
Profiling, debugging, testing for the next century

Alexandre Bergel

http://bergel.eu

Pleiad Lab, Department of Computer Science (DCC), University of Chile

This paper presents the research line carried out by the author and his
collaborators on programming environments. Most of the experiences and case
studies summarized below have been carried out in Pharo1 – an object-oriented
and dynamically typed programming language.

Programming as a modern activity. When I was in college, I learned pro-
gramming with C and Pascal using a textual and command-line programming
environment. At that time, about 15 years ago, Emacs was popular for its sophis-
ticated text editing capacities. The gdb debugger allows one to manipulate the
control flow including the step-into, step-over, and restart operations. The gprof

code execution profiler indicates the share of execution time for each function, in
addition to the control flow between each method.

Nowadays, object-orientation is compulsory in university curricula and manda-
tory for most software engineering positions. Eclipse is a popular programming
environment that greatly simplifies the programming activity in Java. Eclipse
supports sophisticated options to search and navigate among textual files. De-
bugging object-oriented programs is still focused on the step-into, step-over and
restart options. Profiling still focuses on the method call stack: the JProfiler2

and YourKit3 profilers, the most popular and widely spread profilers in the Java
World, output resource distributions along a tree of methods.

Sending messages is a major improvement over executing functions, which is
the key to polymorphism. Whereas programming languages have significantly
evolved over the last two decades, most of the improvements on programming
environments do not appear to be a breakthrough. Navigating among software
entities often means searching text portions in text files. Profiling is still based
on methods executions, largely discarding the notion of objects. Debugging still
comes with its primitive operations based on stack manipulation; again ignoring
objects. Naturally, some attempts have been made to improve the situation:
Eclipse offers several navigation options; popular (and expensive) code profilers
may rely on code instrumentation to find out more about the underlying objects;
debuggers are beginning to interact with objects [1,2]. However, these attempts
remain largely marginal.

Profiling. Great strides have been made by the software performance community
to make profilers more accurate (i.e., reducing the gap between the actual applica-

1 http://pharo.org
2 http://www.ej-technologies.com/products/jprofiler/overview.html
3 http://www.yourkit.com

http://bergel.eu
http://pharo.org
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.yourkit.com


tion execution and the profiler report). Advanced techniques have been proposed
such as variable sampling time [3] and proxies for time execution [4,5]. However,
much less attention has been paid to the visual output of a profile. Consider
JProfiler and YourKit, two popular code profilers for the Java programming
language: profile crawling is largely supported by text searches. We address this
limitation with Inti.

main()

C.run()
init()

A.run()
A.utility()

Baseline

Profiling. A great e↵ort has been made by the software performance community
to make profilers more accurate (i.e., reducing the gap between the actual applica-
tion execution and the profiler report). Advanced techniques have been proposed
such as variable sampling time [?] and proxies for time execution [?,?]. However,
much less attention has been paid to the visual output of a profile. Consider
JProfiler and YourKit, two popular code profilers for the Java programming
language: profile crawling is largely supported by textual search. We contribution
to addressing this limitation with Inti.

Inti is a sunburst-like visualization dedicated to visualize CPU time distribu-
tion. Consider the following Java code:

class A {
public void init() { ... }
public void run() { this.utility(); ... }
public void utility() { ... }

}
class C {

public void run() {
A a = new A();
a.init();
a.run();

}
public static void main(String[] argv) {

new C().run(); } }

Fig. 1: Example of Inti

The contrived example given above is visualized with Inti as shown in Fig-
ure ??. Each method of the Java code given above is represented by an arc in
Figure ??. Method C.main by the disk A, C.run by arc B, A.init by C, A.run by
D and A.utility by E. The baseline represents the starting time of the profile.
The angle of each arc represents the time distribution taken by the method. In
this example, C.main and C.run have an angle of 360 degrees, meaning these two
methods consume 100% of the CPU time. Methods A.init consumes 60% and
A.run 40%. Each method frame is presented as an arc. Distance between an arc
and the center of the visualization (where the A label is located) indicates the

Fig. 1: Sunburst-like visualization

Inti is a sunburst-like visualization dedicated to visualizing CPU time dis-
tribution. Consider the code and arc-based visualization given in Figure 1. The
code indicates a distribution of the computation along five different methods.
Each method frame is presented as an arc. The baseline represents the starting
time of the profile. The angle of each arc represents the time distribution taken
by the method. In this example, C.main and C.run have an angle of 360 degrees,
meaning that these two methods consume 100% of the CPU time. Methods A.init
consumes 60% and A.run 40% (these are illustrative numbers). The distance
between an arc and the center of the visualization indicates the depth of the
frame in the method call stack. A nested method call is represented as a stacked
arc.

Inti exploits the sunburst representation in which colors are allocated to
particular portion of the sunburst. For example, colors are picked to designate
particular classes, methods or packages in the computation: the red color indicate
classes belonging to a particular package (e.g., Figure 2).

The benefits of Inti are numerous. Inti is very compact. Considering the
number of physical spaces taken by the visualization, Inti largely outperforms
the classical tree representation: Inti shows a larger part of the control flow and
CPU time distribution in much less space. Details about each stack frame are
accessible via tooltip. Hovering the mouse cursor over an arc triggers a popup
window that indicates the CPU time consumption and the method’s source code.



Fig. 2: Sunburst-like profile

Delta profiling. Understanding the root of a performance drop or improvement
requires analyzing different program executions at a fine grain level. Such an
analysis involves dedicated profiling and representation techniques. JProfiler
and YourKit both fail at providing adequate metrics and visual representations,
conveying a false sense of the root cause of the performance variation.

A

B

C

Color

Δ # executions

Δ time

A

B

A invokes B

D E

Fig. 3: Performance evolution blueprint

We have proposed performance evolution blueprint, a visual tool to precisely
compare multiple software executions [6]. The performance evolution blueprint is
summarized in Figure 3. A blueprint is obtained after running two executions.
Each box is a method. Edges are invocations between methods (a calling method
is above the called methods). The height of a method is the difference of execution
time between the two executions. If the difference is positive (i.e., the method
is slower), then the method is shaded in red; if the difference is negative (i.e.,



the method is faster), then the method is green. The width of a method is the
absolute difference in the number of executions, thus always positive. Light red
/ pink color means the method is slower, but its source code has not changed
between the two executions. If red, the method is slower and the source code has
changed. Light green indicates a faster non-modified method. Green indicates a
faster modified method.

Our blueprint accurately indicates roots of performance improvement or
degradation: Figure 3 indicates that method B is likely to be responsible for the
slowdown since the method is slower and has been modified. We developed Rizel,
a code profiler to efficiently explore performance of a set of benchmarks against
multiple software revisions.

Testing. Testing is an essential activity when developing software. It is widely
acknowledged that a test coverage above 70% is associated with a decrease in
reported failures. After running the unit tests, classical coverage tools output
the list of classes and methods that are not executed. Simply tagging a software
element as covered may convey an incorrect sense of necessity: executing a long
and complex method just once is potentially enough to be reported as 100%
test-covered. As a consequence, a developer may receive an incorrect judgement
as to where to focus testing efforts.

Coverage: 40.57% Coverage: 60.60%

M

Fig. 4: Test blueprint

By relating execution and complexity metrics, we have identified essential
patterns to characterize the test coverage of a group of methods [7]. Each pattern
has an associated action to increase the test coverage, and these actions differ in
their effectiveness. We empirically determined the optimal sequence of actions to
obtain the highest coverage with a minimum number of tests. We present test
blueprint, a visual tool to help practitioners assess and increase test coverage by



graphically relating execution and complexity metrics. Figure 4 is an example of a
test blueprint, obtained as the result of the test execution. Consider Method M: the
definition of this method is relatively complex, which is indicated by the height
of the box representing it. M is shared in red, meaning it has not been covered
by the unit test execution. Covering this method and reducing its complexity is
therefore a natural action to consider.

Two versions of the same class are represented. Inner small boxes represent
methods. The size of a method indicates its cyclomatic complexity. The taller
a method is, the more complex it is. Edges are invocations between methods,
statically determined. Red color indicates uncovered methods. The figure shows
an evolution of a class in which complex uncovered methods have been broken
down into simpler methods.

Debugging. During the process of developing and maintaining a complex software
system, developers pose detailed questions about the runtime behavior of the
system. Source code views offer strictly limited insights, so developers often
turn to tools like debuggers to inspect and interact with the running system.
Traditional debuggers focus on the runtime stack as the key abstraction to support
debugging operations, though the questions developers pose often have more to
do with objects and their interactions [8].

We have proposed object-centric debugging as an alternative approach to
interacting with a running software system [9]. By focusing on objects as the key
abstraction, we show how natural debugging operations can be defined to answer
developer questions related to runtime behavior. We have presented a running
prototype of an object-centric debugger, and demonstrated, with the help of a
series of examples, how object-centric debugging offers more effective support for
many typical developer tasks than a traditional stack-oriented debugger.

Visual programming environment. Visualizing software-related data is of-
ten key in software developments and reengineering activities. As illustrated
above in our tools, interactive visualizations play an important intermediary
layer between the software engineer and the programming environment. General
purpose libraries (e.g., D3, Raphaël) are commonly used to address the need for
visualization and data analytics related to software. Unfortunately, such libraries
offer low-level graphic primitives, making the specialization of a visualization
difficult to carry out.

Roassal is a platform for software and data visualization. Roassal offers
facilities to easily build domain-specific languages to meet specific requirements.
Adaptable and reusable visualizations are then expressed in the Pharo language.
Figure 5 illustrates two visualizations of a software system’s dependencies. Each
class is represented as a circle. On the left side, gray edges are inheritance (the
top superclass is at the center) and blue lines are dependencies between classes.
Each color indicates a component. On the right side, edges are dependencies
between classes, whereas class size and color indicate the size of the class. Roassal



Fig. 5: Visualization of a software system’s dependencies

has been successfully employed in over a dozen software visualization projects
from several research groups and companies.

Future work. Programming is unfortunately filled with repetitive, manual
activities. The work summarized above partially alleviates this situation. Our
current and future research line is about making our tools not only object-centric,
but domain-centric. We foresee that being domain specific is a way to reduce the
cognitive gap between what the tools present to the programmers, and what the
programers expect to see from the tools.

References

1. A. Lienhard, T. Gı̂rba, O. Nierstrasz, Practical object-oriented back-in-time debug-
ging, in: Proceedings of the 22nd European Conference on Object-Oriented Pro-
gramming (ECOOP’08), Vol. 5142 of LNCS, Springer, 2008, pp. 592–615, ECOOP
distinguished paper award. doi:10.1007/978-3-540-70592-5_25.
URL http://scg.unibe.ch/archive/papers/Lien08bBackInTimeDebugging.pdf

2. G. Pothier, E. Tanter, J. Piquer, Scalable omniscient debugging, Proceedings of
the 22nd Annual SCM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA’07) 42 (10) (2007) 535–552. doi:

10.1145/1297105.1297067.
3. T. Mytkowicz, A. Diwan, M. Hauswirth, P. F. Sweeney, Evaluating the accuracy

of java profilers, in: Proceedings of the 31st conference on Programming language
design and implementation, PLDI ’10, ACM, New York, NY, USA, 2010, pp. 187–197.
doi:10.1145/1806596.1806618.
URL http://doi.acm.org/10.1145/1806596.1806618

http://scg.unibe.ch/archive/papers/Lien08bBackInTimeDebugging.pdf
http://scg.unibe.ch/archive/papers/Lien08bBackInTimeDebugging.pdf
http://dx.doi.org/10.1007/978-3-540-70592-5_25
http://scg.unibe.ch/archive/papers/Lien08bBackInTimeDebugging.pdf
http://dx.doi.org/10.1145/1297105.1297067
http://dx.doi.org/10.1145/1297105.1297067
http://doi.acm.org/10.1145/1806596.1806618
http://doi.acm.org/10.1145/1806596.1806618
http://dx.doi.org/10.1145/1806596.1806618
http://doi.acm.org/10.1145/1806596.1806618


4. A. Camesi, J. Hulaas, W. Binder, Continuous bytecode instruction counting for
cpu consumption estimation, in: Proceedings of the 3rd international conference on
the Quantitative Evaluation of Systems, IEEE Computer Society, Washington, DC,
USA, 2006, pp. 19–30. doi:10.1109/QEST.2006.12.
URL http://portal.acm.org/citation.cfm?id=1173695.1173954

5. A. Bergel, Counting messages as a proxy for average execution time in pharo, in:
Proceedings of the 25th European Conference on Object-Oriented Programming
(ECOOP’11), LNCS, Springer-Verlag, 2011, pp. 533–557.
URL http://bergel.eu/download/papers/Berg11c-compteur.pdf

6. J. P. S. Alcocer, A. Bergel, S. Ducasse, M. Denker, Performance evolution blueprint:
Understanding the impact of software evolution on performance, in: A. Telea, A. Ker-
ren, A. Marcus (Eds.), VISSOFT, IEEE, 2013, pp. 1–9.

7. A. Bergel, V. Peña, Increasing test coverage with hapao, Science of Computer
Programming 79 (1) (2012) 86–100. doi:10.1016/j.scico.2012.04.006.

8. J. Sillito, G. C. Murphy, K. De Volder, Questions programmers ask during software
evolution tasks, in: Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering, SIGSOFT ’06/FSE-14, ACM, New York,
NY, USA, 2006, pp. 23–34. doi:10.1145/1181775.1181779.
URL http://people.cs.ubc.ca/~murphy/papers/other/

asking-answering-fse06.pdf

9. J. Ressia, A. Bergel, O. Nierstrasz, Object-centric debugging, in: Proceeding
of the 34rd international conference on Software engineering, ICSE ’12, 2012.
doi:10.1109/ICSE.2012.6227167.
URL http://scg.unibe.ch/archive/papers/Ress12a-ObjectCentricDebugging.

pdf

http://portal.acm.org/citation.cfm?id=1173695.1173954
http://portal.acm.org/citation.cfm?id=1173695.1173954
http://dx.doi.org/10.1109/QEST.2006.12
http://portal.acm.org/citation.cfm?id=1173695.1173954
http://bergel.eu/download/papers/Berg11c-compteur.pdf
http://bergel.eu/download/papers/Berg11c-compteur.pdf
http://dx.doi.org/10.1016/j.scico.2012.04.006
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://dx.doi.org/10.1145/1181775.1181779
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://scg.unibe.ch/archive/papers/Ress12a-ObjectCentricDebugging.pdf
http://dx.doi.org/10.1109/ICSE.2012.6227167
http://scg.unibe.ch/archive/papers/Ress12a-ObjectCentricDebugging.pdf
http://scg.unibe.ch/archive/papers/Ress12a-ObjectCentricDebugging.pdf

	Profiling, debugging, testing for the next century
	Alexandre Bergel

