
”What Programmers Do with Inheritance in
Java” - Replicated on Source Code

Ç. Aytekin

cigdemaytekin.872@gmail.com, University of Amsterdam

Abstract. Inheritance is an important mechanism in object-oriented
languages and it has been subject of quite some research. Tempero, Yang
and Noble made a research [Tempero13] about the usage of the inher-
itance in Java open source systems and found that the defined inheri-
tance relationships are also used quite considerably in the code, mostly
for subtyping and reuse. They also found that late-bound self-reference
occurs frequently. They analysed the byte code of the projects. We repli-
cated their study to verify the results by carrying out the same study on
the source code. For most of the metrics introduced in their inheritance
model we found similar results. We found some suspected false positives
in the original study for late-bound self-reference and (external) reuse,
but there are not many of them. Except for these cases, our study verifies
the correctness of the original study results.

1 Introduction

We externally replicated a study done by Tempero et al. [Tempero13] about
inheritance usage. Inheritance is an important mechanism in object-oriented
programming. The majority of the studies about inheritance concentrated on the
declaration of the inheritance relationships. The original study brought a new
perspective on inheritance research. They investigate the usage of inheritance in
their study, in their own words: “having made the decision to use inheritance at
the design level, what benefits follow from the use of inheritance?”

The authors defined an inheritance usage model and analysed the byte code of
93 open source Java projects from Qualitas Corpus, which is a curated collection
of open source Java projects [Tempero10]. Their results show that the defined
inheritance relationships in projects are frequently used, especially for what they
call subtyping and reuse.

Our purpose is to replicate the original study with one major difference:
we analyse the source code and not the byte code. We have chosen for replica-
tion because of two reasons. Firstly, replication plays a very important role in
verification of the results of empirical studies in general. Also in the field of soft-
ware engineering empirical research this is the case. Brooks et al. explain this
in [Brooks08]. Secondly, despite the importance of replication, there are very
few replication studies so far, as also shown by Sjoberg et al. in [Sjoberg05].
Replication studies are answers to this need, and so is ours.

Our analysis results are similar to those of original study. But they are not
the same. For down-call, we report that 27 % late-bound self-reference (original
study reports 34 %) For subtype, we report that at least 61 % of inheritance
relations show this usage, whereas original study reports 69 %. Original study
reports 22 % of external reuse and 2 % of internal reuse, whereas we report 4
% and 20 % respectively. Our results also show that reuse and subtype explain
most of the usages of inheritance and other uses are not significant, just like the
original study

We see the following reasons for the differences between the results: the dif-
ferences between the set-up of two studies, and our limitation about analysing
external methods. Our limitation about external method analysis is explained
in subsection 5.3. However, we also suspect some false positives in the original
study for down-call and external reuse. The reason why we think that there are
some false positives is explained in the discussion section (section 8)

This article starts with introducing some of the empirical studies about in-
heritance. Section 3 contains the definitions of the inheritance model used . In
section 4 the original study is explained. Section 5 presents the replication study.
The Rascal implementation is explained in section 6. The results of the repli-
cation study is presented in section 7. The results are discussed in section 8,
followed by the list of threats to the validity of our work (section 9). Finally we
conclude with section 10.

2 Related Work

A thorough discussion about the notion of inheritance is given by Taivalsaari
in [Taivalsaari96]. Three main usages defined in the original study refer to this
article: subtype usage, reuse and down-call (late-bound self-reference). We will
define these concepts in detail, but here is a brief explanation in advance. Subtype
usage occurs when a child type supplied when parent type is expected, reuse
occurs when a child type uses a field or a method defined in its parent and
down-call occurs when a method call in a class is directed to a type which is
down in the inheritance hierarchy instead of a method in the class itself.

There is a group of empirical studies about inheritance which analyse the
code of projects. Tempero and Noble, this time together with H. Melton, carried
out the study [Tempero08] using an earlier version of Qualitas Corpus. The study
concentrated mainly on how types are defined with respect to inheritance in Java
open source projects. In another study, Nasseri, Counsell and Shepperd investi-
gated the evolution of inheritance in Java open source systems (OSS) [Nasseri08].
Lämmel et al. analysed a corpus of .NET projects for the usage of .NET API in
the source code [Lammel11]. This last study is also about inheritance usage but
from the perspective of API usage.

Another group of empirical studies worked with programmers to observe the
effect of inheritance on software quality. An early study of Mancl and Havanas
from 1990 [Mancl90], focuses on the effects of using C++ programming language
on software maintenance. Similarly, Daly, Brooks, Miller, Roper and Wood also

made an experiment [Daly96] with programmers about the inheritance and in-
vestigated if the programs written with inheritance were more easily maintained
than the programs written without inheritance. Cartwright replicated the study
done by Daly et al., but ended up with opposite results [Cartwright98].

3 Definitions

The authors of the original study proposed a model for inheritance usage. The
most important usages of inheritance in their model are subtype, reuse and down-
call. In addition to these, they also describe other uses of inheritance, which also
occur, but much less frequent than subtype, reuse and down-call.

If a pair of classes has inheritance relationship, it is modelled as an ordered
pair of descendant and ascendant. If there is also a usage between the descendant
and the ascendant, then this pair is given the attribute which qualifies that
certain usage. How often a usage occurs is not taken into consideration here. For
example, if a descendant reuses a piece of code from the ascendant, how many
times this reuse occurs in the code does not matter.

Here are the definitions of system type, external method, user defined at-
tribute, CC, CI and II attributes, the explicit attribute and indirect reuse. These
definitions are important for understanding the scope and the metrics of the orig-
inal study:

– System Type A type (Java class or interface) is a system type if it is defined
in the system under investigation. The rest of the types, which are used in
the system, but are not defined in the systems are called non-system types.
Non-system types are typically defined in the external libraries on which the
system under investigation depends on.

– External method Similar to non-system types, the methods which are
defined outside of the system under investigation are called external methods,
or non-system methods.

– User Defined Attribute: The descendant ascendant pair in an inheritance
relationship has user defined attribute if both of descendant and ascendant
are system types. A system type is created for the system under investigation

– CC, CI and II Attributes: The descendant-ascendant pair in an inheri-
tance relationship in Java can have one of the three attributes: CC (Class
Class), CI (Class Interface) and II (Interface Interface).

– Explicit Attribute The inheritance relationship is described directly in the
code. Inheritance relation between a child and its direct parent is explicit,
whereas a child and its grand parent is not explicit, but implicit.

– Indirect Reuse If the inheritance use occurs between the types in a pair
which has not explicit attribute, this usage gets the indirect attribute. Let us
assume that class GC extends class C and class C extends class P. If an external
reuse occurs between GC and P, all the pairs between GC and P (in this
case <GC,C> and <C,P>), are counted as having external reuse attribute
(indirect external reuse). This is done for the external reuse and subtype

attributes only. For other inheritance usages like down-call or internal reuse,
this is not done.

The authors count only explicit user defined pairs in their research.
The inheritance usages we most frequently see in the open source Java

projects are subtype, external reuse and internal reuse, which are defined as
follows:

– Subtype: Subtype inheritance usage happens when a child type is supplied
where the parent type is expected. Subtype occurrence can be seen during as-
signment, casting, parameter passing and returning a parameter in a method
declaration in Java. Moreover the enhanced for loop (for each construct) and
ternary operator can also contain subtype usage.

– Internal Reuse: Reuse occurs if an object of child type accesses a field or
calls a method of a parent type. If the reuse happens in the class definition
of the child class, this is called internal reuse.

– External Reuse: If the reuse happens outside of the class definition of the
child class, this is called external reuse.

Down-call is one of the most important concepts of the original study and
one research question is solely about down-call. Here is an illustrative example
of down-call:

class P {
void p() {

q();
}

void q() {}
}

class C extends P {
void q() {}

}

In the example, the p() method of class P, calls method q() which is also
overridden by its child type. If method p() is called on an object of child type,
the q() method of child type is called instead of the one of parent type. The
original study counts the potential down-calls only, in other words, they do not
search for a call of method p() on an object of child type. In the replication
study we did the same, but we find that this approach is open to discussion.

In addition to the most frequent usages, other uses of inheritance are also
defined in the inheritance model. Because these usages do not occur frequently,
we will only give brief definitions of these concepts. Category usage occurs if a
parent type has more than one child and at least one of the children have subtype
relation with the parent. The siblings which has no other usage with the parent
receive category attribute. If an ascendant has only Java constant fields in it, the
descendant-ascendant pairs get the constant attribute. Framework attribute, on
the other hand, is given to the descendant-ascendant pairs where ascendant is a
child of a non-system type.

The generic attribute qualifies a frequently used pattern in raw collections
between an ascendant and a descendant. Marker usage qualifies the pairs for
which ascendants are empty interfaces and descendants implement them for the
reason of conceptual classification. Finally, the super attribute are given to pairs

in which the descendant explicitly issues a super() call to the constructor of
the ascending type.

4 The Original Study

4.1 Research Questions

After introducing an inheritance usage model, the original study concentrates
on four research questions:

1. To what extent is late-bound self-reference (down-call) relied on in the de-
signs of Java Systems? (the ratio of pairs for which down-call is seen to the
total number of class-class inheritance pairs.)

2. To what extent is inheritance used in Java in order to express a subtype
relationship that is necessary to design? For class-class pairs, this is the
ratio of pairs with subtype usage to the total number of used pairs. The
used pairs are the inheritance pairs for which subtype or reuse is seen. The
subtype usage between class-interface and interface-interface pairs are also
measured.

3. To what extent can inheritance be replaced by composition? The inheri-
tance relationships which involve internal or external reuse, but which do
not involve subtype use, are candidates for such a replacement.

4. What other inheritance idioms are in common use in Java systems? (This
is answered by considering the results of various other metrics about other
inheritance usages like category, constant, framework, etc.)

4.2 Implementation

The authors developed a Java byte code analysis tool which is based on SOOT
framework [ValleeRai99]. With this tool they analysed the byte code distri-
butions of 93 Java projects from the 20101126 release of the Qualitas Cor-
pus [Tempero10]. The study is very well documented in the study web site
[Tempero08Web] The article and the study web site have been immensely use-
ful for us when conducting this replication study. When we needed additional
information, we e-mailed the authors and we got detailed answers from the first
author (E. Tempero). These answers improved our understanding and enabled
us to deliver a replication study with better quality.

The original study has some limitations about inheritance model which we
also use. The analysis is limited to classes and interfaces, exceptions, enums and
annotations are excluded. Moreover only the types which are declared in the
project are analysed, and not the third party libraries. Unlike our study, the
original study has also some limitations which originate from byte code analysis.
In a few cases, for example, source code may not map correctly to byte code.

4.3 Results

For the first question, they conclude that down-call plays a significant role -
around a third (median 34 %) of all class-class pairs involve down calls. For
the second question, they saw that least two thirds of all inheritance pairs are
used as subtypes in the program. About replacing inheritance with composition,
the authors found that 22 % or more pairs use external re-use (without subtyp-
ing) and 2 % or more use internal re-use (without subtyping or external reuse)
which signals opportunities to replace inheritance with composition. For the last
question, they report some other uses of Java inheritance (constant, generic,
etc.) however the results show that big majority of inheritance pairs (87 %) in
their Corpus can already be explained with one of the subtype, external re-use,
internal re-use uses and other usages do not occur frequently.

5 Replication Study

5.1 Research Questions

Our research questions directly refer to the four research questions of the original
study. For each question we would like to know how our results differ from those
of the original study.

5.2 Differences in the Study Set-up

Our study has some differences from the original study in the study set-up.
When comparing the results, it is necessary to consider these differences:

– Source code versus byte code: The biggest difference between the origi-
nal and replication studies is about the input to analysis work. The authors
analyse the byte code, while we analyse the source code of Java projects.
Before we started the replication study, we have decided to choose for the
source code analysis. There were two reasons for that: firstly, we did not
intend to perform an exact replication, we wanted to answer the same re-
search questions from a different perspective, namely by analysing the source
code. And secondly, we wanted to use an existing robust tool (or meta-
programming language) for analysis. Rascal is proven to be a robust tool for
Java source code analysis, but it does not support Java byte code analysis
at the moment.

– Differences between the content of the byte code and the source
code: When we analysed the source code and compared the contents of the
source code and byte code distributions, we saw that the set of types which
are contained in both distributions differ from each other quite considerably,
even for the same versions of the projects.

– Qualitas Corpus vs. Qualitas.class Corpus: The authors used the Qual-
itas Corpus [Tempero10], we also use the Corpus, but the compiled version
of it, namely Qualitas.class Corpus [Terra13]. In the original study 93 open

source Java projects are analysed. We could not analyse 3 projects because of
errors. From the 90 projects we did analyse, 65 have the same version as the
original study and 25 have different versions. The meta-language we used to
analyse the source code, Rascal, will analyse the source code correctly when
the source code compiles. Therefore it was important for us that the source
code compiled correctly. We had two alternatives: we could either use the
original corpus and invest time on resolving dependencies of the source code
to external libraries and fixing the compilation problems ourselves, or we
could use the compiled Corpus (Qualitas.class Corpus), for which this work
was already done. We have chosen the second option because of the time
limitations, and this meant that we had to analyse different versions of 25
projects.

5.3 Limitations of the Replication Study

The differences between the content of the code analysed is a limitation of our
study, as explained in the previous subsection in detail. This difference makes
comparison of the results less straightforward.

Another limitation which has impact on our results is about the analysis of
non-system methods. We have limited information about external methods. We
only analyse the system types, and the external methods are defined in non-
system types, i.e. outside of our analysis boundaries. For external reuse, this
limitation results in fewer number of external reuse cases for indirect external
access (we only mark the child and the immediate parent with external reuse at-
tribute, whereas the original study marks the whole chain between the child and
the ascendant which declares the method). For subtype, this limitation affects
our analysis during parameter passing. When an external method is called, the
parameter types are not totally available for us. We use a very limited heuristic
to analyse these calls and it is highly likely that we miss some subtype cases.

There are some more limitations to our study which we think will not have
major impact on the results. To name a few: Internal reuse attribute is not
analysed for class-interface and interface-interface pairs, for interface-interface
pairs category attribute is not analysed, method parameters that are given as
ternary operators are not analysed for subtype, etc.

6 Implementation of the Replication Study

We have written a Java source code analysis program in Rascal. Rascal is a
meta-programming language which has various features to make (among others)
analysis of Java source code easy. Rascal is fully integrated in Eclipse IDE.

With the following simple Rascal code example, we would like to give an idea
about how Java source code analysis is done by Rascal:

1 public void run() {
2 set[Declaration] pASTs = createAstsFromEclipseProject (| project://cobertura

-1.9.4.1| , true);
3 pM3 = createM3FromEclipseProject (| project://cobertura -1.9.4.1|);

4 for (anAST <- pASTs) {
5 visit (anAST) {
6 case m1:\ methodCall(_, receiver:_, _, _) : {
7 set[loc] defClassSet = {aClass | <aClass , aMethod > <- pM3@containment

, isClass(aClass), aMethod == m1@decl };
8 if (! isEmpty(defClassSet)) {
9 loc definingClass = getOneFrom(defClassSet) ;

10 println("The method <m1@decl > is defined in: <definingClass >");
11 println("Type of receiver is: <receiver@typ >");
12 }
13 }
14 }
15 }
16 }

Listing 1.1. Sample Rascal code which analyses a method call

createAstsFromEclipseProject() in line 2 is a Rascal method returns all
ASTs (Abstract Syntax Trees) for a given Java project. Rascal also creates the
M3 model for a given project with method createM3FromEclipseProject() as
we see in line 3. M3 model contains information about the project from vari-
ous aspects. This information can be accessed via annotations in Rascal. Some
examples of the annotations are: @extends annotation (which lists the parent
child pairs for classes and interfaces), @implements annotation (similar to ex-
tends, but for class interface pairs), @declarations annotation (which lists the
location where different items in the project are declared). In our example, we
access to containment annotation of project M3 in line 7 to retrieve the class
in which the method was declared.

The information in M3 are stored as binary relations (ordered pairs), and
Rascal also enables access to binary relations by comprehensions, as we again
see in line 7. Once the ASTs are built, it is also possible to visit each node of
an AST via the Rascal construct visit - line 5 in the example above. The case

statements (line 6) in the visit construct are used for selecting the AST node
we are interested in, in this case a methodCall(). Once we selected the node
we want, it is also possible to retrieve further information about the node itself,
like the name of the method that is called (in our example m1@decl), if it has a
receiver (an object on which the method call was issued - in our case receiver)
and the type of the receiver (receiver@typ).

7 Results

The results of our analysis are, in many cases, similar to the results of the original
study, but they are not the same. For most of the inheritance usage we report
fewer cases:

For down-call: we observed 27 % (median) of the class-class relations involv-
ing potential down-calls whereas the original study reports 34 % median.

For subtype: for class-class pairs, we observed 76 % of subtype usage, just
like the original study. Subtype usage can also be seen in class-interface and
interface-interface pairs, for class-interface pairs we report a median of 61 %
(original study 69 %) and for interface-interface pairs our median is 75 %, while
the original median is % 72.

For reuse, we also see that there is opportunity for replacing inheritance with
composition. However, we report significantly fewer cases of external reuse, and
also significantly more cases of internal reuse. For class-class pairs, our external
reuse median is 4 % (original study : 22 %) and our internal reuse median is 20
% (original study 2 %).

For other inheritance cases, we also found some usage, and we also observed
that these usages are not significant when compared to subtype and reuse.

Despite not being part of a research question, the perCCUsed (percentage of
class-class pairs which have subtype or reuse attribute) is an important metric.
For this metric, we have a median of 88 %, while the original study reports 99
%.

The results of the both studies are summarized in table 1.

Inheritance Usage Replication median (%) Original median (%).

Down-call 27 34

Subtype - class class pairs 76 76

External reuse - no subtype 4 22

Internal reuse only 20 2

Subtype - class interface pairs 61 69

Subtype - interface interface pairs 75 72

Table 1. Comparative Summary of Results

8 Discussion

The fact that the source code distributions are in many cases very different from
the byte code distributions, has a major impact on our results. Moreover, our
limitation about the analysis of the external method calls is highly likely to
deliver fewer cases in subtype and external reuse. We also did our best to be
able to interpret the inheritance model in a sound way, however, there may still
be misunderstandings from our side about definitions of certain concepts.

Keeping these limitations in mind, we tried to find out some projects which
we could manually investigate to search for reasons for our differences. One
small project which had similar byte and source code contents was cobertura (v.
1.9.4.1). For this project, the original study reported five down-call cases, while
we could not observe any. Here we include one case for which we suspect a false
positive from the byte code analysis. Original study reported a down-call usage
between classes GTToken and Token.

The GTToken class from project cobertura has the following source code:

1 public static class GTToken extends Token
2 {
3 int realKind = JavaParser15Constants.GT;
4 }

An excerpt from the byte code of GTToken is as follows:

1 0: aload_0
2 1: invokespecial #10 // Method
3 // net/sourceforge/cobertura/javancss/parser/java15/Token."<init >":()V
4 4: aload_0
5 5: bipush 126
6 7: putfield #12 // Field realKind:I
7 10: return

The definition of down-call makes it necessary that child class GTToken overrides
at least one method. In this case, however, we do not see any methods defined
by GTToken. GTToken defines only one field. When we look at the byte code,
however, we see the command invokespecial. We wondered if this was causing
the down-call report in the original study. We have e-mailed the authors, and
they also could not bring an explanation about this particular case.

From our manual investigation, we also found one more down-call case which
is different from the case explained above, for which we also suspect a false pos-
itive. For this case, we also mailed the authors and we suspect an interpretation
difference for down-call definition between two studies.

We also did a manual investigation for other cases of inheritance usage and
we also suspect some false positives for the external reuse, however we did not
have enough time to discuss this via e-mail with the authors.

To summarize, we suspect some false positives for down-call and external
reuse cases of the original study. We also think that this may be introduced due
to the analysis of byte code, in some cases byte code may be misleading. However,
because of the limitations of our study, we can not give an exact percentage of
false positives, but we do not expect a high percentage of false positives.

9 Threats to Validity

The major threat to validity to our replication is the input we are using. The
fact that our input is very different from the original study poses a threat to
validity when comparing the results of two studies.

Furthermore, we have a limitation when analysing the external method calls.
We know that this causes fewer cases to be counted for subtype and external
reuse, but we can not give an exact percentage. This also constitutes a threat
for the validity during comparison of subtype and external reuse percentages.

We did our best to understand the inheritance model proposed by the au-
thors. However, there can still be some interpretation differences about the inher-
itance usage definitions, and this may also pose a threat to our analysis results.

Our minor limitations, which were briefly discussed in section 5.3, will also
affect our results and should also be mentioned as, however minor, possible
threats to validity.

10 Conclusion

Our conclusions for the research questions are similar to the original study, but
they are not the same.

For the first question (about down-call), original study reports about one
third of the inheritance relations involving such a case, while we found about
one fourth.

For the second research question, we found about 60 % of all inheritance
cases involve subtype relationship. The authors also report a higher percentage
(66 %) about subtype usage.

About research question three (replacement of inheritance with composition),
the pairs without subtype but with reuse attribute are taken into account. Au-
thors found a significant percentage of reuse (median 22 % for external and 2
% for internal reuse). We also report a similar percentage, but the division be-
tween internal and external uses is very different in our case (median of 4 % for
external reuse and 20 % for internal reuse).

For the last research question, which is about the other uses of inheritance
in Java, the authors found out that these occur in many systems, but their use
is not generally significant. Although our percentages are not exactly the same
with the original study for various other uses of inheritance, our results also
agree with this conclusion.

When we investigate the possible reasons for the differences, we see that
especially the differences in our study set up play a role here. In addition to this,
for the subtype and external reuse, it is highly probable that we report fewer
cases because of our limitation of external method analysis. We also conclude
that the analysis of byte code can result in false positives in some particular
occasions for down-call and external reuse..

As future work for the original study, one can discuss the proposed inheri-
tance model and the metrics and consider some alternatives for detecting and
counting various inheritance usages. Especially, how down-call usage is detected
and the role of indirect usage in subtype and external reuse, according to us,
present some opportunities for further discussion.

Acknowledgments

Author would like to Ewan Tempero for his detailed answers to her questions
and to Bas Brekelmans for his help in validating results of this study.

References

[Brooks08] Brooks, A. and Roper, M. and Wood, M. and Daly, J. and Miller, J. Section:
”Replication’s role in software engineering.” from the book : ”Guide to advanced
empirical software engineering.” Springer London, 2008. pp: 365-379.

[Cartwright98] Cartwright, Michelle. ”An empirical view of inheritance.” Information
and Software Technology 40.14 (1998): pp: 795-799.

[Daly96] Daly, J., Brooks, A., Miller, J., Roper, M., & Wood, M. (1996). ”Evaluating
inheritance depth on the maintainability of object-oriented software.” Empirical
Software Engineering, 1(2), pp: 109-132.

[Lammel11] Lammel, R., Linke, R., Pek, E., & Varanovich, A. (2011, October). ”A
framework profile of. net.” In 18th Working Conference on Reverse Engineering
(WCRE), 2011 (pp. 141-150). IEEE.

[Mancl90] Mancl, Dennis, and William Havanas. ”A study of the impact of C++ on
software maintenance.” In Proceedings of International Conference on Software
Maintenance (ICSM), 1990, IEEE, pp: 63 - 69

[Nasseri08] Nasseri, Emal, Steve Counsell, and M. Shepperd. ”An empirical study of
evolution of inheritance in Java OSS.” In 19th Australian Conference on Software
Engineering (ASWEC), 2008, IEEE, pp: 269 - 278

[Sjoberg05] Sjberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic,
A., Liborg, N. K., & Rekdal, A. C. (2005). ”A survey of controlled experiments
in software engineering.” IEEE Transactions on Software Engineering, 31(9), pp:
733-753.

[Taivalsaari96] Taivalsaari, Antero. ”On the notion of inheritance.” ACM Computing
Surveys (CSUR) 28.3 (1996): 438-479.

[Tempero08] Tempero, Ewan, James Noble, and Hayden Melton. ”How do Java pro-
grams use inheritance? An empirical study of inheritance in Java software.” In
European Conference On Object Oriented Programming (ECOOP) 2008. Springer
Berlin Heidelberg, pp: 667-691.

[Tempero08Web] Ewan D. Tempero, Hong Yul Yang, and James Noble. In-
heritance Use Data, 2008. Last accessed on 1 September 2014. URL:
https://www.cs.auckland.ac.nz/∼ ewan/qualitas/studies/inheritance/

[Tempero10] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M. &
Noble, J. (2010, November). ”The Qualitas Corpus: A curated collection of Java
code for empirical studies.” In 17th Asia Pacific Software Engineering Conference
(APSEC), 2010, pp. 336-345, IEEE.

[Tempero13] Tempero, Ewan, Hong Yul Yang, and James Noble. ”What programmers
do with inheritance in Java.” European Conference On Object Oriented Program-
ming (ECOOP), 2013 Springer Berlin Heidelberg, 2013. pp: 577-601.

[Terra13] Terra, R., Miranda, L. F., Valente, M. T., & Bigonha, R. S. (2013). ”Qual-
itas. class Corpus: A compiled version of the Qualitas Corpus.” ACM SIGSOFT
Software Engineering Notes, 38(5), pp: 1-4.

[ValleeRai99] Valle-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., & Sundaresan,
V. (1999, November). ”Soot-a Java bytecode optimization framework.” In Proceed-
ings of the 1999 conference of the Centre for Advanced Studies on Collaborative
research (CASCON), 1999, (p. 13). IBM Press.

