
Discrete and Continuous Time High-Order Markov

Models for Software Reliability Assessment

Vitaliy Yakovyna and Oksana Nytrebych

Software Department, Lviv Polytechnic National University, Lviv, Ukraine

vitaliy.s.yakovyna@lpnu.ua, ksenija.volynj@gmail.com

Abstract. Due to the critical challenges and complexity of modern software

systems developed over the last decade, there has arisen an ever increasing at-

tention to look for products with high reliability at reasonable costs. Software

development process moves toward component-based design, and architecture

based approach in software reliability modeling is widely used. However, in

lots of models for software reliability assessment the assumption of independent

software runs is a simplification of real software behaviour. This paper de-

scribes two software reliability models that use high-order Markov chains thus

taking into account dependencies among software component runs for more ac-

curate software reliability assessment. The efficiency and accuracy of devel-

oped models is investigated by the example of several software products. It is

shown that using the software reliability models based on the high-order Mar-

kov chains results in the software reliability assessment accuracy up to 10–20%.

Keywords. Software reliability, architecture-based model, high-order Markov
chains.

Key Terms. SoftwareComponent, SoftwareSystem, MathematicalModel.

1 Introduction

Computer systems are widely used in modern industry for control and automation

purposes. All of these systems are controlled by software. Thus, software is used in

air traffic control, nuclear power plants, automated patients monitoring etc. Therefore

high requirements for software reliability are demanded because failures of such sys-

tems can lead not only to significant financial losses, but also threaten human life and

health. Although techniques that allow assessing and ensuring the specified hardware

reliability requirements have been developed, there are no common approaches for

software systems assessment.

According to STD-729, software reliability is defined as the probability of failure-

free software operation for a specified period of time in a specified environment [1,
2]. Although Software Reliability is defined as a probabilistic function, and comes

with the notion of time, it should be noted that, contrast to traditional hardware relia-

bility, software reliability is not a direct function of time [1]. Electronic and mechani-

cal parts may become "old" and wear out with time and usage, but software will not

rust or wear-out during its life cycle. Software will not change over time unless inten-

tionally changed or upgraded.

The history of software reliability assessment methods and tools began in the 60s

of last century. A number of researchers [3-7] worked on issues of development and

research of software reliability analysis and assessment models and methods that

would allow reducing the costs required for software testing stage. New software
reliability assessment models that reflect the internal structure of the application and

interaction of its components [6], called architectural-based models, are being devel-

oped because of increasing complexity of software systems and the result of expand-

ing their functional purpose.

In known models based on architectural approach [6, 7] the theory of first order

Markov chains is used with the assumption that the software components runs are

independent. This assumption is not always true due to the complexity of modern

software architecture and huge set of usage scenarios this assumption [8, 9]. There-

fore, for the development of adequate software reliability assessment models, which

will improve the testing process (e.g. allow to reduce the needed resources), one

should consider the high-order Markov chains, which allow to take into account the

interdependence of components runs [10].
This paper describes the software reliability assessment models based on architec-

tural approach, which use discrete and continuous time high-order Markov chains and

their comparison based on real world data. Nowadays architecture-based software

reliability models have been well studied in theory, but there is lack of papers describ-

ing their practical applications. Developing of high-order models for software reliabil-

ity assessment is not described enough in literature as well. Thus, the development of

new architecture-based software reliability assessment models that take into account

the dependencies among software component runs along with their application to real

world data is still a problem waiting for solution.

2 Software Reliability Model with Discrete Time High-Order

Markov Chain

This model considers absorbing Markov process that implies the existence of one

or more absorbing states, i.e. states that, once entered, cannot be left.

The developed software reliability assessment model [10] is hierarchical, that is in-

itially software architecture parameters are calculated based on software usage model

[11] using the theory of Markov processes, and then the behaviour of each component

failures is taken into account.

The discrete time HOMC software reliability model can be described using the fol-

lowing components – iC is the graph with vertices corresponding to software

components, while edges indicates the program control flow (Ni ,1 , where N is

the number of program components); klijp ..P is the high-order transition proba-

bility matrix (klijp .. – transition probability from component і to component l de-

pending on being in previous K components); klijq ..Q is the initial probability

vector; ti is the failure rate of i -th software component.

According to this model the reliability of the whole system is calculated as

N

l

lRR
1 .

(1)

In turn, the reliabilities of each component (lR) using high-order Markov chains

are calculated by

))(exp(
..

......

0

kij

klijklij tV

ll dttR
.

(2)

To calculate
klijV ..

 – the expected number of visits a component l depending on be-

ing in previous K components – one has to solve the following system of linear equa-

tions:

1

1

........

N

i

klijkijkijklj pVqV

,

(3)

here
klijt ..

 denotes the time spent at the component l depending on being in previous

K components.

3 Software Reliability Model with Continuous Time High-

Order Markov Chain

Using discrete-time model has a number of significant simplifications and re-

strictions. Thus, this model takes into account only the number of visits to i -th com-

ponent without taking into account of the distribution function of this random variable

(while taking it into account the expected value should be used). In addition, it is clear

that at any given time t the software failure is generally caused by the failure of the

software component, which is executed at a given time (in case of sequential connec-

tion of software components in Reliability Block Diagram). Thus, to increase the

degree of adequacy of the software reliability architectural model the continuous time

Markov chains should be used.

The continuous time HOMC software reliability model can be described using the

following components – iC is the graph with vertices corresponding to software

components, while edges indicates the program control flow (Ni ,1 , where N is

the number of program components);
ijaA is the high-order transition probabil-

ity matrix Nji ,1, (the values of matrix elements
ija depends on the way of get-

ting into the state i); tpiP is the probability vector, where tpi is the prob-

ability being in state iC at time t ; ti is the failure rate of i -th software compo-

nent.

In this case, the failure rate of a software system consisting of N components can

be written as [12]

N

i

ii ttpt

1

,

(4)

here ti is the failure rate of i -th component, tpi is the probability of i -th

component execution at time t .

Components failure rates ti can be obtained from the results of unit testing us-

ing known software reliability models, for example ones based on an inhomogeneous

Poisson process [13].

If the flow control between the components of the software is presented as a Mar-

kov process with continuous time, assuming that the i -th state of the process is the

execution of i -th component, the time dependences of the probabilities being in i -th

state (tpi) can be obtained by solving the system of equations of the Kolmogorov–

Chapman [14] for this process:

Sitpttpt

dt

tdp

Sj

jji

Sj

jij
i

,)()()()(

,

(5)

here)(tij is the transition intensity from component і to component j at time t, and

S denotes the set of all system states. In general the transition intensities)(tij de-

pends on the transition probabilities
ija and could be calculated from latter.

To take into account the interdependence of execution of software component (and

consequently changes of transition probability from i -th state) depending on the way

of getting to the current state, the high-order Markov chain should be used (the order

K of the model determines the accounted length of the path). In a case of high-order

Markov chains the actual problem is to calculate the transition probabilities depending
on the program control flow background.

It is well known that a high order Markov chain can be represented as a first order

chain by appropriate redefining the state space [15]. For software implementation of

models that use high-order chains, it is necessary to have the formalized algorithm for

this representation. Using the analogy with the known Erlang phase method [16] a

high-order Markov process can be represented as an equivalent first-order process

with additional virtual states. Each state of the original graph iC (geometric dia-

gram, showing the possible states of the system and the possible transitions of the

system from one state to another) is split into such number of virtual states as many

different paths of length K to this state exist. Thus the problem solution essentially is

reduced to using of graph theory. Therefore, to calculate the number
K

ijm of chains of

K-th order from state i to state j the following expression based on the Floyd method

can be used:

S

j

ljil

K

il

K

ij memm
1

11

,

(6)

here ije are the elements of the identity matrix.

Using (6) one can build an equivalent graph iC which is a representation of the

initial graph iC , taking into account all K -th order paths to i -th state. This allows

to avoid the dependencies of the transition intensities)(tij on the program control

flow background. Then the time dependence of the software component execution
probability is obtained by solving the system of Kolmogorov–Chapman equations (5)

for the equivalent first order Markov process. Using this dependence in (4) together

with the component failure rate, the failure rate of the whole software system can be

calculated.

For calculation of software reliability measures, based on the obtained relationship

(4), one can use the following relations [14]:

- reliability function P(t) – the probability that no failure will occur within the

time interval [0, t] – can be calculated as

))(exp()(
0

t

dtP

(7)

- mean operating time to failure Tl

0

1)(dPT

(8)

4 Determination of the Markov Chain Order for Software

Reliability Assessment

In this paper it is proposed to use AIC and BIC criteria [17] since they are not a

hypothesis test and they don’t use the significance level. Although these criteria give

consistent results and don’t depend on the estimated model order. They are efficiently

used for weather forecasting and selection of adequate environmental model [18]. But

the usage of these criteria in software reliability modeling still remains unexamined.

In general AIC criterion [19] is calculated by the following expression:

)ln(22 LkAIC
, (9)

here k is the number of independent parameters in the model, and L is the model’s

maximum likelihood function.

If the value of this software model’s maximum likelihood function is substituted in

the expression (9), and instead of parameter k one substitute the number of the K-th

order model parameters, which contain N components ()1(NNk K
), then the

following expression can be obtained [20]

)ln(2)1(2)(..
..

,,..,,

klijn
klij

lkji

K pNNKAIC , (10)

here
klijn ..

 is the number of transitions from component і to component l depending

on being in previous components (lkji ...) in observed sequence

and
klijp ..

 is the transition probability in this sequence.

As it can be seen from (10), this criterion is independent of sample size. Therefore,

AIC criterion is used in the case of a large sample size (observable sequence) when

the software is tested many times and the sequence of software component runs is

logged.

An alternative to AIC criterion is ВІС [21], which takes into account the number of
elements in observable sequence and expressed as

.)ln()ln(2)(knLKBIC (11)

In the case of using the BIC criterion for the Markov chain optimal order determi-

nation in the case of software reliability modeling, the expression similar to AIC crite-

rion (10) is obtained:

lkji

klijklij
K pnnNNKBIC

,,..,,

.... ln2)ln()1(2)(. (12)

It is worth noted that the BIC criterion should be used at the small sample size of

empirical data concerning the software usage, because it imposes stronger penalties

even when the sample size n>8.
Thus, after determining the order of Markov chain, the well-known classical Mar-

kov tools can be used for software reliability assessment as it was described above.

5 Verification of the Models

To study the efficiency of the developed software reliability assessment model

that uses the discrete time high-order Markov chains, the reliabilities of the five soft-

ware systems, developed by one of the authors, were calculated using the first and the

high order Markov chain models. The average amount of software components in

tested software systems is 10. The results of reliability calculations using the first and

the high-order models are shown in Fig. 1 along with the reliability obtained from unit
testing data.

1 2 3 4 5

0,70

0,75

0,80

0,85

0,90

R
e
lia

b
ili

ty
,
R

Software

 First-order model

 Second-order model

 Testing data

Fig.1. The comparison diagram of the software reliability assessment accuracy using first and

high order discrete time models.

As shown in fig. 1, the usage of software reliability assessment model based on

discrete time high-order Markov chains makes it possible to increase the software
reliability accuracy to 6% even for software systems with a small number of compo-

nents.

To illustrate the efficiency of continuous time software reliability model, the relia-

bility of the authors' developed program with four components (in this case, each

component refers to one of the following program classes – Input, Calculation, Out-

put, Exit) was analyzed. The values of each component failures rates are presented in

Table 1.

Table 1. Failure detection frequency for each component

Component Failures detection frequency

Input 0.11

Calculation 0.18

Output 0.09

Exit 0.01

The probability transition matrix and the initial probability vector of the Markov

chain were calculated and are summarized in Table 2 and Table 3 correspondingly.

Table 2. The first order probability transition matrix

Component Input Calculation Output Exit

Input 0.2987 0.66233 0 0.03897

Calculation 0.2666 0.05 0.6333 0.0501

Output 0.5 0 0.3148 0.1852

Exit 0 0 0 1

Table 3. The first order initial probability vector

Components Input Calculation Output Exit

Probability 1 0 0 0

The AIC criterion was used for optimal Markov chain order determination (the

sample set contains 188 entries). The AIC values are listed in Table 4.

Table 4. The values of АІС for different chain orders

The process order AIC value

1 223.7

2 203.5

3 352.7

4 1082.8

The initial graph iC indicating the program components and control flow, as

well as graph iC of the equivalent second order (see Table 4) Markov process are

shown in Fig. 2 and 3 correspondingly. The notations in these figures are as follows: I
correspond to Input state, C – to Calculation, O – to Output, and E to Exit state (see

Table 2); indexes indicates the previous state in control flow history (thus state OC

means that the current state Output has been reached from previous state Calculation).

I

C

O

E

Fig.2. Initial graph, representing the components and control flows of the software used for

continuous time reliability model verification.

Ic

Ci

Oc

E

Io Ii

Cc

Oo

Fig.3. Graph representing an equivalent to the second order Markov chain process for software

shown in Fig. 2.

Fig. 4 shows the time dependency of failure rate on tested software system (Fig. 2)

obtained from continuous time first- and second-order Markov chains. It’s worth not-

ing that for continuous time model simulations time was counted as arbitrary time

units (a.u).

As it is seen from this figure the first order model gives slightly (1–5%) reduced

failure rate value for small values of time, while it gives significantly (20%) overes-

timated failure rate value for middle time values range, and when the value of t in-

creases by more than 60 a.u. the difference between values of t obtained from

both models almost tends to be negligible. Reducing the difference of t values,

obtained from the first and the second-order models, to zero at high times can be ex-

plained by decreasing of the t value itself and by the absence of differences in

the software behaviour description by two models in this case. In the case of t

both models suggest that system is in the “Exit” state (see Fig. 2, 3) and, accordingly,

its failure rate is limited by this component failure rate. Differences of t behav-

iour on the initial evolution stages of software system can be entirely explained by

differences in the software system behaviour description by different models, where

the first-order model ignores the interdependence of software component runs, and

therefore the probabilities of components executing are different at given time t for

both models. Thus, it could be argued that software reliability model based on the
high order Markov chain describes the software system behaviour more adequately

and determines its reliability measures more accurately.

0 10 20 30 40 90 100

0,00

0,05

0,10

0,15

(t

)

t, a.u.

1 - first order model

2 - second order model

1

2

Fig.4. Time dependence of the tested software failure rate, obtained from the first (1) and sec-

ond-order (2) models.

This conclusion is confirmed by the analysis of software system reliability function

time dependence obtained using equation (7) as shown in Fig. 5. Note that the relia-

bility function is calculated using Ukrainian national standards [22] and, as it was

indicated in (7), represents the probability of failure free operation during the time

interval t,0 , but not exactly at the time t . So, it is evidently that the reliability

function is time-decreasing one. As it can be seen from Fig. 5, the difference in the

values tP increases up to 20% with time value increasing. This behavior is easily

understood if taking into account the interval estimation of reliability for the range

 t,0 [15], and its deviation evidently increases with interval length increasing.

So, we can conclude that ignoring the interdependence of software components

runs could results in increasing inaccuracy of software reliability measures estimation

up to 20%.

Another measure of reliability, which was used to determine the developed high-

order model effectiveness and adequacy, is the mean operating time to failure 1T . The

value of mean operating time to failure calculated by the expression (8) is 20.9 time

units for first-order model, while the value obtained from the second-order model is

23.3 time units. Obviously the difference between the first and the second-order mod-

els is 11.5%, which can be crucial in the reliability analysis of the complex technical

systems.

0 10 20 30 40 50 60 70 80 90 100

0,2

0,4

0,6

0,8

1,0

P
(t

)

t, a.u.

1 - first order model

2 - second order model

1

2

Fig.5. The time dependence of the tested software reliability function, obtained from the first

(1) and second-order (2) models.

Therefore, the usage of software reliability models based on the high-order Markov

chains even with a small components number (in this case there was 4 component

software, see Fig. 2) and complexity (in this case the optimal model order is 2, see

Table 4) results in the increase of model adequacy and the software reliability assess-

ment accuracy on 10–20%. The value of such growth of reliability estimation accura-

cy is especially important in the case of complex hardware and software systems in
which the mistake of software component reliability estimation can repeatedly affect

the accuracy of whole system reliability assessment. Using the high-order models for

more complex software systems could results in more significant improvements of

reliability assessment.

6 Conclusions

In this paper the software reliability models using discrete and continuous time

high-order Markov chains, which enable consideration the dependencies among soft-
ware components runs, have been developed. Software reliability assessment based

on the high-order discrete time Markov chains allows to increase the software reliabil-

ity measures accuracy up to 6 %, and high-order continuous time Markov chain – up

to 10–20%. The advantage of high-order discrete time Markov chains model for soft-

ware reliability analysis is small computing resources needed even for software with a

lot of components, while the advantages of high-order continuous time Markov chains

model are independence from the sampling step (in the case of discrete time model it

may cause inaccurate transition probabilities calculation), and also automatic consid-

eration of transitions pii that avoids unnecessary computations. Practical aspects of

estimating input parameters for the models as well as studying the dependence of the

software reliability on its characteristics (components number, the average number of

variables in the component, components cohesion etc.) will be described elsewhere.

References

1. Lyu, M. R.: Handbook of Software Reliability Engineering. McGraw-Hill, New York,

U.S.A. and IEEE Computer Society Press, Los Alamitos, California, U.S.A. (1996)

2. Standard Glossary of Software Engineering Terminology, STD-729-1991 (1991)

3. Musa, J.D.: Validity of Execution Time Theory of Software Reliability. IEEE Trans. on

Reliability 3, 199–205 (1979)

4. Goel, A. L., Okumoto K.: Time-Dependent Error Detection Rate Model for Software and

other Performance Measures. IEEE Trans. on Reliability R-28, 206–211 (1979)

5. Xie, M.: Software Reliability Modelling. World Scientific, Singapore (1991)

6. Goševa-Popstojanova, K., Trivedi Kishor S.: Architecture-Based Approach to Reliability

Assessment of Software Systems. Performance Evaluation, 45, 179–204 (2001)

7. Gokhale, S.S., Wong, W.E., Horgan, J.R., Trivedi Kishor, S.: An Analytical Approach to

Architecture-Based Software Performance Reliability Prediction. Performance Evaluation

58(4), 13–22 (2004)

8. Takagi, T., Furukawa, Z., Yamasaki, T.: Accurate Usage Model Construction Using High-

Order Markov Chains. In: Supplementary Proc. 17th Int. Symposium on Software Relia-

bility Engineering, pp.1–2 (2006)

9. Burkhart, W., Fatiha, Z. (Eds.): Testing Software and Systems. Proc. 23rd IFIP WG 6.1

Int. Conf. LNCS, vol. 7019 (2011)

10. Yakovyna, V., Serdyuk, P., Nytrebych, O., Fedasyuk, D.: High-Order Markov Chains Us-

age in Software Reliability Analysis. Bulletin of Lviv Polytechnic National University

771, 209–213 (2013) (in Ukrainian)

11. Fedasyuk, D., Yakovyna, V., Serdyuk, P., Nytrebych О.: Variable State-Based Software

Usage Model Based on its Variables. Econtechmod 3, 15–20 (2014)

12. Yakovyna, V., Masyukevych, V.: The Model for Software Reliability Estimation Using

High-Order Continuous-Time Markov Chains. In: Proc.9th Int. Scientific and Technical

Conference on Computer Science and Information Technologies, pp. 83–86 (2014)

13. Seniv, M., Yakovyna, V., Chabanyuk, Ya., Fedasyuk, D.: The Method of Reliability Pre-

diction and Estimation Based on Model with Dynamic Index of Project Size. Computing

10, 97–107 (2011) (in Ukrainian)

14. Polovko A., Gurov, S.: Fundamentals of the Reliability Theory. Practical work. BHV-

Peterburg (2006) (in Russian)

15. Markov Models, Hidden and Otherwise,

http://kochanski.org/gpk/teaching/0401Oxford/HMM.pdf

16. Volochiy, B.Yu., Ozirkovskii, L.D., Kulyk, I.V.: Formalization of Discrete-Continuous

Stochastic Systems Model Building using Erlang Phases Method. Vidbir i Obrobka Infor-

matsii 36, 39–47 (2012) (in Ukrainian)

17. Burnham, P.: Model Selection and Multimodel Inference: a Practical Information-

Theoretic Approach. Springer, Heidelberg (2002)

18. Liu, T.: Application of Markov Chains to Analyze and Predict the Time Series. Modern

Applied Science 4(5), 162–166 (2010)

19. Akaike, Н.: A New Look at the Statistical Model Identification. IEEE Trans. Auto. Control

19(6), 716–723 (1974)

20. Tong, H.: Determination of the Order of a Markov Chain by Akaike's Information Criteri-

on. J. Appl. Probability 12, 488–497 (1975)

21. Schwarz, G.: Estimating the Dimension of a Model. Annals of Statistics 6(2), 461–464

(1978)

22. Dependability of Technics. Terms and Definitions, State Standard of Ukraine DSTU-2860-

94 (1996)

