
A Study of Bi-Objective Models for Decision Support in 

Software Development Process 

Vira Liubchenko1, 

 
1 Odessa National Polytechnic University, 1 Shevchenko av., 

65044 Odessa, Ukraine 

lvv@edu.opu.ua  

 

Abstract. This paper is concerned with the bi-objective problem in search-

based software engineering for high-level decision-making. The paper presents 

bi-objective models for next release problem and modularization quality 

problem that characterized by the presence of two conflicting demands, for 

which the decision maker must find a suitable balance. The complex nature of 

such kind of problem has motivated the application of heuristic optimization 

techniques to obtain Pareto-optimal solutions. In this case, limitation on the size 

of the problem is reasonable.  
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1 Introduction 

Search-Based Software Engineering (SBSE) has become a subfield of software 

engineering characterized by growing of activity and research interest. SBSE seeks to 

reformulate Software Engineering problems as ‘search problems’ [1] in which 

optimal or near-optimal solutions are sought in a search space of candidate solutions, 

guided by a fitness function that distinguishes between better and worse solutions. 

It has been argued that the virtual nature of software makes it well suited for 

Search-Based Optimization (SBO) [2]. This is because fitness is computed directly in 

terms of the engineering artifact, without the need for the simulation and modeling 

inherent in all other approaches to engineering optimization. This simplicity and 

ready applicability make SBSE a very attractive option. 

Traditionally SBSE has based on finding the optimal or near-optimal solution to 

the problem with respect to a single objective. However, single-objective approach 

often is incorrect because of existing of many incomparable objectives in the 



framework of one problem. Incomparability of objectives makes inapplicable waiting 

of the different objectives in order to combine them into a single weighted sum 

objective. 

This reason has caused applying of multi-objective approaches in SBSE and using 

SBSE as a tool for decision support. To underpin the focus on decision support, SBO 

problem should be formulated as multi-objective problems, to which a Pareto optimal 

approach can be applied [3]. In Pareto optimal approaches, the outcome is a set of 

candidate solutions, each of which cannot be enhanced according to one of the 

multiple objectives to be optimized without a negative impact on another. 

In this paper, we explore existing bi-objective approaches for high-level decision 

support in software development process. The rest of the paper is organized as 

follows. Section 2 briefly describes using of bi-objective models for Next Release and 

Modularization Problems. Section 3 presents SBO on decision-making perspective. 

Finally, section 4 draws the main conclusions. 

2 Bi-Objective Models at the Early Stages of Software Development 

Software engineers have been exploiting many different software development 

methodologies that recommend different framework of stages. In this paper, we base 

on the fact that high-level decision most often need support on requirement 

specification and design stages, which present, more or less, in every methodology. 

To explore bi-objective models at these stages, we use papers gathered in repository 

of publications on SBSE [4]. 

2.1 Requirement Specification Stage 

One of the core problems of requirement specification stage in incremental 

methodologies is Next Release Problem (NRP). Decision maker determines which 

features should be included in the next release of the product in order to satisfy the 

highest possible number of customers and entail the minimum cost for the company 

[3]. NRP is a form of cost-benefit analysis for which a Pareto optimal approach is 

attractive. 

In NRP a set of customers, C = {c1, ..., cm}, each customer has a degree of 

importance for the company that can be reflected by a weight factor, Weight = {w1, ..., 

wm}, where  1,0w  and  
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It is assumed that there is the set of independent requirements, R = {r1, ..., rn}, that 

are targeted for the next release of an existing software system. Satisfying each 

requirement entails spending a certain amount of resources, which can be translated 

into cost terms, Cost = {cost1, ..., costn}. 

Satisfaction of requirements provides value for the company. The level of 

satisfaction for a given customer depends on the subset of requirements that are 

satisfied in the next release of the software product. The requirements are not equally 

important for a given customer. Each customer cj (1<j<m) assigns a value to 



requirement ri (1<i<n) denoted by value(ri, cj) where value(ri, cj)>0 if customer j has 

the requirement i and 0 otherwise. 

In the formulation of the bi-objective NRP, two objectives are taken into 

consideration in order to maximize customer satisfaction (or the total value for the 

company) and minimize required cost. Let the decision vector    1,0,...,1  nxxx


 

determines the requirements that are to be satisfied in the next release. In this vector, 

xi is 1 if the requirement i is selected and 0 otherwise. 

The first objective function is considered for maximizing total value: 
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The problem is to select a subset of the customers’ requirements, which results in 

the maximum value for the company. 

The second objective function is considered for minimizing total cost required for 

the satisfaction of customer requirements: 

 





n

i

ii xcost
1

Minimize . 

 

In order to convert the second objective to a maximization problem, the total cost 

is multiplied by -1. Therefore, the bi-objective model can be represented as follows: 
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2.2 Design Phase 

Software design usually includes low-level component and algorithm design and 

high-level, architecture design. A high-level software engineering problem that is 

most related to software architectures is Modularization Problem (MP). Decision 

Maker finds the best grouping of components to subsystems. For that, structure of 

software system is transformed into a directed graph G, the main question to be 

answered is what constitutes a good partition of the software structure graph. The 

goodness of a partition is usually measured with a combination of cohesion and 

coupling. 

Cohesion is a measure of the degree to which the components of a single 

subsystem belong together. A high cohesion indicates a good modularization 

arrangement because the components grouped within the same subsystem are highly 

dependent on each other. A low cohesion, on the other hand, generally indicates a 



poor modularization arrangement because the components grouped within a 

subsystem are not strongly related. 

The cohesion Ai of subsystem i with Ni components is defined as: 
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where µi is the number of intra-edge dependencies (relationships to and from 

components within the same subsystem), 2

iN  is the maximum number of possible 

dependencies between the components of subsystem i. 

Coupling is a measure of the connectivity between distinct subsystems. A high 

degree of coupling is undesirable because it indicates that subsystems are highly 

dependent on each other. Conversely, a low degree of coupling is desirable because it 

indicates that individual subsystems are largely independent of each other. 

The coupling Eij between subsystems i and j, each consisting of Ni and Nj 

components respectively, is defined as: 
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where ij is the number of inter-edge dependencies (relationships to and from 

components of subsystems i and j). 

In the formulation of the bi-objective MP, two objectives expresses the tradeoff 

between cohesion and coupling are taken into consideration in order to create highly 

cohesive subsystems and penalize the creation of too many dependencies between 

subsystems. 

Given software structure graph G partitioned into k clusters, modeled partition of 

software system into subsystems, we define MP as: 
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3 SBO as Decision Support 

SBO can be applied to situations in which the human will decide on the solution to be 

adopted, but the search process can provide insight to help guide the decision maker. 

This insight agenda, in which SBO is used to gain insights and to provide decision 

support to the software engineering decision maker, has found natural resonance and 



applicability when used at the early stages of the software engineering lifecycle, 

where the high-level decisions made can have far-reaching implications. 

Many of the values used to define a problem for optimization, particularly at the 

early stages of the software development process, come from estimates. In these 

situations, it is not optimal solutions that the decision maker requires, as much as 

guidance on which of the estimates are most likely to affect the solutions. Therefore, 

SBO is not merely a research program in which one seeks to ‘solve’ software 

engineering problems; it is a rich source of insight and decision support. 

Bi-objective problems stated above are NP-hard, and, therefore, cannot be solved 

using exact optimization techniques for large-scale problem instances. That is why 

metaheuristic search techniques are usually applied to find approximations of Pareto 

optimal set (or front) for the bi-objective problem. Decision maker selects the solution 

from the found set according to his (her) preferences. 

Restriction on SBO approach connected with the point at which the problem 

becomes too small. For NRP, limitation is a function of the number of requirements, 

which should exceed about 20 requirements. By contrast, there is no number of 

customers that is too small for the problem to be worthwhile. For MP, limitation is a 

function of the number of components, which should exceed about 20 components. 

4 Conclusion 

Vital errors in software engineering such as too many requirements being realized in 

release and poor quality of software architecture are caused by false intuition of the 

decision maker. SBO can address this problem, it automatically scour the search 

space for the solutions that best fit the human assumptions in the objective functions. 

However, it has been widely observed that search techniques are good at producing 

unexpected answers. Automated search techniques effectively work in tandem with 

the human encapsulating human assumptions and intuition. 

Future work will consider modification of SBO for including dependency 

relationship between requirements in NRP, between components in MP, and 

exploring the integrated model for both problems. 
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