
How will we interact with the #WebWeWant?

Full paper published at the 5th International USEWOD Workshop: Using

the Web in the Age of Data, May 31st, 2015, Portoroz, Slovenia.

Initial Usage Analysis of DBpedia's Triple Pattern
Fragments

Ruben Verborgh, Erik Mannens, and Rik Van de Walle

Ghent University – iMinds, Belgium

Abstract

Queryable Linked Data is available through several interfaces, including SPARQL endpoints

and Linked Data documents. Recently, the popular DBpedia dataset was made available

through a Triple Pattern Fragments interface, which proposes to improve query availability

by dividing query execution between clients and servers. In this paper, we present an

initial usage analysis of this interface so far. In 4 months time, the server had an

availability of 99.999%, handling 4,455,813 requests, more than a quarter of which were

served from cache. These numbers provide promising evidence that Triple Pattern

Fragments are a viable strategy for live applications on top of public queryable datasets.

Keywords: Linked Data, Linked Data Fragments

Introduction

DBpedia [2] is currently the most well-known dataset within the Semantic Web

community. It consists of hundreds of millions of RDF triples automatically generated from

the free Wikipedia encyclopedia. Such large Linked Datasets come with important

challenges, most prominently: how do we provide scalable queryable access to them? The

traditional answer has been to set up a public SPARQL endpoint [4], but such endpoints

suffer from low availability rates [3]. Yet reliable access is a prerequisite to build

applications on top of a queryable DBpedia interface.

In October 2014, the DBpedia community opened a Triple Pattern Fragments interface

[10] maintained by the authors of this paper. This interface is designed to allow high

availability on the server side, while still enabling live querying on the client side. Queries

take more time and bandwidth, because they are mostly executed by the client, but the

timings are consistent so that building applications on top of a public DBpedia interface

becomes realistic.

In this paper, we discuss the analysis of 4 months of usage data of the English DBpedia

Triple Pattern Fragments interface, as well as availability data measured by an external

party (Pingdom).

https://twitter.com/hashtag/webwewant
http://usewod.org/usewod2015.html
http://dbpedia.org/
http://www.wikipedia.org/
http://fragments.dbpedia.org/2014/en
https://www.pingdom.com/

Related work

In this section, we will briefly discuss existing Web APIs to Linked Datasets. Linked Data

Fragments (LDF, [10]) were introduced as a uniform view to capture the characteristics of

any Linked Data Web API. The common aspect of all interfaces is that, in one way or

another, they offer specific parts of a dataset. Each part is referred to as a Linked Data

Fragment, consisting of:

data the triples of the dataset that match an interface-specific selector;

metadata triples to describe the fragment itself;

controls hyperlinks and/or hypermedia forms that lead to other fragments.

File-based datasets

So-called data dumps are conceptually the most simple APIs: the data consists of all

triples in the dataset. They are combined into a (usually compressed) archive and

published at a single URL. Sometimes the archive contains metadata, but controls—with

the possible exception of HTTP URIs in RDF triples—are not present. Query execution is

the clients' responsibility.

Linked Data documents

Datasets published through the Linked Data principles [1] are available as individual

documents per subject, which can be retrieved by performing an HTTP GET request on the

subject's URL (“dereferencing”). Each such document is a fragment, in which the data

consists of triples related to that subject, the metadata set might contain properties such

as author and publication data, and the controls consist of links to other Linked Data

documents. Querying is possible through strategies such as link traversal [7].

SPARQL endpoints

SPARQL endpoints [4] allow executing SPARQL queries [6] on a dataset through HTTP.

A SPARQL fragment's data consists of triples matching the query (assuming the CONSTRUCT

form); the metadata and control sets are empty. Query execution is performed entirely by

the server, and because each client can ask highly individualized requests, the reusability

of fragments is low. This, combined with complexity of SPARQL query execution, likely

contributes to the low availability of public SPARQL endpoints [3].

Triple Pattern Fragments

The Triple Pattern Fragments API [10] interface has been designed to minimize server-

side processing, while at the same time enabling efficient live querying on the client side.

A fragment's data consists of all triples that match a specific triple pattern, and can

possibly be paged. Each fragment page mentions the estimated total number of matches

to allow for query planning, and contains hypermedia controls to find all other Triple

Pattern Fragments of the same dataset. Since requests are less individualized, fragments

are more likely to be reused across clients, which increases the benefits of caching [10].

Deployment and analysis setup

Server specifications

The official DBpedia Triple Pattern Fragments interface is hosted on a virtual machine from

the Amazon Elastic Compute Cloud (EC2). We opted for an c3.2xlarge machine

configuration, which has the following characteristics:

virtual CPUs: 8

memory: 15GB

hard disk space: 2 × 80GB

price: $ 0.478 per hour (dedicated instance in Ireland)

We would like to stress that the above specifications are actually too high for our purpose;

as a result, the server is currently mostly idle. The issue is, however, that Amazon does

not allow customization of machines. While lighter configurations exist, they come with

lower disk throughput and/or bandwidth.

The machine runs the following software:

operating system: Ubuntu Linux 14.04 LTS

Web server: nginx 1.4.6

application server: Linked Data Fragments server 1.1.4 on top of Node.js

0.10.36

The nginx server acts as a reverse proxy and cache. All requests first reach nginx, which

checks whether a response is present in the cache based on a unique identifier consisting

of the request URI and the value of the HTTP Accept header. If so, it is sent to the client; if

not, the request is forwarded to the application server. The application server then parses

the request, and retrieves the DBpedia data from an HDT file [5] that is loaded into

memory. It is then serialized in a format according to the Accept header, sent to the client,

and stored in the cache.

Analysis setup

All incoming requests are logged line by line in a file by the nginx Web server. Note that

logging does not happen on the application server, as this server only receives those

requests that are not handled by the cache. Each log line contains the following fields:

 client IP address

 request URI

 value of the Accept header

 value of the Referer header

 value of the User-Agent header

 local server time

 response size

 response cache status

 response HTTP status code

The resulting access logs are hosted publicly.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/instance-types/#c3
http://releases.ubuntu.com/14.04/
http://nginx.org/
https://github.com/LinkedDataFragments/Server.js
http://nodejs.org/
http://nodejs.org/
http://tools.ietf.org/html/rfc7230#section-5.5
http://tools.ietf.org/html/rfc7231#section-5.3.2
http://fragments.dbpedia.org/logs/

Additionally, the availability of the HTTP interface is monitored by the external third-party

service Pingdom, because public availability can of course not reliably be monitored by the

Web server itself. Pingdom performs an HTTP request once every minute for the ?s

rdf:type ?o fragment and notes whether a response was successfully received. If no

timely responses arrives, the server is assumed to be unavailable. The results are

available in an online interface.

Usage analysis

In this section, we will search an answer to these basic usage questions:

 How many requests were issued?

 Which clients made these requests?

 What types of content were those clients interested in?

 Where did the requests originate from?

 What kind of triple patterns were requested?

 How effective has the cache been?

 What period of time was the server (un-)available?

We focused on requests with an HTTP 200 OK response only, in order to remove (very

minimal) noise from invalid requests against the interface.

Number of requests

The server logs reveal a total of 4,455,813 requests for Triple Pattern Fragments of the

English DBpedia version (URLs starting with http://fragments.dbpedia.org/2014/en)

during the four considered months, or an average of 1,113,953 requests per month.

November 2014 was responsible for twice the average monthly traffic. The majority of this

initial traffic originates from a machine within Ghent University (recognizable by the

157.193.0.0/16 IP address block), which was used to stress test the new server and

measure the execution times of various simple and complex queries. In the other months,

the traffic was much more varied.

Figure 1: November saw the highest usage of fragments, mostly due to stress testing by

us. The average is about a million requests per month.

https://www.pingdom.com/
http://fragments.dbpedia.org/2014/en?subject=&predicate=http%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-ns%23type&object=
http://fragments.dbpedia.org/2014/en?subject=&predicate=http%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-ns%23type&object=
http://stats.pingdom.com/tpb64v451f9p/1382520
http://fragments.dbpedia.org/2014/en

User agents

Figure 2: The dedicated Triple Pattern Fragments client consumed most fragments,
followed by crawlers of search engines.

By extracting and parsing the value of the HTTP User-Agent header sent by clients, we

were able to see what kinds of clients were interested in DBpedia's Triple Pattern

Fragments. The vast majority of requests (70.1%) were performed by the Node.js Triple

Pattern Fragments client, which executes SPARQL queries by requesting triple patterns.

This client can either be used in a standalone manner, or as a library for other

applications. We cannot distinguish between access made by the standalone client and

access made by other software packages that use the client as a library. To mitigate this

in the future, we should suggest that such other software packages use their own user

agent identifier.

The second and third most active clients were crawlers from the search engines Google

and Baidu respectively. This is especially remarkable because it contrasts with SPARQL

endpoints, which belong to the so-called “deep Web” [8]: in order to access data, a user

must write a SPARQL query in an HTML form. The only SPARQL endpoint resources that

are accessible on the Web are SPARQL queries that are explicitly linked from another page

(such as this one). While the Triple Pattern Fragments specification only demands the

presence of a hypermedia form (which would thus also hide fragments in the deep Web),

the server implementation explicitly links to relevant fragments. For instance, the subjects

born in Slovenia fragment links to fragments for the birthplace predicate, Slovenia, and all

individual subjects born in Slovenia. This allows people and crawlers to browse the

interface similar to how Linked Data documents are navigated. An added value of Triple

Pattern Fragments is that all resources can be followed within the interface, not only those

resources that share the URI space of the current document (as is the cases with Linked

Data documents).

The statistics also reveal browser usage, mainly through the Chrome browser. The Accept

header tells us that, out of 218,004 requests by various Chrome versions, 216,828 were

performed by the in-browser version of the Triple Pattern Fragments client during the

execution of SPARQL queries; 782 requests consist of HTML pages viewed by humans.

https://github.com/LinkedDataFragments/Client.js
https://github.com/LinkedDataFragments/Client.js
https://support.google.com/webmasters/answer/182072
http://baidu.com/search/spider_english.html
http://dbpedia.org/sparql?query=SELECT+DISTINCT+%3Ftype+WHERE+%7B+%3Fx+a+%3Ftype+%7D+LIMIT+100
https://github.com/LinkedDataFragments/Server.js
http://fragments.dbpedia.org/2014/en?subject=&predicate=http%3A%2F%2Fdbpedia.org%2Fontology%2FbirthPlace&object=http%3A%2F%2Fdbpedia.org%2Fresource%2FSlovenia
http://fragments.dbpedia.org/2014/en?subject=&predicate=http%3A%2F%2Fdbpedia.org%2Fontology%2FbirthPlace&object=http%3A%2F%2Fdbpedia.org%2Fresource%2FSlovenia
http://fragments.dbpedia.org/2014/en?predicate=http%3A%2F%2Fdbpedia.org%2Fontology%2FbirthPlace
http://fragments.dbpedia.org/2014/en?object=http%3A%2F%2Fdbpedia.org%2Fresource%2FSlovenia

Note the 172,785 requests performed by the Pingdom bot to monitor the availability of the

interface. Not shown in the graph are 53,848 requests from Apache-HttpAsyncClient,

which likely originate from the early-stage Java Triple Pattern Fragments client. Finally,

the Perl client deserves a honorable mention with 19,287 requests.

Requested content types

Figure 3: Turtle was the most popular content type, but will likely be surpassed by TriG.
Browsers and some crawlers prefer HTML.

The Triple Pattern Fragments interface exposes the same fragments through the same

URLs, regardless of content type. This is achieved through HTTP content negotiation. For

instance, the fragment “subjects born in Slovenia” has the URL http://fragments.

dbpedia.org/2014/en?predicate=http%3A%2F%2Fdbpedia.org%2Fontology%2FbirthPlace

&object=http%3A%2F%2Fdbpedia.org%2Fresource%2FSlovenia. In order to retrieve an HTML

representation, a client should send an HTTP GET request with an Accept header that

prefers HTML; the same goes for other content types such as Turtle or JSON. We analyzed

the requested representations by looking at clients' most preferred options.

Since each type of client usually consumes a specific format, the distribution of clients

strongly influences the requested content types. It is therefore expected that the content

type requested by the Triple Pattern Fragments client (both standalone and in-browser)

prevails. We indeed see that the majority of requests (58.8%) has a preference for Turtle,

which used to be this client's preferred format up to version 1.2.1. From version 1.2.2

onwards, support for the quad-based serialization format TriG was added, which uses

graphs to separate fragment data from metadata and controls. Hence, we also see a large

amount (20.3%) of TriG requests—and this is expected to dominate in the future as older

client versions disappear.

Browsers of course prefer HTML variants for displaying to humans. Some clients (mostly

crawlers) indicated they had no specific preference (*/*). The Pingdom bot does not

indicate any Accept header and is the major contributor to the none category. Other

requested formats include JSON (for which JSON-LD representations were returned) and

other RDF formats such as N-Quads and N-Triples.

/Users/laurah/Documents/Work/projects/USEWOD/2015/usewod2015-submission1/index.html#availability
https://github.com/LinkedDataFragments/Client.java
https://github.com/LibreCat/Catmandu-RDF/pull/10
http://tools.ietf.org/html/rfc7231#section-3.4
http://fragments.dbpedia.org/2014/en?predicate=http%3A%2F%2Fdbpedia.org%2Fontology%2FbirthPlace&object=http%3A%2F%2Fdbpedia.org%2Fresource%2FSlovenia
http://fragments.dbpedia.org/2014/en?predicate=http%3A%2F%2Fdbpedia.org%2Fontology%2FbirthPlace&object=http%3A%2F%2Fdbpedia.org%2Fresource%2FSlovenia
http://fragments.dbpedia.org/2014/en?predicate=http%3A%2F%2Fdbpedia.org%2Fontology%2FbirthPlace&object=http%3A%2F%2Fdbpedia.org%2Fresource%2FSlovenia
http://www.w3.org/TR/turtle/
https://github.com/LinkedDataFragments/Client.js/releases/tag/v1.2.2
https://github.com/LinkedDataFragments/Client.js/releases/tag/v1.2.2
http://www.w3.org/TR/trig/
https://github.com/LinkedDataFragments/Client.js/commit/16a23ac6c545f6d9210b4c2d73adcf8bf0cf125b
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/n-quads/
http://www.w3.org/TR/n-triples/

Geographic location

Figure 4: The majority of requests originated from Belgium due to our intensive tests
running in the beginning period. Traffic from other countries is growing.

In order to determine the geographic origins of requests, we performed automated

lookups on the client IP addresses. As indicated earlier, stress tests by Ghent University

were performed during the interface's first weeks. This is visible in the large portion

originating from Belgium (56.2%). 188,891 Belgian requests (4.24% of all requests) did

not originate from within Ghent University. After France, clients from the United States

and China were popular visitors, mostly through search engine crawlers.

In total, the interface received traffic from 47 countries, 17 of which sent at least

1,000 requests.

Requested triple patterns

If an interface allows highly specific queries, like SPARQL endpoints do, we expect a great

variety of requests on the server side. Also, this brings detailed insights in the kind of

goals clients have. Since the Triple Pattern Fragments interface is deliberately more

simple, we expect to see more repeated queries—but less insights in how these smaller

queries contribute to a goal for the client.

Figure 5: The fragment for things that have a type was requested most (by Pingdom),
followed by the generic all fragment (because it is often used to bootstrap the query

process).

/Users/laurah/Documents/Work/projects/USEWOD/2015/usewod2015-submission1/index.html#number-of-requests

Unsurprisingly, the fragment requested every minute by Pingdom (?s rdf:type ?o) as

part of its availability monitoring process is most popular. This is closely followed by the all

fragment. Since this is the most generic fragment of the dataset, clients in practice often

use it to start their more complex process; i.e., it is the first form they fill out. However,

any fragment can in theory be used as a starting point, as the Triple Pattern Fragments

specification requires all of them to contain the same hypermedia controls. Since the all

fragment is a straightforward starting point, the 153,214 requests to this fragment format

give a vague indication of the total number of SPARQL queries that were executed by

clients. As clients might also perform other tasks, this number is likely inaccurate (and as

more clients are developed, this will become only more vague). For instance, the Referer

header values reveal that 8,955 requests originated from the UDUVUDU DBpedia Viewer,

which visualizes topics from DBpedia. Finally, we note a high number of <s>

rdfs:subClassOf ?o requests for specific instances of <s>. They were caused by the stress

testing queries we issued, which contained rdfs:subClassOf constructs.

Other than the three cases above, no obvious patterns were found in the requests.

Cache effectiveness

A premise of the Triple Pattern Fragments interface is that clients partly reuse the same

fragments to achieve different but similar goals. With SPARQL endpoints, clients instead

send highly specialized requests; overlapping information between them cannot be reused

on the HTTP interface level. With Triple Pattern Fragments, the number of unique requests

is relatively smaller, so the cache can work more effectively.

The nginx reverse proxy server has been configured to cache requested fragments for

a maximum time of 1 hour. Uniqueness of requests is determined by a combination of

URL and Accept header. As such, the Triple Pattern Fragments server generates each

unique response at most once per hour; all subsequent requests are handled by the

cache. Furthermore, the proxy server sets the expiration date of responses to 7 days in

the future. Clients that have a built-in cache themselves, such as browsers, are thereby

suggested to only repeat a request for a resource after a week. Note that the standalone

client does not have a persistent cache; therefore, each invocation of that client results in

new resource accesses.

In total, 28.1% of responses were served from the nginx cache. This means that between

a quarter and a third of all responses were needed again by the same client or other

clients within the hour. A minority of 3.5% had been present in the cache for longer than

1 hour, so new versions needed to be fetched. Finally, a few requests (1,278) explicitly

asked to bypass the cache. So while the majority of requests was not cached, the caching

mechanism was able to reduce the load on the application server by 28.1%. Since the

dataset in this case is static, and the number of fragments finite, we could set a higher (of

even infinite) cache timeout. At the moment, however, there was no necessity to do so.

http://fragments.dbpedia.org/2014/en?subject=&predicate=http%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-ns%23type&object=
http://fragments.dbpedia.org/2014/en
http://dbpedia.exascale.info/
http://fragments.dbpedia.org/2014/en?subject=&predicate=http%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23subClassOf&object=
http://fragments.dbpedia.org/2014/en?subject=&predicate=http%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23subClassOf&object=
http://tools.ietf.org/html/rfc7231#section-5.3.2

Figure 6: A quarter of responses was cached. In theory, all content could be pre-cached,
since the number of Triple Pattern Fragments per dataset is finite.

Availability

One of the main goals of the Triple Pattern Fragments interface is to maximize availability,

in order to allow building applications on public, live queryable Linked Data sources.

During the period of November 2014 to February 2015, a fragment was retrieved from the

server every minute to verify availability. This amounts to a total of 120 days ×

1,440 minutes per day = 172,800 minutes. According to Pingdom, only 1 of those

requests did not receive a timely answer; this occurred on 2014/11/26 at 3:52pm CET.

What exactly happened at this moment is unclear; nothing particular shows up in the

server logs at this point, except an unexpected gap between two Pingdom requests at

14:50 and 14:52 UTC (server time). We presume it is an Amazon-related outage due to

lack of evidence of software malfunction at this moment in time.

In any case, the above allows to precisely calculate the availability during the observed

period of 4 months. Dividing the minutes of availability by the total number of minutes

gives 172,799 / 172,800 = 99.99942…%. This amounts to an availability level of “5

nines”, or on average maximum 25 seconds downtime per month (assuming months of 30

days).

Note that the total number of requests logged from Pingdom (172,785 as indicated above)

is 15 short of the expected total of 172,800. Since Pingdom did not report any other

outages, we are unsure about the cause. Slightly incomplete logging could be

a straightforward explanation, for instance, if Pingdom dropped the connection before the

full response was received.

Conclusions

When the official Triple Pattern Fragments interface for DBpedia was released, we mostly

heard three types of questions:

1. Will this interface be used?

2. If so, how will clients use it?

3. Will the availability of this interface be sufficient for live application usage?

http://stats.pingdom.com/tpb64v451f9p/1382520/2014/11
/Users/laurah/Documents/Work/projects/USEWOD/2015/usewod2015-submission1/index.html#user-agents

The analysis in this paper allows us to formulate a preliminary answer on all three of

them.

First of all, the interface has indeed been used, as evidenced by more than 4 million

requests in the course of its first 4 months. Most of this usage came from the client-side

SPARQL query executor we previously built for the Triple Pattern Fragments interface, but

we also saw third-party clients such as a Perl client and a DBpedia viewer. Search engine

crawlers also consumed the interface with ease. Relatively few people browsed the

interface directly, as it is of course targeted at machines. It does raise the question

whether it makes sense to improve accessibility for people. Client IP addresses from

47 countries show that usage is spreading geographically.

Second, while the analysis provides us with some insights about how the interface is used,

more high-level patterns are absent. On the one hand, this is a blessing for privacy:

clients only ask generic questions, and they themselves can combine this to answers for

more complex questions in any way they see fit. On the other hand, it makes it harder to

understand what kind of usage is popular, and for which use cases we could or might need

to optimize. This process could be facilitated if we explicitly ask clients to provide

feedback [9]. For now, we are in the dark as to precisely what SPARQL queries—and other

tasks—clients have executed. Having more information would allow us to compare this

with, for instance, the logs of the public DBpedia SPARQL endpoint. At the same time, we

should realize that not all clients of Triple Pattern Fragments interfaces necessarily have

the evaluation of SPARQL queries as a task or subtask.

Third, the 99.999% availability of the server removes any doubt that the Triple Pattern

Fragments interface is sufficiently reliable for live applications. We must, however, remark

two things here. While 4 million requests is a large quantity for a young interface, it is still

nowhere near full capacity. The server is still mostly idling, so in order to really find out its

limits, more requests are necessary. Also, the number of requests cannot be compared to

that of a SPARQL endpoint, as in many cases, more requests are necessary to achieve the

same goal. When talking about availability, we therefore need to mention expressivity too.

The goal of the Triple Pattern Fragments interface is to reliably balance both.

Our conclusion is that applications now have a reliable interface to query the public

DBpedia dataset. Therefore, we seem to have overcome one of the main obstacles that

could hold developers from building applications on top of live Linked Data. An important

question remains: is this enough? Now that reliable access is possible, what excuses

remain for not building intelligent Linked Data clients? It seems the next move should be

made by application developers, given that the data and the tools are now really there,

99.999% of time. We should keep our eyes, ears, and minds open to the demands of this

community to help evolve the concept of Semantic Web applications from vision to reality.

Acknowledgements

The described research activities were funded by Ghent University, iMinds, the Institute for

the Promotion of Innovation by Science and Technology in Flanders, the Fund for Scientific

Research Flanders, and the European Union.

Pingdom graciously provided us with availability monitoring. The geographic analysis was

performed using GeoLite data created by MaxMind. Special thanks to Dimitris Kontokostas

from the DBpedia Association for giving us the opportunity to host DBpedia as Triple

Pattern Fragments.

https://www.pingdom.com/
http://dev.maxmind.com/geoip/legacy/geolite/
http://www.maxmind.com/
http://aksw.org/DimitrisKontokostas.html
http://wiki.dbpedia.org/Association

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – the story so far. International

Journal on Semantic Web and Information Systems 5(3), 1–22 (Mar 2009)

2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann,

S.: DBpedia – a crystallization point for the web of data. Journal of Web Semantics

7(3), 154–165 (2009)

3. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: SPARQL Web-

querying infrastructure: Ready for action? In: Proceedings of the 12th International

Semantic Web Conference (Nov 2013)

4. Feigenbaum, L., Williams, G.T., Clark, K.G., Torres, E.: SPARQL 1.1 protocol.

Recommendation, World Wide Web Consortium (Mar 2013)

5. Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary

RDF representation for publication and exchange (HDT). Journal of Web Semantics

19, 22–41 (Mar 2013)

6. Harris, S., Seaborne, A.: SPARQL 1.1 query language. Recommendation, World

Wide Web Consortium (Mar 2013)

7. Hartig, O.: An overview on execution strategies for Linked Data queries.

Datenbank-Spektrum 13(2), 89–99 (2013)

8. Madhavan, J., Ko, D., Kot, Ł, Ganapathy, V., Rasmussen, A., Halevy, A.: Google's

Deep Web crawl Proceedings of the VLDB Endowment 1(2), pp. 1241–1252 (Aug

2008)

9. Verborgh, R.: The Lonesome LOD Cloud In: Proceedings of the Fourth Workshop

on Usage Analysis and the Web of Data (May 2014)

10. Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Vander

Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Querying

datasets on the Web with high availability. In: Proceedings of the International

Semantic Web Conference. Lecture Notes in Computer Science, vol. 8796, pp.

180–196 (Oct 2014)

http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://www.sciencedirect.com/science/article/pii/S1570826809000225
http://link.springer.com/chapter/10.1007/978-3-642-41338-4_18
http://link.springer.com/chapter/10.1007/978-3-642-41338-4_18
http://www.w3.org/TR/sparql11-protocol/
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1007/s13222-013-0122-1
http://dl.acm.org/citation.cfm?id=1454163
http://dl.acm.org/citation.cfm?id=1454163
http://people.cs.kuleuven.be/~bettina.berendt/USEWOD2014/verborgh_usewod2014.pdf
http://linkeddatafragments.org/publications/iswc2014.pdf
http://linkeddatafragments.org/publications/iswc2014.pdf

