
A Study of Bi-Objective Models for Decision Support in

Software Development Process

Vira Liubchenko1,

1 Odessa National Polytechnic University, 1 Shevchenko av.,

65044 Odessa, Ukraine

lvv@edu.opu.ua

Abstract. This paper is concerned with the bi-objective problem in search-

based software engineering for high-level decision-making. The paper presents

bi-objective models for next release problem and modularization quality

problem that characterized by the presence of two conflicting demands, for

which the decision maker must find a suitable balance. The complex nature of

such kind of problem has motivated the application of heuristic optimization

techniques to obtain Pareto-optimal solutions. In this case, limitation on the size

of the problem is reasonable.

Keywords. Search-based software engineering, bi-objective model, next release

problem, modularization problem.

Key Terms. Model, mathematical model, software engineering process.

1 Introduction

Search-Based Software Engineering (SBSE) has become a subfield of software

engineering characterized by growing of activity and research interest. SBSE seeks to

reformulate Software Engineering problems as ‘search problems’ [1] in which

optimal or near-optimal solutions are sought in a search space of candidate solutions,

guided by a fitness function that distinguishes between better and worse solutions.

It has been argued that the virtual nature of software makes it well suited for

Search-Based Optimization (SBO) [2]. This is because fitness is computed directly in

terms of the engineering artifact, without the need for the simulation and modeling

inherent in all other approaches to engineering optimization. This simplicity and

ready applicability make SBSE a very attractive option.

Traditionally SBSE has based on finding the optimal or near-optimal solution to

the problem with respect to a single objective. However, single-objective approach

often is incorrect because of existing of many incomparable objectives in the

framework of one problem. Incomparability of objectives makes inapplicable waiting

of the different objectives in order to combine them into a single weighted sum

objective.

This reason has caused applying of multi-objective approaches in SBSE and using

SBSE as a tool for decision support. To underpin the focus on decision support, SBO

problem should be formulated as multi-objective problems, to which a Pareto optimal

approach can be applied [3]. In Pareto optimal approaches, the outcome is a set of

candidate solutions, each of which cannot be enhanced according to one of the

multiple objectives to be optimized without a negative impact on another.

In this paper, we explore existing bi-objective approaches for high-level decision

support in software development process. The rest of the paper is organized as

follows. Section 2 briefly describes using of bi-objective models for Next Release and

Modularization Problems. Section 3 presents SBO on decision-making perspective.

Finally, section 4 draws the main conclusions.

2 Bi-Objective Models at the Early Stages of Software Development

Software engineers have been exploiting many different software development

methodologies that recommend different framework of stages. In this paper, we base

on the fact that high-level decision most often need support on requirement

specification and design stages, which present, more or less, in every methodology.

To explore bi-objective models at these stages, we use papers gathered in repository

of publications on SBSE [4].

2.1 Requirement Specification Stage

One of the core problems of requirement specification stage in incremental

methodologies is Next Release Problem (NRP). Decision maker determines which

features should be included in the next release of the product in order to satisfy the

highest possible number of customers and entail the minimum cost for the company

[3]. NRP is a form of cost-benefit analysis for which a Pareto optimal approach is

attractive.

In NRP a set of customers, C = {c1, ..., cm}, each customer has a degree of

importance for the company that can be reflected by a weight factor, Weight = {w1, ...,

wm}, where  1,0w and  


m

j jw
1

1 .

It is assumed that there is the set of independent requirements, R = {r1, ..., rn}, that

are targeted for the next release of an existing software system. Satisfying each

requirement entails spending a certain amount of resources, which can be translated

into cost terms, Cost = {cost1, ..., costn}.

Satisfaction of requirements provides value for the company. The level of

satisfaction for a given customer depends on the subset of requirements that are

satisfied in the next release of the software product. The requirements are not equally

important for a given customer. Each customer cj (1<j<m) assigns a value to

requirement ri (1<i<n) denoted by value(ri, cj) where value(ri, cj)>0 if customer j has

the requirement i and 0 otherwise.

In the formulation of the bi-objective NRP, two objectives are taken into

consideration in order to maximize customer satisfaction (or the total value for the

company) and minimize required cost. Let the decision vector    1,0,...,1  nxxx


determines the requirements that are to be satisfied in the next release. In this vector,

xi is 1 if the requirement i is selected and 0 otherwise.

The first objective function is considered for maximizing total value:

  
 


n

i

m

j

jiji crvaluewx
1 1

,Maximize .

The problem is to select a subset of the customers’ requirements, which results in

the maximum value for the company.

The second objective function is considered for minimizing total cost required for

the satisfaction of customer requirements:





n

i

ii xcost
1

Minimize .

In order to convert the second objective to a maximization problem, the total cost

is multiplied by -1. Therefore, the bi-objective model can be represented as follows:

   

  

 



 





n

i

ii

n

i

m

j

jiji

xcostx

crvaluewxx

1

2

1 1

1

f Maximize

,f Maximize





. (1)

2.2 Design Phase

Software design usually includes low-level component and algorithm design and

high-level, architecture design. A high-level software engineering problem that is

most related to software architectures is Modularization Problem (MP). Decision

Maker finds the best grouping of components to subsystems. For that, structure of

software system is transformed into a directed graph G, the main question to be

answered is what constitutes a good partition of the software structure graph. The

goodness of a partition is usually measured with a combination of cohesion and

coupling.

Cohesion is a measure of the degree to which the components of a single

subsystem belong together. A high cohesion indicates a good modularization

arrangement because the components grouped within the same subsystem are highly

dependent on each other. A low cohesion, on the other hand, generally indicates a

poor modularization arrangement because the components grouped within a

subsystem are not strongly related.

The cohesion Ai of subsystem i with Ni components is defined as:

2

i

i
i

N
A


 ,

where µi is the number of intra-edge dependencies (relationships to and from

components within the same subsystem), 2

iN is the maximum number of possible

dependencies between the components of subsystem i.

Coupling is a measure of the connectivity between distinct subsystems. A high

degree of coupling is undesirable because it indicates that subsystems are highly

dependent on each other. Conversely, a low degree of coupling is desirable because it

indicates that individual subsystems are largely independent of each other.

The coupling Eij between subsystems i and j, each consisting of Ni and Nj

components respectively, is defined as:














ji

NN

ji

E

ji

ijij if
2

if0

 ,

where ij is the number of inter-edge dependencies (relationships to and from

components of subsystems i and j).

In the formulation of the bi-objective MP, two objectives expresses the tradeoff

between cohesion and coupling are taken into consideration in order to create highly

cohesive subsystems and penalize the creation of too many dependencies between

subsystems.

Given software structure graph G partitioned into k clusters, modeled partition of

software system into subsystems, we define MP as:

 

 
 





 








n

i

k

j

ij

k

i

i

E
kk

x

A
k

x

1 1

2

1

1

2

1
f Maximize

1
f Maximize





. (2)

3 SBO as Decision Support

SBO can be applied to situations in which the human will decide on the solution to be

adopted, but the search process can provide insight to help guide the decision maker.

This insight agenda, in which SBO is used to gain insights and to provide decision

support to the software engineering decision maker, has found natural resonance and

applicability when used at the early stages of the software engineering lifecycle,

where the high-level decisions made can have far-reaching implications.

Many of the values used to define a problem for optimization, particularly at the

early stages of the software development process, come from estimates. In these

situations, it is not optimal solutions that the decision maker requires, as much as

guidance on which of the estimates are most likely to affect the solutions. Therefore,

SBO is not merely a research program in which one seeks to ‘solve’ software

engineering problems; it is a rich source of insight and decision support.

Bi-objective problems stated above are NP-hard, and, therefore, cannot be solved

using exact optimization techniques for large-scale problem instances. That is why

metaheuristic search techniques are usually applied to find approximations of Pareto

optimal set (or front) for the bi-objective problem. Decision maker selects the solution

from the found set according to his (her) preferences.

Restriction on SBO approach connected with the point at which the problem

becomes too small. For NRP, limitation is a function of the number of requirements,

which should exceed about 20 requirements. By contrast, there is no number of

customers that is too small for the problem to be worthwhile. For MP, limitation is a

function of the number of components, which should exceed about 20 components.

4 Conclusion

Vital errors in software engineering such as too many requirements being realized in

release and poor quality of software architecture are caused by false intuition of the

decision maker. SBO can address this problem, it automatically scour the search

space for the solutions that best fit the human assumptions in the objective functions.

However, it has been widely observed that search techniques are good at producing

unexpected answers. Automated search techniques effectively work in tandem with

the human encapsulating human assumptions and intuition.

Future work will consider modification of SBO for including dependency

relationship between requirements in NRP, between components in MP, and

exploring the integrated model for both problems.

References

1. Harman, M., Jones, B.F.: Search based software engineering. Information and Software

Technology, 43(14), pp. 833--839 (2001)

2. Harman, M.: Why the virtual nature of software makes it ideal for search based optimization.

In: Proceedings of the 13th International Conference on Fundamental Approaches to

Software Engineering (FASE’10). LNCS, vol. 6013, pp. 1--12. Springer, Heidelberg (2010)

3. Durillo, J.J., Zhang, Y., Alba, E., Harman, M., Nebro, A.J.: A study of the bi-objective next

release problem. Empirical Software Engineering, vol. 16(1), pp. 29--60 (2011)

4. Repository of Publications on Search Based Software Engineering,

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/repository.html

5. Doval, D., Mancoridis, S., Mitchell, B.S.: Automatic Clustering of Software Systems using a

Genetic Algorithm. In: Proceedings of Software Technology and Engineering Practice, pp.

73--91 (1998)

