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Abstract. This paper is devoted to the whole problem of interleaving reduction 

in modeling of concurrent processes. The main notions of insertional modeling 

were described. The verification problem in terms of insertional modeling was 

examined. General algorithm of interleaving reduction in terms of insertional 

modeling was presented. A static and incremental algorithm of reduction for 

reachability checking was presented. The proof of correctness of presented 

algorithm was introduced. The results of experiments of such algorithm 

application was described. 
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1 Introduction 

Usually the multiagent distributed systems are high level non-deterministic. The 

nature of this non-determinism is symbolic nature of models and concurrency (choice 
of parallel process which should operate at each time of modeling). One of the main 

problem of reachability checking in verification is exponential explosion of states 

number. Some of the sources of such explosion is the number of parallel processes in 

model and their interleaving[1] . 

There are two different approaches for modeling: model checking and symbolic 

modeling[2]. The model checking tool works with concrete states where state is 

represented by values of its variables. A transition is occurred by assignment of new 

values for the variables. The problem of exponential explosion could be solved by 

using well known model checking methods: methods that introduce partial order to 

reduce interleaving[3], methods for determining the symmetry when verifying the 

equivalence of states[4], techniques of abstraction[5],  approximation[6], data-flow 

analyses[7], McMillan’s algorithm of unfolding[8].   
A state of environment in symbolic modeling presents some formula in 

corresponded theory (first order logic etc) which covers some set of concrete states. A 

transition is occurred with a help of predicate transformers (weakest precondition, 

strongest postcondition[9])[10]. Unfortunately not all methods of model checking for 

http://isrg.kit.znu.edu.ua/icteriwiki/index.php/MathematicalModel
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reducing states space could be applied for symbolic case. The problem which was 

described previously could be solved with a help of the next symbolic methods: 

narrowing[11], unfolding concurrent well-structured transition systems[12]. 

This paper continues the work [13] where an algorithm with some restriction of 

symbolic model was described. Here we present the algorithm for full symbolic case. 

The algorithm bases on the McMillan’s algorithm adopted to symbolic modeling in 

notion of insertion modeling [14]. This algorithm bases on notion of permutability 

which is defined with help of predicate transformer (strongest postcondition, pt 
function below). It was described in [10].  So, the paper is devoted to the solution of 

the problem of interleaving reduction in insertion models with infinite number of 

states. 

The algebra of behaviors is presented in chapter Behavior Algebras, the 

verification environments, corresponding insertion function, and predicate 

transformer are considered in chapter Verification Environments. The normal form of 

behavior is defined in chapter Behaviors Over Basis B.  The problem of reachability 

of the states is described in chapter Verification. The notion of partial unfolding is 

examined in chapter Partial Unfolding. The optimization of partial unfolding by 

statically permutable operators is reviewed in chapter Static Permutability Property. 

The incremental algorithm for reducing of interleaving for transition systems is 

presented in chapter Main Interleaving Reduction Algorithm. The static algorithm of 
interleaving reduction is described in chapter Static Interleaving Reduction 

Algorithm. The statistic of applying of such algorithm to few examples is presented in 

chapter Examples of Application. 

2 Behavior Algebras 

One of the main notions of insertion modeling, which is used for describing 

algorithm of interleaving reduction is behavior algebra. Behavior algebra [14] is a 

kind of process algebra; it is used to express the behavior of agents (transition 

systems) considered up to bisimilarity or trace equivalence. To make economic 

unfolding we need to distinguish sequential and parallel behaviors. So we consider the 

following modification of the notion of behavior algebra- it is a multisorted algebra 

with three components: the algebra of actions, the algebra of sequential behaviors, 

and the algebra of parallel behaviors. 

The algebra of sequential behaviors has operations of prefixing: 

<action>.<sequential behavior> and one internal operation of nondeterministic 

choice (()+()), which is associative, commutative, and idempotent operation with 

neutral element 0. We also consider the constant behavior   (successful termination), 
which is a common element of the algebra of sequential and the algebra of parallel 

behaviors. The operations of action algebra will be considered later. 

The algebra of parallel behaviors has the parallel composition ()||() of sequential 

behaviors as the main binary operation. It is associative commutative (but is not 

idempotent) and has the neutral element  . It also has the prefixing operation and 

nondeterministic choice. The algebra of sequential behaviors is implicitly included to 

the algebra of parallel behaviors by the identity  | |uu  (parallel composition with 

one component). Unfolding of parallel composition by interleaving will be considered 
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only after inserting of agents that are formed by parallel composition into the 

environment.   

3 Verification Environments 

Verification environments of the form ),,( BPUEE  are defined by the following 

parameters: the set of conditional expressions U, the set of operators P, and the set of 

basic behaviors B. The set of conditions and the set of operators are used to define 

actions (it is a union of these two sets). The set of basic behaviors is used to define the 
behaviors of agents inserted into environment in the way which will be explained 

later. We also suppose that some logic language (first order or temporal) called basic 

language is fixed to define the states of environment and checking conditions for 

verification. The conditional expressions also belong to this language. 

The state of environment is represented as ][uE , where E is a statement of basic 

language and u is a parallel composition of sequential behaviors of agents inserted 

into environment. We suppose that operators are divided into the set of conditional 

and unconditional operators. Conditional operator has the form a   where    is a 

condition and a is an unconditional operator. Unconditional operator a is identified 

with conditional operator a1 . The associative product ()*() and the function 

UPUpt :  (predicate transformer) are defined by the set of actions so that the 

following identities are valid: 

)(),( aptapt    

)*,()),,(( baptbaptpt    

),),(()(*)( baptptba    

 *  

Here   and   are conditions, a and b are unconditional operators. 

Predicate transformer pt is supposed to be monotonic: 

),(),( aptapt    

In general case, the pt function is defined by some concrete syntax.  An example of 
such pair (syntax, pt) can be found in [16]. 

Example. The basic language is a first order language. Conditions are formulae 

over simple attributes - symbols that change their values when a system changes its 

state. Formally they are considered as function symbols with arity 0. Unconditional 

operators are assignments (parallel assignments, sequences of assignments, if-then-

else operators, loops with finite number of repetitions, etc.). As usually in this case, 

)))()(()(())),(:),(:(),(( 22112211   ztxztxzzxtxxtxxpt   

Actually this is the strongest postcondition for precondition  . 

Example of conditional operator. Let x be an integer variable,  

)1:()5(  xxxu  be an operator, 3x  is statement in basic language, uu | |  

is a behavior. For this case, )}1:()5({},{,  xxxuBuPU . The 

equation )1:()5(  xxxu  considered here as a basic behavior and it used for 

definition of agent behavior uu | | . 
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In insertion modeling environment considered as agent with insertion function. So, 

Insertion function is defined by the following identities and rules of operational 

semantics. 

1. ]| |[],[ vuEvuE  , u,v are agents with sequential behavior (see sec. 1). 

Identities for conditions. 

2. ][].[ vEvuE  , if 0)( E . 

3. ].[]..[ vuEvuE   , if 0)( E  (merging conditions). 

4. ].[]..[ vuaEvuaE   , if 0)(  E . Special cases of 

these identities are obtained when v=0 or 1 . 

5. ][].[   EE , if 0)( E . 

Identities for operators. 

6. ][].[ vEvuaE  , if 0),( aEpt . 

7. )],(| |)[,(.].[ EauaEptauaE  , if 0),( aEpt , ),( Ea  is a parallel 

composition of sequential behaviors (it generates some new parallel branches). If 

),( Ea , then uuEau  | |),(| |  and u remains unchanged. 

Nondeterministic choice. 

8. ]).([]..[ wvuaEwvauaE  . The use of left distributivity means that 

environment considers behavior expressions up to trace equivalence. It also means 

that a system uses delayed (angelic) choice. 

9. ][][][  EuEuE . The states ]0[E  and ][E  are called terminal states of 

the environment. Formally, the states of the form ]0[E  are equivalent to 0, and states 

of the form ][E  are equivalent to  (if  ][][ EE  is added). But from the 

point of view of verification it is useful to distinguish syntactically different terminal 

states. 

Parallel behaviors. 

10. ]| |[]| |[][][ wvEwuEvEuE  . Therefore all identities for conditions and 

operators can be applied within the parallel composition. A component 

nn uaua .. 11   of parallel composition is called degenerated relative to the state E, 

if for all operators 0),(. ii aEpta  and for all conditions  i  it is true that 

0)(  iE  . Each component that is degenerated relatively to the state E is 

equivalent to 0 relatively to this state. 

11. ][][][ vFvFuE  , if parallel composition u contains degenerated component 

relative to E. So all states of environment with degenerated components are 

equivalent to 0. 

12. ][]| |[]| |[ vEvuEvuE  . 

13.   ]| |.[]| |.[]..[ 22112211 vuaEvuaEuauaE , if all actions ia  are 

different,  if  ia  is a condition then iu  is terminal constant, and v does not contain 

components degenerated relatively to the state E. The state of environment ][uE  is 

called dead lock state, if there are no transitions from this state, but u is not a 

successful termination. If there is at least one degenerated component in parallel 
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composition, then the corresponding state is a dead lock state. All dead lock states are 

equivalent to 0, but it is useful to distinguish them as well as terminal constants. The 

rules (9), (12), and (13) are called unfolding of nondeterministic choice. 

14.   
n

i iiiiiinn uauuaauauaE
1 111111 )| |.| || |.| |.(].| || |.[  , if all 

components of parallel composition are non-degenerated. This relation is called a full 

unfolding algorithm for a parallel composition. This is a complete unfolding and the 

main result of this chapter shows that it is not needed to make the complete unfolding 

at each step of verification. Let nn uauau .| || |. 11  ,  

)| |.| || |.| |.(),( 1111   iiiiii uauuaaiuunfold  

then identity (14) can be rewritten as 

14a.  


n

inn
iuunfolduauaE

111
),(].| || |.[  . 

Environment does not distinguish trace equivalent behaviors and consequently, 

bisimilar states of environment are trace equivalent[14]. The identity (14) defines the 

main transition rule for the system:  

][][ uEuE ia
 , 

if u is a parallel composition with non-degenerated components and ][uE   is defined 

by the identity (7). 

4 Behaviors over Basis B 

The set of symbols is given for the set B of behavior basis. These symbols are 

called basic sequential behaviors. The expression of the algebra of sequential 

behaviors constructed from these symbols and termination constants is called 

sequential behavior over basis B. Suppose that for each symbol Bv  an equation of 

the form ),,( 21 vvFv v  is given with sequential behavior over basis B as a right 

hand side. This equation is called the definition of a basic behavior v. The application 

of this definition (the substitution of the left hand side by the right hand one) is called 

the unfolding of this behavior. System of basic behaviors is called non-degenerated if 

each path in the tree representation of the expression ),,( 21 vvFv v  contains at 

least one operator.  

Normal form of sequential behavior is an expression of the form 

 nn uauaua ... 2211   where ,, 21 uu  are sequential behaviors. If ia  is a 

condition, then iu is a termination constant, 0n , and all actions are different (not 

equivalent with respect to the environment E), because of delayed (angelic) choice 

(see sec. 2). 

Each sequential behavior u over non-degenerated basis in a state ][uE  can be 

reduced to a normal form v equivalent to u with respect to E. 

Parallel behavior over B is a parallel composition of sequential behaviors over B. 

Normal form of parallel behavior is a nondeterministic sum of behaviors of the 

form  2211 .. uaua , where ,, 21 uu  are sequential behaviors over B, ,, 21 aa  
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are operators or conditions such that if ia  is a condition, then iu  is a termination 

constant. 

Normal form of environment state is a term of the form   


Ii Jjiii
uEa ][.   or 

0. Each environment state with non-degenerated system of basic behaviors is a trace 

equivalent to some normal form.  

5 Verification 

A property   of environment state is said to be correct if it does not distinguish 

equivalent states. A property   of environment state is monotonic if 

])[(])[( uEuEEE   . 

5.1 Verification problem in terms of insertion modeling 

Let 21,SS be state of the model M . The problem of reachability checking is the 

answer to the question if a path exists from the state 1S  to the state 2S  on model M , 

or not. Usually models are highly non-deterministic. This non-determinism is based 

on interleaving of parallel processes: );();(| | abbaba   (here a,b are some 

processes, “ | |” is parallel composition, “ ; ” is sequential composition and “+” is non-

deterministic composition). From other side this non-determinism could produce 

additional paths from  1S  to 2S  and additional states. So, let call interleaving 

reduction problem an answer to the question how to reduce non-determinism of the 

model M  to find the path from 1S  to 2S  as quickly as possible. 

For a given set   of correct and monotonic checked properties, defined on the set 

of environment states, the set of initial states defines which properties are reachable 

(not reachable) from the initial states for a finite number of steps or a number of steps 

bounded by some constant.  
It is supposed that the set of properties to be checked contains the property of a state 

“to be a dead lock” and a property “to be a state of successful termination”. 

The simplest verification algorithm is exhaustive unfolding of initial states up to 

saturation or depletion of a given number of steps. It uses the following formula of 

unfolding:  

n

i
iuunfoldE

1
)],([ . Such algorithm was described in [14]. It builds all 

states space for reachability checking which isn’t possible always. The properties to 

be checked are checked in the process of unfolding and the states that satisfy checked 

properties are collected. More economic unfolding algorithm can be constructed using 

the following partial unfolding algorithm.  

6 Partial Unfolding 

Two operators a and a' are called permutable regarding the state of E if 

]*[]*[ aaEaaE   and dynamically permutatable regarding the state E (denoted by 
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aa E  ) if 0]*[]*[  aaEaaE . Let ].| || |.[][
11 nn

uauaEuE   is a state of the 

environment. Let’s select the component 
ii

uas .  and build 

)}(|{),(
j

E

iji
aajiaaEnonp  . We obtain: 

),(),()(),,( iECiEBiAiuEpunfold   

)| |.| || |.| |.()(
1111





iiiiii
uauuaaiA  

...)| |.| || |.| |.(...),(
11

),(),(
11 




jjj
sEnonpaaji

jjj
uauuaaiEB

ji

 

...)| |.| |));;((| |.| |.(...),(
11

),(),(

11 



 
kk

aaaEnonpaaik

kwkkk
uauapuaaiEC

w
E

kiik

 

In the last formula 
kkw

uuap  ));;((  and p are sequences of compositions of actions 

(behavior). Function punfold is called partial unfolding of parallel composition. Let’s 

consider the following algorithm of reachability checking: we need to check the 

properties on a current state of the environment and each state that is reachable from 

this in one step. Partial unfolding is used for main function of unfolding states. This 
algorithm is called partial unfolding algorithm of reachability checking. 

In general, the punfold uses the notion of dynamic permutability of operators, but it 

is not optimal, because it uses 4 times application of function predicate transformer pt 

for each pair of operators. Using punfold can be optimized by using the concept of 

static permutability of operators. Algorithm which uses punfold with some 

optimization is considered in section 6.3. 

6.1. Optimization of partial unfolding of states. 

Theorem 1. If two operators bqap   ,  are permutable regarding the 

states  
1

E ,  
2

E ,  
3

E  then they are permutable regarding 

any state [13]. 

The sufficient condition of permutability of two operators bqap   ,  

is valid under the following conditions: 

1. )),,(()),,(( baptptabptpt   ; 

2. 0)),,((  abptpt  ; 

3. 0)),,((  baptpt  . 

Example 1. Let a,b:int and )]..| |..([1
101
goodbbadbgoodainit   is initial state and 

behavior, where init,
1

a , 
0

b , 
1

b  - operators. Agent’s behavior could be represented by 

the following list of equations: 
 

),(| |
101

bbaAndFork   ),1)1((
1

 aa ),1)0((
0

 bb )1)1((
1

 bb . 

Sufficient condition of permutability for operators 
1

a , 
0

b , 
1

b  is performed in this 

case, but there can be a case in the simulation where the state of the environment 

includes some formula, which combines predicate memory of various parallel 

processes (a=b). So, one of the operator will not be applicable, ie a pair of operators 

,).1)(( AndForkbainit 
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will be dynamically permutable regarding this state. Thus, the notion of sufficient 

conditions of permutability of operators need to be strengthened. 

To improve the usage of permutability for this example, we need 

1)(  Esat , otherwise operators will be dynamically permutable regarding 

state E. Let’s try to obtain a sufficient condition for dynamic permutability of two 

operators regarding some condition E. 

The notion of dynamic permutability of two operators p, q regarding some state E 

uses a condition: 

0]*[]*[  pqEqpE  

So, let 0)),,(()),,((  baptptabptptE   and try to apply 

backward predicate transformer to the state E. We obtain: 

),(

1

),(

11 ),),,,((,),),,,((
qppq

EbaEptptEabEptpt    . 

Theorem 2. If 0)),,(()),,((  baptptabptptE   then 

0
),(),(


qppq
EE . 

Proof. 

Let’s assume the contrary that 0
),(),(


qppq
EE . Since the backward predicate 

transformer turns back to its possible state transition set, it means that 

)()(
),(),( qppq

EE   . State 
),( qp

E   (
),( pq

E  ) specifies a set of concrete 

states from which transitions from state    with operators p and q (q and p) exist, 

which means that 0
),(),(),(),(


pqqppqqp
EEEE  . So, we got 

a contradiction, because if 0
),(),(


qppq
EE  then 0E . The theorem is proved. 

This condition means that if two operators were dynamically permutable regarding 

E then it is necessary that current state of the environment should satisfy theorem 2. 

Let E be some state of environment. 

Theorem 3. If two operators bqap   ,  satisfy the sufficient condition 

of permutability and  0
),(),(


qppq
EEE  then 0]*[]*[  pqEqpE . 

Proof. 

Let’s consider the condition of dynamic permutability regarding E: 

0]*[]*[  pqEqpE . 

 ])[,()](*)[(]*[ baEptbaEqpE   

 )),),((()),,(( abEptptabEptpt   

 )),,(( baEEptpt   

 )),),()),(( baEptaEptpt   

)),),(()),),(( baEptptbaEptpt    

 Next, let’s consider in details the sufficient condition permutability of operators 

that satisfies the operators p, q: 

 ])[,()](*)[(]*[ baEptbaEqpE   

 )),),((()),,(( baEptptbaEptpt   

 0)),,(),(( baEptaEptpt   



9  Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2 

  0)),,(()),,(( abEptptabEptpt   

0)),,((0)),,((  baEptptbaEptpt   

 Equality  ]*[]*[ pqEqpE   shall be satisfied because otherwise the operators p, 

q do not satisfy the sufficient condition permutability of operators (Theorem 1). Thus, 

we have: 

  )),),(()),),(( baEptptbaEptpt   

 )),,(()),,(( abEptptabEptpt   

)),,(()),),(( abEptptbaEptpt    

Let’s consider opposite: 

 0)),,(()),),((  abEptptbaEptpt   

Let’s continue to consider sufficient conditions of permutability: 

  0)),,(()),,(( baptptabptpt   

 0)),),((()),),((( baEEptptabEEptpt   

 )),),(( abEEptpt   

 0)),),(( baEEptpt   

 )),),(()),),(( abEptptabEptpt   

 0)),),(()),),(( baEptptbaEptpt   

0)),),(()),),((  baEptptabEptpt   

This means that the condition 0),(),(  qppq EEE  should be satisfied. 

But we have the following condition 0
),(),(


qppq
EEE . Thus, both conditions 

must be satisfied, however: 

0
),(),(),(),(


qppqqppq
EEEEEE  

So we got a contradiction. The theorem is proved. 

If there are two operators bqap   ,  that satisfy the sufficient 

condition of permutability. Condition 0),(),(  qppq EEE  is called sufficient 

condition of dynamic permutability of operators p, q regarding the environment E. 

From a practical point of view, let’s try to identify requirements for operators with 

which we can determine statistically whether they satisfy the sufficient condition of 

dynamic permutability or not.  

Let E be a state of the environment, and p - an operator. The set A(E) is called the 

set of all attributes from state E and A(p) is called the set of all attributes in the 

statement p[15]. 

Two operators bqap   , are called statically permutable if they 

satisfy the following conditions: 

0),(0),()()(  bptaptqApA   

Theorem 4. If two operators bqap   ,  are statically permutable then 

they are dynamically permutable. 

Proof. 

To prove the theorem we need to show that these operators satisfy necessary 

condition of permutability of operators in this case. 
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Since 0),(0),()()(  bptaptqApA   and theorem 1 then 

0)),,(()),,((  baptptbaptpt   

0)),(()),,((  bptptabptpt   

 )),,(()),,(( baptptabptpt   

 )),,(()),,(( baptptabptpt   

 )),,(()),,(( baptptabptpt   

),(),(),(),( bptaptbptapt    

 The theorem is proved. 

This theorem means that if a predicate that combines memory in a state of 
environment with different operators is absent then checking the necessary condition 

of dynamic permutability is not required. Since in this case a usage of one of these 

operators does not affect the applicability of another operator. The appearance and 

disappearance of such predicates can be defined statically and syntactically. 

Thus, in Example 1 operators are statically permutable, but after applying init 

operator formula will contain predicate that combines memory of operators 
1

a , 
0

b  

and 
1

a , 
1

b . So, we have to use sufficient condition for dynamic permutability of pairs 

of operators, 
1

a , 
0

b  and 
1

a , 
1

b  regarding the state of the environment after 

application of init operator . So, )( baE  . Let’s statically compute sufficient 

condition of permutability of operators: 

 )0()1(:),(
),(),(1 1001

 baEEba
abbao

 

)1()1(:),(
),(),(11 1111

 baEEba
abba

 

Next let’s try to apply sufficient condition of dynamic permutability of operators 

regarding the condition E for both pairs of operators: 

0)0()1()(:),(
),(),(1 1001

 babaEEEba
abbao

 

0)1()1()(:),(
),(),(11 1111

 babaEEEba
abba

 

Thus, operators ),(
1 o

ba will be dynamically permutable regarding the condition E, 

and operators ),(
11

ba  will be dynamically permutable. This means that interleaving 

will be removed in correct way for this problem. 

6.2.  The Problem of Reachability of Some State 

The approach proposed in the previous sections can be applied to the problem of 

finding deadlocks in a given model, but if the user specifies a state of environment 

you want to check coverage, whereas previously proposed approach should be 

strengthened.  

Example 2. Let a,b:int and )]| |.([1
11

bainit  be initial behavior and a state of the 

environment, where init, 
1

a , 
1

b  - operators. Agent’s behavior could be represented by 

the following list of equations: 

))1:(1()),1:(1(

,| |,),1)0()0((

11

11





bbaa

baAndForkAndForkbainit
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Let’s check recheability of the state )1()0(  baF .  

After applying the operator init obtains the state of the environment 

)0()0(  baE . Operators 
1

a , 
1

b  are statically permutable and can be applied 

to the state E, which means that they are dynamically permutable regarding E. So, 

].[]| |[
1111

baEbaE  , which means that the operator 
1

b never will be applied before 

the operator 
1

a  and user defined state F will be unreachable  after interleaving 

reduction. Let’s try to enhance sufficient condition of operators permutability 

regarding some state E with some conditions related to formula F. 

0])*[(])*[(
1111

 abEFbaEF  for this example then we consider conditions for 

operators separately (not for pairs of operators). 

Let ap   be an operator. 

Theorem 5. If 0),),,((1   aaptpt   then 0),( apt  . 

Proof. 

Let’s consider the opposite 0),),,((1   aaptpt   and 0),( apt  . In this 

case by performed  substitution it can be easily obtained the following:  

000),,0(0),),,(( 11   aptaaptpt   

So we got a contradiction. The theorem is proved. 

The operator ap   is called permutable regarding some user defined state F, 

if the following conditions are satisfied: 

1) 0),),,((1   aaptpt  ; 

2) ),(),),,((1 bptFaaptptF    . 

This permutability means that an operator does not change the state of the 

environment in order to reach the user defined state changed. From reachability  point 

of view we are interested in two cases (if 0),),,((1   aaptpt  ): 

1) 0),(0),),,((1   bptFaaptptF  ; 

2) 0),(0),),,((1   bptFaaptptF  . 

In first case, the reachability of user defined state should be checked immediately 

before application of an operator, and in the second case - after. 

If operators satisfy the sufficient condition of dynamic permutability, but at least 

one of them is not permutable regarding a user defined state then this operator should 

be applied first. 

This approach can be applied to any algorithm of unfolding. 

So, for checking of reachability of the user defined state F the notion of 

permutability regarding the user defined state could be used. You can’t consider a pair 

of operators if both of them do not satisfy this condition. 

Coming back to example 2. Operator  
1

a  will not be permutable regarding the user 

defined state F: 

1

1 1)1:,1),1:,1((1 Eaaptpt  
 

2
)1()1:,1( Eaapt   

0)1()1()0(1)1()0(
21

 ababaEFEF  

Operator 
1

b  is permutable regarding F: 
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1

1 1)1:,1),1:,1((1 Ebbptpt    

2
)1()1:,1( Ebbpt   

1)1()1()0(1)1()0(
21

 bbabaEFEF  

From other side operators 
1

a , 
1

b   are statically permutable since 

)0()0(  baE  has no predicates that combine memory of these operators. 

This means that in this case you should first apply an operator 
1

b , then you need to 

check reachability of  F (since 01)1()0(
1

 baEF ) before applying 
1

a . 

And after that you can try to apply 
1

a . So, 

)1()0()1:),0()0((  babbapt  

Then let’s check the reachability of user defined state: 

 1)1()0()1()0(  baba  

So, reachability of user defined state is proved. 

6.3.       The Main Interleaving Reduction Algorithm 

Let ][uE  be a model (an initial state of the environment and behavior), where u is 

behavior, and F is some user defined state which reachability should be checked. So, 

we need to check reachability of F in the model ][uE  and all its deadlocks. 

The main interleaving reduction algorithm for reachability checking is represented 

in fig. 1. 

 

Fig. 1. The main interleaving reduction algorithm for reachability checking 

Static Analyses. In the initial behavior u we look for set 
n

Op  (set of operators of a 

n-th  parallel process) on each parallel process. Next, for each pair of operators from 

different parallel processes we build a table: BoolGOpNOpNH
NN

: . This 

table by a pair (parallel process identifier and operator) returns four (number of 

parallel process that is not equal to the previous one, and the operator which is 
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permutable to current one, the last two parameters are sufficient condition for  

permutability of operators and flag for static permutability of operators). 

For each pair of operators that does not satisfy the sufficient condition of 

permutability of operators the table is filled: },{:
NN

OpNOpND  , where 

},{
N

OpN  is a set of pairs: the number of parallel process and an operator, which does 

not satisfy the sufficient condition of permutability. 

Each operator is constructed BoolBoolBoolOpFlt
N

: , which defines the 

triple for each operator in set: value of reachability of user defined state before and 

after application of an operator, the third value is 1 if all operators from other 

processes are statically permutable with this one, and 0 if not. 

Checking Reachability. Checking reachability of user defined state F. If the filter is 
reachable then saving corresponded trace and stop modeling.  

Choosing Component. We build normal form (section 4). From list of components 

we should choose one to continue working. Here we propose to select first component 

from the list, but in general case here some heuristics could be applied (it’s out of 

scope of this paper).  If there is no component left then finishing. 

Choosing Operator. In a chosen component we select operators in the following 

order. First we check the applicability of operators for which the third option from the 

table Fpl is 1. If there are no operators or they can’t be applied, then we choose other 

operators. If the flag state of the reachability of user defined state is 1 then we first try 

to apply such operators that are permutable regarding a user defined condition for 

both operators in the table Flt being 1. If the flag state of user defined state equals 0 

then we choose to consider operators whose value pairs in the table Flt are (0,1). If 
one of such operators is applicable then after his application we need to check the 

reachability of user defined state. If user defined state is reachable then finishing. If 

no such operators left then deadlock is obtained and we get new component. 

Otherwise, finishing.  

Cycle/Visited. Checking cycle/visited filters. If the filter is reachable then we 

choose a next operator to work. If no operator left then we choose other component.  

Partial Unfolding. We try to build B and C if it is required, using notion of 

sufficient condition of static and dynamic permutability. If the last operators satisfy 

the sufficient condition of static (dynamic) permutability then B=0. Starting delayed 

to build C. In general, this problem is formulated as follows. It is given: current state 

of environment E, operator a one of the parallel processes u1 (other processes are 
delayed to use some operators in this process, including the process by which it was 

taken the operator a), and delayed parallel processes. In the set of parallel processes it 

is needed to find the operator b, which does not satisfy the sufficient condition of 

permutability (table D) or does not satisfy the condition of sufficient dynamic 

permutability regarding the E. In order to check whether these operators are in a given 

process, you generally build all states space. If these operators are not found then all 

resulting state of the search should be removed from storage cycle/visited filters. This 

is necessary because subtrace which leads to the required operator can modify the 

current state of the environment and a sufficient condition for dynamic permutability 

can not be performed, although for state E a sufficient condition for dynamic 

permutability is performed. But in some cases the search for these operators do not 
need to spend a dynamically performance of all subtrace. If the state of the 



14 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2 

environment does not contain predicates that combine memory of these operators and 

the set of attributes operators intersect, then we can use the concept of 

specialization[16] in order to break into several operators and sufficient condition will 

check only those suboperator memory that belongs to the operator. If such operator 

was found then we add result of it insertion into the list of components. 

For trace equivalence each trace for deadlock should be checked additionally 

because of used normal form. Each cycle/visited trace should be checked for 

reachability of user defined state in the following way: turning back with a help of 
backward predicate transformer until operator doesn’t have value 1 as first and second 

parameters in the table Flt. 

Theorem 6.  ),,( iuEpunfold  Function which was represented in fig. 1 saves 

property of reachability checking. 

Proof. 

Let’s suppose opposite that the function ),,( iuEpunfold does not save the property 

of reachability checking. This means that for some state of environment E such 

operator a exists, which is applied to the E( EE
a  ) and doesn’t exist as first 

action in components ),(),,(),( iECiEBiA . So, the operator will be dynamically 

permutable regarding the environment E and all other operators resulting behavior 

components  ),(),,(),( iECiEBiA  (according to Choosing Operator, Partial 

Unfolding). In addition, operator a can be applied after the application of the first 

operators in the resulting behavior of components ),(),,(),( iECiEBiA . 

This means that the required state of the environment is reachable, but after 

applying the operator a on the next step these operators are dynamically permutable 

regarding the environment E. From other point of view we do not take into account

E . If value of pair for the operator in the table Flt is (0,1) then according to step 5 
we have to take it into consideration and in this case it will be the first operator in the 

behavior of components ),(),,(),( iECiEBiA . If the value of such pair is (1,1) then  

the state of the environment is reachable in the next step, as defined Flt. If the value is 

(1,0) then before application of the operator a we need to check the reachability of the 

environment E and definitions in Flt. If the value is (0,0) then required state is not 

reached in E . That means that the required state of the environment is not unreached 

at all states of the environment as a result of unfolding application ),,( iuEpunfold . 

So we got contradiction. The theorem is proved. 

The main problem of proposed algorithm is complicity to find component ),( iEC . 

One of the ways to speed up such algorithm is delayed computation. The idea of this 

method contains the following: 

1) To collect all such special states from Partial Unfolding, where we should find 

component  ),( iEC  and finding the required states with a help of different methods: 

all states coverage, invariants etc.  

2) To continue algorithm with built states of component ),( iEC . 

Such algorithm is called incremental algorithm of reachability checking. 
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6.4.       The Static Interleaving Reduction Algorithm 

If operators and initial environment state of model do not contain predicates which 

connected to the memory of different parallel processes then general algorithm in 

previous section could be simplified. Such algorithm is called static interleaving 

reduction algorithm.  

For the component ),( iEC  of ),,( iuEpunfold  we should check reachability of 

application of operator which is not dynamically permutable for 
i

a (see section 5). 

For elimination of such reachability checking we could build additional interleaving 

according to checking of reachability of corresponded operator in behavior.  For 

example, let dcba | |.| |  and )()( dbca  , E be some environment state. So, 

)].| |.([)]| |.(.[]| |)..([)1,| |.| |,( cbadEdacbEdcbaEdcbaEpunfold   

   Here we take into account )| |.(. dacb , because )( ca   ; ).| |.( cbad , because we 

have taken )| |.(. dacb  and )( db  . 

6.5. Examples of Application 

In Table 1 information about few big examples run with our static interleaving 

reduction algorithm are presented. All of them give out of memory error (PC with 8 

Gb of RAM) if we try to obtain all states space. So, we try to run them on 

implementation of proposed algorithm in Insertion Modeling System. 

Table 1.  Experiments result for static interleaving reduction algorithm 

No. Total number of 

operators pairs 

Number of non-permutable 

operator’s pairs 

Time 

1 660 30 25 min (on prototype) 

2 780 14 47 min 4 sec 

3 12882 225 1 min 42 sec 

Here “on prototype” means that this experiment was done on the algorithm which 

was implemented in language of Insertion Modeling System[17]. Other experiments 

were run on the algorithm which was implemented on C++.  “Total number of 

operators pairs” is number of pairs of operators which were detected in parallel 

behavior of the model. “Number of non-permutable operator’s pairs” is a number of 
detected non-permutable pairs of operators. Example 2 works slower because it has 

four parallel processes and each sequential process more non-deterministic, example 1 

has only 2 parallel processes.  

7 Conclusion 

Described algorithm of interleaving reduction was implemented in Insertional 
Modeling System. Its restriction for usage of static permutability condition was good 

account in set of big examples. In any case, the main interleaving reduction algorithm 

depends on reachability checking problem (component ),( iEC , section 6). 
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Notoriously this problem is algorithmically unsolvable. It means that you could 

always prepare example where interleaving reduction will be impossible (for 

example, all operators will be non-permutable etc).  
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