
Describing Linked Data Platform Applications
with the Hydra Core Vocabulary

Nandana Mihindukulasooriya and Raúl Garćıa-Castro

Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
{nmihindu,rgarcia}@fi.upm.es

Abstract. The Linked Data Platform (LDP) W3C Recommendation
provides a standard protocol and a set of best practices for the develop-
ment of read-write Linked Data applications based on HTTP access to
Web resources that describe their state using the RDF data model. The
Hydra Core Vocabulary is an initiative to define a lightweight vocabulary
to describe hypermedia-driven Web APIs. By specifying concepts com-
monly used in Web APIs such as hypermedia controls with their explicit
semantics, the Hydra Core Vocabulary enables creation of generic API
clients. This paper discusses how LDP applications can benefit from the
Hydra Core Vocabulary to describe their APIs.
Using Hydra, an LDP application can enable generic clients by describing
the semantics of the expected and returned data. Having an API docu-
mentation will be a more efficient approach for most LDP applications
than gathering information about affordences and restrictions in each
HTTP interaction. Nevertheless, there are potential conflicts that have to
be taken into consideration such as Hydra collections vs LDP containers
or Hydra paging vs LDP paging.

1 Introduction

Linked Data principles refer to a set of best practices for publishing and inter-
linking structured data on the Web following the success of the World Wide Web
[1]. Nevertheless, similar to the early days of the Web of documents, this data is
mostly read-only static data which is bulk-updated periodically.

Read-write Linked Data applications can bring several benefits to areas such
as Enterprise Application Integration (EAI) [2]. W3C Linked Data Platform
(LDP) and Hydra are two standardization initiatives that provide foundation for
building interoperable read-write Linked Data applications.

The LDP specification1 provides a standard protocol and a set of best practices
for the development of read-write Linked Data based on HTTP access to web
resources that describe their state using the RDF data model. The standardization
of this protocol represents a step forward in the Linked Data community as it
lays the ground for the development of interoperable read-write Linked Data
applications.

1 http://www.w3.org/TR/ldp/

Services and Applications over Linked APIs and Data – SALAD2015 33

Copyright held by the paper authors



The Hydra Core Vocabulary2 is developed by the W3C Hydra community
group and it provides a lightweight vocabulary to create hypermedia-driven
Web APIs. By specifying a number of concepts commonly used in Web APIs, it
enables a server to advertise valid state transitions following REST best practices.
This paper discusses how LDP applications can benefit from Hydra to describe
their APIs.

2 Example

LDP applications use HTTP headers to advertise the information about their
affordances. For instance, when a resource is retrieved using a GET operation, the
LDP server provides an “Allow” header (See Fig 1), which lists the allowed HTTP
operations. Further, it provides an “Accept-Post” header, and an “Accept-Patch”
header that advertise the media types accepted by the respective operations.

However, when generic RDF media types such as ‘text/turtle’ or ‘applica-
tion/ld+json’ are used, the clients cannot discover the information about the
application-specific structural or value constraints. For example, an applica-
tion may require clients to use a certain vocabulary and may have cardinality
restrictions. The LDP working group deferred addressing this issue until the
W3C RDF Data Shapes3 working group provides a mechanism for defining
such constraints. As of now, one alternative is to use custom media types (e.g.,
application/vnd.myapp-concept+json) but this approach does not scale as the
client will have to be aware of large number of custom media types and also
increases coupling between the server and the client. If the application restrictions
are defined in media type semantics, a new media type has to be introduced
whenever those restrictions evolve.

A better alternative is to compliment LDP applications with a Hydra API
documentation (see an example4). This allows the application to advertise the
restrictions on the input data and possible outcomes using hydra:supportedClass,
hydra:supportedOperation, hydra:supportedProperty and other properties of hy-
dra:apiDocumentation. In such cases, the API documentation can be advertised
using both hydra:apiDocumentation and ldp:constrainedBy Link relations. Fur-
ther, the Hydra Core Vocabulary can be extended to provide information that
goes beyond the media type scope such as the headers supported and the value
restrictions on the supported headers5.

3 Potential conflicts

Even though the Hydra Core Vocabulary can be used to describe APIs of LDP
applications, there are some potential conflicts that have to be taken into account

2 http://www.hydra-cg.com/spec/latest/core/
3 http://www.w3.org/2014/data-shapes/charter
4 http://nandana.github.io/ldp-hydra/api.json
5 http://github.com/HydraCG/Specifications/issues/99

Services and Applications over Linked APIs and Data – SALAD2015 34

Copyright held by the paper authors



HTTP /1.1 200 OK

Content -Type: application/ld+json;

Link: <http :// www.w3.org/ns/ldp#Resource >; rel="type"

Allow: OPTIONS ,HEAD ,GET ,PUT ,PATCH ,DELETE

Accept -Patch: text/ldpatch

Content -Length: 250

ETag: W/ ’123456789 ’

{

"@context ": ...

"@id": "http :// example.org/product/a",

"issueTracker ": "http :// example.org/products/a/bugs"

}

Listing 1.1. Fig 1. GET response (product LDPR)

because the LDP specification and the Hydra Core Vocabulary have overlapping
features such as LDP Containers vs Hydra Collections and LDP Paging vs Hydra
Paged Collections.

3.1 LDP Container vs hydra:Collection

Organizing a set of Linked Data resources into a collection is a common use case
in many Linked Data applications. Both LDP and Hydra provide constructs
to maintain enumerations of related resources. LDP Containers act both as
enumerations of related resources and creation factories for new resources. There
are three types of LDP containers depending on the different levels of flexibility
needed by an application: Basic, Direct, and Indirect. LDP clients can use the
Prefer header6 to provide a hint to the server about the appropriate response
to a client’s needs. Hydra collections are more simple and list the resources
in the collection using the hydra:member property. However, Hydra collections
are flexible and can be extended while describing their behaviour using the
API documentation. An LDP Direct Container can simultaneously exist as a
Hydra collection by defining hydra:member as the membership property and its
behaviour be described using a Hydra API documentation.

3.2 LDP Paging vs hydra:PagedCollection

Because some resources can get large, sometimes it becomes necessary to split such
resources into pages when served to a client. Both the LDP specification and the
Hydra Core Vocabulary provide constructs needed for paging. The LDP Paging
specification7 uses the Link headers to specify that a served representation is a
page (e.g., Link: <http://www.w3.org/ns/ldp#Page>; rel=“type”). Further, it

6 http://www.ietf.org/rfc/rfc7240.txt
7 http://www.w3.org/TR/ldp-paging/

Services and Applications over Linked APIs and Data – SALAD2015 35

Copyright held by the paper authors



provides links to the “canonical” resource (e.g., Link: <http://example.org/res>;
rel=“canonical”), and the next page. Optionally LDP servers may provide links
to the first, last, and previous pages using similar Link headers.

Further, LDP Paging defines parameters that a client can use to provide hints
to a server about the representations that it can handle (e.g., max-triple-count,
max-kbyte-count, and max-member-count). When ordering is important, LDP
Paging allows servers to specify an ldp:pageSortCriteria using ldp:pageSortOrder,
ldp:pageSortPredicate, and optionally a ldp:pageSortCollation properties. In such
cases, the LDP server ensures that all the members on any single page have
the proper sort order with relation to all members on any next and previous
pages. The ldp:pageSortCriteria reuses SPARQL8 SELECTs ORDER BY clause
to define ordering.

Similarly Hydra defines a hydra:PagedCollection which may include links
to firstPage, nextPage, previousPage, and lastPage. Further, it may contain
information about total items of the resource and the number of items included in
a page. However, unlike LDP Paging, these information are included in the page
content itself rather than in Link relation headers. Having these two different
approaches makes it a bit cumbersome for the paging clients as they have to be
aware and be able to handle both approaches.

4 Conclusion

This paper discusses the possibility of using the Hydra Core Vocabulary for
describing LDP applications. The early attempts to describe LDP applications
with a Hydra API documentation shows that it is possible even though there are
some conflicts to take care of. While collections can coexist in both cases, the
paging clients need to be aware of two different approaches. Thus, there is also
an opportunity for the two W3C working groups to collaborate and learn from
each other than implementing two distinct mechanisms for a similar purpose
such as paging.

Acknowledgments: The authors are supported by the 4V (TIN2013-46238-C4-
2-R) project.

References

1. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis lectures on the semantic web: theory and technology 1(1) (February 2011)
1–136

2. Mihindukulasooriya, N., Garćıa-Castro, R., Esteban Gutiérrez, M.: Linked Data
Platform as a novel approach for Enterprise Application Integration. In: Proceedings
of the 4th International Workshop on Consuming Linked Data (COLD2013), Sydney,
Australia (October 2013)

8 http://www.w3.org/TR/sparql11-query/

Services and Applications over Linked APIs and Data – SALAD2015 36

Copyright held by the paper authors




