Efficient Attribute Based Access Control for
RESTful Services

Marc Hiiffmeyer and Ulf Schreier

Furtwangen University of Applied Sciences, Germany

Abstract. The popularity of REST grows more and more and so does
the need for fine-grained access control for RESTful services. Attribute
Based Access Control (ABAC) is a very generic concept that covers mul-
tiple different access control mechanism. XACML is an implementation
of ABAC based on XML and is established as a standard mechanism. Its
flexibility opens the opportunity to specify detailed security policies. But
on the other hand it has some drawbacks regarding maintenance and per-
formance when the complexity of security policies grows. Long processing
times for authorization requests are the consequence in environments
that require fine-grained access control. We describe how to design a
security policy in a resource oriented environment so that its drawbacks
are minimized. The results are faster processing times for access requests
and an easy to manage concept for security policies for RESTful services.

1 Introduction

Many of today’s information systems and applications manage huge amounts of
users and data. Often users share their own content (e.g. photos, documents)
within these applications. A substantial need to control who may access this
content is the consequence. In an environment where a lot of users share a lot
of data and specify multiple access rights, a flexible, high-performance access
control mechanism is required. Because older access control mechanisms do not
fit the need for flexibility, research is required how to implement newer and
flexible access control mechanism so that high performance can be guaranteed
even in complex environments. Processing times in general should be kept small
to provide a excellent user experience and therefore processing times for access
requests in particular must be kept small.

Attribute Based Access Control (ABAC) may be the next important concept
in access control [I1]. The main idea behind it is that any property of an entity
can be used to determine authorization decisions. The eXtensible Access Control
Markup Language (XACML) is a standard that describes how to implement
attribute based access control [9]. Tt consists of three parts: an architecture
describes multiple components and their responsibilities in the authorization
context, a declaration language can be used to specify access control policies
based on XML and a request language to formulate access requests and
responses. This work focuses on the declaration language. There are three core
elements in the structure of a XACML document: Rules describe if an access

T. S. Heinze, T. M. Prinz (Eds.): Services and their Composition, 7th Central European Workshop,
ZEUS 2015, Jena, Germany, 19-20 February 2015, Proceedings — published at http://ceur-ws.org

http://ceur-ws.org

56 Marc Hiiffmeyer and Ulf Schreier

request is permitted or denied. Policies group different rules together and policy
sets group different policies together. Policy sets may contain also other policy
sets enforcing a hierarchical composition. Each of these elements has a target
that describes if the element can be applied to a request by defining a condition.
A single access request may be applied to multiple policy sets, policies and rules.
In that case those rules may have different effects (Permit or Deny) and a
winning rule must be found (based on the structure of the policy). XACML uses
combining algorithms for that purpose. An example for a combining algorithm
is PermitOverrides. It states that an applicable rule with the effect Permit will
always win against a rule with the effect Deny. A full list of algorithms can be
found in [9)].

Listing 1 shows a simplified version of a XACML policy. For simplification
some required information like data types or matching methods (e.g. equals,
greater than) are removed. The policy contains two rules and is applicable to a
HTTP GET request on a resource /users/1/photos. The first rule grants access
to a user identified by an URI /users/2 and the second rule prohibits access for
any subject. As one can see fine-grained policies may easily become very complex
and performance and maintenance need to be optimized.

<Policy CombAlg="FirstApplicable">
<Target>
<Resource designator="URI" value="/users/1/photos" />
<Action designator="HITTP-method" value="GET' />
</Target>
<Rule Effect="Permit">
<Target>
<Subject designator="URI" value="/users /2" />
</Target>
</Rule>
<Rule Effect="Deny"/>
</Policy>
Listing 1. Simplified XACML granting GET access for one user to the photos of
another user

2 Related work

XACML computes access decisions at runtime and must evaluate multiple at-
tributes of different categories to find a decision. Therefore the average computa-
tion time for an access request increases with growing policy complexity. The
problem of computation at runtime is related to the architecture resp. the general
concept of XACML. A graph based approach described in [I0] tries to address
performance issues by changing the processing algorithms. Two different trees are
used to evaluate an access request. The first tree identifies applicable rules. The
second tree holds the original structure of the security policy and identifies the
winning rule. Another approach uses numericalization and normalization to opti-
mize performance [4/5]. Numericalization converts every attribute to an integer

Efficient Attribute Based Access Control for RESTful Services 57

value. Normalization converts every combining algorithm into FirstApplicable. In
[7] processing time is optimized by reordering policy sets and policies based on
statistics of past results. A similar approach to ours also reorders policies based
on cost functions but focuses on categories rather than attributes [8]. Also they
assume that a rule always is a 4-tuple of a subject, an action, a resource and
an effect. Other categories and combinations are not allowed. Declarative autho-
rization for RESTful services is handled in [3]. Attributes are not considered in
this approach. In [I3] an architecture is described to secure web services (SOAP)
based on attributes.

A second major problem of XACML is the modification of policies. XACML
does not define how to handle changes to a security policy. The most common
way is manually inserting new policy sets, policies and rules supported by a
graphical user interface like in [6]. But manually modifying complex policies is
very error prone because multiple changes in different branches of the structure
may be required. A lot of works exists that addresses the manipulation of XML
documents [IIT2]. But in this work the security context of XACML is not taken
into account. Therefore changes of the security policy are hard to handle.

3 Efficient policy design

An efficient security policy design should enable fast request processing and should
be easy to maintain. The security policy described in XACML is a unidirectional
graph without cycles. To enable fast request processing we need to consider the
costs of processing an access request in a single node of that graph. We define
the cost function as:

c:NxQ—Q

where N is the set of nodes in the security graph, Q is the set of possible access
requests and Q is the set of rational numbers. The set of child nodes of a node k
can be expressed as:

Sy :={s € N | 3p € path(k, s) & length(p) = 1}

Let a be the combining algorithm of a node k and let A be the set of combining
algorithms. Let € be an effect within the set of effects E. Then one has:

VYay, € A Je € E : compute(s;) = € = ay, stops; s; € Sy,

That means that for any given combining algorithm there are one or more effects
that cause the algorithm to stop if one of its child nodes computes to one of
these effects. For example a node may half two child nodes and the combining
algorithm PermitOverrides. If the first child node computes to Permit the effect
of the node will also be Permit no matter what the result of the second child
node may be. Therefore the combining algorithm stops and should not process
the second child node. We define a function ~ that describes this behavior:

1 ifVs e {s1,...,;8-1}: ai does not stop
0 if3se{sy,....,si_1}: ar does stop

(g, 8:) = {

58 Marc Hiiffmeyer and Ulf Schreier

With g € Q and i € {1,...,| Sk |}. The cost function ¢ then can be expressed as:

[Sk|
cr(q) = ti(q) + Z (4, 81) * ¢s,(q)

The function tx(q) describes if a target matches the request q. Therefore it is
mainly dependent on how many attributes are specified in the target. Hence, the
costs for processing a node depends on the number of attributes in the target, the
sum of child nodes and the combining algorithm resp. the order of the children.
The following sections describe how to minimize the costs of processing access
requests and decrease maintenance efforts for each of the listed factors.

3.1 Target design (minimize tj)

Attributes should be added carefully to targets to keep the target small and
thus reduce the number of comparisons needed to be executed in the worst
case. For example a security policy may contain two conditions. Each condition
specifies a subject attr. (URI = /users/userid) and a resource attr. (URI =
Jusers/userid /photos). An intuitive way would be handling each condition in a
single target of a rule as indicated in Fig. 1. (a). Processing a request with a
subject attr. (URI = /users/2) and a resource attr. (URI = /users/3/photos)
requires four attribute comparisons in the worst case because XACML does not
specify an order in which attributes must be checked. If a single condition is
splitted into multiple targets of rules, policies and policy sets as indicated in Fig.
1. (b) a max of three comparisons is required. This optimization has a benefit for
targets that are not applicable to a request while the cost for an applicable rule
remains unchanged. Variations in processing times are reduced to a minimum.
The maintenance benefit is that it becomes easier to add new conditions that
affect a subject with attr. (URI = /users/userid) but not a resource with attr.
(URI = /users/userid/photos).

/\\

Subject Subject | Subject | Subject |
(URI = /jusers/2) (URI = /fusers/4) (URI = /jusers/2) {(URI = /fusers/4)
Besource (URI = Resource (URI = Resource (URI = Resource (URI =
fusers/1/photos) /users/3/photos) Jusers/1/photos) Jusers/3/photos)

(a) Max. of 4 comparisons (b) Max. of 3 comparisons

Fig. 1. Target design

Efficient Attribute Based Access Control for RESTful Services 59

3.2 Number of sub nodes (minimize lei’“ll Cs;)

It is obvious that the overall processing time for few nodes is less than the overall
processing time for many nodes. Hence, wherever possible targets should be
grouped together. That means an efficient policy design must have its branching
points at the lowest possible position. Besides the performance gain maintenance
efforts for the resource with attr. (URI = /users/1/photos) are reduced because
it does not occur twice (cp. Fig. 2.).

| Subject Action Resource (URI =

(URL = fusers/2) (HTTP-method = GET) Jjusers/1/photos)

Resource (URI = Resource (URI = Subject Action

Jusers/1/photos) fusers/1/photos) {(URI = /fusers/2) (HTTP-method = GET)
(a) Upper branching point (b) Lower branching point

Fig. 2. Number of sub nodes

3.3 Combining algorithm and node order (minimize ~)

The selection of the combining algorithm and the child node order also has an
effect on performance. Processing those rules first that override the effects of
others leads to shorter average processing times. If an overriding rule matches, no
other rule needs to be checked. And if no overriding rule matches, the combining
algorithm can stop after the first match of the non-overriding rules because
they cannot be overridden. This is the basic idea of normalization [5]. Fig. 3
shows the effect of normalization. A given policy with the combining algorithm
DenyOwverrides and two rules as indicated in Fig. 3(a) is transformed so that is has
a combing algorithm of FirstApplicable and a node order that gives performance
improvements. In Fig. 3 (a) both Rule A and Rule B must be processed to find a
decision. But for the policy in Fig. 3 (b) it might be enough to process Rule B.

‘ DenyOverrides ‘ ‘ FirstApplicable
‘ Rule A: Permit ‘ ‘ Rule B: Deny ‘ ‘ Rule B: Deny ‘ ‘ Rule A: Permit ‘
(a) Not normalized (b) Normalized

Fig. 3. Normalization

60 Marc Hiiffmeyer and Ulf Schreier

4 XACML for RESTful Services

One core concept of REST is resource orientation [2]. Therefore we also want to
build the security policy based on resources. This is a reasonable technique in a
resource oriented architecture and offers the benefit of very fast identification of
authorization rules that must be applied during the evaluation process. Therefore
targets of policy sets must only contain one resource attribute: the URI. With
this constraint it is not necessary to consider combining algorithms since multiple
matches of different policy sets or policies are not possible. That means that
FirstApplicable can be used in every policy set to improve performance. In
consequence the processing time for access requests is nearly constant even if
new resource paths are added or the security policy is extended.

Another important concept of REST is an uniform interface. Therefore we
consider that the set of allowed methods is limited to the HTTP methods. We
use these methods as possible actions in a security policy. For each action a new
policy should be used right under the policy set for the requested resource. Within
these policies rules may be specified that describe under which circumstances
the resource may be accessed.

Figure 4 shows an efficient security policy for a RESTful application that
follows the optimizations described in the previous sections.

Resource)

(URI = /users) D Policy Set
Resource

(URI = /users/1)

Resource (URI = Action Policy
/users/1/photos) (ETTP-method = GET) i

Action Action
HTTP-method = GET HTTP-method = PUT

Subject Subject Rule
{URI = /users/1) (URI = /users/1)

Fig. 4. An example of efficient XACML for RESTful services

5 Results

We performed some first, simple and fragmentary tests on different security
policies designed to protect a RESTful service. A first set of policies contains 10
conditions on the URI attribute of 10 resources. For each of the main HTTP
methods (GET, POST, PUT, DELETE) we assigned a single policy with one
rule, resulting in 40 rules per policy. A second and third set have 100 resp. 1000
more resources resulting in 440 resp. 4440 rules per policy. Each set contains 4
policies: a non-optimized policy (flat structure with a lot of rules in the same
policy that follows the pattern of Fig. 1 (a)), a normalized policy with the

Efficient Attribute Based Access Control for RESTful Services 61

optimizations described in section 3.3, a structure optimized policy containing
the optimizations described in section 3.1 and section 3.2 and finally a policy with
all of the optimizations described in section 3 that follows the guideline described
in section 4. All policies within a single set are functionally equivalent. We used
Balana as XACML engine (https://github.com/wso2/balana). The measurement
was executed on a dual core system (Intel i7-3250M, 2,90GHz) with 8GB working
memory reserved for the tests. Each test was executed 20 times.

Figure 5 shows the average processing time for an access request. As one can see
the processing times for the set with the smallest policies only differ insignificantly.
But with growing policy complexity the difference becomes considerably. While
the average processing time for the optimized policy remains approximately
constant at about 15ms, the average processing time for the non-optimized
policies increases up to 304ms. The main contribution to the performance benefit
of the optimized policy is delivered by the structure changes as indicated by Fig.
5. Normalization only has a significant impact for larger policies with many rules
and without an optimized structure and causes great variations in processing
time of up to 200% of the average processing time. The optimized, structure
optimized and non-optimized policies have a variation in processing time of about
25%.

300 |- 1

— 200 i
)

100 | 1

0 “E“Hm n n ,THH\ " " QHH

10? 10° 10*
number of rules

-@- Opt. XACML =§¢= Non-Opt. XACML
Norm. XACML Opt. Struct. XACML

Fig. 5. Average processing time

6 Future work

With every target on a path to a rule access conditions become more restrictive in
XACML. This can be a problem for RESTful services. We may have a resource user

62 Marc Hiiffmeyer and Ulf Schreier

list http://example.org/users and access to this resource is granted only to some
administrators but not to single users. But a resource http://example.org/users/1
may be accessed by administrators and user 1. Since user 1 is a sub resource of the
user list, the policy or policy set that handles access to this sub resource should
be placed below the policy set that handles access to the user list. In XACML you
cannot extend a condition at sub policy level. In consequence the same condition
must be repeated multiple times which causes the policy complexity to grow
unnecessarily and increases the maintenance efforts.

To handle the maintenance, performance and restriction problems described
in the previous sections, we are developing an alternative language similar to
XACML. The language targets RESTful services and should guarantuee that only
optimized security policies can be written. A draft version already exists and a
prototype is implemented. First results show slightly improved performance even
to optimized XACML policies. We want to address the maintenance problems
with a structured query language that makes it easy to handle changes in a
resource oriented context.

References

1. Cubera, D., Epstein, A.: Fast Difference and Update of XML Documents. XTech
99 (1999)

2. Fielding, T.R.: Architectural Styles and the Design of Network-based Software
Architectures. University of California, Irvine (2000)

3. Graf, S., Zholudev, V., Lewandowski, L., Waldvogel, M.: Hecate, Managing Autho-
rization with RESTful XML. WS-REST ’11 (2011)

4. Liu, A., Chen, F., Hwang, J., Xie, T.: Xengine: A Fast and Scalable XACML Policy
Evaluation Engines. SIGMETRICS ’08 (2008)

5. Liu, A., Chen, F., Hwang, J., Xie, T.: Designing Fast and Scalable XACML Policy
Evaluation Engines. IEEE Transactions on Compters, Vol. 60 (2011)

6. Lorch, M., Kafura, D., Shah, S.: An XACML-based Policy Management and
Authorization Service for Globus Resources. GRID 03 (2003)

7. Marouf, F., Shehab, M., Squicciarini, A., Sundareswaran, S.: Adaptive Reordering
and Clustering-Based Framework for Efficient XACML Policy Evaluation. IEEE
Transactions on Services Computing, Vol 4 (2010)

8. Miseldine, P.: Automated XACML Policy Reconfiguration for Evaluation Optimisa-
tion. SESS ’08 (2008)

9. Organization for the Advancement of Structured Information Standard: eXtensible
Access Control Markup Language (XACML) Version 3.0. OASIS Standard (2013)

10. Ros, S., Lischka, M., Marmol, F.: Graph-Based XACML Evaluation. SACMAT ’12
(2012)

11. Sandhu, D.: The authorization leap from rights to attributes: maturation or chaos?
SACMAT ’12 (2012)

12. Wang, Y., DeWitt, D., Cai, J.: X-diff: An Effective Change Detection Algorithm
for XML Documents. ICDE ’03 (2003)

13. Yuan, E., Tong, J.: Attributed based access control (ABAC) for Web services.
ICWS 2005 IEEE International Conference on Web Services (2005)

	Efficient Attribute Based Access Control for RESTful Services
	Introduction
	Related work
	Efficient policy design
	XACML for RESTful Services
	Results
	Future work

