
An Interleaving Reduction for Reachability Checking in

Symbolic Modeling

Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

1Glushkov Institute of Cybernetics of National Academy of Sciences, Kyiv, Ukraine

{let,lit}@iss.org.ua
2Kherson State University, Kherson, Ukraine

vladim@kspu.edu

Abstract. This paper is devoted to the whole problem of interleaving reduction

in modeling of concurrent processes. The main notions of insertional modeling

were described. The verification problem in terms of insertional modeling was

examined. General algorithm of interleaving reduction in terms of insertional

modeling was presented. A static and incremental algorithm of reduction for

reachability checking was presented. The proof of correctness of presented

algorithm was introduced. The results of experiments of such algorithm

application was described.

Keywords. Interleaving, predicate transformer, symbolic modeling.

Key Terms. MathematicalModel.

1 Introduction

Usually the multiagent distributed systems are high level non-deterministic. The

nature of this non-determinism is symbolic nature of models and concurrency (choice
of parallel process which should operate at each time of modeling). One of the main

problem of reachability checking in verification is exponential explosion of states

number. Some of the sources of such explosion is the number of parallel processes in

model and their interleaving[1] .

There are two different approaches for modeling: model checking and symbolic

modeling[2]. The model checking tool works with concrete states where state is

represented by values of its variables. A transition is occurred by assignment of new

values for the variables. The problem of exponential explosion could be solved by

using well known model checking methods: methods that introduce partial order to

reduce interleaving[3], methods for determining the symmetry when verifying the

equivalence of states[4], techniques of abstraction[5], approximation[6], data-flow

analyses[7], McMillan’s algorithm of unfolding[8].
A state of environment in symbolic modeling presents some formula in

corresponded theory (first order logic etc) which covers some set of concrete states. A

transition is occurred with a help of predicate transformers (weakest precondition,

strongest postcondition[9])[10]. Unfortunately not all methods of model checking for

http://isrg.kit.znu.edu.ua/icteriwiki/index.php/MathematicalModel

2 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

reducing states space could be applied for symbolic case. The problem which was

described previously could be solved with a help of the next symbolic methods:

narrowing[11], unfolding concurrent well-structured transition systems[12].

This paper continues the work [13] where an algorithm with some restriction of

symbolic model was described. Here we present the algorithm for full symbolic case.

The algorithm bases on the McMillan’s algorithm adopted to symbolic modeling in

notion of insertion modeling [14]. This algorithm bases on notion of permutability

which is defined with help of predicate transformer (strongest postcondition, pt
function below). It was described in [10]. So, the paper is devoted to the solution of

the problem of interleaving reduction in insertion models with infinite number of

states.

The algebra of behaviors is presented in chapter Behavior Algebras, the

verification environments, corresponding insertion function, and predicate

transformer are considered in chapter Verification Environments. The normal form of

behavior is defined in chapter Behaviors Over Basis B. The problem of reachability

of the states is described in chapter Verification. The notion of partial unfolding is

examined in chapter Partial Unfolding. The optimization of partial unfolding by

statically permutable operators is reviewed in chapter Static Permutability Property.

The incremental algorithm for reducing of interleaving for transition systems is

presented in chapter Main Interleaving Reduction Algorithm. The static algorithm of
interleaving reduction is described in chapter Static Interleaving Reduction

Algorithm. The statistic of applying of such algorithm to few examples is presented in

chapter Examples of Application.

2 Behavior Algebras

One of the main notions of insertion modeling, which is used for describing

algorithm of interleaving reduction is behavior algebra. Behavior algebra [14] is a

kind of process algebra; it is used to express the behavior of agents (transition

systems) considered up to bisimilarity or trace equivalence. To make economic

unfolding we need to distinguish sequential and parallel behaviors. So we consider the

following modification of the notion of behavior algebra- it is a multisorted algebra

with three components: the algebra of actions, the algebra of sequential behaviors,

and the algebra of parallel behaviors.

The algebra of sequential behaviors has operations of prefixing:

<action>.<sequential behavior> and one internal operation of nondeterministic

choice (()+()), which is associative, commutative, and idempotent operation with

neutral element 0. We also consider the constant behavior (successful termination),
which is a common element of the algebra of sequential and the algebra of parallel

behaviors. The operations of action algebra will be considered later.

The algebra of parallel behaviors has the parallel composition ()||() of sequential

behaviors as the main binary operation. It is associative commutative (but is not

idempotent) and has the neutral element . It also has the prefixing operation and

nondeterministic choice. The algebra of sequential behaviors is implicitly included to

the algebra of parallel behaviors by the identity | |uu (parallel composition with

one component). Unfolding of parallel composition by interleaving will be considered

3 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

only after inserting of agents that are formed by parallel composition into the

environment.

3 Verification Environments

Verification environments of the form),,(BPUEE are defined by the following

parameters: the set of conditional expressions U, the set of operators P, and the set of

basic behaviors B. The set of conditions and the set of operators are used to define

actions (it is a union of these two sets). The set of basic behaviors is used to define the
behaviors of agents inserted into environment in the way which will be explained

later. We also suppose that some logic language (first order or temporal) called basic

language is fixed to define the states of environment and checking conditions for

verification. The conditional expressions also belong to this language.

The state of environment is represented as][uE , where E is a statement of basic

language and u is a parallel composition of sequential behaviors of agents inserted

into environment. We suppose that operators are divided into the set of conditional

and unconditional operators. Conditional operator has the form a where is a

condition and a is an unconditional operator. Unconditional operator a is identified

with conditional operator a1 . The associative product ()*() and the function

UPUpt : (predicate transformer) are defined by the set of actions so that the

following identities are valid:

)(),(aptapt

)*,()),,((baptbaptpt

),),(()(*)(baptptba

 *

Here and are conditions, a and b are unconditional operators.

Predicate transformer pt is supposed to be monotonic:

),(),(aptapt

In general case, the pt function is defined by some concrete syntax. An example of
such pair (syntax, pt) can be found in [16].

Example. The basic language is a first order language. Conditions are formulae

over simple attributes - symbols that change their values when a system changes its

state. Formally they are considered as function symbols with arity 0. Unconditional

operators are assignments (parallel assignments, sequences of assignments, if-then-

else operators, loops with finite number of repetitions, etc.). As usually in this case,

)))()(()(())),(:),(:(),((22112211 ztxztxzzxtxxtxxpt

Actually this is the strongest postcondition for precondition .

Example of conditional operator. Let x be an integer variable,

)1:()5(xxxu be an operator, 3x is statement in basic language, uu | |

is a behavior. For this case,)}1:()5({},{, xxxuBuPU . The

equation)1:()5(xxxu considered here as a basic behavior and it used for

definition of agent behavior uu | | .

4 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

In insertion modeling environment considered as agent with insertion function. So,

Insertion function is defined by the following identities and rules of operational

semantics.

1.]| |[],[vuEvuE , u,v are agents with sequential behavior (see sec. 1).

Identities for conditions.

2.][].[vEvuE , if 0)(E .

3.].[]..[vuEvuE , if 0)(E (merging conditions).

4.].[]..[vuaEvuaE , if 0)(E . Special cases of

these identities are obtained when v=0 or 1 .

5.][].[EE , if 0)(E .

Identities for operators.

6.][].[vEvuaE , if 0),(aEpt .

7.)],(| |)[,(.].[EauaEptauaE , if 0),(aEpt ,),(Ea is a parallel

composition of sequential behaviors (it generates some new parallel branches). If

),(Ea , then uuEau | |),(| | and u remains unchanged.

Nondeterministic choice.

8.]).([]..[wvuaEwvauaE . The use of left distributivity means that

environment considers behavior expressions up to trace equivalence. It also means

that a system uses delayed (angelic) choice.

9.][][][EuEuE . The states]0[E and][E are called terminal states of

the environment. Formally, the states of the form]0[E are equivalent to 0, and states

of the form][E are equivalent to (if][][EE is added). But from the

point of view of verification it is useful to distinguish syntactically different terminal

states.

Parallel behaviors.

10.]| |[]| |[][][wvEwuEvEuE . Therefore all identities for conditions and

operators can be applied within the parallel composition. A component

nn uaua .. 11 of parallel composition is called degenerated relative to the state E,

if for all operators 0),(. ii aEpta and for all conditions i it is true that

0)(iE . Each component that is degenerated relatively to the state E is

equivalent to 0 relatively to this state.

11.][][][vFvFuE , if parallel composition u contains degenerated component

relative to E. So all states of environment with degenerated components are

equivalent to 0.

12.][]| |[]| |[vEvuEvuE .

13.]| |.[]| |.[]..[22112211 vuaEvuaEuauaE , if all actions ia are

different, if ia is a condition then iu is terminal constant, and v does not contain

components degenerated relatively to the state E. The state of environment][uE is

called dead lock state, if there are no transitions from this state, but u is not a

successful termination. If there is at least one degenerated component in parallel

5 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

composition, then the corresponding state is a dead lock state. All dead lock states are

equivalent to 0, but it is useful to distinguish them as well as terminal constants. The

rules (9), (12), and (13) are called unfolding of nondeterministic choice.

14.
n

i iiiiiinn uauuaauauaE
1 111111)| |.| || |.| |.(].| || |.[, if all

components of parallel composition are non-degenerated. This relation is called a full

unfolding algorithm for a parallel composition. This is a complete unfolding and the

main result of this chapter shows that it is not needed to make the complete unfolding

at each step of verification. Let nn uauau .| || |. 11 ,

)| |.| || |.| |.(),(1111 iiiiii uauuaaiuunfold

then identity (14) can be rewritten as

14a.

n

inn
iuunfolduauaE

111
),(].| || |.[.

Environment does not distinguish trace equivalent behaviors and consequently,

bisimilar states of environment are trace equivalent[14]. The identity (14) defines the

main transition rule for the system:

][][uEuE ia
 ,

if u is a parallel composition with non-degenerated components and][uE is defined

by the identity (7).

4 Behaviors over Basis B

The set of symbols is given for the set B of behavior basis. These symbols are

called basic sequential behaviors. The expression of the algebra of sequential

behaviors constructed from these symbols and termination constants is called

sequential behavior over basis B. Suppose that for each symbol Bv an equation of

the form),,(21 vvFv v is given with sequential behavior over basis B as a right

hand side. This equation is called the definition of a basic behavior v. The application

of this definition (the substitution of the left hand side by the right hand one) is called

the unfolding of this behavior. System of basic behaviors is called non-degenerated if

each path in the tree representation of the expression),,(21 vvFv v contains at

least one operator.

Normal form of sequential behavior is an expression of the form

 nn uauaua ... 2211 where ,, 21 uu are sequential behaviors. If ia is a

condition, then iu is a termination constant, 0n , and all actions are different (not

equivalent with respect to the environment E), because of delayed (angelic) choice

(see sec. 2).

Each sequential behavior u over non-degenerated basis in a state][uE can be

reduced to a normal form v equivalent to u with respect to E.

Parallel behavior over B is a parallel composition of sequential behaviors over B.

Normal form of parallel behavior is a nondeterministic sum of behaviors of the

form 2211 .. uaua , where ,, 21 uu are sequential behaviors over B, ,, 21 aa

6 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

are operators or conditions such that if ia is a condition, then iu is a termination

constant.

Normal form of environment state is a term of the form

Ii Jjiii
uEa][. or

0. Each environment state with non-degenerated system of basic behaviors is a trace

equivalent to some normal form.

5 Verification

A property of environment state is said to be correct if it does not distinguish

equivalent states. A property of environment state is monotonic if

])[(])[(uEuEEE .

5.1 Verification problem in terms of insertion modeling

Let 21,SS be state of the model M . The problem of reachability checking is the

answer to the question if a path exists from the state 1S to the state 2S on model M ,

or not. Usually models are highly non-deterministic. This non-determinism is based

on interleaving of parallel processes:);();(| | abbaba (here a,b are some

processes, “ | |” is parallel composition, “ ; ” is sequential composition and “+” is non-

deterministic composition). From other side this non-determinism could produce

additional paths from 1S to 2S and additional states. So, let call interleaving

reduction problem an answer to the question how to reduce non-determinism of the

model M to find the path from 1S to 2S as quickly as possible.

For a given set of correct and monotonic checked properties, defined on the set

of environment states, the set of initial states defines which properties are reachable

(not reachable) from the initial states for a finite number of steps or a number of steps

bounded by some constant.
It is supposed that the set of properties to be checked contains the property of a state

“to be a dead lock” and a property “to be a state of successful termination”.

The simplest verification algorithm is exhaustive unfolding of initial states up to

saturation or depletion of a given number of steps. It uses the following formula of

unfolding:

n

i
iuunfoldE

1
)],([. Such algorithm was described in [14]. It builds all

states space for reachability checking which isn’t possible always. The properties to

be checked are checked in the process of unfolding and the states that satisfy checked

properties are collected. More economic unfolding algorithm can be constructed using

the following partial unfolding algorithm.

6 Partial Unfolding

Two operators a and a' are called permutable regarding the state of E if

]*[]*[aaEaaE and dynamically permutatable regarding the state E (denoted by

7 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

aa E) if 0]*[]*[aaEaaE . Let].| || |.[][
11 nn

uauaEuE is a state of the

environment. Let’s select the component
ii

uas . and build

)}(|{),(
j

E

iji
aajiaaEnonp . We obtain:

),(),()(),,(iECiEBiAiuEpunfold

)| |.| || |.| |.()(
1111

iiiiii
uauuaaiA

...)| |.| || |.| |.(...),(
11

),(),(
11

jjj
sEnonpaaji

jjj
uauuaaiEB

ji

...)| |.| |));;((| |.| |.(...),(
11

),(),(

11

kk

aaaEnonpaaik

kwkkk
uauapuaaiEC

w
E

kiik

In the last formula
kkw

uuap));;((and p are sequences of compositions of actions

(behavior). Function punfold is called partial unfolding of parallel composition. Let’s

consider the following algorithm of reachability checking: we need to check the

properties on a current state of the environment and each state that is reachable from

this in one step. Partial unfolding is used for main function of unfolding states. This
algorithm is called partial unfolding algorithm of reachability checking.

In general, the punfold uses the notion of dynamic permutability of operators, but it

is not optimal, because it uses 4 times application of function predicate transformer pt

for each pair of operators. Using punfold can be optimized by using the concept of

static permutability of operators. Algorithm which uses punfold with some

optimization is considered in section 6.3.

6.1. Optimization of partial unfolding of states.

Theorem 1. If two operators bqap , are permutable regarding the

states
1

E ,
2

E ,
3

E then they are permutable regarding

any state [13].

The sufficient condition of permutability of two operators bqap ,

is valid under the following conditions:

1.)),,(()),,((baptptabptpt ;

2. 0)),,((abptpt ;

3. 0)),,((baptpt .

Example 1. Let a,b:int and)]..| |..([1
101
goodbbadbgoodainit is initial state and

behavior, where init,
1

a ,
0

b ,
1

b - operators. Agent’s behavior could be represented by

the following list of equations:

),(| |
101

bbaAndFork),1)1((
1

 aa),1)0((
0

 bb)1)1((
1

 bb .

Sufficient condition of permutability for operators
1

a ,
0

b ,
1

b is performed in this

case, but there can be a case in the simulation where the state of the environment

includes some formula, which combines predicate memory of various parallel

processes (a=b). So, one of the operator will not be applicable, ie a pair of operators

,).1)((AndForkbainit

8 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

will be dynamically permutable regarding this state. Thus, the notion of sufficient

conditions of permutability of operators need to be strengthened.

To improve the usage of permutability for this example, we need

1)(Esat , otherwise operators will be dynamically permutable regarding

state E. Let’s try to obtain a sufficient condition for dynamic permutability of two

operators regarding some condition E.

The notion of dynamic permutability of two operators p, q regarding some state E

uses a condition:

0]*[]*[pqEqpE

So, let 0)),,(()),,((baptptabptptE and try to apply

backward predicate transformer to the state E. We obtain:

),(

1

),(

11),),,,((,),),,,((
qppq

EbaEptptEabEptpt .

Theorem 2. If 0)),,(()),,((baptptabptptE then

0
),(),(

qppq
EE .

Proof.

Let’s assume the contrary that 0
),(),(

qppq
EE . Since the backward predicate

transformer turns back to its possible state transition set, it means that

)()(
),(),(qppq

EE . State
),(qp

E (
),(pq

E) specifies a set of concrete

states from which transitions from state with operators p and q (q and p) exist,

which means that 0
),(),(),(),(

pqqppqqp
EEEE . So, we got

a contradiction, because if 0
),(),(

qppq
EE then 0E . The theorem is proved.

This condition means that if two operators were dynamically permutable regarding

E then it is necessary that current state of the environment should satisfy theorem 2.

Let E be some state of environment.

Theorem 3. If two operators bqap , satisfy the sufficient condition

of permutability and 0
),(),(

qppq
EEE then 0]*[]*[pqEqpE .

Proof.

Let’s consider the condition of dynamic permutability regarding E:

0]*[]*[pqEqpE .

])[,()](*)[(]*[baEptbaEqpE

)),),((()),,((abEptptabEptpt

)),,((baEEptpt

)),),()),((baEptaEptpt

)),),(()),),((baEptptbaEptpt

 Next, let’s consider in details the sufficient condition permutability of operators

that satisfies the operators p, q:

])[,()](*)[(]*[baEptbaEqpE

)),),((()),,((baEptptbaEptpt

 0)),,(),((baEptaEptpt

9 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

 0)),,(()),,((abEptptabEptpt

0)),,((0)),,((baEptptbaEptpt

 Equality]*[]*[pqEqpE shall be satisfied because otherwise the operators p,

q do not satisfy the sufficient condition permutability of operators (Theorem 1). Thus,

we have:

)),),(()),),((baEptptbaEptpt

)),,(()),,((abEptptabEptpt

)),,(()),),((abEptptbaEptpt

Let’s consider opposite:

 0)),,(()),),((abEptptbaEptpt

Let’s continue to consider sufficient conditions of permutability:

 0)),,(()),,((baptptabptpt

 0)),),((()),),(((baEEptptabEEptpt

)),),((abEEptpt

 0)),),((baEEptpt

)),),(()),),((abEptptabEptpt

 0)),),(()),),((baEptptbaEptpt

0)),),(()),),((baEptptabEptpt

This means that the condition 0),(),(qppq EEE should be satisfied.

But we have the following condition 0
),(),(

qppq
EEE . Thus, both conditions

must be satisfied, however:

0
),(),(),(),(

qppqqppq
EEEEEE

So we got a contradiction. The theorem is proved.

If there are two operators bqap , that satisfy the sufficient

condition of permutability. Condition 0),(),(qppq EEE is called sufficient

condition of dynamic permutability of operators p, q regarding the environment E.

From a practical point of view, let’s try to identify requirements for operators with

which we can determine statistically whether they satisfy the sufficient condition of

dynamic permutability or not.

Let E be a state of the environment, and p - an operator. The set A(E) is called the

set of all attributes from state E and A(p) is called the set of all attributes in the

statement p[15].

Two operators bqap , are called statically permutable if they

satisfy the following conditions:

0),(0),()()(bptaptqApA

Theorem 4. If two operators bqap , are statically permutable then

they are dynamically permutable.

Proof.

To prove the theorem we need to show that these operators satisfy necessary

condition of permutability of operators in this case.

10 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

Since 0),(0),()()(bptaptqApA and theorem 1 then

0)),,(()),,((baptptbaptpt

0)),(()),,((bptptabptpt

)),,(()),,((baptptabptpt

)),,(()),,((baptptabptpt

)),,(()),,((baptptabptpt

),(),(),(),(bptaptbptapt

 The theorem is proved.

This theorem means that if a predicate that combines memory in a state of
environment with different operators is absent then checking the necessary condition

of dynamic permutability is not required. Since in this case a usage of one of these

operators does not affect the applicability of another operator. The appearance and

disappearance of such predicates can be defined statically and syntactically.

Thus, in Example 1 operators are statically permutable, but after applying init

operator formula will contain predicate that combines memory of operators
1

a ,
0

b

and
1

a ,
1

b . So, we have to use sufficient condition for dynamic permutability of pairs

of operators,
1

a ,
0

b and
1

a ,
1

b regarding the state of the environment after

application of init operator . So,)(baE . Let’s statically compute sufficient

condition of permutability of operators:

)0()1(:),(
),(),(1 1001

 baEEba
abbao

)1()1(:),(
),(),(11 1111

 baEEba
abba

Next let’s try to apply sufficient condition of dynamic permutability of operators

regarding the condition E for both pairs of operators:

0)0()1()(:),(
),(),(1 1001

 babaEEEba
abbao

0)1()1()(:),(
),(),(11 1111

 babaEEEba
abba

Thus, operators),(
1 o

ba will be dynamically permutable regarding the condition E,

and operators),(
11

ba will be dynamically permutable. This means that interleaving

will be removed in correct way for this problem.

6.2. The Problem of Reachability of Some State

The approach proposed in the previous sections can be applied to the problem of

finding deadlocks in a given model, but if the user specifies a state of environment

you want to check coverage, whereas previously proposed approach should be

strengthened.

Example 2. Let a,b:int and)]| |.([1
11

bainit be initial behavior and a state of the

environment, where init,
1

a ,
1

b - operators. Agent’s behavior could be represented by

the following list of equations:

))1:(1()),1:(1(

,| |,),1)0()0((

11

11

bbaa

baAndForkAndForkbainit

11 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

Let’s check recheability of the state)1()0(baF .

After applying the operator init obtains the state of the environment

)0()0(baE . Operators
1

a ,
1

b are statically permutable and can be applied

to the state E, which means that they are dynamically permutable regarding E. So,

].[]| |[
1111

baEbaE , which means that the operator
1

b never will be applied before

the operator
1

a and user defined state F will be unreachable after interleaving

reduction. Let’s try to enhance sufficient condition of operators permutability

regarding some state E with some conditions related to formula F.

0])*[(])*[(
1111

 abEFbaEF for this example then we consider conditions for

operators separately (not for pairs of operators).

Let ap be an operator.

Theorem 5. If 0),),,((1 aaptpt then 0),(apt .

Proof.

Let’s consider the opposite 0),),,((1 aaptpt and 0),(apt . In this

case by performed substitution it can be easily obtained the following:

000),,0(0),),,((11 aptaaptpt

So we got a contradiction. The theorem is proved.

The operator ap is called permutable regarding some user defined state F,

if the following conditions are satisfied:

1) 0),),,((1 aaptpt ;

2)),(),),,((1 bptFaaptptF .

This permutability means that an operator does not change the state of the

environment in order to reach the user defined state changed. From reachability point

of view we are interested in two cases (if 0),),,((1 aaptpt):

1) 0),(0),),,((1 bptFaaptptF ;

2) 0),(0),),,((1 bptFaaptptF .

In first case, the reachability of user defined state should be checked immediately

before application of an operator, and in the second case - after.

If operators satisfy the sufficient condition of dynamic permutability, but at least

one of them is not permutable regarding a user defined state then this operator should

be applied first.

This approach can be applied to any algorithm of unfolding.

So, for checking of reachability of the user defined state F the notion of

permutability regarding the user defined state could be used. You can’t consider a pair

of operators if both of them do not satisfy this condition.

Coming back to example 2. Operator
1

a will not be permutable regarding the user

defined state F:

1

1 1)1:,1),1:,1((1 Eaaptpt

2
)1()1:,1(Eaapt

0)1()1()0(1)1()0(
21

 ababaEFEF

Operator
1

b is permutable regarding F:

12 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

1

1 1)1:,1),1:,1((1 Ebbptpt

2
)1()1:,1(Ebbpt

1)1()1()0(1)1()0(
21

 bbabaEFEF

From other side operators
1

a ,
1

b are statically permutable since

)0()0(baE has no predicates that combine memory of these operators.

This means that in this case you should first apply an operator
1

b , then you need to

check reachability of F (since 01)1()0(
1

 baEF) before applying
1

a .

And after that you can try to apply
1

a . So,

)1()0()1:),0()0((babbapt

Then let’s check the reachability of user defined state:

 1)1()0()1()0(baba

So, reachability of user defined state is proved.

6.3. The Main Interleaving Reduction Algorithm

Let][uE be a model (an initial state of the environment and behavior), where u is

behavior, and F is some user defined state which reachability should be checked. So,

we need to check reachability of F in the model][uE and all its deadlocks.

The main interleaving reduction algorithm for reachability checking is represented

in fig. 1.

Fig. 1. The main interleaving reduction algorithm for reachability checking

Static Analyses. In the initial behavior u we look for set
n

Op (set of operators of a

n-th parallel process) on each parallel process. Next, for each pair of operators from

different parallel processes we build a table: BoolGOpNOpNH
NN

: . This

table by a pair (parallel process identifier and operator) returns four (number of

parallel process that is not equal to the previous one, and the operator which is

13 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

permutable to current one, the last two parameters are sufficient condition for

permutability of operators and flag for static permutability of operators).

For each pair of operators that does not satisfy the sufficient condition of

permutability of operators the table is filled: },{:
NN

OpNOpND , where

},{
N

OpN is a set of pairs: the number of parallel process and an operator, which does

not satisfy the sufficient condition of permutability.

Each operator is constructed BoolBoolBoolOpFlt
N

: , which defines the

triple for each operator in set: value of reachability of user defined state before and

after application of an operator, the third value is 1 if all operators from other

processes are statically permutable with this one, and 0 if not.

Checking Reachability. Checking reachability of user defined state F. If the filter is
reachable then saving corresponded trace and stop modeling.

Choosing Component. We build normal form (section 4). From list of components

we should choose one to continue working. Here we propose to select first component

from the list, but in general case here some heuristics could be applied (it’s out of

scope of this paper). If there is no component left then finishing.

Choosing Operator. In a chosen component we select operators in the following

order. First we check the applicability of operators for which the third option from the

table Fpl is 1. If there are no operators or they can’t be applied, then we choose other

operators. If the flag state of the reachability of user defined state is 1 then we first try

to apply such operators that are permutable regarding a user defined condition for

both operators in the table Flt being 1. If the flag state of user defined state equals 0

then we choose to consider operators whose value pairs in the table Flt are (0,1). If
one of such operators is applicable then after his application we need to check the

reachability of user defined state. If user defined state is reachable then finishing. If

no such operators left then deadlock is obtained and we get new component.

Otherwise, finishing.

Cycle/Visited. Checking cycle/visited filters. If the filter is reachable then we

choose a next operator to work. If no operator left then we choose other component.

Partial Unfolding. We try to build B and C if it is required, using notion of

sufficient condition of static and dynamic permutability. If the last operators satisfy

the sufficient condition of static (dynamic) permutability then B=0. Starting delayed

to build C. In general, this problem is formulated as follows. It is given: current state

of environment E, operator a one of the parallel processes u1 (other processes are
delayed to use some operators in this process, including the process by which it was

taken the operator a), and delayed parallel processes. In the set of parallel processes it

is needed to find the operator b, which does not satisfy the sufficient condition of

permutability (table D) or does not satisfy the condition of sufficient dynamic

permutability regarding the E. In order to check whether these operators are in a given

process, you generally build all states space. If these operators are not found then all

resulting state of the search should be removed from storage cycle/visited filters. This

is necessary because subtrace which leads to the required operator can modify the

current state of the environment and a sufficient condition for dynamic permutability

can not be performed, although for state E a sufficient condition for dynamic

permutability is performed. But in some cases the search for these operators do not
need to spend a dynamically performance of all subtrace. If the state of the

14 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

environment does not contain predicates that combine memory of these operators and

the set of attributes operators intersect, then we can use the concept of

specialization[16] in order to break into several operators and sufficient condition will

check only those suboperator memory that belongs to the operator. If such operator

was found then we add result of it insertion into the list of components.

For trace equivalence each trace for deadlock should be checked additionally

because of used normal form. Each cycle/visited trace should be checked for

reachability of user defined state in the following way: turning back with a help of
backward predicate transformer until operator doesn’t have value 1 as first and second

parameters in the table Flt.

Theorem 6.),,(iuEpunfold Function which was represented in fig. 1 saves

property of reachability checking.

Proof.

Let’s suppose opposite that the function),,(iuEpunfold does not save the property

of reachability checking. This means that for some state of environment E such

operator a exists, which is applied to the E(EE
a) and doesn’t exist as first

action in components),(),,(),(iECiEBiA . So, the operator will be dynamically

permutable regarding the environment E and all other operators resulting behavior

components),(),,(),(iECiEBiA (according to Choosing Operator, Partial

Unfolding). In addition, operator a can be applied after the application of the first

operators in the resulting behavior of components),(),,(),(iECiEBiA .

This means that the required state of the environment is reachable, but after

applying the operator a on the next step these operators are dynamically permutable

regarding the environment E. From other point of view we do not take into account

E . If value of pair for the operator in the table Flt is (0,1) then according to step 5
we have to take it into consideration and in this case it will be the first operator in the

behavior of components),(),,(),(iECiEBiA . If the value of such pair is (1,1) then

the state of the environment is reachable in the next step, as defined Flt. If the value is

(1,0) then before application of the operator a we need to check the reachability of the

environment E and definitions in Flt. If the value is (0,0) then required state is not

reached in E . That means that the required state of the environment is not unreached

at all states of the environment as a result of unfolding application),,(iuEpunfold .

So we got contradiction. The theorem is proved.

The main problem of proposed algorithm is complicity to find component),(iEC .

One of the ways to speed up such algorithm is delayed computation. The idea of this

method contains the following:

1) To collect all such special states from Partial Unfolding, where we should find

component),(iEC and finding the required states with a help of different methods:

all states coverage, invariants etc.

2) To continue algorithm with built states of component),(iEC .

Such algorithm is called incremental algorithm of reachability checking.

15 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

6.4. The Static Interleaving Reduction Algorithm

If operators and initial environment state of model do not contain predicates which

connected to the memory of different parallel processes then general algorithm in

previous section could be simplified. Such algorithm is called static interleaving

reduction algorithm.

For the component),(iEC of),,(iuEpunfold we should check reachability of

application of operator which is not dynamically permutable for
i

a (see section 5).

For elimination of such reachability checking we could build additional interleaving

according to checking of reachability of corresponded operator in behavior. For

example, let dcba | |.| | and)()(dbca , E be some environment state. So,

)].| |.([)]| |.(.[]| |)..([)1,| |.| |,(cbadEdacbEdcbaEdcbaEpunfold

 Here we take into account)| |.(. dacb , because)(ca ;).| |.(cbad , because we

have taken)| |.(. dacb and)(db .

6.5. Examples of Application

In Table 1 information about few big examples run with our static interleaving

reduction algorithm are presented. All of them give out of memory error (PC with 8

Gb of RAM) if we try to obtain all states space. So, we try to run them on

implementation of proposed algorithm in Insertion Modeling System.

Table 1. Experiments result for static interleaving reduction algorithm

No. Total number of

operators pairs

Number of non-permutable

operator’s pairs

Time

1 660 30 25 min (on prototype)

2 780 14 47 min 4 sec

3 12882 225 1 min 42 sec

Here “on prototype” means that this experiment was done on the algorithm which

was implemented in language of Insertion Modeling System[17]. Other experiments

were run on the algorithm which was implemented on C++. “Total number of

operators pairs” is number of pairs of operators which were detected in parallel

behavior of the model. “Number of non-permutable operator’s pairs” is a number of
detected non-permutable pairs of operators. Example 2 works slower because it has

four parallel processes and each sequential process more non-deterministic, example 1

has only 2 parallel processes.

7 Conclusion

Described algorithm of interleaving reduction was implemented in Insertional
Modeling System. Its restriction for usage of static permutability condition was good

account in set of big examples. In any case, the main interleaving reduction algorithm

depends on reachability checking problem (component),(iEC , section 6).

16 Alexander Letichevsky1, Oleksandr Letychevskyi1, Vladimir Peschanenko2

Notoriously this problem is algorithmically unsolvable. It means that you could

always prepare example where interleaving reduction will be impossible (for

example, all operators will be non-permutable etc).

References

1. The Interleaving Paradigm, http://www-i2.informatik.rwth-aachen.de/i2/fileadmin/user_
upload/documents/MC08/mc_lec3.pdf

2. Symbolic Modeling, http://en.wikipedia.org/wiki/Model_checking

3. Alessio Lomuscio, Wojciech Penczek, and Hongyang Qu. 2010. Partial Order Reductions for
Model Checking Temporal-epistemic Logics over Interleaved Multi-agent Systems.
Fundam. Inf. 101, 71-90, 1-2 (January 2010).

4. C. Norris Ip and David L. Dill. 1996. Better Verification through Symmetry. Form. Methods
Syst. Des. 9, 41-75, 1-2 (August 1996).

5. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking and Abstraction.
ACM Trans. Program. Lang. Syst. 16,1512-1542, 5 (September 1994)

6. Vijay D'Silva, Mitra Purandare, and Daniel Kroening. Approximation Refinement for

Interpolation-Based Model Checking. In Proceedings of the 9th international conference on
Verification, model checking, and abstract interpretation (VMCAI'08), Francesco Logozzo,
Doron A. Peled, and Lenore D. Zuck (Eds.), Berlin, Heidelberg, pp. 68-82, Springer-Verlag
(2008)

7. Data-Flow Analysis, http://en.wikipedia.org/wiki/Data-flow_analysis.
8. K.L. McMillan: Trace Theoretic Verification of Asynchronous Circuits Using Unfoldings.

Proceedings of the 7th Workshop on Computer Aided Verification, Liege, LNCS 939, pp.
180-195, Springer (1995)

9. E. W. Dijkstra. Hierarchical Ordering of Sequential Processes, Acta Informatica 1(2), 115-
138. (1971)

10. A. Letichevsky, A. Godlevsky, A. Letichevsky Jr., S. Potienko, V. Peschanenko. Properties
of Predicate Transformer of VRS System. Cybernetics and System Analyses 4, 13-16.
(2010)

11. Escobar, J. Meseguer: Symbolic Model Checking of Infinite-State Systems Using
Narrowing. Proceedings of the 18th International Conference on Term Rewriting and
Applications, LNCS 4533, 153-168, Springer (2007).

12. Frédéric Herbreteau, Grrégoire Sutre, and The Quang Tran. 2007. Unfolding Concurrent
Well-Structured Transition Systems. In Proceedings of the 13th international conference on
Tools and algorithms for the construction and analysis of systems (TACAS'07), Orna
Grumberg and Michael Huth (Eds.), Berlin, Heidelberg, 706-720, Springer-Verlag (2007).

13. A. Letichevsky, O. Letychevskyi, V. Peschanenko. About One Efficient Algorithm for
Reachability Checking in Modeling and Its Implementation. ICTERI 2012, Communications
in Computer and Information Science 149, 149-165. (Springer, 2012)

14. A. Letichevsky, O. Letychevskyi, V. Peschanenko. Insertion Modeling System. PSI 2011,
Lecture Notes in Computer Science 7162, 262-274. (Springer, 2011)

15. C. Norris Ip and David L. Dill. 1996. Better Verification through Symmetry. Form.
Methods Syst. Des. 9, 41-75, 1-2 (August 1996)

16. V. Peschanenko, A. Guba, C. Shushpanov. Specializations in Symbolic Verification.
Communications in Computer and Information Science 412, 332–354, Springer (2013)

17. APS and IMS systems, http://apsystems.org.ua

http://www-i2.informatik.rwth-aachen.de/i2/fileadmin/user_%20upload/documents/MC08/mc_lec3.pdf
http://www-i2.informatik.rwth-aachen.de/i2/fileadmin/user_%20upload/documents/MC08/mc_lec3.pdf
http://en.wikipedia.org/wiki/Model_checking#Symbolic_model_checking
http://en.wikipedia.org/wiki/Data-flow_analysis
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx2bGFkaW1pcnBlc2NoYW5lbmtvfGd4Ojc4MmVhNGMxZWFhM2ViMjI
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx2bGFkaW1pcnBlc2NoYW5lbmtvfGd4Ojc4MmVhNGMxZWFhM2ViMjI
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx2bGFkaW1pcnBlc2NoYW5lbmtvfGd4Ojc4MmVhNGMxZWFhM2ViMjI
http://dl.acm.org/author_page.cfm?id=81430635050&coll=DL&dl=ACM&trk=0&cfid=164627431&cftoken=90118799
http://dl.acm.org/author_page.cfm?id=81100459261&coll=DL&dl=ACM&trk=0&cfid=164627431&cftoken=90118799
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx2bGFkaW1pcnBlc2NoYW5lbmtvfGd4OjdiMTZhMDU3MzkyOWU2YTc
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx2bGFkaW1pcnBlc2NoYW5lbmtvfGd4OjdiMTZhMDU3MzkyOWU2YTc
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx2bGFkaW1pcnBlc2NoYW5lbmtvfGd4OjdiMTZhMDU3MzkyOWU2YTc
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx2bGFkaW1pcnBlc2NoYW5lbmtvfGd4OjVmY2ZlYTI2ZWUyYjc3NDM
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx2bGFkaW1pcnBlc2NoYW5lbmtvfGd4OjVmY2ZlYTI2ZWUyYjc3NDM
http://link.springer.com/chapter/10.1007%2F978-3-319-03998-5_17
http://link.springer.com/chapter/10.1007%2F978-3-319-03998-5_17

