
Compilation of BPMN-based Integration Flows

Daniel Ritter

SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf
daniel.ritter@sap.com

Abstract Enterprise Application Integration plays an integral role for
the communication between applications not only in service-oriented
architectures. However, their modeling and configuration remain under-
represented. In previous work, the integration control and data flow syntax
and semantics have been expressed in the Business Process Model and
Notation (BPMN) as a semantic model for message-based integration,
while the concrete compilation to several runtime systems was left open.
In this work we share our ideas for a general compilation approach along
the Message Redelivery on Exception (MRoE) integration capability and
basic message processing strategies, from which we derive compilation
patterns. These patterns are used to translate BPMN models via an inter-
mediate property graph model to a runtime system graph representation
that allows the generation of executable runtime code.

Keywords: Business Process Model and Notation, Graph Model, Integration
Flow, Message-based Integration, Runtime Systems

1 Introduction

Although Enterprise Application Integration (EAI) continues to receive widespread
focus by organizations, e. g., for integrating existing business with cloud applica-
tions, the modeling of integration scenarios remains vendor-specific and covers
mostly their control flow aspects [10]. Besides other requirements, suitable mod-
eling approaches should offer (P1) well-defined, standard modeling capabilities
for interoperability and ease of use, (P2) cover the integration semantics (e. g.,
message creation, routing), and (P3) executable runtime semantics. Most promi-
nent, non-commercial examples are the Enterprise Integration Pattern (EIP) icon
notation [7], the text-based Apache Camel [2] or the UML-based Guaraná DSLs,
however, none of them supports all of the requirements (P1–3).

Our Integration Flow (IFlow) modeling approach [10], which is productively
used in SAP’s Integration as a Service product, maps the common EIPs and inte-
gration semantics (P2) to the Business Process Model and Notation (BPMN) [8]
(P1), which is a “de-facto” standard for modeling business process semantics
and their runtime behavior [10] and specifies their composition to integration
and adapter processes [10,12] as well as their behavior in exceptional cases [13].
Despite some deviations (e. g., BPMN Message Flow as integration adapter,
process instantiation / termination [10]), the IFlow execution semantics (P3) can

T. S. Heinze, T. M. Prinz (Eds.): Services and their Composition, 7th Central European Workshop,
ZEUS 2015, Jena, Germany, 19-20 February 2015, Proceedings – published at http://ceur-ws.org

http://ceur-ws.org

2 Daniel Ritter

be represented close to the BPMN specification, which makes IFlows partially
executable on standard BPMN engines. Open remaining questions are the com-
pilation to standard integration systems and a general compilation model for
different kinds of integration runtime systems (e. g., databases [11]), which we
address in this paper. Similar work can be found, e. g., in the related business
process domain [9].

The contributions of this work are the collection of general compilation (model)
requirements and the concrete list of capabilities for one integration processing
aspect, i. e., message redelivery, in Sect. 2, the mapping of the most relevant
BPMN concepts for IFlows to Apache Camel constructs representing a standard
(open-source) integration system in Sect. 3, the definition of basic compilation
patterns for common message processing strategies in Sect. 4, and a graph-based
model and compilation approach explained by sample graph re-writings in Sect. 5.

2 General Requirements

The integration flows are a Domain-specific Language (DSL) in the sense of
Fowler [6], from which we derived the following, general requirements. The XML
representation of the IFlow–BPMN file shall be parsed (REQ-1: Parser) and
populated to a Semantic Model (REQ-2: Runtime independent Semantic Model),
i. e., an in-memory object model similar to the domain model. The semantic model
shall capture the control- and data flow to represent the integration process and
exception flow (REQ-3: Capture flow semantics). For instance, one important

(a) Cap-1, Cap-2, Cap-4a (b) Cap-1, Cap-3, Cap-4b

Figure 1. Message redelivery patterns in BPMN expressing capabilities Cap-1–Cap-4.

integration processing type is the Message Redelivery on Exception (MRoE;
REQ-4: Support MRoE), which is ubiquitous in integration scenarios [13]. MRoE
requires at least the following capabilities (Cap-1–4): Cap-1 redeliver message
n ∈ N times, Cap-2 process the exception, when retry limit is reached, Cap-3
handle processing on redelivery attempts, Cap-4a continue after exhaustion or
Cap-4b end the process after exhaustion of redeliveries. Figure 1(a) shows the

Compilation of BPMN-based Integration Flows 3

message redelivery in BPMN fulfilling the capabilities Cap-1, Cap-2 and Cap-4a,
and Fig. 1(b) for Cap-1, Cap-3 and Cap-4b. Eventually, the semantic model shall
allow to generate code for multiple runtime systems (REQ-5: Code generation),
which is packaged and deployed to the runtime system. We use compilation (i. e.,
code generation) over interpretation due to REQ-2.

3 From BPMN to Apache Camel in a Nutshell

In this section we sketch the idea of mapping from BPMN to runtime constructs.
The lightweight integration system Apache Camel [2] represents the runtime
system, which executes so called Camel routes (i. e., Message Channel [7] that
can be combined to integration scenarios), described either in form of a Java
DSL (used here) or several XML formats. Table 1 shows the mapping of BPMN
elements used in IFlows to the corresponding Camel DSL statements. Notably,

Table 1. Camel Java DSL equivalents for BPMN elements

BPMN element Camel DSL statement
Message Start Event / Message Receiving Activity from
Plain Activity process
Message End Event / Message Sending Activity to
Sub-Process to
Activity with Message Flows to
Event Sub-Process errorHandler
Transaction transacted
Boundary Error Event onException
Boundary Timer Event ?timeout=value

the message receiving / sending elements in BPMN represent Message Endpoints
like HTTP, SOAP, FILE in the sense of [7], which are mapped to configurable
from / to statements in Camel. BPMN activities are implementations of the
processor interface in Camel, while BPMN sub-processes can be represented as
separate Camel routes, which are addressable within the same Camel VM instance
by to with additions like to:direct or to:direct-vm. The BPMN elements like
event sub-process and boundary error event, used for the exception handling, find
their counterparts only partially in the Camel errorHandler and onException
statements, which are applicable on route or Camel context1 instance level. The
major issue is that the BPMN boundary element semantics cannot be adequately
matched by route / context-level statements, since the matching Camel try-catch
statement is incompatible with onException and errorHandler in version 2.x.
Other BPMN boundary events like timer can be mapped to the Camel timeout on
statement or route level. The specific MRoE capabilities of REQ-4 can be mapped
to Camel as shown in Table 2. While the MRoE has to be modeled in BPMN,
1 A Camel context is a collection of routes, separated from other contexts at runtime.

4 Daniel Ritter

Table 2. Camel Java DSL equivalents for capabilities.

BPMN pattern Camel DSL statement
Retry pattern Cap-1 maximumRedeliveries
Retry pattern Cap-2 process / to (after onException definition)
Retry pattern Cap-3 onRedelivery
Retry pattern Cap-4a continued(true)
Retry pattern Cap-4b continued(false) (default, can be omitted)

we use the onException statement with additions like maximumRedeliveries
for specifying the redelivery limit or continued to specify the behavior after the
limit has been reached. The Camel useOriginalMessage statement (not shown)
indicates whether the original message or the potentially modified one will be
forwarded after an exception.

4 Basic Compiler patterns

Starting with the normal processing, in this section we describe basic compiler
patterns for the different MRoE processing types (cf., REQ-4). These patterns
serve as building blocks for our compilation approach, since they enumerate the
basic processing types within an integration process (cf., [13]) and their flow
semantics (cf., REQ-3). The normal message processing (Pattern 1), depicted
in Fig. 2(a), represents the integration process with control- and data flow (cf.,
REQ-1) for an integration process. The integration operations are indicated by a
BPMN sub-process, which will become a separate Camel route with the Camel
instance internal addressing to:direct:log. If an exception occurs during the
processing of the sub-process, the process can be either stopped (cf., Cap-4b), as
shown in Fig. 2(b) (Pattern 2), a message redelivery can be started (cf., Cap-1,
Cap-2), sketched in Fig. 2(d) (Pattern 4), or the processing can be continued
(Cap-4a), denoted in Fig. 2(c) (Pattern 3).

5 Compilation Models and Runtime Synthesis

In this section, we define a graph-based, (semantic) compilation model that fulfills
REQ-1–4, explain the graph re-writing to a runtime graph representation and
the generation of executable code (cf., REQ-5) by example of compiler Pattern 4
and Apache Camel.

5.1 Compilation Models

The key for the IFlow compilation to different runtime systems is a runtime-
independent compilation model and approach (cf. REQ-2). Hence, we have
decided for a compilation approach, where the semantic model is split into a
logical (close to DSL) and a physical (runtime-near) representation. The Logical

Compilation of BPMN-based Integration Flows 5

(a) Pattern 1 : Normal (b) Pattern 2 : Exception

(c) Pattern 3 : Skip Step (d) Pattern 4 : Retry

Figure 2. Compiler Patterns 1–4: From normal processing (with BPMN Sub-Process)
over exception handling to skip step and message redelivery.

Model (LM) is defined as directed property graph (e. g., refer to [14]), where the
BPMN flow elements, data store and data object are vertices, and BPMN sequence
flow, message flow and data associations are the edges. In this LM property graph,
vertices and edges define semantic information about the represented elements,
which are populated during the parsing (cf., REQ-1). Figure 3(a) shows the LM
of the Pattern 4 BPMN model from the direct:in node of type TStartEvent
(white) to the direct:out TEndEvent (black), with the intermediate sub-process
(purple) and the attached boundary error event (red) that uses an exclusive
gateway for the message redelivery attempts that lead to another end event
(e. g., of type TErrorEventDefinition) to stop the process after exhausted delivery.
The data flow is denoted as TDataObjectReference nodes (blue). The LM is
used to optimize the actual process model independent of the runtime along
the given integration semantics (not further discussed). Then a runtime-specific
re-writing logic is applied to translate the LM to its respective Physical Runtime
Model (PRM). For instance, the PRM of an Apache Camel route is again a
directed graph, where message endpoints (from (white) / to (black)), processors
(process) and other route level statements (e. g., onException (red)) are nodes
linked by edges, the control flow. Fig. 3(b) depicts the corresponding PRM for
the discussed example. Notably, the resulting PRM for Camel does not make
the data flow explicit, but assumes an implicit data flow handling in the Camel
runtime. However, this observation helps to understand why the Camel DSL

6 Daniel Ritter

is not a (business) user facing model or LM for integration (P1), but rather a
physical runtime model.

(a) BPMN Graph (b) Camel Graph

Figure 3. Compiler Pattern 4 as Apache Camel model graph (right) from its BPMN
graph (left).

5.2 Rule-based Logic to Physical Model Re-Writing

The translation from the runtime-independent LM to the specific physical runtime
model has to be done for each runtime implementation by a system engineer.
Hence, a pluggable, rule-based graph re-writing approach is preferred. Hereby,
graph re-writing is conducted by graph node and edge traversers, which execute
all applicable, registered rules (cf., Listing 1.1). Each rule specifies a match and
an execute function. Listing 1.2 shows the implementation of the match function
for detecting a MRoE (cf. Pattern 4). If the specified condition is evaluated to
true, then the execute function for the current node is evaluated. Listing 1.3
shows the pseudo code for detecting the retry pattern: if a boundary error event
is found during the match, the node is investigated further. The exception type
becomes the name of the error event. Then, in case the leaving sequence flow
leads to a gateway, preceding the activity, the redelivery count is extracted. If the
outgoing flow leads to a succeeding gateway instead, no redeliveries are attempted
and the route continues after the exception. Finally, the gather information is
stored to the node and obsolete nodes are removed from the graph. Since the
data flow of a Camel route cannot be configured explicitly, the BPMN message
flow and data object associations are used to verify the correct behavior and
the optimization of the LM. However, let us recall the useOriginalMessage
statement from Sect. 3. With data flow information present, the case of “which
message to use” in case of continue==true can be answered and applied if the
runtime supports it.

Compilation of BPMN-based Integration Flows 7

Listing 1.1. Rewrite graph.
1 void r e w r i t e (graph)
2 ru l e 1 =
3 new detectFromEndpoints
4 // . . .
5 ruleX =
6 new detectRetryPatte rns
7 runner =
8 new ruleRunner (graph)
9 runner . run (

10 ru le1 , . . . , ruleX)

Listing 1.2. match function.
1 match (node)
2 return (node . getType ()
3 equa l s
4 " BoundaryErrorEvent ")

Listing 1.3. Detect retry patterns.
1 void execute (node)
2 except ion = node . getName ()
3 r e d e l i v e r i e s = 0
4 cont inued = fa l se
5
6 i f node . leadsToPrecGtw ()
7 r e d e l i v e r i e s =
8 node . getPrecGtw ()
9 . g e t R e d e l i v e r i e s ()

10 i f node . leadsToSuccGtw () OR
11 node . getPrecGtw ()
12 . leadsToSuccGtw ()
13 cont inued = true
14
15 node . add ([except ion ,
16 r e d e l i v e r i e s ,
17 cont inued])
18 node . getGraph ()
19 . rmObsolteNodes ()

5.3 Code Generation

The resulting PRM contains all necessary information for the code generation.
Listings 1.4 and 1.5 show the generated code for the compiler patterns Pattern
3 and Pattern 4 for comparison. The main difference between the two patterns
lies in the behavior after an exception occured: Pattern 3 continues with the
processing (Listing 1.4, line 3), while Pattern 4 starts with two message redelivery
attempts (Listing 1.5, line 2, 3) and stops the execution through handled(false),
which ends the processing and throws the previously caught exception.

Listing 1.4. Camel DSL for Pattern 3
1 from (" d i r e c t : in ")
2 . onException (Exception . class)
3 . cont inued (true)
4 . end ()
5 . to (" d i r e c t : l og ")
6 . onException (Exception . class)
7 . handled (true)
8 . end ()
9 . to (" d i r e c t : out ") ;

Listing 1.5. Camel DSL for Pattern 4
1 from (" d i r e c t : in ")
2 . onException (Exception . class)
3 . maximumRedeliveries (2)
4 . end ()
5 . to (" d i r e c t : l og ")
6 . onException (Exception . class)
7 . handled (fa l se)
8 . end ()
9 . to (" d i r e c t : out ") ;

8 Daniel Ritter

6 Conclusion and Outlook

In this work we have collected basic requirements (cf., REQ-1–5) for the com-
pilation of BPMN-based integration flows to integration runtime systems by
example of Apache Camel. We sketched our idea for a runtime-independent,
logical compilation model, identified compilation patterns for the case of message
redelivery on exception and discussed the runtime-dependent re-writing to the
physical runtime model with code generation. Our approach is comparable to
the transformation from process model (i. e., IFlow), over executable workflow
(i. e., Camel DSL) to IT infrastructure in Appel et al. [3] and the re-writes for
security policies and compliance rules on µBPMN in Accorsi [1]. We decided for
a “two-step” approach due to required compilation to different runtime systems
(from one logical model) and separate optimizations on logical / physical level.

Future work will consider the optimization of the logical model along the
integration semantics and the application of the compilation approach to other
runtime systems. We will check the transformation of our logical model to colored
petri nets for checking middleware designs for enterprise integration, e. g., Fahland
et al. [5], and are highly interested in collaboration partners for the formalization
of integration runtime systems, e. g., as in Dijkman et al. [4].

Acknowledgments Thanks go to Jan Sosulski for his contribution to the
compiler implementation.

References

1. Accorsi, R.: On process rewriting for business process security. In: Proceedings of
the 3rd International Symposium on Data-driven Process Discovery and Analysis,
Riva del Garda, Italy, August 30, 2013. pp. 111–126 (2013)

2. Anstey, J., Zbarcea, H.: Camel in Action. Manning (2011)
3. Appel, S., Frischbier, S., Freudenreich, T., Buchmann, A.P.: Event stream processing

units in business processes. In: Business Process Management - 11th International
Conference, BPM 2013, Beijing, China, August 26-30, 2013. Proceedings. pp. 187–
202 (2013)

4. Dijkman, R.M., Gorp, P.V.: BPMN 2.0 execution semantics formalized as graph
rewrite rules. In: Business Process Modeling Notation - Second International Work-
shop, BPMN 2010, Potsdam, Germany, October 13-14, 2010. Proceedings. pp. 16–30
(2010)

5. Fahland, D., Gierds, C.: Analyzing and completing middleware designs for enterprise
integration using coloured petri nets. In: CAiSE. pp. 400–416 (2013)

6. Fowler, M.: Domain Specific Languages. Addison-Wesley Professional, 1st edn.
(2010)

7. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2003)

8. (OMG), O.M.G.: Business process model and notation (bpmn) version 2.0. Tech.
rep. (jan 2011)

Compilation of BPMN-based Integration Flows 9

9. Prinz, T.M., Spieß, N., Amme, W.: A first step towards a compiler for business
processes. In: Compiler Construction - 23rd International Conference, CC 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings. pp. 238–243 (2014)

10. Ritter, D.: Experiences with business process model and notation for modeling
integration patterns. In: Modelling Foundations and Applications - 10th European
Conference, ECMFA 2014, York, UK, July 21-25, 2014. Proceedings. pp. 254–266
(2014)

11. Ritter, D.: What about database-centric enterprise application integration? In: Pro-
ceedings of the 6th Central-European Workshop on Services and their Composition,
ZEUS 2014, Potsdam, Germany, February 20-21, 2014. pp. 73–76 (2014)

12. Ritter, D., Holzleitner, M.: Integration adapter modeling. In: Advanced Information
Systems Engineering - 27th International Conference, CAiSE 2015 (accepted),
Stockholm, Sweden, June 8-12, 2015. Proceedings (2015)

13. Ritter, D., Sosulski, J.: Modeling exception flows in integration systems. In: 18th
IEEE International Enterprise Distributed Object Computing Conference, EDOC
2014, Ulm, Germany, September 1-5, 2014. pp. 12–21 (2014)

14. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of the
American Society for Information Science and Technology 36(6), 35–41 (2010)

	Compilation of BPMN-based Integration Flows
	Introduction
	General Requirements
	From BPMN to Apache Camel in a Nutshell
	Basic Compiler patterns
	Compilation Models and Runtime Synthesis
	Conclusion and Outlook

