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Abstract. We investigate contextual categorizations, i.e., categoriza-
tions holding only with respect to a specific context, from a formal se-
mantics perspective. Contexts are modeled as sets of description logic
models for different languages, and operations on contexts are defined
which provide a new formal characterization of context interplay and es-
pecially of a form of context abstraction which we call focus. The frame-
work is compared with relevant related work and discussed from the
viewpoint of context theory issues. Finally, a simple scenario is formal-
ized.

1 Introduction

The motivation of the present research lies in problems concerning the formal
specification of normative systems for modeling multi-agent systems ([5, 17]). In
the study of normative systems, it is a widely acknowledged opinion that nor-
mative systems of high complexity, for example legal systems or institutional
ones, should be viewed not only as regulative systems, but also as systems spec-
ifying conceptualizations, or categorizations, of the domain of entities they are
supposed to regulate ([2, 15]). Besides, contexts have been often advocated to
play a central role in the specification of complex normative systems ([6, 17]).

In [12, 11] we proposed a framework for representing this categorizing feature
of normative systems via contextual terminological statements of the form “A
counts as B in context C”. In [10] the framework is put at work and discussed
from the point of view of the specification of agent-based electronic institutions.
The present work intends to pursue this research line further from the point of
view of formal context theory, focusing on the characteristics of the notion of
context which our analysis of contextual categorizations delivers, thus relating
our approach with work in that area.

The issue of context in categorization has been touched upon in [1] and the
idea of perspectival conceptualizations of a same set of entities has been discussed
in context theory literature ([4]). Here, we analyze contextual categorizations
making use of a contextual version of the semantic machinery of description logic
([3]). In particular, we are interested in providing not only a formal framework
able to represent different categorizations of the same set of entities, but also a
formal characterizations of how different contexts interact and can be related.



With respect to this, particular attention is dedicated to a notion of context
abstraction which we call focus.

The key idea of modeling contexts as sets of first-order models is borrowed
from the framework developed in [7], and tailored to the analysis of the cate-
gorization phenomenon by imposing some constraints such as: considering only
simpler models (description logic ones), and assuming a unique domain of inter-
pretation (since categorizations of a same set of entities are at issue). However,
a main difference with respect to that work resides in the characterization of
how contexts are related with each other. Context interplay is characterized
essentially via operations on sets of models instead of relations (compatibility
relations) externally imposed on the set of models in order to validate selected
bridge rules. This enables a new perspective in understanding context operations
in general, yielding a representation of contexts as “algebraic entities”. Contexts
are therefore seen as objects belonging to specific mathematical structures. This
suggests the possibility to import to contextual reasoning the standard distinc-
tion between inference rules which are domain-specific, and inference rules which
are instead logical. Bridge rules are commonly intended as domain-specific inter-
contextual inference rules: “if α1 holds in c1, then infer that α2 holds in c2”. Here
we sketch a new type of bridge rules as logical inter-contextual inference rules
based on context operations. For instance, we will see that for the notion of
context abstraction (as intended here) the following rule holds: “if α holds in
the abstraction of context c, then it holds also in c”.

The paper is organized as follows. In Section 2 we expose some preliminary
considerations and we introduce a scenario which is used along the whole paper
as an example. In Section 3 the formal framework is introduced, and in Section
4 it is compared with closely related work and some of its theoretical features
and insights are discussed. In Section 5 the framework is put at work formalizing
the example scenario. Conclusions follow in Section 6.

2 Preliminaries

We depict a simple scenario in order to clarify our domain of interest.

Example 1. (The public park scenario) In the regulation governing access to
public parks in region R it is stated that: “vehicles are not allowed within public
parks”. In this regulation no mention is made of (possible) subconcepts of the
concept vehicle, e.g., cars, bicycles, which may help in identifying an instance
of vehicle. In municipal regulations subordinated to this regional one, specific
subconcepts are instead handled. In municipality M1, the following rule holds:
“bicycles are allowed to access public parks”. In M2, it holds that: “bicycles are
not allowed to access public parks”. In both M1 and M2 it holds that: “cars are
not allowed in public parks”.

There are three relevant contexts: namely R, M1 and M2; and two languages: the
language of R (say, L0), which is constituted by the two concepts vehicle and
allowed (in public parks), and the language of M1 and M2 (say L1), expanding



L0 with the concepts car and bike. The scenario displays interesting issues at
at least two different levels. Firstly, at the intra-contextual (within contexts)
level, categorizations hold in M1 and M2 which diverge on the interpretation
of vehicle and therefore on the classification of bike: different categorizations
hold in different contexts. Secondly, at the inter-contextual (between contexts)
level, contexts M1 and M2 can be seen as specializations of R. They are expressed
on a richer language (they talk also about cars and bicycles), they inherit the
constraints holding in R (“vehicles are objects which are not allowed within
public parks”) and they specify them further (the concept of “vehicle” happens
to be restricted both in M1 and M2). This shows that contexts can be related
in precise ways. These aspects raise the two leading questions we address in
this work: 1) How to formally represent contextual categorizations of the type
depicted in the scenario? 2) How to give formal meaning to context interplay
such as the one described in the scenario?

The first question is tackled using the idea grounding the local models se-
mantics of contextual reasoning ([7]): contexts are viewed as sets of first order
models. Since we are interested in simple categorizations though, the underlying
formal semantic framework is the one of description logic ([3]). This allows us to
concentrate on simpler models than the ones considered in the general setting of
local models semantics. With respect to the second question, our line consists in
exploiting further the intuition of contexts as sets of (description logic) models
in order to provide straightforward model-theoretical definitions of operations
and relations on contexts.

In particular, we will introduce: a contextual disjunction operator and a con-
textual focus operator1. The first one yields a union of contexts: the contexts
“viruses” and “bacteria” can be unified on a language talking about microor-
ganisms generating a more general context like “viral or bacterial microorgan-
isms”. The second one, which plays a central role in our framework, yields the
context consisting of some information extracted from the context on which it is
focused: the context categorizing “crocodiles”, for instance, can be obtained via
focusing the context which categorizes all reptiles on the language talking only
about crocodiles and disregarding other reptiles. In other words, the operator
prunes the information contained in the context “reptiles” focusing only on what
is expressible in the language which talks about crocodiles and abstracting from
the rest. Finally, also maximum and minimum contexts will be introduced: these
will represent the most general, and respectively the most specific, contexts on
a language2.

As it appears from this list of examples, operators will need to be indexed
with the language where the operation they denote takes place. The point is

1 In [12, 11] the focus operation is called abstraction. We decided to modify our termi-
nology in order to avoid confusions with other approaches to notions of abstraction
like for instance [8], with which our work is put in perspective in Section 4.1.

2 In this paper, we limit the number of context operations to disjunction and focus.
More operations are formalized in [12]. It is worth noticing, in passing, that similar
operations and special contexts are discussed in [16].



that contexts always belong to a language, and so do operations on them. Be-
sides these operations, a generality relation between contexts ([14]) will also be
considered and formalized which expresses that a context is at most as general
as another one. An alternative reading of the relation, in terms of the notion
of partiality ([4]), is that a context is at most as partial as another one. These
intuitions are clarified and made more rigorous in the following section.

3 A model-theoretic framework

The content of this section is based on [12, 10, 11].

3.1 Language

The language we are defining is a formal metalanguage for talking about sets
of subsumption relations, i.e., what in description logic are called terminological
boxes (TBoxes). However, we consider only TBoxes specified on very simple
languages containing only concepts and boolean operators, i.e., languages of the
type ALC ([3]) but with an empty set of roles. The syntax of these languages is
kept simple because the use of boolean concept descriptions alone is enough to
model the scenario depicted in Example 1. It serves to illustrate the main ideas
of our approach and can be naturally extended with role constructs (like we did
in [10]) in order to model more realistic scenarios.

Language LCT (language for contextual taxonomies) is therefore built on a
family of conceptual languages {Li}0≤i≤n. Each Li contains a non-empty finite
set Ai of atomic concepts (A), i.e. the alphabet of Li, the zeroary operators ⊥
and > (bottom and top concept), the unary operator ¬ (concept negation), and
the binary operator t (concept union). Language LCT contains the alphabets of
each Li.

Besides, the alphabet of LCT contains a finite set of context identifiers c, two
families of zeroary operators {⊥i}0≤i≤n (minimum contexts) and {>i}0≤i≤n

(maximum contexts), a family of unary operators {fcsi}0≤i≤n (context focus op-
erators), a family of binary operators {gi}0≤i≤n (context disjunction operators),
one context relation symbol 4 (context c1 “is at most as general as” context c2)
and a contextual subsumption relation symbol “ . : . v .” (within context c,
concept A1 is a subconcept of concept A2 ), finally, the sentential connectives
∼ (negation) and ∧ (conjunction). Thus, the set Ξ of context constructs (ξ) is
defined through the following BNF:

ξ ::= c | ⊥i | >i | fcsi ξ | ξ1 gi ξ2.

Concepts and concept constructors are then defined in the usual way. The set Γ
of concept descriptions (γ) is defined through the following BNF:

γ ::= A | ⊥ | > | ¬γ | γ1 t γ2.

The set A of assertions (α) is then defined through the following BNF:

α ::= ξ : γ1 v γ2 | ξ1 4 ξ2 | ∼ α | α1 ∧ α2.



Technically, a contextual taxonomy in LCT is a set of subsumption relation
expressions which are contextualized with respect to the same context, e.g.:
{ξ : γ1 v γ2, ξ : γ2 v γ3}. This kind of sets of expressions are what we are
interested in to model different categorizations. Assertions of the form ξ1 4 ξ2

provide a formalization of the notion of generality introduced in Section 23.

3.2 Semantics

In order to provide a semantics for LCT languages, we proceed as follows. First
we define a class of structures which can be used to provide a formal meaning to
those languages. We characterize then the class of operations and relations on
contexts that constitute the semantic counterpart of the expressions introduced
in Section 3.1.

We recollect the definition of a description logic model for a language Li ([3]).

Definition 1. (Models for Li’s)
A model m for a language Li is a structure m = 〈∆m, Im〉 where: ∆m is the (non
empty) domain of the model; Im is a function Im : Ai −→ P(∆m), that is, an
interpretation of (atomic concepts expressions of) Li on ∆m. This interpretation
is inductively extended to Γ :

Im(>) = ∆m Im(¬γ) = ∆m\ Im(γ)
Im(⊥) = ∅ Im(γ1 t γ2) = Im(γ1) ∪ Im(γ2).

A model m for a language Li assigns a denotation to each atomic concept (for
instance the set of elements of ∆m that instantiate the concept bike) and,
accordingly, to each complex concept (for instance the set of elements of ∆m

that instantiate the concept vehicle t bike).

3.3 Models for LCT

We can now define a notion of contextual taxonomy model (ct-model) for lan-
guages LCT .

Definition 2. (ct-models)
A ct-model M is a structure M = 〈{Mi}0≤i≤n, I〉 where:

– {Mi}0≤i≤n is the family of the sets of models Mi of each language Li. That
is, ∀m ∈ Mi, m is a model for Li.

– I is a function I : c −→ P(M0) ∪ . . . ∪ P(Mn). In other words, this func-
tion associates to each atomic context identifier in c a subset of the set of
all models in some language Li: I(c) = M with M ⊆ Mi for some i s.t.
0 ≤ i ≤ n. Function I can be seen as labeling sets of models on some lan-
guage i via atomic context identifiers. Notice that I fixes, for each atomic

3 In Section 5 the following symbol will be also used “ . : . @ .” (within context
c, concept A1 is a proper subconcept of concept A2 ). It can be defined as follows:
ξ : γ1 @ γ2 =def ξ : γ1 v γ2 ∧ ∼ ξ : γ2 v γ1.



context identifier, the language on which the context denoted by the identifier
is specified. We could say that it is I itself which fixes a specific index for
each atomic context identifier c.

– ∀m′,m′′ ∈
⋃

0≤i≤n Mi, ∆m′ = ∆m′′ . That is, the domain of all models m
is unique. As we already noticed, we assume this constraint simply because
we are interested in modeling different (taxonomical) conceptualizations of a
same set of individuals.

This can be clarified by means of a simple example. Suppose the alphabet of LCT

to be the set of atomic concepts {allowed, vehicle, car, bike} and the set of
atomic context identifiers {cM1, cM2, cR}. The number of possible languages Li

given the four aforementioned concepts is obviously 24 − 1. A ct-model for this
LCT language would have as domain the set of the sets of all models for each
of the 24 − 1 Li languages, and as interpretation a function I which assigns to
each cM1, cM2 and cR a subset of an element of that set, i.e., a set of models for
one of the Li languages. We will come back to this specific language in Section
5, where we discuss the formalization of the public park scenario.

3.4 Context focus

We model focus as a specific operation on sets of models which provides the
semantic counterpart for the contextual focus operator introduced in LCT . Intu-
itively, focusing a context ξ on a language Li yields a context consisting in that
part of ξ which can be expressed in Li.

Let us first recall a notion of domain restriction (e) of a function f w.r.t. a
subset C of the domain of f . Intuitively, a domain restriction of a function f is
nothing but the function Cef having C as domain and s.t. for each element of
C, f and Cef return the same image: Cef = {〈x, f(x)〉 |x ∈ C}.

Definition 3. (Context focus operation: ei)
Let M ′ be a set of models, then: eiM ′ = {m | m = 〈∆m′ ,AieIm′〉 & m′ ∈ M ′}.

In order to clarify our semantics of focus, we provide the following analysis of
some relevant properties enabled by Definition 3.

Proposition 1. (Properties of context focus)
Operation ei is: surjective, idempotent (ei(eiM) =eiM), normal (ei∅ = ∅), ad-
ditive (ei(M1 ∪M2) =eiM1∪eiM2), monotonic (M1 ⊆ M2 ⇒eiM1 ⊆eiM2).

Proof. [Surjectivity] That ei is surjective can be proved per absurdum. First
notice that this operation is a function of the following type: ei : P(M0) ∪
. . . ∪ P(Mn) −→ P(Mi) with 1 ≤ i ≤ n. If it is not surjective then exists
M ′′ ⊆ Mi s.t. for all M ′ in the domain of ei, eiM ′ 6= M ′′. This means that
for all M ′ in the domain of ei, {m | m = 〈∆m′ ,AieIm′〉 & m′ ∈ M ′} 6= M ′′,
which is impossible because we have at least that eiM ′′ = M ′′. [Idempotency]
The proof of the equation for idempotency from Definition 3 is straightfor-
ward. [Normality] Normality follows also easily from Definition 3. [Additiv-
ity] Additivity is easily proved showing the following: ei(M1 ∪ M2) is equal



to {m | m = 〈∆m′ ,AieIm′〉 & m′ ∈ M1 ∪ M2}, which is in turn equal to
{m | m = 〈∆m′ ,AieIm′〉 & m′ ∈ M1 or m′ ∈ M2} and therefore to eiM1∪eiM2.
[Monotonicity] It follows from additivity. �

The operation of focus allows for shifting from richer to simpler languages
and it is, as we would intuitively expect: surjective (every context, even the
empty one, can be seen as the result of focusing a different richer context, in the
most trivial case, a focus of itself), idempotent (focusing on a focus yields the
same first focus), normal (focusing the empty context yields the empty context),
additive (the focus of a context obtained via joining of two contexts can be
obtained also joining the focuses of the two contexts), monotonic (if a context
is less general then another one, the focus of the first is also less general than
the focus of the second one). Notice also that operation ei yields the empty set
of models when it is applied to a context M ′ the language of which is not an
expansion of Li. This is indeed very intuitive: the context obtained via focus of
the context “dinosaurs” on the language of, say, “gourmet cuisine” should be
empty.

3.5 Operations on contexts

We are now in a position to give a semantics to context constructs as introduced
in Section 3.1. In Definition 2 atomic contexts are interpreted as sets of models
on some language Li for 0 ≤ i ≤ n: I(c) = M ∈ P(M0) ∪ . . . ∪ P(Mn). The
semantics of context constructs Ξ can be defined via inductive extension of that
definition.

Definition 4. (Semantics of context constructs)
The semantics of context constructs is defined as follows:

I(fcsi ξ) =eiI(ξ) I(⊥i) = ∅ I(>i) = Mi I(ξ1 gi ξ2) =ei(I(ξ1) ∪ I(ξ2)).

The focus operator fcsi is interpreted on the contextual focus operation intro-
duced in Definition 3, i.e., as the restriction of the interpretation of its argument
to language Li. The ⊥i context is interpreted as the empty context (the same on
each language); the >i context is interpreted as the greatest, or most general,
context on Li; the binary gi-composition of contexts is interpreted as the lowest
upper bound of the restriction of the interpretations of the two contexts on Li

4.

3.6 Assertions

Semantics for the assertions A is also based on the function I. In what follows
we denote with δ(I) the domain of an interpretation function I.

4 It can be proved that the context disjunction is definable in terms of focus and
boolean conjunction. We nevertheless chose to keep it explicit in the language be-
cause of its intuitively clear meaning and as instructive means for the exposition of
the language itself and its characteristics.



Definition 5. (Semantics of assertions: |=)
The semantics of assertions is defined as follows:

M |= ξ : γ1 v γ2 iff ∀m ∈ I(ξ) : γ1, γ2 ∈ δ(Im) and Im(γ1) ⊆ Im(γ2)
M |= ξ1 4 ξ2 iff I(ξ1) ⊆ I(ξ2)

A contextual concept subsumption relation between γ1 and γ2 holds iff concepts
γ1 and γ2 are defined in the models constituting context ξ, i.e., they receive a de-
notation in those models, and all the basic description logic models constituting
that context interpret γ1 as a subconcept of γ2. Note that this is precisely the
clause for the validity of a subsumption relation in standard description logics,
but together with the fact that the concepts involved are actually meaningful
in that context5. The 4 relation between context constructs is interpreted as a
standard subset relation: ξ1 4 ξ2 means that context denoted by ξ1 contains at
most all the models that ξ2 contains, that is to say, ξ1 is at most as general as
ξ2. Note that this relation is obviously reflexive, antisymmetric and transitive.
Clauses for boolean connectives are the obvious ones and notions of validity and
logical consequence are classically defined.

4 Discussion

4.1 Abstraction and focus: a comparison

In this section we expose some considerations relating our notion of context focus
to the model theoretic approach to abstraction proposed in [8].

In [8], abstraction is a mapping abs between two languages: the ground lan-
guage (L0), and the abstract language (L1). The function abs is total (all ex-
pressions in L0 are associated to at least one expression in L1) and surjective.
Models for abstraction functions are then defined in terms of compatibility rela-
tions ([7])6 on the basis of domain relations ([9]). Domain relations are mappings
describing the relations holding between the interpretation domain of L0 and L1:
r : ∆0 −→ ∆1. Intuitively, a domain relation states which entities of the domain
of L1 count as which entities of the domain of L0. Given a domain relation r, a
model for the abstraction abs is defined as a compatibility relation C, i.e., a set
of pairs of models of, respectively, L0 and L1. In other words, given a function
abs and a mapping r, a compatibility relation specifies which models of L1 are
abstract counterparts of which models of L0.

Let us consider the operation of context focus as a form of abstraction. There
are some essential differences between our approach and the work just summa-
rized. First of all, the relation between the ground language and the abstraction
5 The satisfaction clause of contextual subsumption relations would deserve some more

remarks. We refer readers to [12]. What we can underline here, is that this semantics
interprets contextual subsumption relations as inherently presupposing the meaning-
fulness of their terms.

6 Compatibility relations constitute the semantic counterpart of bridge rules. They
specify how meaning is preserved in shifting from one context to another.



language is, in our work, a superset relation, since focus prunes information away.
It is therefore no total mapping as in [8]. However, it is worth noticing that the
totality of the mapping is there guaranteed making use of a specific constant
EE (everything else) to which all non relevant expressions of the ground lan-
guage can be mapped. In our approach, what is not relevant is exactly what is
left aside by the language of the focus. Besides, being interested in contextual
categorization, we consider just one unique domain of interpretation for both
the ground and the abstraction languages. In some sense, we assume trivial do-
main relations r = ∆ ×∆ (see Definition 2). Secondly, while in [8] abstraction
is viewed in the first instance as a linguistic phenomenon concerning two lan-
guages, the focus operation is instead a function the domain of which is the set
of all possible contexts and the co-domain is the set of all contexts on the focus
language (ei : P(M0) ∪ . . . ∪ P(Mn) −→ P(Mi)): given a context, the function
yields its focus on a selected language.

These characteristics enable in a straightforward way a number of intuitive
properties, among which some were studied in Proposition 1. Such properties
appear to be intuitive for a notion of abstraction intended as focus, especially
in relation with the categorization domain. On the other hand, our approach is
clearly of a less general nature, and indeed, many of the aforementioned proper-
ties cannot be proved in the approach of [8]. In fact, despite these differences, it is
instructive to notice that our notion of focus can be perfectly framed within the
approach exposed in [8] and can be therefore regarded as a special case of the no-
tion of abstraction as intended in that work. Interestingly, this becomes evident
considering Definition 3 from a slightly different perspective. Function ei itself
can be viewed as specifying a compatibility relation C defined as follows. Consider
a context ξ on L0 and its abstraction fcs1ξ on the sublanguage L1 and let ∆ be
the domain of the two languages: C = {〈m,m′〉 | m ∈ I(ξ) & m′ = 〈∆,A1eIm〉}.
Thus, ei can be viewed as defining a compatibility relation constituted by the
pairs of models of the context on the ground language and their restrictions to
the abstraction language.

4.2 Contexts as algebraic entities: toward a proof-theory for LCT

In [14] the statement about the need for addressing “contexts as abstract math-
ematical entities” was set forth. Here, moving from an analysis of contextual
categorizations, we developed an account of context interplay based on model
theoretic operations. In some sense, we propose a view on contexts as “algebraic
entities”. In fact, the following proposition can be proved.

Proposition 2. (Algebra of contexts)
Consider a (global) language L and the set M of all models on that language.
Consider then a finite set of sublanguages L1, . . . ,Ln of Li. The structure

〈P(M),∪,∩,−,M, ∅, e1, . . . , en〉

is a Boolean Algebra with operators (BAO) ([13]). That is, 〈P(M),∪,∩,−,M, ∅〉
is a Boolean Algebra (BA) and e1, . . . , en are normal and additive operators.



Proof. 1) The fact that the set of all models on a language constitutes a
Boolean Algebra is obvious. 2) It is proved in Proposition 1. �

This proposition distills the type of conception of context we hold here: con-
texts are sets of models on different taxonomical languages; on each language
the set of possible contexts is structured in a BA; adding operations of focus on
a finite number of sublanguages yields a BAO.

The fact that context interplay can be algebraically described has interesting
consequences also in the understanding of bridge rules. Characterizing context
interplay independently allows to import to context reasoning the standard di-
chotomy between inference rules which are logical, i.e., modus ponens, and infer-
ence rules which are instead domain-specific, such as `α1

`α2
. In fact, bridge rules

have always been viewed as a form of inter-contextual domain-specific inference
rules which “force contexts to agree up to a certain extent” ([7]). If contexts
are structured, it becomes possible to define logical bridge rules based on that
structure. For example, we have that ei(eiM) =eiM (Proposition 1). In other
words, eiM and M are equivalent with respect to what can be expressed in lan-
guage Li. In symbols: eiM ≡i M . This guarantees the soundness of the following

logical bridge rule concerning contextual focus: `fcsi(ξ):γ1vγ2
`ξ:γ1vγ2

. That is to say, if
the focus of ξ on Li makes γ1 v γ2 valid, then it is sound to infer that ξ makes
γ1 v γ2 valid. Completely analogous rules can be devised in relation with other
context operations. The development of a proof-theory for LCT systems based
on these intuitions constitutes our main target for future research. We deem it
worth stressing, finally, that the notion of logical bridge rule is, as such, inde-
pendent of our approach. In fact, whenever contexts are seen as objects inserted
in a precisely defined mathematical structure (which should not necessarily be
a BAO), this type of rules become naturally definable.

5 The scenario revisited

The framework is now put at work formalizing Example 1.

Example 2. (The public park scenario formalized) To formalize the public
park scenario within our setting a language LCT is needed, which contains the
following atomic concepts: allowed, vehicle, car, bike. Three atomic contexts
are at issue here: the context of the main regulation R, let us call it cR; the
contexts of the municipal regulations M1 and M2, let us call them cM1 and cM2

respectively. These contexts should be interpreted on two relevant languages. A
language L0 for cR s.t. A0 = {allowed, vehicle}; and a language L1 for cM1 and
cM2 s.t. A1 = A0 ∪ {car, bike} (an abstract language concerning only vehicles
and objects allowed to get into the park, and a more concrete one concerning,
besides this, also cars and bicycles). A formalization of the scenario by means of
LCT formulas is the following one:

cM1 g0 cM2 4 cR (1) cR : vehicle v ¬allowed (2)
cM1 g1 cM2 : car @ vehicle (3) cM1 : bike @ vehicle (4)

cM2 : bike v ¬vehicle (5) cM1 g1 cM2 : bike @ vehicle t allowed (6)



Formula (1) plays a key role, stating that the two contexts cM1, cM2 are concrete
variants of context cR. It tells this by saying that the context obtained by joining
the two concrete contexts on language L0 (the language of cR) is at most as
general as context cR. As we will see in discussing the logical consequences
of this set of formulas, formula (1) makes cM1, cM2 inherit what holds in cR.
Formula (2) formalizes the abstract rule to the effect that vehicles belong to
the category of objects not allowed to access public parks. Formula (3) states
that in both contexts cars count as vehicles. Formulas (4) and (5) state the two
different conceptualizations of the concept of bicycle holding in the two concrete
contexts at issue. These formulas show where the two contextual taxonomies
diverge. Formula (6), finally, tells that bicycles either are vehicles or should be
allowed in the park. Indeed, it might be seen as a clause avoiding “cheating”
classifications such as: “bicycles count as cars”.

It is worth listing and discussing some straightforward logical consequences of
the formalization.

(1), (2) � cM1 : vehicle v ¬allowed (1), (2) � cM2 : vehicle v ¬allowed
(1), (2), (3) � cM1 : car @ ¬allowed (1), (2), (3) � cM2 : car @ ¬allowed

(1), (2), (4) � cM1 : bike @ ¬allowed (1), (2), (5), (6) � cM2 : bike v allowed

These are indeed the formulas that we would intuitively expect to hold in our
scenario. The list displays two sets of formulas grouped on the basis of the
context to which they pertain. They formalize the two categorizations at hands
in our scenario.

Let us have a closer look. The first consequence of each group results from
the generality relation expressed in (1), by means of which the content of (2)
is shown to hold also in the two concrete contexts. Notice that this reasoning
involves an instance of the logical bridge rule sketched in Section 4.2. In fact,
cM1 g0 cM2 is equal to fcs0(cM1 g1 fcs0cM2) (Definition 4 and Propostion 1) and
since fcs0(cM1 g1 cM2) : vehicle v ¬allowed (1) then cM1 g1 cM2 : vehicle v
¬allowed. In simpler words, contexts cM1 and cM2 inherit the general rule
stating that vehicles are not allowed to access public parks. Via this inherited
rule, and via (3), it is shown that, in all concrete contexts, cars are also not
allowed to access the park. As to cars then, all contexts agree. Where differences
arise is in relation with how the concept of bicycle is handled. In context cM1,
since bicycles count as vehicles (4), bicycles are also not allowed. In context cM2,
instead, bicycles constitute an allowed class because they are not considered to
be vehicles (5) and there is no bicycle which does not count as a vehicle and
which does not belong to that class of allowed objects (6).

6 Conclusions

We proposed a formal semantics framework able to represent contextual cate-
gorizations and enabling an algebraic characterization of context interplay. We
observed how this formal perspective naturally grounds the possibility of seeing



bridge rules also in a logical, besides a domain-specific, way. The development of
an appropriate proof-theory for our semantics constitutes a first aim for future
work. Additionally, we intend to investigate the complexity of the framework.

Another line we deem worth exploring consists in evaluating whether, and
to what extent, the algebraic approach to context interaction can be actually
generalized beyond the analysis of contexts in categorization by means of relaxing
some of our assumptions like especially the unique domain assumption.
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