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Abstract. Metamodels are a key concept in Model-Driven Engineering.
Any artifact in a modeling ecosystem has to be defined in accordance to
a metamodel prescribing its main qualities. One of the most important
artifact is model transformation that are considered to be the heart and
soul of MDE and as such advanced techniques and tools are needed for
supporting the development, quality assurance, maintenance, and evo-
lution of model transformations. Several works propose the adoption of
metrics to measure quality attributes of transformation without consid-
ering any metamodel aspects. In this paper, we present an approach to
understand structural characteristics of metamodels and how the model
transformations depend on corresponding input and target metamodels.
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1 Introduction
Metamodels are a key concept in Model-Driven Engineering [22]. Almost any
artifact in a modeling ecosystem [13] has to be defined in accordance to a meta-
model, which represents an ontological description of application domains [10].
Metamodels are important because they formally define the modeling primitives
used in modeling activities and represent the trait-d’union among all constituent
components. One of this components are model transformations (MT), in fact
MT play a key role since they permit to bridge different abstraction levels by au-
tomatically mapping source models to target ones. In [23] model transformations
are considered to be the “heart” and “soul” of MDE and as such they require to
be treated in a similar way as traditional software artifacts [2]. Understanding
common characteristics of metamodels, how they evolve over time, and what is
the impact of metamodel changes throughout the modeling ecosystem is key to
success. Several approaches have been already proposed to analyse models [20]
and transformations [3,28] with the aim of assessing quality attributes, such as
understandability, reusability, and extendibility [7]. Similarly, there is the need
for techniques to analyse metamodels as well in order to evalutate their structural
characteristics and the impact they might have during the whole metamodel life-
cycle especially in case of metamodel evolutions. To this end, some works propose
the adoption of metrics for analysing metamodels [17,19] and transformation [28]



as typically done in software development by means of object-oriented measure-
ments [16]. Starting from our previous work [11], we are interested in better
understanding metamodel characteristics and how metamodels and transforma-
tions are correlated by investigating the correlations of different metrics applied
on a corpus of more than 450 metamodels and 90 transformations. On one hand
we propose an approach for a) measuring certain metamodeling aspects (e.g.,
abstraction, inheritance, and composition) that modelers typically use; and b)
for revealing what are the common characteristics in metamodeling that can
increase the complexity of metamodels hampering their adoption and evolution
in modeling ecosystems [13]. On other hand we propose an approach for iden-
tifying how the transformations are correlated to metamodels. The identified
correlations permit to draw interesting considerations e.g. how a model trans-
formation is typically structured depending on the considered metamodels, and
how does the complexity of metamodels has an impact on the overall model
transformations development. Such considerations can be preparatory to further
analysis that are very common in software development [9], e.g., estimating the
effort required to develop model transformations by considering the structural
characteristics of the source and target metamodels.

The paper is structured as follows: Section 2 describes the process we have
conceived and applied to analyze metamodels. Interesting correlations are dis-
cussed in Section 3. Section 4 discusses related work and Section 5 concludes the
paper and draws some research perspectives.

2 The correlation among metamodels and transformations

Software metrics have been proposed to assess and predict software effort and
quality [15] and recent research has proposed the adoption of metrics to mea-
sure transformations. In particular, metrics on transformations have been inves-
tigated [28,3] to support the measurements of model transformations with the
aim of understanding transformations via quantitative evaluations. For instance,
in [28] specific metrics have been conceived to measure ATL transformations, and
in [4] authors define the meaning of several quality attributes in the context of
model transformations and align them to a set of metrics.

The adoption of metrics to measure metamodels has been recently proposed
in [17,19,12]. In particular, in [17] authors apply object-oriented measurements
to understand common structural characteristics of metamodels, whereas [19]
proposes a measuring mechanism for assessing the quality of metamodels. To the
best of our knowledge, none of the existing approaches calculate transformation
metrics with the aim of correlating them.

Fig. 1. Overview of the process for metamodel analysis



Since it is reasonable to claim that the complexity of model transformations
is somehow related to that of the source and target metamodels, in our opinion in
order to have a complete measurement of model transformations, it is necessary
to identify also possible correlations between transformation and metamodel
metrics e.g., to figure out at what extent the number of matched rules of given
ATL transformation depends on the number of metaclasses in the source and/or
target metamodels.

To this end, in this section the measurement process shown in Fig. 1 is
presented. In particular, the first step of the process consists in applying a num-
ber of metrics on a representative corpus of transformations and corresponding
metamodels. Afterwards the calculated metamodel and transformation metrics
are correlated among them by using statistical tools. Finally, the collected data
are analysed in order to cross/link structural characteristics of transformations
and metamodels, e.g., how the different kinds of ATL rules (i.e., matched, lazy,
and called) are typically used. It is important to remark that in the analysis
step, metamodel metrics are also considered in order to identify possible cor-
relations among transformation and metamodel metrics (e.g., how the number
of metaclasses in the target metamodel impacts the structural characteristics
of transformations in terms of number of matched rules, helpers, etc.). In [12],
we describe the process, shown in 1, we have applied to identify linked struc-
tural characteristics and to understand how they might change depending on the
nature of metamodels. In this work we have extended this process in order to
calculate different set of metrics from different artifacts (metamodels and trans-
formations) and to understand how the model transformations are dependent
from corresponding input and target metamodels.

2.1 The proposed measurement process

The first step of the proposed process consists of the application of metrics on
a data set of metamodels and transformations. Concerning the applied metrics
on metamodels we borrowed those in [17] and added new ones by leading to
a set of 28 metrics. Due to space limitations, in the rest of the paper we con-
sider only the metrics shown in Tab. 1 for metamodels and shown in Tab. 2
form transformation. The corpus of the analyzed metamodels and transforma-
tions has been obtained by retrieving artifacts from different repositories, i.e.,
EMFText Zoo [6], ATLZoo [5], Github, and GoogleCode. To perform such anal-
ysis we have automatize the process for metrics calculation using a eterogenous
repository called MDEForge presented in [8]. The calculated data are exported
in CSV files encoding the values of all the calculated metrics. Generating CSV
files enables the adoption of statistical tools like IBM SPSS, Microsoft Excel, R
and Libreoffice Calc for subsequent analysis of the generated data.

2.2 Calculation and selection of metrics correlations

Correlation is probably the most widely used statistical method to detect cross-
links and assess potential relationships among observed data. There are different



techniques and indexes to discover and measure correlations. In the following we
overview the Pearson’s and Spearman’s coefficients that we have considered in
this paper to measure the correlations among calculated metamamodel metrics.

The Pearson’s correlation coefficient [18] was developed by Karl Pearson
from a related idea introduced by Francis Galton in the 1880s. It is widely used
in the sciences as a measure of the degree of linear dependence between two
variables. In particular, the Pearson correlation coefficient is appropriate when
it is possible to draw a regression line between the points of the available data
(e.g., see the diagrams A and B in Fig. 2).

The Spearman’s correlation coefficient [24] was used by Charles Spearman
in the 1900s in the psychology domain. This coefficient is better than Pearson
to manage situations when there is a monotonic relationship between the con-
sidered variables. For instance, in the cases shown in the diagrams C and D in
Fig. 2, the Pearson coefficient would wrongly identify a very low correlations
among the considered data. This is due to the fact that the assumption of lin-
ear relationships required by Pearson is not satisfied. Contrariwise, Spearman’s
correlation index would perform better in cases of monotonic relationships as in
the diagrams C and D in Fig. 2
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Fig. 2. Examples of scattered plots

It is also important to note that
the assumption of a monotonic rela-
tionship is less restrictive than a lin-
ear relationship (an assumption that
has to be met by the Pearson correlation). For this reason, we use Spearman
only for highlighting curvilinear correlations. Finally, both Pearson’s and Spear-
man’s correlation indexes assume values in the range of -1.00 (perfect negative
correlation) and +1.00 (perfect positive correlation). A correlation with value 0
indicates that there is no correlation between two variables. In order to assess
the strength of correlations it is possible to consider the guide that Evans [14]
suggests for the absolute value of the correlation indexes, i.e., [0.0,0.19 ] very
weak, [0.20,0.39 ] weak, [0.40,0.59 ] moderate, [0.60,0.79 ] strong, and [0.80,1.0 ]
very strong.

Metamodel metrics correlations Once the metamodel metrics have been
calculated, the most correlated ones are identified and selected. In particular,
we have calculated the Pearson’s correlation indexes for all the values of the
metamodel metrics. The outcome of this operation is a correlation matrix as the
one shown in Fig 3. The discussion is based on the correlation matrix shown in
Fig 3 and by considering the most interesting correlations having value greater
than 0.60 (thus strong or even very strong). Because of lack of space it is not
possible to discuss all the identified correlations that include the metrics shown
in Table 1 and 2. However, interested readers can refer to the spreadsheet
available online1 containing all the obtained results. For instance, the number
of MC2 (number of metaclasses) is strongly correlated with the number of CMC

1 http://www.di.univaq.it/ludovico.iovino/data-mise2015.html
2 For the complete list of acronyms in the table we refer to [11]



(number of concrete metaclasses) as testified by their Pearson’s correlation index
having value 0.997.

#MC #AMC #CMC #IFLMC #SF #ASF #TCWS #MGHL #MHS LNS
#MC
#AMC 0.451
#CMC 0.997 0.377
#IFLMC 0.874 0.139 0.894
#SF 0.831 0.574 0.810 0.488
#ASF -0.102 -0.064 -0.100 -0.176 0.155
#TCWS 0.993 0.451 0.990 0.890 0.797 -0.131
#MGHL 0.666 0.637 0.633 0.534 0.558 -0.216 0.678
#MHS 0.704 0.463 0.688 0.562 0.620 -0.164 0.704 0.561
LNS -0.082 -0.055 -0.080 -0.030 -0.108 -0,181 -0.072 -0.100 -0.094

Fig. 3. Pearson Correlation values related to metamodel metrics

Model transformation and metamodel metric correlations The inter-
esting part of our analysis relies on correlating model transformation and meta-
model metrics. To this end a correlation matrix based on the Spearman’s index
has been calculated and a fragment is shown in Fig 4. The matrix relates model
transformation metrics with metrics calculated on the corresponding source and
target metamodels. For instance, according to the calculated matrix, the number
of output patterns (OP) of a model transformation is strongly related with the
number of metaclasses (MC) contained in the output metamodel.

B IP OP TR MR LR CR RWF RWD H HWC HNC CRT
MC 0.450 0.690 0.467 0.452 0.402 0.295 0.248 0.267 0.329 -0.002 -0.082 0.168 0.088
AMC 0.340 0.463 0.339 0.412 0.374 0.264 0.228 0.390 0.306 0.083 -0.019 0.229 -0.003
CMC 0.478 0.504 0.496 0.468 0.412 0.290 0.289 0.260 0.360 0.036 -0.040 0.178 0.098
SF 0.503 0.394 0.467 0.363 0.334 0.208 0.282 0.126 0.315 -0.037 -0.138 0.139 0.051
MC 0.520 0.542 0.783 0.746 0.500 0.223 0.369 0.480 0.399 0.180 0.168 0.204 0.131
AMC 0.478 0.504 0.496 0.468 0.412 0.290 0.289 0.260 0.360 0.036 -0.040 0.178 0.098
CMC 0.503 0.394 0.467 0.363 0.334 0.208 0.282 0.126 0.315 -0.037 -0.138 0.139 0.051
SF 0.808 0.506 0.505 0.481 0.451 0.202 0.266 0.375 0.284 -0.008 -0.075 0.100 -0.014
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Fig. 4. Spearman Correlation values related to transformation and metamodel metrics

3 Data analysis

In this section we discuss some relevant correlations we have identified as de-
scribed in the previous section. In particular, by considering some of the iden-
tified transformation metrics, it is possible to draw interesting considerations
about how the constructs of the ATL language are typically used by developers.



Moreover, by considering the correlations of both transformation and metamodel
metrics (see Section 3.2), further considerations can be drawn about how struc-
tural characteristics of metamodels affect the structure of the corresponding
model transformations.

3.1 Metamodels correlation analysis

In this section we briefly present the most representative metrics and correlations
we have discovered in this process. We present the metrics correlation discussing
the meaning and highlighting the results in the graphical representation.

How the number of metaclasses is related to the adoption of abstrac-
tion constructs In this section we discuss how the size of metamodels expressed
in terms of number of metaclasses is related to the adoption of abstraction con-
structs, i.e., abstract metaclasses, and supertypes.
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Fig. 5. Analyzing metamodel abstraction
level

In particular, as shown in Fig. 5
the number of metaclasses (MC)
and the number of those with su-
per types (MCWS) are strongly cor-
related (with Pearson index 0.99).
More specifically, when the number of
metaclasses grows, typically also the
number of classes with supertypes in-
creases. In other words, as expected,
the adoption of inheritance is propor-
tional to the size of metamodels ex-
pressed in terms of number of meta-
classes. Interestingly, metamodel de-
signers prefer to add siblings in hierar-
chies instead of adding new hierarchy
levels. This is testified by Fig. 5 that
shows the values of the MHS (Max
Hierarchy Sibling) and MGHL (Max generalization hierarchical level) metrics.
Such conclusions are confirmed by the Pearson correlation indexes between MC
and MHS (0.70) and the one between MC and MGHL (0.66). Finally, Fig. 5
reveals that in metamodels with at most 50 metaclasses, i) the number of su-
pertypes in hierarchy is in between 0 and 20, ii) the number of siblings in a
hierarchy is in between 0 and 10, and iii) the maximum height of a hierarchy
is in between 0 and 5. These data represent a pattern charactering the typical
typical metamodel definition.

How structural features are used with hierarchies This section aims at
comprehend how structural features are used in presence of class hierarchies.
To this end, we can consider the average number of features (ASF) and the
total number of metaclasses with supertypes (MCWS) metrics. Even though



the correlation index of these two metrics is low, according to the matrix in
Fig 3, the Spearman approach permits to identify a greater correlation index.
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Fig. 6. Analyzing structural features intro-
duction in hierarchies

As shown in Fig. 6 it is evident that
increasing the number of metaclasses
with supertypes, the average num-
ber of structural features in a meta-
class decreases. Moreover, an interest-
ing statistical result obtained by con-
sidering the correlation between the
MC and ASF metrics is that by con-
sidering metamodels having the num-
ber of metaclasses in the range be-
tween 1 and 50 , the average num-
ber of features (excluding the inher-
ited ones) of a metaclass ranges be-
tween 1 and 5.

How the number of featureless metaclasses is related to hierarchies
height The correlation between the number of metaclasses with supertypes
(MCWS) and the number of concrete metaclasses without features (IFLMC) is
interesting for understanding how specializations of metaclasses can introduce or
reduce structural features in metamodels.
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Fig. 7. Analyzing hierarchical height and featureless
metaclasses

To this end, MCWS and
IFLMC are strongly corre-
lated as supported by the
Pearson’s index having value
0.890. The effect of such cor-
relation is shown in Fig. 73.
In particular, by increasing
the number of metaclasses
with super types, the num-
ber of metaclasses without
attributes or references in-
creases too. This means that
when hierarchies are introduced, usually existing features are subject to refac-
toring operations. Usually, what is done is to move them to super classes and
to create leaves in the hierarchies inheriting features from the super types. This
is in line with the typical usage of hierarchies for factorizing common aspects in
superclasses.

3.2 How metamodel characteristics affect model transformations

By exploiting the matrix obtained by correlating transformation and metamodel
metrics, in this section we discuss how metamodels affect the development of

3 This scattered plot diagram use date logarithmic scale for empathize the correlation



model transformations. The discussion is based on the correlation matrix shown
in Fig. 4 and by considering the most interesting correlations having value greater
than 0.65.

How transformation rules are influenced by target metamodels This
aspect can be investigated by considering the correlation between the number of

Fig. 8. How TR are influence by number of MC in
target metamodel

metaclasses in the target
metamodel (OUT MC) and
the number of TR (Trans-
formation Rules). Such two
values are correlated because
of the Spearman’s index hav-
ing value 0.746. The graph in
Fig 84 represents how these
two values are influenced by
each other in our corpus. Ac-
cording to the graph it is evi-
dent that increasing the num-
ber of the MC in the target
metamodel the number of TR
increases too. This is generally true, since the transformation writing is output-
driven when the developer tries to cover all the metaclasses of the target meta-
model. We can also state that the common concentration in the corpus is in
the range between 1 and 20 metaclasses and 1 and 15 transformation rules,
again confirming the declarative style of transformation as common choice of
the developers.

How the structural features in the target metamodel influence the
number of bindings According to the calculated Spearman correlation, the

Fig. 9. How the SF in the target metamodel influ-
ence the number of B

structural features (SF) of the
target metamodel can influ-
ence the number of bindings
(B) written in the rules of the
transformations. The plot in
Fig 94 shows that increasing
the value of SF in the out-
put metamodel (OUT SF),
the number of binding grows
too. The distribution is com-
mon for the number of SF be-
tween 0 and 20 distributed for
the value of B that goes from
1 to about 75.

4 The scattered plot diagram use date logarithmic scale for empathize the correlation



How the total number of output patterns are influenced by the target
metamodels According to the calculated matrix the Spearman’s correlationin-
dex between the value of OP

Fig. 10. How OP are influenced by the target meta-
models

(Output Patterns) in the
rules and the number of meta-
classes in the target meta-
models has value 0.783. This
correlation occurring in our
corpus is depicted in Fig 104

where the value of OP in the
rules of our transformations
increases at the raising of the
value of MC in the target
metamodels. The most dense
concentration is in the range
of 1-10 output patterns and 1-
10 metaclasses in output.

How the total number of input pattern are influenced by the source
metamodels As anticipated in the previous sections the IP (Input Pattern)

Fig. 11. How IP are influenced by the source meta-
models

of the transformations are re-
lated to the value of MC
in the source metamodel (IN
MC). This is confirmed by the
Spearman’s correlation that
results 0.692. In the graph
in Fig 114 the distribution is
less clear than the previous
case but the trend is similar:
increasing the value of MC
in input, the value of IP in-
creases too. This again con-
firms the use of declarative
style as the preferred one in
our corpus.

4 Related works
In [28] the authors introduces metrics to measure ATL transformations and
the adoption of metrics to measure quality attributes of transformation without
considering any metamodel aspects. In other approaches the main topic is the
quality attribute driven by the metric [4], for example making the quality of
model transformations measurable. In [25] the authors have focused on trans-
formation model measurements in order to better understand transformations
via a quantitative evaluation, like the declarative factor of modules and rules.
In [27] an analogous approach for measuring model repositories is shown, sim-
ply considering models in the evaluation. The authors in [26] investigate factors



having impact on the execution performance of model transformations and they
extracted metrics for the analysis. Van Amstel et al. propose a set of six quality
attributes to evaluate the quality of model transformations [1]. All cited works
propose the adoption of metrics to measure quality attributes of transforma-
tion without considering any metamodel aspects. The authors of [21] worked
on how model transformations can improve the quality of models using metrics.
A similar approach for understanding structural characteristics of metamodels
and their relationships has been presented in [11]. Williams et al. in [17] is the
first one to discuss metrics related to a large metamodel collection exposing how
metamodels are commonly structured, and how they evolve over time.

5 Conclusions and future work
In this paper, we proposed a number of metrics which can be used to acquire
objective, transparent, and reproducible measurements of metamodels and trans-
formations. The first goal is to better understand the main characteristic of meta-
models, how they are coupled, and how they change depending on the metamodel
structure. We have also proposed an approach to analyze model transformations
by considering also the corresponding metamodels. The approach relies on the
correlation of different metrics and has been applied on a corpus of 450 meta-
models and 90 transformations and permitted to draw interesting considerations
that we intend to extend in the future.
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6 Appendix

Acronym Name Description
AMC Number of abstract MetaClass Number of metaclasses that cannot be instantiated in mod-

els
ASF Average Structural Features Average number of attributes and references in a metaclass
CMC Number of concrete MetaClass Number of metaclasses that can be directly instantiated
IFLMC Number of concrete Immediately

Featureless MetaClass
The number of concrete metaclasses that have no attributes
or references, but may inherit features from a superclass

LNS Isolated metaclasses It is the percentage of metaclasses that are not connected
with any other one

MC Number of total MetaClass Number of metaclasses in the metamodel (MC = AMC +
CMC)

MCWS Number of class with a super
type

Number of metaclasses having at least one super type

MGHL Maximum generalization hierar-
chical level

Maximum hierarchical depth in the metamodel

MHS Max Hierarchy Sibling Maximun number of classes inheriting from a generic super-
class

SF Number of structural features Number of attributes and references in the metamodel

Table 1. Some of the used metrics for measuring metamodels

Acronym Name Description
B Number of bindings Number of bindings in all output pattern
IP Number of Input Pattern The metric number of input pattern elements measure the

size of the input pattern of rules. Note that since called rules
do not have an input pattern, the metric number of input
model elements does not include called rules.

OP Number of Output Pattern The metric number of output pattern elements measure the
size of the output pattern of rules.

TR Number of Transformation Rules A measure for the size of a model transformation is the num-
ber of transformation rules it encompasses. In ATL, there are
different types of rules, viz., matched rules, lazy matched
rules, unique lazy matched rules, and called rules.

MR Number of Matched Rules (Ex-
cluding Lazy Matched Rules)

Number of matchad rule exzcluding lazy matched rule. If
this matrics are equals to number of transformation rule the
transformation are defined completely declarative

LR Number of Lazy Matched Rules
(Including Unique)

Number of lazy rule including unique

CR Number of Called Rules Number of Called Rules
RWF Number of Rules with a Filter

Condition on the Input Pattern
Number of rules with a filter condition on the input pattern.
The input pattern has a condition. This implies that not all
model elements in the source model may be transformed.

RWD Number of Rules with a do Sec-
tion

ATL allows the definition of imperative code in rules in a
do block. This can be used to perform calculations that do
not fit the preferred declarative style of programming. To
measure the use of imperative code in a transformation, we
defined number of rules with a do section

RWU Number of Rules with a using
clause

ATL allows the definition of local variable in a rule. This
can be used to perform calculations that do not fit the pre-
ferred declarative style of programming. To measure the use
of imperative code in a transformation, we defined number
of rules with a using clause

H Number of Helper Number of total helper in the transformation
HWC Number of Helpers with Context Number of helper with context in the transformation
HNC Number of Helpers without Con-

text
Number of helper without context in the transformation

CRT Number of Calls to resol-
veTemp()

The resolveTemp() function is used to look-up references
to non-default output elements of other rules. Therefore, it
is to be expected that model transformations with a large
number of calls to the resolveTemp() function are harder to
understand.

Table 2. Some of the used metrics for measuring transformations
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