that the sets Wi and Hi will have one 

value in their set, representing the parameters for all 

patches in fei. 

In the original implementation of GEFE, a set of FEs 

were evolved on a training set to produce FEs that could 

correctly identify subjects in that particular data set. To 

produce FEs that could generalize well on unseen subjects, 

supervised learning was added to the GEFE process. Cross 

validation in Genetic and Evolutionary Feature Extraction 

– Machine Learning (GEFEML) (Shelton et al. 2012) is 

done by initially generating a population of random FEs. 

Every candidate FE is then evaluated on the training set 

and additionally evaluated on a validation set. The results 

of the FEs on the validation set do not affect the training of 

FEs. While a stopping condition has not been met, FEs are 

selected to breed, and offspring FEs are created. The 

offspring are evaluated on the training set, but they are also 

applied on the validation set. The FE with the best results 

on the validation set is stored as FE*. FE* is only updated 

when a new candidate FE performs better on the validation 

set than the currently stored FE*. The offspring are used to 

create the new population and this process repeats until the 

stopping condition has been met. Under this design, FE* 

should generalize better on unseen subjects opposed to the 

best performing FE on the training set.  

Experiments 

We conducted our experiments on a multispectral iris 

image dataset that contains 38,129 images (Multispectral 

Iris Dataset). These images were acquired using 

Goodrich/Sensors with a custom designed lens package to 

acquire iris images at wavelengths in the range 400 to 

1600nm. We segmented the multispectral iris images using 

Canny edge detections in an effort to identify the iris 

regions and applied circular Hough transforms to define 

the iris and pupil boundaries (Masek 2003, Popplewell et 

al. 2014). A technique based on Daugman’s Rubber Sheet 

Model was then used for normalization. These images 

were divided into 13 sections, each section depicting a 

spectral band consisting of roughly 2945 iris images. For 

our first experiment, we did intra-class comparisons for 

each spectral band. We divided the data set into three 

sections: training, validation, and testing. The training set 

had a total of 44 subjects, the validation set had 18 

subjects, and the testing set had 29 subjects. We further 

separated each set into a probe set and a gallery set; the 

first sample of each subject went into the probe set while 

the remaining went into the gallery set. For GEFE, we ran 

it for 30 runs and for each run, we ran it for 1000 

generations. For cross spectral analysis, we used features 

extractors evolved from intra-spectral comparisons and 

applied them to each of the differing spectral band images.  

In this work, similarity scores are computed by modifying 

the Manhattan city block distance metric. The variables hi 

and hj represents two FVs being measured, l represents the 

length of the FV, and z represents the current position in 

the FV. The LBP variation that we deployed was using all 256 possible texture patterns; this variation proved to have the best performance on the iris datasets.  Previous research has shown similar results, where using 256 patterns has shown to be the best variation (Shelton et al. 2014). We tested different partitions of 

LBP and found that 7 columns by 10 rows was the best 



performing partition. This 70 patch LBP partition is 

compared to GEFE in the results. Figures 2-5 show the 

normalized iris regions with the ovarlapped patches.  

Results and Discussions 

Shown in Table I are the test set accuracies of FE produced 

by different feature extraction algorithms. In the table, 

Spectrum represents the spectrum used for feature 

extraction on the training and validation set. For the Cross 

Spectrum, this represents the spectrum used for the test set. 

Accuracy represents the identification accuracy of the 

algorithm on the test set. For LBP, the number represents 

the accuracy of the traditional LBP feature extractor that 

partitions an image into 7 by 10. For the GEFE variations 

on the iris, GEFE <Opt> represents FEs that were 

optimized on the training set, while GEFE <Val> 

represents the best performing FEs on the validation set. 

For GEFE, the number on the outside represents the 

accuracy of the best feature extractor, whereas the number 

within the parenthesis represents the average accuracy of 

the 30 best FEs. The column P represents the number of 

patches used on average by the feature extractors.  

Table I. Performance on multispectral iris dataset. 

Spectrum 
Cross 

Spectrum 

Accuracy 

 
Patches 

LBP 
GEFE 

Opt Val 
<Opt> <Val> 

405 
405 7.02 13.79(8.05) 12.07(6.21) 28.16 22.87 

800 n/a 96.55(89.83) 94.83(84.02) 28.16 22.87 

505 
505 45.61 63.79(53.79) 53.44(41.03) 32.80 24.15 

800 n/a 94.83(92.59) 96.55(86.09) 32.80 24.15 

620 
620 64.91 79.31(74.02) 74.13(60.80) 33.71 24.25 

1200 n/a 98.28(92.01) 93.10(81.49) 33.71 24.25 

700 
700 50.87 67.24(59.31) 63.79(56.84) 30.96 24.48 

800 n/a 96.55(93.62) 94.83(8.91) 30.96 24.48 

800 
800 91.23 98.28(94.54) 98.28(87.07) 28.76 24.71 

911 n/a 98.28(91.38) 94.83(84.26) 28.76 24.71 

910 
910 89.66 96.55(92.18) 96.55(84.37) 31.48 25.08 

800 n/a 96.55(87.30) 96.55(87.30) 25.08 25.08 

911 
911 87.93 96.55(90.75) 93.10(81.72) 31.22 24.88 

800 n/a 98.27(94.60) 96.55(86.32) 31.22 24.88 

970 
970 84.48 89.66(85.17) 87.93(75.46) 30.83 24.12 

800 n/a 98.28(94.60) 94.83(85.46) 30.83 24.12 

1070 
1070 89.66 94.83(89.31) 93.10(77.24) 30.92 25.08 

800 n/a 98.28(95.11) 96.55(87.99) 30.92 25.08 

1200 
1200 93.10 98.27(92.36) 93.10(78.79) 31.62 24.78 

800 n/a 98.28(94.66) 94.83(85.75) 31.62 24.78 

1300 
1300 82.76 93.10(89.66) 91.38(77.99) 33.59 25.27 

800 n/a 96.55(93.39) 94.83(85.00) 33.59 25.27 

1450 
1450 36.21 67.24(58.16) 51.72(31.72) 38.55 25.08 

911 n/a 98.28(92.76) 64.83(80.11) 38.55 25.08 

1550 
1550 31.03 43.10(36.94) 37.93(24.60) 34.15 24.71 

800 n/a 96.55(92.01) 96.55(86.49) 34.15 24.71 

 

Results show that for all spectrums, GEFE outperforms 

traditional LBP within their respective spectrums ‘GEFE 

<Opt>’ and ‘GEFE <Val>’ had similar performances in 

respect to recognition accuracy, but with respect to the 

number of patches, GEFE <Opt> was proven to be 

statistically better. The results show that on average, the 

800 nm spectrum performs the best for identification 

accuracy for both intra-class comparisons and cross 

spectrum comparisons. An ANOVA test was used as a 

statistical measure of performance, with a 95% confidence 

interval.  

In Figures 2-5, the images show the best performing FEs 

on the 800nm test set. In Figures 2 and 3, the best opt-gen 

and val-gen FEs are shown. The areas with overlapping 

patches are the most salient areas to extract features from 

for identification. Figures 4 and 5 show the best cross-

spectral FEs on the 800nm test set for opt-gen and val-gen. 

It appears that the right most area of iris images contains 

more salient texture information than the left area. 

Depending on if an iris is a left or right eye; there will be 

slight noisy data in the form of eyelashes. It could be the 

case that the grouping of patches on the right side is 

locking on to that noisy data or lack of. In Figures 6-9, we 

show the Cumulative Match Characteristic (CMC) curves 

and the Receiver Operator Characteristic (ROC) curves for 

LBP and the best FE from GEFE. The CMC curve plots 

the rank accuracies of the methods, while the ROC curve 

plots the True Accept Rate (TAR) and the False Accept 

Rate (FAR) of subjects. The results in Table 1 show that 

the 800 nm spectrum achieved rank 1 accuracy of 98.28% 

for both the opt-gen and val-gen FEs on the test set.  

 

 

 

Figure 2: 800nm FE(Opt Gen) on 800nm Image. 

 

Figure 3: 800nm FE (Val Gen) on 800nm Image.  

 

Figure 4: 1070nm FE (Opt Gen) on 800nm Image. 



 

Figure 5: 1070nm FE (Val Gen) on 800nm Image.  
 

The CMC curves plot the accuracy at each rank. The rank 

represents the ranking of match scores for all probe 

subjects. For Figure 6 and 7, the ROC curve plots the rate 

of impostor attempts accepted on the x-axis, against the 

corresponding rate of genuine attempts accepted on the y-

axis along an increasing threshold. In Figure 8, the CMC 

curves show a superior performance of GEFE compared to 

LBP. Though both techniques do not achieve 100% 

accuracy until rank 57, GEFE continues to outperform 

LBP. In Figure 9, the CMC curves for cross spectrum 

analysis were created by taking the best performing FEs 

from each spectrum when used for cross validation. It 

appears that the FE from the 800nm spectrum performed 

best in cross spectrum analysis. This supports the intra-

class results, where the FEs on the 800nm spectrum had 

the best performance overall. 

Even though the results show that FEs evolved on the 

800 nm spectrum had the overall best performance, it is 

worth mentioning that some bands outside of the NIR 

range performed well. In Table 1, the performance of 

GEFE on the 620nm spectrum performed better than the 

700nm spectrum not only in intra-class matching, but also 

using feature extractors from the 1200 nm spectrum. The 

performance of the 1200 nm feature extractors performed 

similarly to the ranges of 910nm - 970nm.  The proposed 

work using GEFE achieved 61% TAR at 1% FAR, while 

the FEs on the 910, 911, and 970 nm spectral bands 

achieved 48%, 60%, and 62% TAR respectively at 1% 

FAR. 

 

 

  

Figure 6: ROC Curves for Intra-Spectral Matching 

 

 

 

Figure 7: ROC Curves for Cross-Spectral 

Matching 
 

 

Figure 8: CMC Curves for Intra-Class Matching 
 

 

Figure 9: CMC Curves for Cross Spectral Matching. 



Conclusion and Future Work 

We find from the experimental results that GEFE 

outperforms the LBP approach for cross spectral and intra-

spectral analysis. The best performing wavelength for the 

entire dataset was the 800nm wavelength for recognition 

accuracy. However, there seems to be promise with feature 

extractors evolved on the 1200 nm wavelength images.    

Future work will be focused on fusing the cross spectral 

data in order to evolve features across several different 

spectral bands. This may improve accuracy by extracting 

features that may not have been present within a single 

spectrum.  
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