
How will we interact with the #WebWeWant? 

Position statement for the 5th International USEWOD Workshop: Using the Web 

in the Age of Data, May 31st, 2015, Portoroz, Slovenia. 

 

Position paper 

Fostering intelligence by enabling it 

Ruben Verborgh 

Postdoctoral researcher at Ghent University – iMinds 

In a couple of months, 15 years will have passed since Tim Berners-Lee, Jim 

Hendler, and Ora Lassila wrote the Scientific American article “The Semantic 

Web”. It’s hard to imagine that, another 15 years before this, the Web didn’t 

even exist. The article talks heavily about agents, which would use the Web to 

do things for people. Somehow, somewhere, something went terribly wrong: the 

same time needed for the Web to liberate the world has hardly been sufficient 

for the Semantic Web to reach any adoption. And still, there are no agents, nor 

are there any signs that we will see them in the near future. Where should we 

even start? 

Even if the visionary Semantic Web article was just a guiding example, we still seem to be 

quite far from the envisioned intelligent agents. Fortunately, we’re progressing. The 

Semantic Web has brought us many useful things already: 

 lots of Linked Data—but we mostly need to download datasets locally if we want to 

do something useful 

 intelligent servers such as SPARQL endpoints—but most of them suffer from high 

unavailability rates 

 lots of research—it will be practically applicable if only data and services become 

available when we need them 

While there are some disturbing “if”s and “but”s, the above brings hope: apparently, the 

necessary building blocks are already there. So where are the agents? I’m not the 

first to ask: Jim Hendler, co-author of the original vision, wonders the same. 

While the technological stack might be there, there are still several obstacles to overcome, 

some of which we have created (and continue to create) ourselves. In particular, our 

services are too heterogeneous, are not self-describing, and try to be too 

intelligent. Let’s look in more depth at those issues—and how we might solve them. 

Heterogeneity confuses clients 

Approximately half of the talks at API conferences start with a variation of this slide: 

“we’re doing great, because there are more than 12,000 APIs”. Personally, I never 

understood how overgrowth can be a good thing: 12,000 APIs means 12,000 different 

ways of engaging in machine-to-machine interaction. 

https://twitter.com/hashtag/webwewant
http://usewod.org/usewod2015.html
http://www.computer.org/csdl/mags/ex/2007/03/x3002.pdf
http://www.programmableweb.com/news/8000-apis-rise-enterprise/2012/11/26
http://www.programmableweb.com/apis/directory


Imagine if every pen required a different writing style. If every car came with its own set 

of pedals. If every tap had a new way of getting water. We would never write, drive, or 

drink—or actually, we might just be able to cope, since humans deal with change well. 

And while different APIs indeed have different domains, does that warrant an entirely new 

interface? Clearly, an ice cream van and a tractor have totally different domains and 

purposes, but yet their interface is largely the same. Once you know one, the other 

becomes fairly easy. The same cannot be said about Web APIs. 

A major problem with machines is that they don’t deal well with interface heterogeneity. 

They like it when things are rigidly structured. That’s why we have a strict data format 

like RDF: all facts are expressed as triples. If something cannot be represented in a triple, 

you need to break it down into parts that can be. And this works for data from any 

domain—so why can’t it work for APIs from any domain? 

Instead of treating APIs like monolithic, give-or-take marble rocks, we should think of 

reusable building blocks to compose APIs. An ice cream van and a tractor both have a 

gas and brake pedal, a horn, a steering wheel, wipers, flashers, and more. It makes total 

sense to reuse them. The few features that are different can be controlled separately. If 

we apply the same way of thinking to APIs, the notion of generic clients, or intelligent 

agents, becomes much more realistic. 

Could you use an interface without controls? 

Back to the ice cream van. Would you be able to drive it if the pedals and steering wheel 

were invisible and untouchable? As in: they are physically there, you can manipulate 

them, but you cannot see nor feel them. How would you position your hands and feet? 

This is how agents feel when they try to consume non-hypermedia APIs. No clues as to 

where they are or where to go. It’s like a web page from which all links have been 

removed. Once you’re on a page, it’s impossible to leave—unless you have studied the 

manual. But honestly, when was the last time you needed to read a manual before being 

able to use a website? 

Recall that machines have more trouble dealing with unfamiliar environments than 

humans. So if one party certainly needs beacons for navigation, it’s the machines. We 

humans could still find a way around: for instance, if this page did not contain any links, 

you could manually try to edit the URL to go elsewhere. That’s why I find it puzzling that 

Web APIs for machines usually have far less hypermedia controls than websites for 

humans, even though machines need them the most. Perhaps that’s because API creators 

assume that humans will hardwire clients to consume them… but that does not bring us 

any closer to generic clients. 

Simple servers, clever clients 

Some API developers are well aware that the current generation of clients is limited. They 

try to compensate for clients’ limitations by building servers that are as intelligent as 

possible. The service does all the work, the client just has to perform simple calls. 

While this seems nice, there are possible problems. First of all, the server doesn’t know 

what the client wants to do. Maybe you want to race with the ice cream van, or sell 

chocolate milk instead. It’s technically possible, but does the interface allow it? At a high 

level, what all APIs do is providing access to some kind of database (for a very liberal 



definition of “database”). The more the API tries to do, the less clients can do with the 

data, because everything has already been decided. Second, this can also have dire 

consequences for the server: much work means a high per-request processing cost. 

Uniform data models like RDF work very well, but the uniform query language SPARQL 

comes with serious availability problems—at least partly because it is so expressive. 

Clever clients do not require an intelligent server, they require a server that enables 

them to act intelligently. We need to think in a different way about APIs for that: 

reusable building blocks that explain themselves are an important starting point. 

Instead of being preprogrammed for a specific task, clients could ask a server “what 

blocks do you have?” and “how can I use them?” Clever clients should decompose a task 

into elementary subtasks and use the building blocks they know to solve them. 

And that’s, in my opinion, a key gateway to intelligent behavior. Like most of you, 

I’ve never operated an ice cream van, but I’m pretty sure I could do so should I ever get 

the opportunity. That works because it offers me the building blocks and the interface, and 

I possess the ability to piece things together. Clearly, intelligence needs to be enabled. 

 


