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Abstract. This paper presents some steps of defining a finitely sup-
ported mathematics by using sets with atoms. Such a mathematics gen-
eralizes the classical Zermelo-Fraenkel mathematics, and represents an
appropriate framework to work with (infinite) structures in terms of
finitely supported objects. We focus on the techniques of translating
the Zermelo-Fraenkel results to this finitely supported mathematics over
sets with atoms.
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1 Introduction

Since the experimental sciences are mainly interested in quantitative aspects,
and since there exists no evidence for the presence of infinite structures, it be-
comes useful to develop a mathematics which deals with a more relaxed notion
of (in)finiteness. We present our attempt of building the necessary concepts and
structures for a finitely supported mathematics. What we call Finitely Sup-
ported Mathematics is a mathematics which is consistent with the axioms of
the Fraenkel-Mostowski (FM) set theory. The FM axioms represents an “ax-
iomatization” of the FM permutation model of the Zermelo-Fraenkel set theory
with atoms; in this way, these axioms transform this model into an independent
set theory. The axioms of the FM set theory are precisely the Zermelo-Fraenkel
with atoms (ZFA) axioms over an infinite set of atoms [16], together with the
special property of finite support which claims that for each element x in an
arbitrary set we can find a finite set supporting x. Therefore in the FM universe
only finitely supported objects are allowed. The original purpose of the FM set
theory was to provide a mathematical model for variables in a certain syntax.
Since they have no internal structure, atoms can be used to represent names.
The finite support axiom is motivated by the fact that syntax can only involve
finitely many names. The FM set theory provides a balance between rigorous
formalism and informal reasoning. This is discussed in [23], where principles of



structural recursion and induction are explained in the FM framework. We can
use this theory in order to manage infinite structures in a finitary manner, that
is, in the FM framework we try to model the infinite using a more relaxed notion
of finite, i.e, the notion of finite support.

Although a set of axioms for describing sets with atoms (or FM-sets) was
introduced in [16], an earlier idea of using atoms in computer science belongs to
Gandy [17]. Gandy proved that any machine satisfying four physical ‘principles’
is equivalent to some Turing machine. Gandy’s four principles define a class of
computing machines, namely the ‘Gandy machines’. Gandy machines are rep-
resented by classes of ‘states’ and ‘transition operations between states’. States
are represented by hereditary finite sets built up from an infinite set U of atoms,
and transformations are given by restricted operations from states to states. The
class HF of all hereditary finite sets over U introduced in Definition 2.1 from [17]
is described quite similar to the von-Neumann cumulative hierarchy of FM-sets,
FMA presented in [16]. The single difference between these approaches is that
each HFn+1 is defined inductively involving ‘finite subsets of U ∪HFn’, whilst
each FMα+1(A) is defined inductively by using ‘the disjoint union between A
and the finitely supported subsets of FMα(A)’; HF is the union of all HFn

(with the mention that the empty set is not used in this construction), and the
family of all FM-sets is the union of all FMα from which we exclude the set A
of atoms. The support of an element x in HF , obtained according to Definition
2.2(1) of [17], coincides with supp(x) (with notations from Definition 2(4)) if we
see x as an FM-set. Also, the effect of a permutation π on a structure x described
in Definition 2.3 from [17] is defined analogue as the application of the SA-action
on FMA to the element (π, x) ∈ SA × FMA. Obviously, the Gandy’s principles
can also be presented in the FM framework because any finite set is well defined
in FM; however, an open problem regards the consistency of Gandy’s principles
when ‘finite’ is replaced by ‘finitely supported’.

The construction of the universe of all FM-sets [16] is inspired by the con-
struction of the universe of all admissible sets over an arbitrary collection of
atoms [6]. The hereditary finite sets used in [17] are particular examples of ad-
missible sets. The FM-sets represent a generalization of hereditary finite sets
because any FM-set is an hereditary finitely supported set.

In the literature there exist various approaches regarding the FM framework.
We try to clarify the differences between these approaches.

– The FM permutation model of the ZFA set theory.

This model was introduced by Fraenkel [14] and extended by Lindenbaum
and Mostowski [21]. Its original aim was to establish the independence of the
axiom of choice from the other axioms of the ZFA set theory. There also exist
some other permutation models of ZFA presented in [20] which are defined
by using countable infinite sets of atoms.

– The FM axiomatic set theory. This set theory was presented in [16]. It is
inspired by the FM permutation model of the ZFA set theory. However, the
FM set theory, the ZFA set theory and the Zermelo-Fraenkel (ZF) set theory
are independent axiomatic set theories. All of these theories are described by



axioms, and all of them have models. For example, the Cumulative Hierarchy
Fraenkel-Mostowski universe FMA presented in [16] is a model of the FM
set theory, while some models of the ZF set theory can be found in [19], and
the permutation models of the ZFA set theory can be found in [20]. The sets
defined using the FM axioms are called FM-sets. A ZFA set is an FM-set if
and only if all its elements have hereditarily finite supports. Note that the
infinite set of atoms in the FM set theory does not necessary be countable.
The Fraenkel-Mostowski set theory is consistent whether the infinite set of
atoms is countable or not. In [16] it is used a countable set of atoms in
order to define a model of the Fraenkel-Mostowski set theory for new names
in computer science, while in [7] there are described FM-sets over a set of
atoms which do not represent a homogeneous structure. Also, in [12] the
authors use non-countable sets of atoms (like the set of real numbers) in
order to study the minimization of deterministic timed automata.

– Nominal sets. These sets can be defined both in the ZF framework [24] and
in the FM framework [16]. In ZF, a fixed infinite set A is considered as a set of
names. A nominal set is defined as a usual ZF set endowed with a particular
group action of the group of permutations over A that satisfies a certain
finiteness property. Such a finiteness property allows us to say that nominal
sets are well defined according to the axioms of the FM set theory whenever
the set of names is the set of atoms in the FM set theory. There exists also
an alternative definition for nominal sets in the FM framework. They can be
defined as sets constructed according to the FM axioms with the additional
property of being empty supported (invariant under all permutations). These
two ways of defining nominal sets finally lead to similar properties. According
to the previous remark we use the terminology “invariant” for “nominal” in
order to establish a connection between approaches in the FM framework and
in the ZF framework. Moreover, we can say that any set defined according
to the FM axioms (any FM-set) can be seen as a subset of the nominal
(invariant) set FMA. However, an FM-set is itself a nominal set only if it
has an empty support. The theory of nominal sets makes sense even if the set
of atoms is infinite but not countable. Informally, since the ZFA set theory
collapses into the ZF set theory when the set of atoms is empty, we can
say that the nominal sets represent a natural extension of the usual sets.
In computer science, nominal sets offer an elegant formalism for describing
λ-terms modulo α-conversion [16]. They can also be used in algebra [5, 2],
in proof theory [27], in domain theory [26], in topology [22], semantics of
process algebras [4, 15] and programming [25]. A survey on the applications
of nominal sets in computer science emphasizing our contributions can be
found in [3].

– Generalized nominal sets. The theory of nominal sets over a fixed set A
of atoms is generalized in [10] to a new theory of nominal sets over arbitrary
(unfixed) sets of data values. This provides the generalized nominal sets. The
notion of ‘SA-set’ (Definition 2) is replaced by the notion of ‘set endowed
with an action of a subgroup of the symmetric group of D’ for an arbitrary set
of data values D, and the notion of ‘finite set’ is replaced by the notion of ‘set



with a finite number of orbits according to the previous group action (orbit-
finite set)’. This approach is useful for studying automata on data words [10],
languages over infinite alphabets [8], or Turing machines that operate over
infinite alphabets [11]. Computations in these generalized nominal sets are
presented in [9, 13].

As their names say, the nominal sets are used to manage notions like renaming,
binding or fresh name. However, this theory could be studied deeper from an
algebraically viewpoint, and it could be used in order to characterize some infinite
structures in terms of finitely supported objects.

Finitely Supported Mathematics (FSM) is introduced to prove that
many finiteness ZF properties still remain valid if we replace the term ‘finite’
with ‘infinite, but with finite support’. Such results have already been presented
in [5] where we proved that a class of multisets over infinite alphabets (inter-
preted in the nominal framework) has similar properties to the classical multisets
over finite alphabets. FSM is the mathematics developed in the world of finitely
supported objects where the set of atoms has to be infinite (countable or not
countable). Informally, FSM extends the framework of the ZF set theory without
choice principles; ZF set theory is actually the Empty Supported Mathematics.
In FSM, we use either ‘invariant sets’ or ‘finitely supported sets’ instead of
‘sets’. As an intuitive rule, we are not allowed to use in the proofs of the results
of FSM any construction that does not preserve the property of finite support.
That means we cannot obtain a property in FSM only by using a ZF result
without an appropriate proof using only the finite support condition. Since the
invariant sets can also be defined in the ZFA framework similarly as in the ZF
framework (see the first paragraph in Section 2), the definition of the finitely
supported mathematics also makes sense over the ZFA axioms.

To summarize, FSM represents the ZF theory rephrased in terms of finitely
supported objects; this means that FSM presents the theory of invariant sets,
including invariant algebraic structures. FSM is not at all the theory of nominal
sets from [24] presented in a different manner; actually the theory of nominal
sets [24] could be considered as a tool for defining FSM. The main aim of FSM
is to characterize the infinite algebraic structures by using their finite supports.

2 Sets with Atoms

Let A be a fixed infinite (countable or non-countable) ZF-set. The following
results make also sense if A is considered to be the set of atoms in the ZFA
framework (characterized by the axiom “y ∈ x⇒ x /∈ A”) and if ‘ZF’ is replaced
by ‘ZFA’ in their statements. Thus, we mention that the theory of invariant sets
makes sense both in ZF and in ZFA. Several results of this section are similar to
those in [24], but without assuming the set of atoms to be countable.

Definition 1. A transposition is a function (a b) : A→ A defined by (a b)(a) =
b, (a b)(b) = a, and (a b)(n) = n for n 6= a, b. A permutation of A is generated
by composing finitely many transpositions.



Definition 2. Let SA be the set of all permutations of A.

1. Let X be a ZF set. An SA-action on X is a function · : SA×X → X having
the properties that Id ·x = x and π ·(π

′

·x) = (π◦π
′

) ·x for all π, π′ ∈ SA and
x ∈ X. An SA-set is a pair (X, ·) where X is a ZF set, and · : SA ×X → X
is an SA-action on X.

2. Let (X, ·) be an SA-set. We say that S ⊂ A supports x whenever for each
π ∈ Fix(S) we have π · x = x, where Fix(S) = {π |π(a) = a, ∀a ∈ S}.

3. Let (X, ·) be an SA-set. We say that X is an invariant set if for each x ∈ X
there exists a finite set Sx ⊂ A which supports x. Invariant sets are also
called nominal sets if we work in the ZF framework [24], or equivariant sets
if they are defined as elements in the cumulative hierarchy FMA [16].

4. Let X be an SA-set and let x ∈ X. If there exists a finite set supporting
x, then there exists a least finite set supporting x [16] which is called the
support of x and is denoted by supp(x). An element supported by the empty
set is called equivariant.

Proposition 1. Let (X, ·) be an SA-set and π ∈ SA. If x ∈ X is finitely sup-
ported, then π · x is finitely supported, and supp(π · x) = π(supp(x)).

Example 1.

1. The set A of atoms is an SA-set with the SA-action · : SA ×A→ A defined
by π · a := π(a), ∀π ∈ SA, a ∈ A. Moreover, supp(B) = B, ∀B ⊂ A, B finite.

2. Any ordinary ZF set X (like N or Z) is an SA-set with the trivial SA-action
· : SA ×X → X defined by π · x := x for all π ∈ SA and x ∈ X.

3. If (X, ·) is an SA-set, then ℘(X) = {Y |Y ⊆ X} is also an SA-set with
the SA-action ⋆ : SA × ℘(X) → ℘(X) defined by π ⋆ Y := {π · y | y ∈ Y }
for all π ∈ SA, and all subsets Y of X. For each invariant set (X, ·) we
denote by ℘fs(X) the set formed from those subsets of X which are finitely
supported according to the action ⋆ . (℘fs(X), ⋆|℘fs(X)) is an invariant set,
where ⋆|℘fs(X) represents the action ⋆ restricted to ℘fs(X).

4. Let (X, ·) and (Y, ⋄) be SA-sets. The Cartesian product X × Y is also an
SA-set with the SA-action ⋆ : SA×(X×Y ) → (X×Y ) defined by π⋆(x, y) =
(π · x, π ⋄ y) for all π ∈ SA and all x ∈ X, y ∈ Y . If (X, ·) and (Y, ⋄) are
invariant sets, then (X × Y, ⋆) is also an invariant set.

5. The FM cumulative hierarchy FMA described in [16] is an invariant set with
SA-action · : SA × FMA → FMA defined inductively by π · a := π(a) for all
atoms a ∈ A and π · x := {π · y | y ∈ x} for all x ∈ FMA \A. An FM-set is a
finitely supported element in FMA; additionally an FM-set has the recursive
property that all its elements are also FM-sets. An FM-set which is empty
supported as an element in FMA is an invariant set.

Definition 3. Let (X, ·) be an invariant set. A subset Z of X is called finitely
supported if and only if Z ∈ ℘fs(X) with the notations of Example 1 (3).

Definition 4. Let X and Y be invariant sets, and let Z be a finitely supported
subset of X. A function f : Z → Y is finitely supported if f ∈ ℘fs(X × Y ).



Proposition 2. [5] Let (X, ·) and (Y, ⋄) be invariant sets, and let Z be a finitely
supported subset of X. The function f : Z → Y is finitely supported in the sense
of Definition 4 if and only if there exists a finite set S of atoms such that for all
x ∈ Z and all π ∈ Fix(S) we have π · x ∈ Z and f(π · x) = π ⋄ f(x).

3 Reformulating the Classical ZF Results in FSM

The main idea of translating a classical ZF result (depending on sets and rela-
tions) into FSM is to analyze if there exists a valid result obtained by replac-
ing “set” with ”invariant/finitely supported set” and “relation” with “invari-
ant/finitely supported relation” in the ZF result. If this is possible, then things
go smoothly; however, this is not always so simple.

Every ZF set is a particular invariant set equipped with a trivial permutation
action (Example 1(2)). Therefore, the general properties of invariant sets lead
to valid properties of ZF sets. The converse is not always valid, namely not
every ZF result can be directly rephrased in the world of invariant sets, terms
of finitely supported objects according to arbitrary permutation actions. This
is because, given an invariant set X, there could exist some subsets of X (and
also some relations or functions involving subsets of X) which fail to be finitely
supported. A classical example (presented also in Subsection 2.2.3.6 of [26]) is
represented by the powerset of the invariant set A. A subset of A which is in the
same time infinite and coinfinite could be defined in some models of ZF (or of
ZFA is we consider A to be the set of atoms in ZFA), but it can not be defined in
FSM because it is not finitely supported. Therefore the remark that everything
that can be done in ZF can also be done in FSM is not valid. That means there
may exist some valid results depending on several ZF structures which fail to be
valid in FSM if we simply replace “ZF structure” with “FSM structure” in their
statement.

We present few examples regarding these aspects. There exist some valid ZF
results that cannot be translated into FSM. According to Remark 1, the following
examples are particularly interesting because they do not overlap neither on
some known properties of permutative models of ZFA, nor on some properties
of nominal sets [24].

Example 2.

– There exist models of ZF without choice that satisfy the ordering principle
“Every set can be totally ordered”. More details about such models are
in [19], where there are mentioned Howard-Rubin’s first model N38 and
Cohen’s first model M1. Therefore the ordering principle is independent from
the axioms of the ZF set theory.

– In FSM the following result fails “For every invariant set X there exists a
finitely supported total order relation on X”. Therefore the ordering prin-
ciple is inconsistent with the axioms of the FM set theory. Indeed, suppose
that there exists a finitely supported total order < on the invariant set A. Let
a, b, c /∈ supp(<) with a < b. Since (a c) ∈ Fix(supp(<)) we have (a c)(a) <



(a c)(b), so c < b. However, we also have (a b), (b c) ∈ Fix(supp(<)), and so
((a b) ◦ (b c))(a) < ((a b) ◦ (b c))(b), that is, b < c. We get a contradiction,
and so the translation of the ordering principle in FSM realized by replacing
“structure” with “finitely supported structure” leads to a false statement.

Example 3.

– There exist models of ZF without choice that satisfy the partial countable
choice principle: “Given any countable family (sequence) of non-empty sets
F = (Xn)n, there exists an infinite subset M of N such that it is possible
to select a single element from each member of the family (Xm)m∈M , i.e.
there exist a choice function on (Xm)m∈M”. More details about such models
are in [19], where there are mentioned Pincus-Solovay’s First Model M27,
Shelah’s Second Model M38 and Howard-Rubin’s first model N38. Therefore
the partial countable choice principle is independent from the axioms of the
ZF set theory.

– In FSM the following result fails: “Given any invariant set X, and any count-
able family F = (Xn)n of subsets of X such that the mapping n 7→ Xn is
finitely supported, there exists an infinite subset M of N with the property
that there is a finitely supported choice function on (Xm)m∈M”. Therefore
the partial countable choice principle is inconsistent with the axioms of the
FM set theory. Indeed, for the invariant set A we consider the countable
family (Xn)n where Xn is the set of all injective n-tuples from A. Since A
is infinite, it follows that each Xn is non-empty. In the FM framework, each
Xn is equivariant because A is an invariant set and each permutation is a bi-
jective function. Therefore the family (Xn)n is equivariant, and the mapping
n 7→ Xn is also equivariant. Suppose that there exists an infinite subsetM of
N and a finitely supported choice function f on (Xm)m∈M . Let f(Xm) = ym
with each ym ∈ Xm. Let π ∈ Fix(supp(f)). According to Proposition 2,
and because each element Xm is equivariant according to its definition, we
obtain that π · ym = π · f(Xm) = f(π · Xm) = f(Xm) = ym. Therefore,
each element ym is supported by supp(f), and so supp(ym) ⊆ supp(f) for
all m ∈ M . Since ym is a finite tuple of atoms which has exactly m ele-
ments for each m ∈M , we have that supp(ym) = ym, ∀m ∈ N (see Example
1(1)). Thus ym ⊆ supp(f) for all m ∈ M . However, because M is infinite,
we contradict the finiteness of supp(f). Therefore the translation of the par-
tial countable choice principle in FSM realized by replacing “structure” with
“finitely supported structure” leads to a false statement.

Remark 1. Examples 2 and 3 show us that there exist some choice
principles which are independent from the axioms of the ZF set theory, but

inconsistent in FSM. Since FSM is consistent even if the set of atoms is not
countable, such results do not overlap on some related properties in the basic
or in the second Fraenkel modes of the ZFA set theory (which are defined using
countable sets of atoms) [20]. Also, the previous results do not follow immediately
from [24] because the nominal sets are defined over countable sets of atoms, while
we define invariant sets over possible non-countable sets of atoms; in [24] where



the set of atoms is countable, Example 3 would be trivial. Moreover, we claim
that all the choice principles from [18] rephrased in terms of invariant sets are
inconsistent in FSM. Note that it is not easy to prove such a result in FSM,
even if various relationship results between several forms of choice hold in the
ZF framework. This is because nobody guarantees that ZF results remain valid
in FSM. Therefore, all the possible relationship results between various choice
principles in FSM have to be independently proved in terms of finitely supported
object. Details regarding the consistency of various choice principles in the world
of invariant sets defined over possibly non-countable sets of atoms are presented
in another paper.

Other results which fail in FSM are given by the Stone duality [22], by the
determinization of finite automata and by the equivalence of two-way and one-
way finite automata [10]. There also exist some valid ZF results that can be
translated into FSM only in a weaker form.

Example 4. We define an invariant complete lattice as an invariant set (L, ·)
together with an equivariant order relation ⊑ on L satisfying the property that
every finitely supported subset X ⊆ L has a least upper bound with respect to
the order relation ⊑.

– Let L be a ZF complete lattice and f : L → L a ZF monotone function.
Then there exists a greatest e ∈ L such that f(e) = e and a least e ∈ L such
that f(e) = e (weak form of Tarski theorem).

– Let (L,⊑, ·) be an invariant complete lattice and f : L → L a finitely
supported monotone function. Then there exists a greatest e ∈ L such that
f(e) = e, and a least e ∈ L such that f(e) = e (the proof is similar to
Theorem 3.2 in [1]).

These results show that the weak form of the Tarski theorem can be naturally
translated into FSM. However, as it is presented below, the strong form of the
Tarski theorem cannot be naturally translated into FSM; it holds in FSM only for
a particular class of finitely supported monotone functions, i.e, the equivariant
monotone functions.

– Let L be a ZF complete lattice and f : L→ L a ZF monotone function over
L. Let P be the set of fixed points of f . Then P is a complete lattice (strong
form of Tarski theorem).

– Let (L,⊑, ·) be an invariant complete lattice and f : L → L an equivariant
monotone function over L. Let P be the set of fixed points of f . Then (P,⊑, ·)
is an invariant complete lattice.
The result does not hold if f is finitely supported, but not equivariant (the
proof is similar to Theorem 3.3 in [1]).

4 Limits of the Equivariance / Finite Support Principle

In order to translate a general ZF result into FSM, one must prove that several
structures are finitely supported. There exist two general methods of proving



that a certain structure is finitely supported. The first method is a constructive
one: by using some intuitive arguments, we anticipate a possible candidate for the
support and prove that this candidate is indeed a support. The second method
is based on a general finite support principle which is defined using the higher-
order logic. However the use of this second method has some limits, as we present
in the paragraphs below.

According to [23], we have the following equivariance/finite support principle
which works over invariant sets.

Theorem 1.

– Any function or relation that is defined from equivariant functions and rela-
tions using classical higher-order logic is itself equivariant.

– Any function or relation that is defined from finitely supported functions and
relations using classical higher-order logic is itself finitely supported.

In applying this equivariance/finite support principle, one must take into account
all the parameters upon which a particular construction depends. We think that
the formal involvement of the equivariance/finite support principle, i.e. the pre-
cise verification if the conditions for applying the equivariance/finite support
principle are properly satisfied is sometimes at least as difficult as a constructive
proof. Moreover, in many cases we need to construct effectively the support, and
it is not enough to prove only that a certain structure is finitely supported.

Example 5. An invariant monoid (M, ·, ⋄) is an invariant set (M, ⋄) endowed with
an equivariant internal monoid law · :M ×M →M . If (Σ, ⋄) is an invariant set,
then the free monoid Σ∗ on Σ is an invariant monoid [5].

1. For each monoid M and each function f : Σ → M , there exists a unique
homomorphism of monoids g : Σ∗ → M with g ◦ i = f , where i : Σ → Σ∗

is the standard inclusion of Σ into Σ∗ which maps each element a ∈ Σ into
the word a (ZF universality theorem for monoids).

2. i) Let (Σ, ⋄Σ) be an invariant set. Let i : Σ → Σ∗ be the standard in-
clusion of Σ into Σ∗ which maps each element a ∈ Σ into word a. If
(M, ·, ⋄M ) is an arbitrary invariant monoid and ϕ : Σ → M is an ar-
bitrary finitely supported function, then there exists a unique finitely
supported homomorphism of monoids ψ : Σ∗ →M with ψ ◦ i = ϕ.
This result can be proved directly by involving the equivariance/finite
support principle.

ii) Let (Σ, ⋄Σ) be an invariant set. Let i : Σ → Σ∗ be the standard in-
clusion of Σ into Σ∗ which maps each element a ∈ Σ into the word a.
If (M, ·, ⋄M ) is an arbitrary invariant monoid and ϕ : Σ → M is an
arbitrary finitely supported function, then there exists a unique finitely
supported homomorphism of monoids ψ : Σ∗ → M with ψ ◦ i = ϕ.
Moreover, if a finite set S supports ϕ, then the same set S supports ψ.
The last sentence of this theorem cannot be proved by involving the
equivariance/finite support principle.



Proof. If (M, ·, ⋄M ) is an invariant monoid, then (M, ·) is a monoid. From the
general ZF theory of monoids, we can define a unique homomorphism of monoids
ψ : Σ∗ →M with ψ ◦ i = ϕ.

In [5] we proved that the free monoid Σ∗ on Σ is an invariant monoid when-
ever (Σ, ⋄) is an invariant set. The SA-action ⋆̃ : SA × Σ∗ → Σ∗ is defined by
π⋆̃x1x2 . . . xl = (π ⋄ x1) . . . (π ⋄ xl) for all π ∈ SA and x1x2 . . . xl ∈ Σ∗ \ {1}, and
π⋆̃1 = 1 for all π ∈ SA.

In order to prove that ψ is finitely supported it is sufficient to apply Theo-
rem 1 because ψ is defined from the finitely supported functions ϕ and i using
the higher-order logic. However, Theorem 1 is not sufficient to prove that if a
finite set S supports ϕ, then the same set S supports ψ. In order to prove the
previous statement we proceed as follows.

Let us consider S = supp(ϕ). Thus, by Proposition 2 we have ϕ(π ⋄Σ x) =
π ⋄M ϕ(x) for all x ∈ Σ and π ∈ Fix(S). We have to prove that S supports
ψ. Let π ∈ Fix(S). According to Proposition 2 it is sufficient to prove that
ψ(π⋆̃x1x2 . . . xn) = π ⋄M ψ(x1x2 . . . xn) for each x1x2 . . . xn ∈ Σ∗. However,
ψ is a monoid homomorphism between Σ∗ and M , and ψ ◦ i = ϕ. This means
ψ(x1x2 . . . xn) = ϕ(x1) ·ϕ(x2) · . . . ·ϕ(xn). Since (M, ·, ⋄M ) is an invariant monoid
we have π ⋄M ψ(x1x2 . . . xn) = π ⋄M (ϕ(x1) · ϕ(x2) · . . . · ϕ(xn)) =(π ⋄M ϕ(x1)) ·
(π ⋄M ϕ(x2)) · . . . · (π ⋄M ϕ(xn)) = ϕ(π ⋄Σ x1) · ϕ(π ⋄Σ x2) · . . . · ϕ(π ⋄Σ xn).
However, π⋆̃x1x2 . . . xn = (π⋄Σ x1) . . . (π⋄Σ xn) and ψ(π⋆̃x1x2 . . . xn) = ψ((π⋄Σ
x1) . . . (π⋄Σxl)) = ϕ(π⋄Σx1)·ϕ(π⋄Σx2)·. . .·ϕ(π⋄Σxn). Hence ψ(π⋆̃x1x2 . . . xn) =
π ⋄M ψ(x1x2 . . . xn) for each π ∈ Fix(S), which means S supports ψ.

Example 5(2) shows us that by using the equivariance/finite support prin-
ciple we can obtain a universality property for invariant monoids which is sim-
ilar to the one described in Example 5(1). However, in order to prove that
supp(ψ) ⊆ supp(ϕ) in the second item of Example 5(2), we need to present a
constructive method of defining a set supporting ψ (see also Theorem 6 from [5]).
Other related examples regarding the equivariance/finite support principle are
Theorems 4, 9 and 11 from [5], or Theorem 3.7 from [2]. In these theorems we are
able to prove a precise characterization for the support of some structures which
could not be obtained by a direct application of the equivariance/finite support
principle in the form from Theorem 1. In these results we do not prove only that
some structures are finitely supported, but we also found a relationship between
the supports of the related structures.

In some cases we can prove stronger properties without involving the equiv-
ariance/finite support principle. For example, each function fx in the proof of
Theorem 7 of [5] has a non-empty finite support. Using the equivariance/finite
support principle one can say that the function T from that theorem has also
a finite support. We were able to prove something stronger using a constructive
method: the function T is equivariant.

A constructive method of defining the support is also necessary in order to
assure that some structures are uniformly finitely supported (i.e. supported by
the same finite set of atoms). Some related examples regarding the uniform
support are presented in [2] (Section 5), where we should assume that some



structures are uniformly supported in order to obtain some embedding properties
for invariant (nominal) groups. Also, note that a chain is finitely supported if and
only if all its elements are finitely supported and have the same support, i.e., all
its elements are uniformly finitely supported. Therefore, in order to prove that
a chain is finitely supported, we must present a constructive method of defining
the support of its elements. More exactly, we cannot use the equivariance/finite
support principle which would not assure the uniformity of the support of its
elements. Suggestive examples regarding finitely supported chains are presented
in Chapter 4 of [25].

We conclude that the equivariance/finite support principle is not useful when
we want to obtain a relationship between the supports of several constructions
(and we do not want only to prove that these constructions are finitely sup-
ported). This is because, in its actual form, the second part of Theorem 1 allows
to prove that a certain structure is finitely supported, but it do not provide any
information about the structure of the support. However, the first part of Theo-
rem 1 helps when we want to prove the equivariance of some constructions. Note
that we do not claim that the finite support principle is not useful. Obviously,
it can be used to give simpler proofs for the fact that functions and relations
defined from finitely supported functions and relations via classical higher-order
formulas are finitely supported. However, a concrete calculation for the supports
of some structures is able to provide more informations about the related sup-
ports; we justify this viewpoint in Example 5. Also, such a method is useful in
order to find the uniform supports.

Note that, often in practice, it is not sufficient to prove only that a certain
structure is finitely supported without giving any information about the struc-
ture of support. A more precise characterization of the support is useful. For
example, let us consider an α-equivalence class [t] of a λ-term t. The support
of [t] is represented by the set of free names of t [16]; the support of [t] is finite
because any λ-term has a finite numbers of free names. However, the precise
description of the free names of t is an aspect that matters. Therefore, we sug-
gest to use a constructive method of defining the support of a certain structure
instead of the finite support part (the second part) of Theorem 1, because in
this way we can obtain more informations about the support.

5 Conclusion

Our goal is to develop a mathematics for experimental science which deals with
a more relaxed notion of finiteness. We call it the ‘Finitely Supported Mathe-
matics’. Informally, in Finitely Supported Mathematics we can model infinite
structures after a finite number of observations. More precisely, we intend to re-
state some parts of algebra by replacing ‘(infinite) sets’ with ‘invariant sets’. This
allows to model some infinite structures by using their finite supports. In order
to sustain our viewpoint, we involve the axiomatic theory of FM-sets presented
in [16]. Rather than using a non-standard set theory, we could alternatively work
with invariant sets, which are defined within ZF as usual sets endowed with some



group actions satisfying a finite support requirement. The properties of invari-
ant sets are similar to those presented in [24], with the mention that we assume
invariant sets to be defined over possible non-countable sets of atoms. Our paper
presents the basic steps requested in order to provide an extension of the theory
of invariant sets to a theory of invariant algebraic structures. Although the initial
purpose of defining invariant sets was to formulate a semantics for syntax with
variable binding, we consider that such sets can also be used from an algebraic
perspective in order to characterize infinite structures modulo finite supports,
and thus in order to provide more informations about infinite objects.

The category of invariant sets has a very rich structure, and so the definitions
of many structures given in the usual category of sets can be reformulated within
the invariant sets framework. A natural question is which classical theorems
about these structures hold internally in the world of invariant sets. Until now
(or, more precisely, until we would be able to solve the open problem presented
below), there does not exist a standard algorithm to translate any classical ZF
result into FSM. This is because there may exist some subsets of an invariant set
which fail to be finitely supported, and thus there may exist some ZF results that
fail in the universe of invariant sets. Related examples regarding the previous
statement are presented in Section 3. Therefore, reformulating the ZF theorems
into FSM should be done for each case separately. For example, the theory of
monoids is studied in FSM in [5], the theory of groups is rephrased in FSM in
[2], and the theory of posets and domains is reformulated within invariant sets
framework in [24, 25]. In order to prove that a structure is finitely supported,
one could use either the finite support principle of [24] (e.g. Theorem 1), or a
more “constructive” method. To employ such a “constructive method” means
that we anticipate a possible candidate for a support, and then prove that this
candidate is indeed a support. The benefit of this method is that we are able
to obtain more informations about the related support than by using the finite
support principle. Related examples can be found in Section 4.

An Open Problem: The main task in order to define a finitely supported
mathematics is to prove that certain subsets of an invariant set are finitely
supported. We already know that given an invariant set X, there could exist
some subsets of X which fail to be finitely supported. Some related examples
are presented in [24] and [26]. However, all these examples are described by using
choice principles or consequences of choice principles (like the assertion that the
set A can be non-amorphous in ZFA) in order to construct some structures which
later fail to be finitely supported. We conjecture that all the choice principles
presented in [18] are inconsistent in FSM. We did not find yet any example of a
non-finitely supported subset of an invariant set defined without using a choice
principle from [18] or a consequence of a form of choice (like the construction
of an infinite and coinfinite subset of an infinite set). Therefore, the question
regarding the validity of the following assertions naturally appears.

– If we consider the ZF set theory (or the ZFA set theory) without any choice
principle, then every subset of an invariant set is finitely supported?



– For what kind of atoms the previous question has an affirmative answer?

If we get an affirmative answer (even for a particular set of atoms), then the
mathematics developed in the ZF (or ZFA) set theory without any choice prin-
ciple would be somehow equivalent to FSM, namely we could model any infinite
structure by using its finite support.
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