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Preface

This volume contains the papers presented at DeRiVE2015: 4th Workshop on
Detection Representation and Exploitation of Events in the Semantic Web held
on Sunday May 31, 2015 in Portoroz (Co-located with the 12th Extended Se-
mantic Web Conference - ESWC 2015)

In recent years, researchers in several communities involved in aspects of in-
formation science have begun to realise the potential benefits of assigning an
important role to events in the representation and organisation of knowledge
and media-benefits which can be compared to those of representing entities
such as persons or locations instead of just dealing with more superficial ob-
jects such as proper names and geographical coordinates. While a good deal
of relevant research for example, on the modeling of events has been done in
the semantic web community, much complementary research has been done in
other, partially overlapping communities, such as those involved in multimedia
processing, information extraction, sensor processing and information retrieval
research. However, these areas often deal with events with a di↵erent perspec-
tive. The attendance of DeRiVE 2011, DeRiVE 2012 and DeRiVE 2013 proved
that there is a great interest from many di↵erent communities in the role of
events. The results presented in there also indicated that dealing with events is
still an emerging topic. The goal of this workshop is to advance research on the
role of events within the information extraction and semantic web communities,
both building on existing work and integrating results and methods from other
areas, while focusing on issues of special importance for the semantic web.

We have defined questions for the two main directions that characterise cur-
rent research into events on the semantic web. Orthogonal to that, we have
identified a number of application domains in which we will actively seek con-
tributions.

Question 1: How can events be detected and extracted for the semantic web?

– How can events be detected, extracted and/or summarized in particular
types of content on the web, such as calendars of public events, social media,
semantic wikis, and regular web pages?

– What is the quality and veracity of events extracted from noisy data such
as microblogging sites?

– How can a system recognise a complex event that comprises several sub-
events?

– How can a system recognise duplicate events?

Question 2: How can events be modelled and represented in the semantic
web?

– How are events currently represented on the Web? In particular, how de-
ployed is the schema.org Event class? Should scheduled events versus break-
ing events be represented the same way?
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– To what extent can the many di↵erent event infoboxes of Wikipedia be rec-
onciled? How to deal with the numerous Timeline of xxx topics in knowledge
bases?

– How can existing event representations developed in other communities be
adapted to the needs of the semantic web? To what extent can/should a
unified event model be employed for di↵erent types of events?

– How do social contexts (Facebook, Twitter, etc.) change the implicit content
semantics?

Application Domains: Research into detection (question 1) and representa-
tion (question 2) of events is being implemented in various application domains.
Known application domains that we target are:

– Personal events
– Cultural and sports events
– Making something out of ”raw” events
– Historic events and events in news and other media
– Scientific observation events
– Supply chain events

Among the submissions we received, 6 papers were selected for full presentation
at the workshop:

– Jean-Paul Calbimonte and Karl Aberer - Reactive Processing of RDF Streams
of Events

– Selver Softic, Laurens De Vocht, Erik Mannens, Martin Ebner and Rik Van
de Walle - COLINDA: Modeling, Representing and Using Scientific Events
in the Web of Data

– Michael Färber and Achim Rettinger - Toward Real Event Detection
– Gregory Katsios, Svitlana Vakulenko, Anastasia Krithara and Georgios Paliouras

- Towards Open Domain Event Extraction from Twitter: REVEALing Entity
Relations

– Loris Bozzato, Stefano Borgo, Alessio Palmero Aprosio, Marco Rospocher
and Luciano Serafini - A Contextual Framework for Reasoning on Events

– Jacobo Rouces, Gerard de Melo and Katja Hose - Representing specialized
events with FrameBase

We would like to thank the members of the program committee and the
additional reviewers for their time and e↵orts. All papers included here have
been revised and improved based on your valuable feedback, thus setting the
basis for an exciting workshop programme.
Finally, we would like to thank our sponsor, the Newsreader (www.newsreader-
project.eu) FP7 European Project, for funding the workshop.
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Reactive Processing of RDF Streams of Events

Jean-Paul Calbimonte and Karl Aberer

Faculty of Computer Science and Communication Systems
EPFL, Switzerland.

firstname.lastname@epfl.ch

Abstract. Events on the Web are increasingly being produced in the
form of data streams, and are present in many di�erent scenarios and
applications such as health monitoring, environmental sensing or social
networks. The heterogeneity of event streams has raised the challenges of
integrating, interpreting and processing them coherently. Semantic tech-
nologies have shown to provide both a formal and practical framework
to address some of these challenges, producing standards for representa-
tion and querying, such as RDF and SPARQL. However, these standards
are not suitable for dealing with streams for events, as they do not in-
clude the concpets of streaming and continuous processing. The idea of
RDF stream processing (RSP) has emerged in recent years to fill this
gap, and the research community has produced prototype engines that
cover aspects including complex event processing and stream reasoning
to varying degrees. However, these existing prototypes often overlook
key principles of reactive systems, regarding the event-driven processing,
responsiveness, resiliency and scalability. In this paper we present a re-
active model for implementing RSP systems, based on the Actor model,
which relies on asynchronous message passing of events. Furthermore,
we study the responsiveness property of RSP systems, in particular for
the delivery of streaming results.

1 Introduction

Processing streams of events is challenging task in a large number of systems
in the Web. Events can encode di�erent types of information at di�erent levels,
e.g. concerts, financial patterns, tra�c events, sensor alerts, etc., generating large
and dynamic volumes of streaming data. Needless to say, the diversity and the
heterogeneity of the information that they produce would make it impossible to
interpret and integrate these data, without the appropriate tools. Semantic Web
standards such as RDF1 and SPARQL2 provide a way to address these chal-
lenges, and guidelines exist to produce and consume what we know as Linked
Data. While these principles and standards have already gained a certain degree
of maturity and adoption, they are not always suitable for dealing with data
streams. The lack of order and time in RDF, and its stored and bounded char-
acteristics contrast with the inherently dynamic and potentially infinite nature
1 RDF 1.1 Primerhttp://www.w3.org/TR/rdf11-primer/
2 SPARQL 1.1 http://www.w3.org/TR/sparql11-query/



of the time-ordered streams. Furthermore, SPARQL is governed by one-time
semantics as opposed to the continuous semantics of a stream event processor.
It is in this context that it is important to ask How can streaming events can
be modeled and queried in the Semantic Web?. Several approaches have been
proposed in the last years, advocating for extensions to RDF and SPARQL for
querying streams of RDF events. Examples of these RDF stream processing
(RSP) engines include C-SPARQL [4], SPARQLstream [6], EP-SPARQL [3] or
CQELS [11], among others.

Although these extensions target di�erent scenarios and have heterogeneous
semantics, they share an important set of common features, e.g. similar RDF
stream models, window operators and continuous queries. There is still no stan-
dard set of these extensions, but there is an ongoing e�ort to agree on them in
the community 3. The RSP prototypes that have been presented so far focus al-
most exclusively in the query evaluation and the di�erent optimizations that can
be applied to their algebra operators. However, the prototypes do not consider
a broader scenario where RDF stream systems can reactively produce and con-
sume RDF events asynchronously, and deliver continuous results dynamically,
depending on the demands of the stream consumer.

In this paper we introduce a model that describes RSP producers and con-
sumers, and that is adaptable to the specific case of RSP query processing. This
model is based on the Actor Model, where lightweight objects interact exclusively
by interchanging immutable messages. This model allows composing networks of
RSP engines in such a way that they are composable, yet independent, and we
show how this can be implemented using existing frameworks in the family of
the JVM (Java Virtual Machine) languages. In particular, we focus on specifying
how RSP query results can be delivered in scenarios where the stream producer
is faster than the consumer, and takes into account its demand to push only the
volumes of triples that can be handled by the other end. This dynamic push
delivery can be convenient on scenarios where receivers have lower storage and
processing capabilities, such as constrained devices and sensors in the IoT. The
remainder of the paper is structured as follows: we briefly describe RSP systems
and some of their limitations in Section 2, then we present the actor-based model
on Section 3. We provide details of the dynamic push delivery on Section 4, and
the implementation and experimentation are described in Section 5. We present
the related work on Section 6 before concluding in Section 7.

2 RSP Engines, Producers and Consumers

In general RSP query engines can be informally described as follows: given as
input a set of RDF streams and graphs, and a set of continuous queries, the
RSP engine will produce a stream of continuous answers matching the queries
(see Figure 1). This high-level model of an RSP engine is simple yet enough
to describe most stream query processing scenarios. Nevertheless, this model,
3 W3C RDF Stream Processing Community Group http://www.w3.org/community/rsp



and the existing implementations of it, does not detail how stream producers
communicate with RSP engines, and how stream consumers receive results from
RSP engines. This ambiguity or lack of specification has resulted in di�erent
implementations that may result in a number of issues, especially regarding
responsiveness, elasticity and resiliency.

Fig. 1: Evaluation of continuous queries in RDF Stream Processing. The data stream flows through

the engine, while continuous queries are registered and results that match them are streamed out.

2.1 RSP Query Engines

To illustrate these issues, let’s consider first how streams are produced in these
systems. On the producer side, RDF streams are entities to which the RSP
engine subscribes, so that whenever a stream element is produced, the engine
is notified (Figure 2). The issues with this model arise from the fact that the
RSP engine and the stream producer are tightly coupled. In some cases like C-
SPARQL or SPARQLstream, the coupling is at the process level, i.e. both the
producer and the engine coexist in the same application process. A first issue
regards scalability: it is not possible to dynamically route the stream items from
the producer to a di�erent engine or array of engines, since the subscription is
hard-wired on the code. Moreover, if the stream producer is faster than the RSP
engine, the subscription notifications can flood the latter, potentially overflowing
its capacity. A second issue is related to resilience: failures on the stream producer
can escalate and directly a�ect or even halt the RSP engine.

Fig. 2: Implementation of an RSP query engine based on tightly coupled publisher and subscribers.

Looking at the stream consumer side, the situation is similar. The continuous
queries, typically implemented as SPARQL extensions, are registered into the
RSP engine, acting as subscription systems. Then, for each of the continuous
queries, a consumer can be attached so that it can receive notifications of the
continuous answers to the queries (see Figure 2). Again, we face the problem



of tightly coupled publisher and subscribers that have fixed routing configura-
tion and shared process space, which may hinder the scalability, elasticity and
resiliency of the system. Added to that, the delivery mode of the query results
is fixed and cannot be tuned to the needs of the consumer.

It is possible to see these issues in concrete implementations: for instance
in Listing 1 the C-SPARQL code produces an RDF stream. Here, the stream
data structure is mixed with the execution of the stream producer (through a
dedicated thread). Even more important, the tightly coupled publishing is done
when the RDF quad is made available through the put method. The engine (in
this case acting as a consumer) is forced to receive quad-by-quad whenever the
RDF Stream has new data.
public class SensorsStreamer extends RdfStream implements Runnable {

public void run() {

while(true){

RdfQuadruple q=new RdfQuadruple(subject,predicate,object,

System.currentTimeMillis());

this.put(q);

}

}

}

Listing 1: Example of generation of an RDF stream in C-SPARQL.

A similar scenario can be observed on query results recipient. The continuous
listener code for the CQELS engine in Listing 2 represents a query registration
(ContinuousSelect) to which one or more listeners can be attached. The subscrip-
tion is tightly coupled, and results are pushed mapping by mapping, forcing the
consumer to receive these updates and act accordingly.
String queryString =" SELECT ?person ?loc "

ContinuousSelect selQuery=context.registerSelect(queryString);

selQuery.register(new ContinuousListener() {

public void update(Mapping mapping){

String result="";

for(Iterator<Var> vars=mapping.vars();vars.hasNext();){

result+=" "+context.engine().decode(mapping.get(vars.next()));

System.out.println(result);

}

}

});

Listing 2: Example of generation of an RDF stream in CQELS.

2.2 Results Delivery for Constrained Consumers

In the previous section we discussed some of the general issues of current RSP
engines regarding producing and consuming RDF streams. Now we focus on the
particular case where a stream consumer is not necessarily able to cope with the
rate of the stream producer, and furthermore, when the stream generation rate
fluctuates. As an example, consider the case of an RDF stream of annotated geo-
located triples that mobile phones communicate to stationary sensors that detect
proximity (e.g. for a social networking application, or for public transportation
congestion studies), In this scenario the number of RDF stream producers can
greatly vary (from a handful to thousands, depending on how many people are
nearby in a certain time of the day), and also the stream rate can fluctuate.



In this and other examples the assumption that all consumers can handle any
type of stream load does not always hold, and RSP engines need to consider
this fact. Some approaches have used load shedding, eviction and discarding
methods to alleviate the load, and could be applicable in these scenarios [1, 9].
Complementary to that, it should be possible for stream producers to regulate
the rate and the number of items they dispatch to a consumer, depending on
the data needs and demand of the latter.

3 An Actor Architecture for RDF Stream Processing

A central issue in the previous systems is that several aspects are mixed into a
single implementation. An RDF stream in these systems encapsulates not only
the stream data structure, but also its execution environment (threading model)
and the way that data is delivered (subscriptions). In distributed systems, one
of the most successful models for decentralized asynchronous programming is
the Actor model [2, 10]. This paradigm introduces actors, lightweight objects
that communicate through messages in an asynchronous manner, with no-shared
mutable state between them. Each actor is responsible of managing its own state,
which is not accessible by other actors. The only way for actors to interact is
through asynchronous and immutable messages that they can send to each other
either locally or remotely, as seen in figure 3.

Fig. 3: Actor model: actors communicate through asynchronous messages that arrive to their mail-

boxes. There is no shared mutable state, as each actor handles its own state exclusively.

We can characterize an actor A as a tuple: A = (s, b, mb), where s is the
actor state, b is the actor behavior and mb is its message box. The state s is
accessible and modifiable only by the actor itself, and no other Actor can either
read or write on it. The mailbox mb is a queue of messages mi that are received
from other actors. Each message mi = (as

i , ar
i , di) is composed of a data item

di, a reference to the sender actor as
i , and a reference to the receiver actor ar

i .
The behavior is a function b(mi, s) where mi is a message received through
the mailbox. The behavior can change the actor state depending on the message
acquired. Given a reference to an actor a, an actor can send a message mi through
the send(mi, a) operation. References to actors can be seen as addresses of an
actor, which can be used for sending messages.

We propose a simple execution model for RDF stream processing that is
composed of three generic types of actors: a stream producer, a processor and
a consumer, as depicted in Figure 4. A producer actor generates and transmits
messages that encapsulate RDF streams to the consumer actors. The processor
actor is a special case that implements both a producer (producer of results)



and a consumer (consumes the input RDF streams), as well as some processing
logic. Following the above definitions the data di of a message mi emitted by a
producer actor, or received by a consumer actor, is a set of timestamped triples.
This model does not prevent these actors to receive and send also other types of
messages.

In this model there is a clear separation of the data and the execution: the
data stream is modeled as an infinite sequence of immutable event messages,
each containing a set of RDF triples. Communication between producers and
consumers is governed through asynchronous messaging that gets to the mail-
boxes of the actors. In that way, the subscribers are not tightly coupled with the
producers of RDF streams, and in fact any consumer can feed from any stream
generated by any producer. Moreover, this separation allows easily isolating fail-
ures in either end. Failures on consumers do not directly impact other consumers
nor the producers, and vice-versa.

Fig. 4: RSP actors: RDF stream producers, processors and consumers. All actors send the stream

elements as asynchronous messages. An RSP query engine is both a consumer (receives an input

RDF stream) and a producer (produces a stream of continuous answers).

Event-driven asynchronous communication within RSP actors, as well as
avoiding blocking operators, guarantees that the information flow is not stuck
unnecessarily. Also, adaptive delivery of query results using dynamic push and
pull, can prevent data bottlenecks and overflow, as we will see later. By handling
stream delays, data out of order and reacting gracefully to failures, the system
can maintain availability, even under stress or non-ideal conditions. Similarly,
elasticity can boost the system overall responsiveness by e�ciently distribut-
ing the load and adapting to the dynamic conditions of the system. The actor
model results convenient for RDF stream processing, as it constitutes a basis for
constructing what is commonly called a reactive system4. Reactive systems are
characterized for being event-driven, resilient, elastic, and responsive.

4 The reactive manifesto http://www.reactivemanifesto.org/



4 Dynamic Push Delivery

In RSP engines there are typically two types of delivery modes for the stream of
results associated to a continuous query: pull and push. In pull mode, the con-
sumer actively requests the producer for more results, i.e. it has control of when
the results are retrieved. While this mode has the advantage of guaranteeing
that the consumer only receives the amount and rate of data that it needs, it
may incur in delays that depend on the polling frequency. In the push mode, on
the contrary, the producer pushes the data directly to the consumer, as soon as
it is available. While this method can be more responsive and requires no active
polling communication, it forces the consumer to deal with bursts of data, and
potential message flooding. In some cases, when the consumer is faster than the
producer, the push mode may be appropriate, but if the rate of messages exceeds
the capacity of the consumer, then it may end up overloaded, causing system
disruption, or requiring shedding or other techniques to deal with the problem
(see Figure 5a).

(a) Push: overload if the producer
pushes too fast.

(b) Dynamic push: demand on the
side of the consumer.

Fig. 5: Delivery modes in RSP engines.

As an alternative, we propose using a dynamic push approach for delivering
stream items to an RDF stream consumer, taking into consideration the capacity
and availability of the latter (see Figure 5b ). The dynamic mechanism consists in
allowing the consumer to explicitly indicate its demand to the producer. This can
be simply done by issuing a message that indicates the capacity (e.g. volume of
data) that it can handle. Then, knowing the demand of the consumer, the stream
producer can push only the volume of data that is required, thus avoiding any
overload on the consumer side. If the demand is lower than the supply, then this
behavior results in a normal push scenario. Otherwise, the consumer can ask for
more data, i.e. pull, when it is ready to do so. Notice that the consumer can at
any point in time notify about its demand. If the consumer is overloaded with
processing tasks for a period of time, it can notify a low demand until it is free
again, and only then raise it and let the producer know about it.

5 Implementing RSP Dynamic Push

In order to validate the proposed model, and more specifically, to verify the
feasibility of the dynamic push in a RSP engine, we have implemented this
mechanism on top of an open-source RSP query processor. We have used the
Akka library5, which is available for both Java and Scala, to implement our
5 Akka: http://akka.io/



RSP Actors. Akka provides a fully fledged implementation of the actor model,
including routing, serialization, state machine support, remoting and failover,
among other features. By using the Akka library, we were able to create producer
and consumer actors that receive messages, i.e. streams of triples. For example, a
Scala snippet of a consumer is detailed in Listing 3, where we declare a consumer
that extends the Akka Actor class, and implements a receive method. The receive
method is executed when the actor receives a message on its mailbox, i.e. in our
case an RDF stream item.
class RDFConsumer extends Actor {

def receive ={

case d:Data =>

// process the triples in the data message

}

}

Listing 3: Scala code snippet of an RDF consumer actor.

To show that an RSP engine can be adapted to the actor model, we have
used CQELS, which is open source and is written in Java, as it has demonstrated
to be one of the most competitive prototype implementations, at least in terms
of performance [12]. More concretely, we have added the dynamic push delivery
of CQELS query results, so that a consumer actor can be fed with the results of
a CQELS continuous query.

To show the feasibility of our approach and the implementation of the dy-
namic push, we used a synthetic stream generator based on the data and vocab-
ularies of the SRBench [15] benchmark for RDF stream processing engines. As a
sample query, consider the CQELS query in Listing 4 that constructs a stream
of triples consisting of an observation event and its observed timestamp, for the
last second.

PREFIX omOwl: http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#.

CONSTRUCT {?observation <http://epfl.ch/stream/produces> ?time}

WHERE {

STREAM <http://deri.org/streams/rfid> [RANGE 1000ms] {

?observation omOwl:timestamp ?time

}

}

Listing 4: Example of generation of CQELS query over the SRBench dataset.

In the experiments, we focused on analyzing the processing throughput of
the CQELS dynamic push, compared to the normal push operation. We tested
using di�erent processing latencies, i.e. considering that the processing on the
consumer side can cause a delay of 10, 50, 100 and 500 milliseconds. This sim-
ulates a slow stream consumer, and we tested its behavior with di�erent values
for the fluctuating demand: e.g. from 5 to 10 thousand triples per execution.
The results of these experiments are depicted in Figure 6, where each plot cor-
responds to a di�erent delay value, the Y axis is the throughput, and the X axis
is the demand of the consumer.

As it can be seen, when the demand of the consumer is high, the behavior
is similar to the push mode. However if the consumer specifies a high demand



Fig. 6: Results of the experimentation: throughput of the results delivery after query processing for

bot dynamic and normal push. The delay per processing execution is of 500, 100, 50, 10 milliseconds

from left to right, top to bottom. The Y axis is the throughput, and the X axis is the demand.

but has a slow processing time, the throughput is slowly degraded. When the
processing time is fast (e.g. 10 ms), the push delivery throughput is almost
constant, as expected, although it is important to notice that in this mode, if
the supply is greater than the demand, the system simply drops and does not
process the exceeding items. In that regard, the dynamic push can help alleviate
this problem, although it has a minor penalty in terms of throughput.

6 Related Work & Discussion

RDF stream processors have emerged in the latest years as a response to the chal-
lenge of producing, querying and consuming streams of RDF events. These e�orts
resulted in a series of implementation and approaches in this area, proposing
their own set of stream models and extensions to SPARQL [5, 11, 7, 3, 9]. These
and other RSP engines have focused on the execution of SPARQL streaming
queries and the possible optimization and techniques that can be applied in that
context. However, their models and implementation do not include details about
the stream producers and consumers, resulting in prototypes that overlook the
issues described in Section 2.

For handling continuous queries over streams, several Data Stream Manage-
ment Systems (DSMS) have been designed and built in the past years, exploiting
the power of continuous query languages and providing pull and push-based data
access. Other systems, cataloged as complex event processors (CEP), emphasize



on pattern matching in query processing and defining complex events from basic
ones through a series of operators [8]. Although none of the commercial CEP
solutions provides semantically rich annotation capabilities on top of their query
interfaces, systems as the ones dexfibed in [14, 13] have proposed di�erent types
of semantic processing models on top of CEPs.

More recently, a new sort of stream processing platforms has emerged, spin-
ning o� the massively parallel distributed Map-Reduce based frameworks. Ex-
amples of this include Storm6 or Spark Streaming7, which represent stream
processing as workflows of operators that can be deployed in the cloud, hiding
the complexity of parallel and remote communication. The actor based model
can be complementary to such platforms (e.g. Spark Streaming allows feeding
streams from Akka Actors on its core implementation).

7 Conclusions

Event streams are one of the most prevalent and ubiquitous source of Big Data
on the web, and it is a key challenge to design and build systems that cope with
them in an e�ective and usable way. In this paper we have seen how RDF Stream
Processing engines can be adapted to work in an architecture that responds to
the principles of reactive systems. this model is based on the usage of lightweight
actors that communicate via asynchronous event messages. We have shown that
using this paradigm we can avoid the tight coupled design of current RSP en-
gines, while opening the way for building more resilient, responsive and elastic
systems. More specifically, we have shown a technique for delivering the contin-
uous results of queries in an RSP engine through a dynamic push that takes
into consideration the demand of the stream consumer. The resulting prototype
implementation, on top of the well known CQELS engine, shows that is feasible
to adapt an RSP to include this mode, while keeping a good throughput.

When processing streams of data, whether they are under the RDF umbrella
or not, it is important to take architectural decisions that guarantee that the
system aligns with the characteristics of a reactive system. Otherwise, regardless
of how performant a RSP engine is, if it is not able to be responsive, resilient
to failures and scalable, it will not be able to match the challenges of streaming
applications such as the Internet of Things. we have seen that there are many
pitfalls in systems design that prevent most of RSP engines to be reactive, in the
sense that they do not always incorporate the traits of resilience, responsiveness,
elasticity and message driven nature. We strongly believe that these principles
have to be embraced at all levels of RDF stream processing to be successful.

As future work, we plan to extend the reactive actor model to all aspects of
an RSP engine, including the stream generation, linking with stored datasets and
dealing with entailment regimes. We also envision to use this architecture to show
that di�erent and heterogeneous RSP engines can be combined together, forming
6 http://storm.apache.org/
7 https://spark.apache.org/streaming/



a network of producers and consumers that can communicate via messaging in
a fully distributed scenario.
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Abstract. Conference Linked Data (COLINDA)3, a recent addition to the LOD
(Linked Open Data) Cloud4, exposes information about scientific events (confer-
ences and workshops) for the period from 2002 up to 2015. Beside title, descrip-
tion and time COLINDA includes venue information of scientific events which is
interlinked with Linked Data sets of GeoNames5, and DBPedia6. Additionally in-
formation about events is enhanced with links to corresponding proceedings from
DBLP (L3S)7 and Semantic Web Dog Food 8 repositories. The main sources of
COLINDA are WikiCfP9 and Eventseer10. The research questions addressed by
this work in particular are: how scientific events can be extracted and summa-
rized from the Web, how to model them in Semantic Web to be useful for mining
and adapting of research related social media content in particular micro blogs,
and finally how they can be interlinked with other scientific information from the
Linked Data Cloud to be used as base for explorative search for researchers .

Keywords: Linked Data, Scientific Events, Linked Science, Research 2.0

1 Introduction and Motivation

COLINDA11 contains information about scientific events worldwide (including loca-
tion and proceedings references), published as Linked Data. The data contained in
COLINDA is extracted and accumulated from the data dumps of WikiCfP , which are
published yearly and freely available on request for research12 purposes, and from data

3 http://colinda.org
4 http://lod-cloud.net/
5 http://www.geonames.org/
6 http://dbpedia.org
7 http://dblp.l3s.de/d2r/
8 http://data.semanticweb.org/
9 http://www.wikicfp.com/

10 http://eventseer.net/
11 Available at: http://colinda.org/, see also http://datahub.io/dataset/colinda
12 http://www.wikicfp.com/cfp/data.jsp
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gathered via JSON interface from Eventseer. WikiCfP and Eventseer are two very pop-
ular online scientific event archives. WikiCfP contains calls for paper for about approx-
imately 30.000 conferences and has approximately 100.000 registered users. Eventseer
contains according the latest information13 calls for around 21000 events and serves
more then 1 million users. We also track the Twitter14 feeds of both sites integrating
on the fly arrival of upcoming scientific events using the Twitter API15 to recieve the
data from Twitter profiles of Wiki CfP and Eventseer. Currently COLINDA includes
data about more than 15000 conferences. Event instances are enriched with informa-
tion from Linked Data proceedings repositories DBLP (L3S)16 and Semantic Web Dog
Food17 as well by location information from Geonames and DBPedia. Primary intention
of COLINDA was to provide hashtag based identification system for scientific events
in Twitter in the manner of the "5-star" quality Open Data18. Researchers are using
very often hashtags, while they are discussing on Twitter. Specially during scientific
events, they are using hashtags as abbreviated reference to the event they are attend-
ing [6]. E.g. ISWC (International Semantic Web Conference) 2012 is often referred as
"iswc12" or "iswc2012". DBLP (L3S) Linked Dataset and Semantic Web Dog Food
also use this kind of notation to reference the event of conference proceedings19,20. The
overall idea of COLINDA is to serve as mining reference for creation of semantically
driven microblog data Mash Ups for Research 2.0 and as interlinking hub for other sci-
ence relevant sources from the LOD cloud in order to enhance explorative search for
researchers. Efforts made in this field using COLINDA will be introduced in detail in
section 3.

2 Extraction, Modeling, Creation and Publishing of Linked
Scientific Events

COLINDA data covers generally three domains: The first domain originates from Wi-
kiCfP and Eventseer and describes the Conference as basic scientific event with a start
date, location, description, label and link to the event web page. Second domain is the
Location of the event with geographic parameters resolved using the GeoNames and
DBPedia data set in interlinking process. Each location contains reference to the city,
country and coordinates of the location. Further as extension and third domain we have
Proceedings of the conference represented by the links from DBLP (L3S) or Semantic
Web Dog Food.

2.1 Linked Scientific Events Creation Process

The data creation process comprises the following steps:
13 http://eventseer.net/data/
14 http://www.twitter.com/
15 COLINDA
16 http://datahub.io/dataset/l3s-dblp
17 http://datahub.io/dataset/semantic-web-dog-food
18 http://5stardata.info/
19 e.g. for ’iswc2012’ at DBLP(L3S): http://dblp.l3s.de/d2r/page/publications/conf/ISWC/2012
20 e.g. for ’iswc2012’ at SW Doog Food: http://data.semanticweb.org/conference/iswc/2012/



COLINDA: Modeling, Representing and Using Scientific Events in the Web of Data 3

– Extraction - extraction and pre-processing of data sources (Subsection 2.2)
– Modeling of Events using SWRC Ontology - concept coverage (Subsection 2.3)
– Triplification - creating RDF data triples (Subsection 2.4)
– Interlinking - connection to other Linked Data sets (Subsection 2.5)

Fig. 1. Creation process of linked scientific events.

2.2 Data Extraction

COLINDA is constructed from variously structured sources. Therefore we defined a
minimal set of properties that describe the Conference concept for a single RDF in-
stance. During extraction, all properties from sources are being mapped to defined nor-
malized set in order to harmonize the federated data. The Location and Proceedings
concepts related to conference events as such are considered as optional enrichment
which will be treated in the interlinking process. We made this decision having in mind
that all conference descriptions do not explicitly include the venue information. The
quality of source data depends on the users that provide the information. Thus such data
sources implicitly exclude assumption of completeness. Table 1 represents the minimal
set of properties a Conference and Location instance should include. The Extraction
process includes steps of either pre-processing of XML dumps from WikiCfP or JSON
from Tweets and Eventseer into the temporary tables of values formatted as Comma
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Separated Value (CSV). During the pre-processing cycle data fields like e.g. date or
labels are being normalized to achieve uniform representation, and to provide easier
processable input for triplification step which converts the extracted values from tem-
porary tables into RDF formatted instances of Linked Data.

Table 1. Harmonized COLINDA - minimal properties set. Entries denoted with * are optional.

Concept Property

Conference label

title

description

date*

link*

location*

Proceedings proceedings*

Location placename

city

country

longitude

latitude

2.3 Modeling Scientific Events in the Web of Data

Basic representation of scientific events was well elaborated in previous research work
about the SWRC ontology introduced by Sure et al [7]. This practice has been already
approved and adapted by the implementation of Linked Data proceedings repositories
DBLP (L3S) and Semantic Web Dog Food. We also followed the good practice of
re-using existing vocabularies before we define our own. Minimal field set defined in
table 1 for RDF instance generation matches well the range of SWRC concepts. There-
fore, we have chosen the SWRC Ontology21 and basic RDFS Schema22 as established
vocabularies to describe Conference instances. The same approach was applied for
Location concept; needed set of geographical features to describe conference venues
is well covered by elements from GeoNames23 and Basic Geo (WGS84) Vocabulary24.
Complete model with interlinked properties (proceeding and location) can be seen in
figure 2, where a single complete and interlinked instance of a conference (ISWC2012)
is depicted. Matchings between features and the vocabulary properties is shown in ta-
ble 2.

2.4 Triplification - Creation of RDF Instances of Scientific Events

The triplification25 process uses as input temporary data tables in CSV like format gen-
erated in extraction and pre-processing step. Input generated in this way represents tab-
21 http://ontoware.org/swrc/
22 http://www.w3.org/TR/rdf-schema/
23 http://www.geonames.org/ontology/
24 http://www.w3.org/2003/01/geo/wgs84_pos#
25 Under ’triplification’ we understand ’triple-wise’ creation of Linked Data instances as RDF

graphs
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Table 2. COLINDA concept to ontology model mapping (note: geonames - GeoNames Ontology,
geo - W3C GEO Vocabulary, swrc - SWRC Ontology). Entries denoted with * are optional.

Concept/Property RDF Class/Property

Conference swrc:Conference
label rdfs:label
title swrc:eventTitle
description swrc:description
date* swrc:startDate
link* owl:sameAs
location reference* swrc:location
location reference* dcterms:spatial
Proceedings* rdfs:seeAlso
Location* geo:SpatialThing
placename* geonames:P
city* geonames:name
country* geonames:countryName
longitude* geo:long
latitude* geo:lat

Fig. 2. Sample interlinked Conference RDF instance of ISWC 2012 generated by Visual RDF.

ular set of values compatible with properties from table 1. This input is then parsed line
by line and conference instance is generated as single RDF graph using the vocabulary
properties defined in table 2. Each conference instance is accessible via REST (Repre-
sentational State Transfer) call as described in subsection 2.6. To make them accessible
by SPARQL endpoint, background batch process loads the conference instances into
the ARC226 RDF triple store running on the server.

2.5 Interlinking to Other Interesting Sources

In order to provide 5-star data and led by the design issues described in [1], we used
swrc:location as interlinking property in order to interlink the location data with GeoN-
ames. The interlinking process uses GeoNames query service to resolve geographical
26 https://github.com/semsol/arc2/
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information and retrieve coordinates. Although usually owl:sameAs is used to interlink
to other data set we used this property to resolve the connection to the conference web
page and since swrc:location seems regarding the GeoNames to be more appropriate
choice. How this connection looks like can be seen in the sample depicted in figure 2
as well as online27,28. Further we use dumps of DBPedia and Semantic Web Dog Food
to enhance the instances with DBPedia location info using the dcterms:spatial property
and for interlinking the proceedings from DBLP (L3S) ans Semantic Web Dog Food
we match the conference’s rdfs:label to the corresponding labels in those data sets via
SPARQL queries. In matching case a link is established with correlating results using
the rdfs:seeAlso property.

2.6 URI Design and Public Accessibility

Access to instances of COLINDA is possible via URIs with following pattern:

– http://colinda.org/resource/conference/{label}/{year}

All responses from COLINDA are formatted as RDF/XML fragment. Other supported
formats are: HTML, Text, N3, NTRIPLES format29. Alternative access offers the SPARQL
30 endpoint. Current endpoint supports up to 250000 result triples per query and deliv-
ers results in different formats like: JSON, RDF/XML, XML, TSV etc. How to query
the endpoint is shown by simple example in listings 1.1. Results from the query re-
turn the COLINDA link, city, country and the geo-location of ISWC 2012 conference.
Recently, a dump of COLINDA was made available as Linked Data Fragments31. COL-

Listing 1.1. Sample SPARQL query for retrieval of conference (geo) location.

PREFIX swrc: <http://swrc.ontoware.org/ontology#>
PREFIX gn: <http://www.geonames.org/ontology#>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf�schema#>
SELECT DISTINCT ?x ?city ?country ?long ?lat
{
?x rdfs:label "ISWC2012";

swrc:location ?loc.
OPTIONAL
{

?loc gn:name ?city;
gn:countryName ?country;
geo:lat ?lat;
geo:long ?long.

}
}

INDA RDF data dumps are also accessible via the CKAN Registry32 of LOD Cloud.
27 http://www.colinda.org/resource/conference/ISWC/2012?format=html
28 http://graves.cl/visualRDF/?url=www.colinda.org/resource/conference/ISWC/2012
29 e.g. http://www.colinda.org/resource/conference/ISWC/2012?format=html
30 http://colinda.org/endpoint.php
31 http://data.linkeddatafragments.org/colinda#dataset
32 http://datahub.io/dataset/colinda
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2.7 Actuality of Data

COLINDA is kept up-to-date by a daily cron job which grabs the newest event an-
nouncements over the Twitter API for accounts of WikiCfP and Eventseer. The cron job
parses, creates, interlinks and synchs new events into the triple store. Each tweet also
includes information about the call page link which allows retrieval of the extended
information about events via web (WikiCfP) or available JSON (Eventseer) interface
during the update task. Additionally to the automated job, also manual updates are ran
as soon as the fresh dumps from both sites are available.

3 Applications and Use Cases

Both use cases introduced in following subsections address the challenges of Research
2.0. Research 2.0 as adaptation of the Web 2.0 for researchers defines researchers as
main consumers of the information. The purpose of these research activities is to of-
fer a set of tools and services which researcher can use to discover resources, such as
publications or events they might be interested in, as well as to collaborate with each
other via the web. These tools and services, according to the specifications of Research
2.0, are considered as Mash Ups, APIs, publishing feeds and specially designed inter-
faces based on social profiles [5, 8]. The role of COLINDA is addressed separately in
application description.

3.1 Affinity Browser

The "Researcher Affinity browser" was developed as a tool to demonstrate semantically
driven aggregation of microbolog data for Research 2.0. (use of Web 2.0 tools in sci-
entific research). In this context, COLINDA was used as mining source for the faceted
detection of similar scientist Twitter profiles based upon conferences they visited as
special affinity criteria. This is done by matching the COLINDA tags with the hashtags
of the Twitter user. Adequate demo video showing the "Researcher Affinity Browser" in
action can be also viewed online33. The "Researcher Affinity Browser Application" [4]
is depicted in figure 3. At the beginning it retrieves a list of relevant users. Those results
represent a current snapshot which means that every time users produce new tweets
on Twitter, the analysis result evolves with it. The relevance is measured according to
the number of common conceptual affinities. Different affinity facets are displayed on
the left. Users can explore three types of affinities: conferences, tags and mentions.
Activation of a certain affinity filters the list of matching persons. There is the result
table that displays detailed information about each person and how many affinities are
shared. Further there is a map view and an affinity plot synchronized with the result
table. The purpose of the map is to get a better impression of where the affiliations of
the found persons would lie. The affinity plot visualizes in a quick overview affinity
correspondence between the analyzed profile and other profiles in the system.
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Fig. 3. "Researcher Affinity Browser Application" snapshot.

Fig. 4. Mapping of keywords

3.2 ResXplorer

"ResXplorer"34 is an Research 2.0 [8] aggregated interface for search and exploration
of the underlying Linked Data Knowledge Base. A demo video explaining the interface
shown in figure 5 is available online35. Data from Linked Data Knowledge Base orig-
inates from: DBLP (L3S)36 which is a bibliography of computer science conference
proceedings, COLINDA37 which is a main binding hub data set including informa-

33 http://www.youtube.com/watch?v=A25DrP3Mv8w
34 http://www.resxplorer.org
35 https://www.youtube.com/watch?v=tZU97BQxE-0
36 http://dblp.l3s.de/
37 http://colinda.org



COLINDA: Modeling, Representing and Using Scientific Events in the Web of Data 9

tion about scientific events and links to venue and proceedings, common Linked Data
Knowledge Base DBPedia38 and Open Linked Data repository with geographical infor-
mation GeoNames39. The role of COLINDA is to act as a hub which connects all data
sets in the knowledge base by pointing with links to other data sets. In this context it is
used both for keyword matching together with other data sets and for enabling the al-
gorithms in back-end to find better connections and paths between the terms visualized
in the interface as well as for their expansion. Within ResXplorer interface a real-time
keyword disambiguation guides researchers by expressing their needs. User selects the
correct meaning from a typeahead drop down menu. Query expansion of terms happens
in real-time. Figure 4 shows the typeahead expansion of "ResXplorer" in action. At
the same time background modules also fetch neighbor links which match the selected
suggestion. As result, selection of various resources is then presented to the researchers
within radial interface. In case they have no idea which object or topic to investigate
next, they get an overview of possible objects of interest (like points of interest on a
street map e.g. figure 5). As shown in figure 5 features like color, shape and size of the
items are used to enhance the guidance of the user during the search and exploration
process [2]. Different shapes and colors represent different entities like conferences,
persons, publications or proceedings. The explored items are marked black, and rela-
tions are marked red and clearly highlight the context and history of a search. Each
presented resource is somehow related with some of other resources. This is expressed
through lines and description of the relation which is a RDF property. The path distance
in hops over links is expressed through the orbital layers.
As additional feature in ResXplorer is that researchers, when they sign in with their

Twitter account, they can either use the mentions and hashtags automatically for search
setup instead of typing keywords or to check visually the status of their network. This
happens through visualization of recent collaboration and interactions based upon data
from their Twitter accounts [3] (link to video on this procedure 40). Figure 6 depicts the
network of a researcher. The size of the scholar is in the middle between the minimum
and maximum size of a node. As much as possible users are placed around the focused
researcher. The more publications someone coauthored with the scholar, the bigger the
node. Several visual aspects aid the user in focusing and exploring the current state of
their network:

– Spatial: the number of co-authorships determines distance to center, a higher num-
ber results in a closer distance.

– Size: a higher frequency of being mentioned together on social media (i.e. Twitter)
increases the size.

– Color: green, already in their Twitter network; red, not in their Twitter network.
– Tooltip: displays facts about the collaborations (e.g. co-authorships and mentions),

i.e. the number of mentions for a specific conference (where conference identifica-
tion is done over user hashtags which are automatically matched with COLINDA
conference labels) and the the number of co-publications. The co-autorships are re-

38 http://dbpedia.org
39 http://geonames.org
40
http://youtu.be/QopnPvWIFzw
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Fig. 5. ResXplorer - discovering scholar artifacts like conferences (represented as stars), miscel-
laneous related resources such as locations or microblog posts (represented as dots in different
colors) etc. The distance to central node represents the intensity of relation.

Fig. 6. The scholar is centered in the middle and the network is visualized in nodes around the
central (blue) node.
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solved by bibliographic records from DBLP which are matched pair-wise between
the users.

Users who whether have no co-autorships or common mentions and conference hash-
tags with central user profile are not included in visualization.

4 Conclusion and Outlook

In this work we described how we extract, model and create scientific events as Linked
Data from known conference portals. We showed also how those events can be en-
hanced with additional relevant information and applied as as mining source for gen-
eration and enhancement of Researcher Affinity Browser as well as main interlinking
hub for discovery of research related artifacts for the ResXplorer. This potential has
been also recognized by the LinkedUp Challenge at the ISWC 201441 and upcoming
Semantic Publishing Challenge 201542 at ESWC 2015 where COLINDA is nominated
as reference Linked Data set for scientific events. As one of the future efforts we also
want to implement a DBPedia Lookup43 and Spotlight44 like service for detection and
identification of scientific events with COLINDA. We also want to link the instances to
WorldCat URIs of the published proceeding volumes and to he Crossref DOIs of the
published conference articles to make it more useful for the library linked data commu-
nity. Finally, to verify the quality of COLINDA we will run in the future an evaluation
against Linked Data Integration Benchmark (LODIB)45.
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Abstract. News agencies and other news providers or consumers are
confronted with the task of extracting events from news articles. This
is done i) either to monitor and, hence, to be informed about events
of specific kinds over time and/or ii) to react to events immediately. In
the past, several promising approaches to extracting events from text
have been proposed. Besides purely statistically-based approaches there
are methods to represent events in a semantically-structured form, such
as graphs containing actions (predicates), participants (entities), etc.
However, it turns out to be very di�cult to automatically determine
whether an event is real or not. In this paper, we give an overview of
approaches which proposed solutions for this research problem. We show
that there is no gold standard dataset where real events are annotated in
text documents in a fine-grained, semantically-enriched way. We present
a methodology of creating such a dataset with the help of crowdsourcing
and present preliminary results.

Keywords: Event Detection, Information Extraction, Factuality.

1 Motivation

News agencies and other digital media publishers publish each day news articles
in the magnitude of dozens of thousands. They also process the news for further
business tasks such as trend prediction and market change detection. This is
still mainly done manually today. Even if knowledge workers at news agencies
have access to all this information, it is infeasible for them to read all the news
and to determine, whether the articles contain information which is not only
interesting for people in their domains, but which contain real events and, hence,
have a significant, immediate impact on business such as financial operations
(shares) and political happenings. Consider for example the first sentence of a
news article:

“Apple may acquire Beats Electronics next week.” (1)

? This work was carried out with the support of the German Federal Ministry of
Education and Research (BMBF) within the Software Campus project SUITE
(Grant 01IS12051).



Here, it remains unclear whether Apple is really going to acquire Beats (and does
not cancel it in the last minute) or whether this is just a rumor. The sentence

“Apple confirmed that it acquired Beats Electronics on Wednesday.” (2)

in contrary, reveals that the acquisition already happened (besides the
confirmation which is an event per se). This demonstrates the di↵erentiating
characteristic between real events and events in general. As humans we can
estimate that the first article is not a trigger for immediate shifts in the stock
market (besides psychological e↵ects), but maybe the second mentioned article.
Machines, in contrast, have their di�culties in distinguishing real events from
other events.

We envision building a decision support tool for agents like stockbrokers.
The aim of the system is to inform the user quickly and automatically when
some detected event has really happened and hence might influence the invested
assets of the user. The user should also have the possibility to store purely real
events in his database. For such purposes, an event extraction system would
consist of two steps: i) It extracts events in a structured, semantically enriched
representation and ii) determines based on linguistic cues whether the event is
real or not.

Research on real event detection has been very limited so far. In this paper, we
present an approach to define events and real events in a setting as described.
Since no suitable gold standard for evaluating a real event detection system
exists, we present our setting of creating one using crowdsourcing. Preliminary
results regarding this gold standard are presented, as well as challenges which
we came across.

The remainder of this paper is organized as follows: First we present
definitions of event detection in Section 2, before considering definitions of
real event detection in Section 3. After discussing our setup of creating a gold
standard for real event detection in Section 4, we conclude in Section 5.

2 General Event Definitions

2.1 Event Definitions in Use

We can distinguish between the following classes of event representation (see
also Fig. 1 for examples):

1. Something happened : In this event representation, events are only roughly
covered. There are no types and deeper meanings gathered, only what topic
the document/sentence is about. This topic is often characterized by the
words occurring in the document (bag-of-words model) and/or by the set of
recognized named entities.

2. This happened : For this representation, the event type of the event is
detected. The event type can be quite generic such as earthquake. The
number of events which can be detected is often very limited. Events may

2



acquired Electronics

Apple
confirmed

Wednesday
Beats

(a) Event Representation Class 1

Event type Acquisition

Participant Apple

Participant Beats Electronics

(b) Event Representation Class 2

:acquire

:confirm

"Wednesday" :Beats Electronics

:Apple Inc.

:agent

:patient:time

:agent

:subevent

(c) Event Representation Class 3

Fig. 1: Examples of event representations for the di↵erent event representation
classes regarding the example sentence “Apple confirmed that it acquired Beats
Electronics on Wednesday.”

have attributes or slots which are pre-defined for the single event types.
Instead of predefined entity types such as earthquake or accident sometimes
only the entity types Per, Loc, Org, and Misc are used.

3. This happened to these objects in this way : If we use this representation
format, we have a deeper understanding in the actual event. Events of
this class are quite specific and include not only specific actions, but also
participants, and maybe time, place, and manner of the action. Often
linguistic theories such as Semantic Role Labeling provide the basis for event
representations of this class.

Related work using event definitions corresponding to the first event
representation class do not define events at all [1,2,3,4,5]. This is due to the
fact that here it must be only known that something happened (something that
is, for instance, di↵erent to what has been seen so far), but not what. Events do
not need to be represented on its own; instead, events are indirectly represented
by the document in which they are expressed. Documents are compared against
each other, either by using the bag-of-words model [2,3,4] or in addition by
taking detected named entities (with the classical entity types PER, LOC,
ORG, MISC) into account [1,5].

Approaches using the second event definition have in common that
coarse-grained events such as accidents or earthquakes are represented. Each
event has therefore an event type. Property-value-pairs can be assigned to the
events, whereas the assignable properties are pre-defined for all event types.
Often templates are used for storing the information about events [6].

In case of event representations of the third kind, structural representations
of fine-grained events are extracted from text – here, typically from single
sentences or clauses. Research based on this event class usually does not
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introduce a new definition of events, but instead either uses linguistic definitions
of events where events consist of happenings with agents, locations, time, etc.
[7,8,9] or abstracts from it to a certain, but limited extend [10]. Bejan [10]
characterizes an event as a happening at a given location and in a specific time
interval. Each event has semantic relations to agents, to a location, time, etc.
as parts of the event. These are the semantic/thematic roles of an event in the
linguistic understanding. Events can contain several sub-events. Events of an
event scenario (as higher-order structure) are connected by event relations. An
example is the cause relation where one event causes another event. Xie et al. [7]
propose two approaches which are based on Semantic Frames – constructed by
the tool SEMAFOR. Also, Wang et al. [8] use semantic parsing which is based
on PropBank in order to represent events. Yeh et al. [9] regard events as similar
to frames in FrameNet. Each event encodes knowledge about the participants,
where (and when) the event occurred and the events which are caused by this
event. A buy event, for instance, is about the object bought, the donor, and the
recipient.

2.2 Event Definition

In this paper we focus on the detection and semantically-structured
representation of real events of the third-mentioned event class, which is the
most expensive one. More specifically, an event in our scenario is characterized
by

– specific participants (agents or objects)

– situations (events or states) which are described within the event

– taking place at a specific place and/or time

– being not a state.

States are hereby defined as lasting for an indefinite period of time and which
are not really observable. Given the example sentence 2 in Section 1 we can
extract two events from it: i) The event that Apple confirmed something (which
is an event itself) and ii) the event that Apple acquired Beats Electronics.

Fig. 1c shows how these events can be represented as a
semantically-structured graph. Hereby, Event ii) can either be part of
Event i) (as depicted in the figure) or be stored as a separate graph. Nodes in
each event graph can be either predicate nodes (representing actions), entity
nodes (representing participants), or literal nodes (representing the time, etc.).
Predicate and entity nodes can be linked to entries in knowledge bases such
as DBpedia (for entities) and WordNet (for predicates). This enables having
unique identifiers for resources and to resolve ambiguities. The edges in these
event graphs arise from the semantic roles assigned by a Semantic Role Labeling
tool. In the depicted figure, the semantic roles are grounded as RDF predicates.
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3 Real Event Detection

3.1 Definitions of Real Events

We define real event detection as the task of determining whether a given event
expressed in text is real. Real events are events according to the definition in
Section 2.2 and have already happened or are happening. Thus, the definition of
events is extended by this aspect. We can split the task of real event detection
therefore into two subtasks: 1. Determining if the situation described in the text
is about an event according to our definition. 2. Determining if the event already
happened or is currently happening.

Regarding the first subtask, we can refer to two areas of linguistic work:
i) The distinction of events from states, and ii) the identification of factuality
of events. In the following, we amplify these two areas with respect to our goal
of real event detection. We hereby use the term situation as a generic concept
which encompasses both event and state (cf. [11]).

Ad i) The classification of situations can be traced back to Aristotle who
distinguished between verbs that have a defined end or result, and others that
do not [12]. Vendler [13] distinguished situations into four aspectual classes (also
called aktionsarten) and performed empirical experiments. The aspectual classes
are based on the temporal structure of events. These classes are namely: state,
activity, accomplishment, and achievement. A state is something in which an
entity remains for a longer, often unspecified period of time (e.g., “Jack knows the
answer”). The three other classes in the aspectual classification cover di↵erent
types of events in the narrower sense. An event is characterized as something
which happens or occurs in a definite time interval or at a specific point in time.
It often comes along with predicates such as “write”, “push”, etc. An event
usually causes some state change.

Table 1: Vendler’s four-way
distinction between verbs based
on their aspectual features [13].

Class Telic Dynamic Durative
state - - X
activity - X X
accomplishment X X X
achievement X X -

To determine which aspectual class a
given situation belongs to, we can di↵er
between telic, dynamic, and durative
situations (see Table 1). Telic situations
always have a culmination point beyond
which the situation cannot continue.
Dynamic situations consist of internal
sub-events which change over time and
are, hence, intrinsically heterogeneous.
For instance, walking consists of several
alternating subevents. Durative situations
(e.g., eating) last for a specifiable period
in time and are not punctual.

In our case we want to distinguish events from states. But how can we
determine which aspectual class holds for a given situation? For Vendler [13]
and others who worked on top of his theories it became apparent that it is not
trivial to determine the class automatically. See [13,11,14,15,16] for more details
on linguistic rules for that purpose.
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Moens and Steedman [14] propose another classification of situations. Here,
situations are also either states or events. Events are sub-classified by two
dimensions: 1. Events are either atomic or durative events. 2. Entities of events
are in a consequent state or not. We refer to [14] for more information.

Ad ii) Other researchers have focused on determining the factuality of events,
i.e. to recognize whether events are presented in the sentences as corresponding
to real situations in the world, as situations that have not happened, or as
situations of uncertain status. The focus is, hence, the trustfulness of events in
text. Factuality can be characterized by two dimensions: Polarity and epistemic
modality. Polarity – more concrete: polarity on actuality and not subjective
polarity – is a discrete category and can be either positive or negative. Epistemic
modality, in contrast, expresses the speaker’s degree of commitment to the
truth of a proposition [17]. It ranges from uncertain (also called “possible”) to
absolutely certain (also called “necessary”). According to Horn [18], modality
is a continuous category. Sauri [19] spans the factuality values space from
positive, negative, to unknown for the polarity dimension, and certain, probable,
possible, to unknown for the modality dimension. Unknown is true for cases of
uncommitment. In this way, a tuple of polarity value and epistemic modality
value states the factuality of the event.

How is factuality expressed in the text? This is done by lexical markers as well
as syntactic markers. Lexical modal markers are modal auxiliaries (e.g., “could”,
“may”, “must”), as well as clausal/sentential adverbial modifiers (e.g., “maybe”,
“likely”, “possibly”). Examples of lexical polarity markers are adverbs (e.g.,
“not”, “until”), quantifiers (e.g., “no”, “none”), and pronouns (e.g., “nobody”).
Syntactic constructs are necessary to consider since often one clause is embedded
in another. Considerable are in this context especially relative clauses and
that-clauses as in the example sentences.

What are the challenges to determine the factuality? Factuality markers
interact with each other. The local modality and polarity operators (e.g., of
the current clause) are therefore not enough. Instead, a global consideration is
necessary. For instance, in case of that-clauses, the factuality of the inner event
is dependent on the factuality of the outer event. Furthermore, what makes the
factuality much more complex is the fact that the source of an event is often not
only the author. These additional sources are introduced by means of predicates
of reporting (such as “say” or “tell”), knowledge and opinion (such as “believe”,
“know”), psychological reaction (such as “regret”), etc. Sauri and Pustejovsky
[19] calls these predicates due to their role Source Introducing Predicates (SIPs).
The di�culty is that the status of the other sources often di↵ers from the author.
The reader does not have direct access to the factual assessment of these other
sources. In the sentence, “The Guardian wrote that the G-7 leaders pretended
everything was OK in Russia’s economy.”, the reader cannot assess directly the
“frame of mind” of The Guardian with respect to the factuality of the event
of “pretended”. However, the factuality assessment has to be relative to the
relevant sources.
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3.2 Requirements of a Gold Standard for Real Event Detection

According to our event definition in Section 2.2 and the additional aspect of
factuality addressed in Section 3.1 we can list the following requirements a gold
standard dataset for the evaluation of a real event detection system must fulfill:

1. Each mention of an action within an event (e.g., “wrote”) is annotated.
2. There is a distinction between events and states, so that all events in the

strict sense are annotated.
3. There is no restriction to specific event types.
4. The factuality of the event is annotated (being positive or negative).
5. All participants and participating objects are annotated.
6. All participants and participating objects are linked to prevalent knowledge

bases.
7. Subevents of events are annotated and linked.
8. Mentions of place and time of each event are annotated.

This gold standard is also suitable when it comes to extracting real events
according to the Event Representation Classes 1 and 2 (see Section 2.1). In
these cases, the information about the structural representation of events can
be neglected. Additional filtering can achieve that only events of specific types
such as accidents are detected.

3.3 Datasets for Real Event Detection

In the following, we review existing corpora where event factuality was annotated
to some degree.

The Multi-Perspective Question Answering (MPQA) corpus [20] provides
news articles annotated for opinions and other private states such as beliefs
or thoughts. It was designed for subjectivity and sentiment research and does
not provide any structured representation of (real) events. At most, it might be
applicable as negative corpus in a scenario where situations written in text are
approved to be not real events.

The Penn Discourse TreeBank (PDTB) [21] is a corpus where discourse
connectives are annotated along with their arguments (e.g. $arg1 “– even
though” $arg2). On top of the original annotation scheme, an extended
annotation scheme was released for marking the attribution of abstract objects
such as propositions, facts and eventualities associated with discourse relations
and their arguments annotated in the PDTB. The events described in the
arguments are, however, not transformed into a structured event representation.

TimeBank 1.2 [22] is a corpus which was annotated with TimeML [23].
TimeML is a language for representing temporal and event information.
TimeBank is suitable for event factuality learning since it uses grammar markers
as well as annotations of predicates. Events are classified into occurrence,
state, reporting, immediate-action, immediate-state, aspectual, and perception.
TimeBank does not contain a structured event representation where all
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participating objects are annotated. In addition, the event definition is somehow
di↵erent to our proposed definition: A huge fraction (25,7%) of phrases annotated
as events are not verbs, but nouns, adjectives, etc. Not all phrases that should
be regarded as event predicates are annotated.

FactBank [19] is a corpus which was built on top of TimeBank and a subset
of the documents in the AQUAINT TimeML Corpus (A-TimeML Corpus). It
comes along with annotations of explicitly factual information about events.
FactBank has the same obstacles as TimeBank.

ACE 2005 [24] from the Automatic Content Extraction (ACE) technology
evaluation is a dataset dedicated to the detection of events in text. The task
was limited to the detection of specific event types which are: Life, Movement,
Transaction, Business, Conflict, Contact, Personnel, and Justice. Each type has
one to 13 subtypes so that each event is assigned to one main event type and
one subtype of it. The limitation to these event types is the main obstacle why
ACE 2005 cannot be used in our setting directly. Four attributes are attached to
each annotated event: Modality, Polarity, Genericity, and Tense. In accordance
with the event type, specific slots (argument roles called here; such as entities,
values, and times) can be assigned. ACE entities are categorized in specific classes
(namely, Person, Organization, Location, Geo-political entity, Facility, Vehicle,
and Weapon) and their subclasses, but are not linked to any knowledge base.

In summary, we can state that none of the mentioned corpora contains
semantically-structured representations of events to the extent it is needed to
evaluate a real event detection system where events are defined as in Section 2.2.
Thus, in the following section we provide experiments on how to build a gold
standard which fulfills all our requirements.

4 Experiments for Building a Gold Standard Dataset

Very first crowdsourcing experiments revealed that letting users annotate real
events as described in Section 3.2 at once is too complex for any crowdsourcing
job. Therefore, we arranged subtasks where the following questions are answered
separately for each event:

1. Which are the actions/predicates inducing a real event?
2. Which are the participating objects?
3. What is the time and place?
4. Which sub-events are contained?

In the following we present our approach regarding the first subtask, namely
identifying real events and naming the central predicates of them. We performed
two crowdsourcing jobs which di↵er in their methodology.1

Run 1 The crowd was asked to read a given sentence, to look for real events
(as defined above), and to enter the action verbs of these events as written in
the sentence.

1 The crowdsourcing job descriptions and evaluation data is available online at http:
//www.aifb.kit.edu/web/Toward_Real_Event_Detection

8

http://www.aifb.kit.edu/web/Toward_Real_Event_Detection
http://www.aifb.kit.edu/web/Toward_Real_Event_Detection


Run 1: "Find real actions"

187 sentences, 8 test questions, 12   per task,

5 users per judgment

Our gold

standard:

205 verbs inducing

real events

224 verbs judged by

crowd as inducing

real events 

152/224 (67.9%) of 

verbs judged as

inducing real events

are correct

Run 2: "Find observable and non-observable predicates"

187 sentences, 9 test questions, 12  per task,

5 users per judgment

Our gold standard:

205 action verbs

205 verbs classified 

by crowd as observable

285/334 (85.3%) of predicates 

judged as non-observable

are correct

133/205 (64.9%) of 

predicates judged as 

observable are corecct

334 predicates classified by crowd

as non-observable

354 observable

predicates

185 non-observable

predicates

¢ ¢

Fig. 2: Results of two crowdsourcing runs where the predicates of real events
were annotated in English sentences. In both runs, the confidence value of the
answers had to be above 0.5 in order to be considered.

Run 2 For this second run, the crowd was asked to read each given sentence,
look for all verbs, and categorize them into either observable or not-observable.

Observable events/facts were defined as follows:2 An observable fact can
be an occurrence (e.g., ”arrive“, ”destroy“), a reporting (e.g., ”report“), or
an immediate action (e.g., ”approve“). Observable facts are characterized by
the fact that they could be observed or confirmed by third persons directly
(e.g., in case of ”say“) or indirectly (e.g., in case of ”confirm“). Non-observable
facts describe states which characterize persons or objects, but which are not
observable by other persons than the persons involved. Such non-observable
facts are states which last for an indefinite/unspecified period of time (e.g., ”be
happy“), immediate states (e.g., ”believe“, ”worried“), aspects (e.g., ”start“,
”continue“), or perceptions (e.g., ”feel“). The categorization into observable
vs. non-observable facts is here done independently of the fact whether the
event has happened (or the state is) for sure or not. The categorization into
the past/presence or future is performed in a separate crowdsourcing task.

As dataset we used all first sentences of news articles which were published on
one day (2014/05/28) by the news agency Bloomberg and where the news articles
contained some information about Apple Inc. In total we manually annotated 187
sentences to assess the performance of our crowdsourcing tasks. Crowd sourcing
was performed on the platform Crowdflower.3 In Run 1 (Run 2), users had to
answer 8 (9) quiz test questions before entering the actual task. In both runs,
users got 12 cent per task consisting of 4 questions each. For each question we
gained results from 5 users and took the answers where there was an inter-rater
agreement of at least 50%.

The results of our crowdsourcing annotation experiments are summarized
in Fig. 2. It became apparent that completing the crowdsourcing tasks requires
high cognitive e↵orts in comparison to other crowdsourcing tasks. A considerable
amount of users did not pass the test questions at the beginning. Even if we

2 The definition is based on the TimeBank annotation guidelines.
3
http://crowdflower.com
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admit only users who worked on our job in the past su�ciently well, creating a
big annotated corpus is tricky. As Run 2 shows, already the distinction between
observable events, i.e. events showing up in the real world, and not-observable
events is hard to perform. Although we put much e↵ort in refining the task
descriptions the question arises whether a better approach to annotating the
factuality of events is achievable.

5 Conclusions

If events are extracted from text in a fine-grained manner, huge amounts of events
are gathered, but only a fraction of them represent real events and, hence, are
worthwhile to process further on. In this paper, we gave an overview of existing
linguistic work about the detection of real events. In order to evaluate a proposed
system which extracts semantically-structured, real events from text, we defined
requirements and proposed a methodology to create a gold standard dataset.
Preliminary experiments with crowdsourcing showed that the annotation of text
with factual information is non-trivial. Still, we believe that the creation of such
a dataset is necessary for many event detection systems in the future.
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Abstract. In the past years social media services received content con-
tributions from millions of users, making them a fruitful source for data
analysis. In this paper we present a novel approach for mining Twitter
data in order to extract factual information concerning trending events.
Our approach is based on relation extraction between named entities,
such as people, organizations and locations. The experiments and the
obtained results suggest that relation extraction can help in extract-
ing events in social media, when combined with pre and post-processing
steps.

Keywords: Event extraction, social media analysis, relation extraction, Twitter

1 Introduction

Social media attracts millions of users, and has evolved to become a source of
various kinds of information. In Twitter for example, more than 255 million ac-
tive users publish over 500 million 140-character “tweets” every day3. Evidently
it has become an important communication medium. More and more people
use social media to communicate their ideas and thoughts, as well as to spread
important news. Given the enormous size of information exchange happening
every day, it is a rather challenging task to process these data and filter out the
important and relevant information.

Twitter data is part of the Big Data paradigm and is characterized by high
Velocity, Veracity and Volume (“the 3 Vs”) [12]. The topics on Twitter span
across multiple domains from private issues to important public events in the
society. Therefore, filtering out the important or relevant to the user information
poses the first challenge for automated processing of tweets.

Twitter provides user-generated content in real time. The data is stored in a
form of short text messages called tweets. Each tweet has a body that contains
text of the message itself, but also a variety of metadata associated with it,
e.g. date of creation, author, user mentions, location etc. However, what makes
Twitter texts unique is its word count limitation which causes extensive usage

3 https://about.twitter.com/company



of acronyms and other abbreviations. Moreover, users often use colloquial words
and phrases in tweets, which require context for interpretation.

The goal of this research is to develop tools that extract and e�ciently sum-
marize trending events, the so-called “breaking news“, mined from social media,
e.g. Twitter. This task is especially relevant for the professional journalists help-
ing them to utilize social media as an information source helping to cope with
the information overload.

This research was conducted in the context of two European 7th Frame-
work projects, REVEAL and DecarboNet. The projects aim at developing new
tools and approaches to automatically process digital media content, extracting
important information and summarizing it.

This paper is reporting on the results of the initial round of experiments,
where we combined the current state-of-the-art methods and tools available,
and further evaluated them for the task of event extraction from social media.
We also enhanced the pipeline with pre- and post-processing procedures in order
to adopt it to the specific requirements stemming from the nature of social media
data, e.g. spam detection, mention disambiguation and relation selection. These
initial investigation and prototyping results aim to reveal the pitfalls and short-
comings of the current state-of-the-art approaches and suggest directions for the
future work.

The definition of an event itself might appear rather blurry and controversial
from the first sight. We adopt the wide definition of an ’event’, which goes
beyond scheduled events, like a music concert, conference or a football match.
In general, we consider any action, which can be observed in the physical world,
to constitute an event [21].

Events are often communicated through social media, e.g. ”Chelsea won to-
day”, ”We are going to a bar”. Due to the abundance of such event reports on
social media we define the notion of an ’important event’, i.e. an event, infor-
mation about which is of a potential value to a user of the system. For example,
information about an international political summit involving famous politicians
may be considered as important for the journalist, while the content of a lunch
meal of an average twitter user is likely to be of no particular value.

In this work we focus on extracting the factual information about an event,
e.g. its location, time and participants. It is important to separate the factual
information from the content that expresses an opinion or an emotion related to
the event, such as feelings and thoughts of an individual or a group. This can be
a rather tricky task, because sentences that are lexically very similar can convey
semantically opposite facts. For example: ”Chelsea won today” versus ”I wish
Chelsea won today” versus ”I wish Chelsea wins today”.

In order to extract event-related information from tweets we adopt and en-
hance existing state-of-the-art approaches to automated information extraction,
taking into account the unique properties of social media data. We implement
and apply the proposed approach to several datasets, evaluate and discuss the
results, outlining further directions for the future work.



2 Related Work

Existing algorithms for news monitoring typically detect events by grouping
together words with similar burst patterns (i.e. words or phrases showing burst
in appearance count [24]). They rely on clustering or topic modeling techniques
[3,10,13]. The draw-back of these approaches is that the resulting bag-of-words
representation of the clusters/topics is often not descriptive enough.

More sophisticated and precise approach is information extraction on the
level of events. Event extraction involves parsing of natural language text with
the aim of extracting event-related information. The usual suspects for the event
facets are the named entities that belong to actor/place/time classes in Simple
Event Model (SEM) [21]. Therefore, many approaches to event extraction in-
clude entity recognition stage [5,19]. In our work we also utilize the assumption
that many events are centered around named entities as in [19]. Still open re-
mains the question of how to connect the event-related entities, e.g. persons,
locations, dates. Most of the approaches use NLP-methods involving a set of
regular expressions to extract verbs that are assumed to constitute an event and
feed it together with the related entities into the event model [1, 8, 18, 19,22].

On the contrary, in our approach we utilize the state-of-the-art method for
relation extraction [6], that has already been successfully applied to news articles.
Relation extraction is the task of identifying relations that hold between entities
in text data. Up to now relation extraction systems were only evaluated on news
collections, but not on social media data. Therefore, the novelty of the proposed
approach is testing the suitability of relation extraction methods for the task
of event extraction on Twitter. We also make several modifications in order to
adapt the relation extraction approach to the specific nature of social media data
and further enhance it to extract event-related relations between the frequent
named entities from tweets.

There have been a number of projects aiming at extracting events specif-
ically from tweets [5, 20, 23]. Tweets are specific in nature and require special
treatment, di↵erent from the news articles. Therefore, Twitter-oriented systems
often include methods to detect spam, reduce noise and eliminate uninformative
messages [5, 20].

Domain-specific event extraction, such as [5, 23], allow fine-tuned event de-
tection, but require a set of keywords or event types to be manually predefined.
In this work we focus on extracting trending events, i.e. events which are most
popular among the users and are most frequently discussed. This approach also
allows us to be domain-agnostic and catch previously unknown events.

In this respect, our approach is most similar to TwiCal [20]. However, in-
stead of training classifier for event extraction on in-domain training data we
utilize already trained extractor from ClausIE [6]. The goal of TwiCal is con-
structing a calendar of upcoming events. Therefore, it extracts only scheduled
events accompanied with explicit date mention. We are primarily interested in
information concerning recent or current events, where explicit date annotation
is often omitted.



3 Our Approach

We adopt the state-of-the-art approach to relation extraction [6] and further
enhance it for the task of event extraction from tweets. In our approach we
consider any action, which can be observed in the physical world, to constitute an
event [21]. We assume that events are indicated by nonstative (dynamic) verbs.
Dynamic verbs describe an action, such as ’kick’, ’meet’, ’visit’, as opposed to
stative verbs, such as ’believe’, ’like’, ’consider’, etc.

Relation extraction approach enables us to extract predicates from a sentence
(corresponding to the verbs indicating events) together with their subjects and
objects. For example, the sentence: ”The match starts on Sunday” will result
in the following relation: The match (Subject) - starts (Predicate) - on Sunday
(Object).

Objects of the relations often contain event facets that uniquely characterize
events in spatial, temporal and social dimensions (e.g. place, date, organizers,
participants). Thus, this approach allows for more fine-grained event extraction
as opposed to clustering or topic modeling-based approaches which operate with
the bag-of-words model, which tend to blend together several lexically similar
events.

We have extended the initial approach to relation extraction with a few pre-
processing steps in order to clean the input data and annotate it with named
entities. After the pre-processing we extract relations, link them to named enti-
ties and rank according to their frequencies. The resulting pipeline summarizing
our approach is presented in Figure 1. In the rest of this section, the di↵erent
modules of our approach are described in details.

Named Entity 
Recognition

Linguistic 
pre-processing

Relation extraction

Spam detection

Relation selection and 
ranking

Fig. 1: System’s pipeline

3.1 Spam detection

Here we define spam as useless uniformative or malformated messages, which
are unlikely to provide us with any meaningful information. Our goal is to pre-
process the raw data from Twitter and deliver to the end user only useful and



relevant information. Therefore, we attempt to filter out meaningless and mis-
leading messages already on the first stage of our pipeline.

In the first place, we use a freely distributed black-list of domain names 4 in
order to exclude tweets containing links that point to the untrusted web sites.
Next, we calculate a “spam score” for each of the remaining tweets and exclude
the tweets that receive the score higher than the empirically learned threshold
value. The “spam score” is calculated as the number of spam-associated tokens
[4, 16] divided by the total number of tokens in the tweet:

spam score =
|U |+ |H|+ |L|+ |S|+ |N |

|T | (1)

where:

– |U |: number of user mentions (e.g. @themichaelowen);

– |H|: number of hashtags (e.g. #DavidGill);

– |L|: number of web links (e.g. http://t.co/my55ZOoAko);

– |S|: number of spam words (from the predefined list5, e.g. dutyfree, poker, casino);

– |N |: number of non-word characters (e.g. %, !);

– |T |: total number of tokens in the tweet.

The bigger the value of the “spam score”, the more likely that the tweet con-
tains spam. We conducted an experiment spanning numerous trials to choose the
optimal threshold value for the spam score and arrived at the value of 0.74. Fur-
ther one, we identified 3% of the tweets in our datasets as spam and, therefore,
excluded them from the next stages in our pipeline.

3.2 Linguistic Pre-processing

All the tweets that passed through the Spam Detection module, are further
considered in the Linguistic Pre-processing module. The pre-processing steps
include tokenization, user mentions resolution, further text cleaning and sentence
splitting.

Tokenization is used to identify the tokens that will be replaced or removed
from the text, such as URLs, user mentions, etc. First, we exploit tweet meta-
data to resolve user mentions to their canonical names. In particular, each tweet
that contains user mentions, carries a list of the corresponding full user names
from the Twitter database. Thus, we substitute the user mentions in the tweet
text with the corresponding full names using the tweet metadata. For example,
@themichaelowen is resolved to Michael Owen.

4 http://www.squidguard.org/blacklists.html
5 http://notagrouch.com/wp-content/uploads/2009/12/

wordpress-blacklist-words.txt



3.3 Named Entity Recognition

In this module, we identify named entities mentioned in the text of the tweet,
as well as their types. For example, the tweet containing the following snippet:
”@DavidGill walks out of FIFA meeting in Sao Paulo”, gets annotated with
the named entities: David Gill - Person, FIFA - Organization and Sao Paulo -
Location.

We used Stanford Named Entity Recognizer (Stanford NER) [15] for detect-
ing named entities in tweets. According to the benchmark evaluation reported
in [7], Stanford NER achieves highest average precision on all three datasets of
tweets, when compared with other state-of-the-art Twitter-tailored algorithms.

Stanford NER detects the following types of named entities: Location, Per-
son, Organization, Date, Money, etc.6. Due to our pre-processing procedure we
also detect the entities “hidden” within the user mentions and hashtags (e.g.
@DavidGill). This would not be feasible, when applying the Stanford NER on
the original tweets.

3.4 Relation Extraction

The core of our approach is based on extracting relations from the pre-processed
tweets. Relation is a triple that consist of subject, predicate and object. Subject
and object are entities, predicate is the relation between these entities. For ex-
ample, the sentence: ”The match starts on Sunday” will result in the following
relation: The match (Subject) - starts (Predicate) - on Sunday (Object).

We considered three state-of-the-art systems for the task of relation extrac-
tion: ReVerb [9], Ollie [14] and ClausIE [6]. ClausIE was reported to significantly
outperform Ollie by the number of propositions extracted [6]. However, it has not
been previously applied to social media data. Therefore, we ran our own exper-
iments to compare the results returned by ReVerb and ClausIE. Subsequently,
we chose ClausIE as the best-suited baseline system.

In ClausIE relation triples are extracted from clauses, parts of a sentence that
express coherent pieces of information [6]. The clauses are identified based on
the results from the dependency parser that helps to reveal the syntactic struc-
ture of an input sentence. In particular, ClausIE is using Stanford unlexicalized
dependency parser [11].

Additionally, ClausIE has an option to return n-ary predicate by decomposing
the object of the relation into several arguments. This option can be useful for
extracting complex relations, that consist of several independent but overlapping
parts, such as place and time relations. For example, the sentence: ”The match
starts on Sunday at Wembley” will result in the following relation: The match
(Subject) - starts (Predicate) - ”on Sunday”, ”at Wembley” (Object).

We made several modifications to the original implementation of ClausIE
in order to adapt it to the task of extracting the relations describing events.
Specifically, we enforce omitting the following types of clauses from the relation
extraction process:

6 http://nlp.stanford.edu/software/CRF-NER.shtml



– conditional clauses (If-clauses), e.g. “If @Chelsea wins I will celebrate till
morning!!!!!!!!”

– clauses rooted in a stative verb, e.g. ”I believe @Chelsea is the actual winner!”

Conditional clauses are used to speculate about what might happen, what
could have happened, and what we wish to happen. Stative verbs describe mental
state of an agent, but do not signify any action. For example, the following verbs
are stative: hate, love, believe, prefer, want, suppose, etc.

3.5 Relation Selection

We designed a post-processing step for selecting relations that will appear in
the final results. For this we chose the Frequent Pattern Mining approach that
helps us to reveal the recurrent information patterns following the assumption
that input data from Twitter is often abundant and redundant. Additionally, we
employ the following heuristic technique: for the relation to be selected it has
to contain popular (frequently occuring) named entities. In this way we get rid
of the trivial resuls, e.g. ”I - ate pizza - for breakfast”, but retain the relations
such as: ”President Obama - ate pizza - for breakfast”, if they are reported by a
considerable number of tweets.

Therefore, we combine the results from Relation Extraction (RE) and Named
Entity Recognition (NER) modules produced on the previous stages. In particu-
lar, we select only those relations that contain named entities in subject and/or
object of the relation. The intuition behind this approach enriching relations
with NER annotations is that events in real-life are often associated with the
corresponding named entities: dates, places and participants.

Hints about importance of the relations and named entities are given from
their frequencies count. We assume that widely discussed news are more likely
to be of importance and interest to the users of our system. Therefore, in order
to link NER and RE results we identify frequent named entities and then select
frequent relations, in which these entities occur. We use several approaches to
select relations between the named entities described below.

Firstly, we detect the named entities that occur most frequently in the tweets
(⇠ 10 entities for each of the datasets), e.g. Chelsea, Drogba, Ramires. We also
identify the most frequently co-occurring pairs of named entities (⇠ 5 pairs per
dataset), e.g. Chelsea and Liverpool, Putin and Ukraine. Then, we identify the
following relations that hold between named entities:

1. Relations in which the most frequently occurring entities appear in subject
or object of the relation;

2. Relations that hold between pairs of the most frequently co-occurring enti-
ties;

3. Relations for every combination of entity types pairs from the set: [Person,
Organization, Location, Date], e.g. between Person and Organization, Person
and Person, Location and Organization, Person and Date etc.

Finally, we calculate the support for each of the selected relations, i.e. number
of tweets from which the same relation was extracted, and use it for ranking of
the relations. The topmost relations are reported in the final results.



4 Experimental Evaluation

4.1 Datasets

We conducted experiments using three di↵erent Twitter datasets (see Table 1).
All datasets are centered around one or several major events discussed on social
media. We have deliberately selected the datasets containing event-related tweets
for our evaluation with the goal to uncover the details surrounding these events
using our approach.

The FACup dataset was created within the Social Sensor project7 and covers
the events during the last match of the Football Association Challenge Cup [2].
The SNOW dataset [17] is an attempt to capture the footprint in the social media
regarding several important international events: uprising in Ukraine (#ukraine,
#euromaidan), protests in Venezuela (#Venezuela), major Bitcoin exchange
theft (#bitcoin), etc. The third dataset was collected in June 2014 and con-
tains ⇠ 270.000 tweets, that were extracted using the hashtag #WorldCup2014.

Dataset # Tweets Hashtags
FA Cup ⇠ 20.000 #FACupFinal
SNOW ⇠ 1.000.000 #ukraine, #euromaidan, #Venezuela, #bitcoin
World Cup ⇠ 270.000 #WorldCup2014

Table 1: Datasets

4.2 Evaluation Method

We manually evaluated the results by annotating the relations returned on the
last stage of our pipeline (section 3.5). Each of the annotators (3 in total) inde-
pendently considered perceived correctness and usefulness (importance) of the
relations by looking up the original text of a sample tweet, from which the rela-
tion was extracted by the system.

The relation was marked as Correct, if the information it provides naturally
follows from the original text of the tweet and does not contradict the message
conveyed in it. Negation handling is a good example for potential errors in the
results returned by the system. If the original tweet reports, that Chelsea did
not play better than Liverpool, the relation has to communicate the same fact
and not the opposite. For example, Chelsea - play better - than Liverpool relation
should be marked as Incorrect in this case.

Furthermore, all correct relations were further evaluated with respect to per-
ceived importance for the end user of the system. The importance of a relation is
harder to evaluate than its correctness, because of the complexity and subjectiv-
ity in the notion of importance with respect to an information piece. In general,
a relation is considered Important, when it is perceived as being descriptive and

7 http://www.socialsensor.eu/



potentially useful. Meaningless and uninformative relations are marked as Not
important, respectively.

Collective discussion of the individual annotations resulted in a consensus
and a single final evaluation table was constructed. Afterwards, we summarized
our evaluation results by counting the number of relations for each of the classes:
Correct & Important, Correct & Not important and Incorrect relations (see Table
2). We calculated the ratios and the total number of evaluated relations sepa-
rately for each of the datasets. The last row of the evaluation table highlights
the average precision values across the three datasets.

Dataset Incorrect
Correct

Not important Important

FA Cup 0.17 (8) 0.17 (8) 0.66 (32)
SNOW 0.1 (21) 0.14 (32) 0.76 (168)
World Cup 0.1 (18) 0.19 (35) 0.71 (134)
Average 0.12 (47) 0.17 (75) 0.71 (334)

Table 2: Precision of the evaluation results: fraction (total) of relations

4.3 Discussion and Future Directions

The average precision of our approach was estimated at 88% taking into account
all correctly extracted relations. However, less that 3/4 of the relations returned
by the system were considered as potentially valuable for the end users of the
system (see Correct & Important in Table 2).

The most frequent relations that were selected using our approach from FA
Cup dataset are listed in Table 3. These 5 relations provide a short summary of
the event by revealing the names of the teams, the place where the game took
place, the winner and the final score, as well as the player, who scored. The
timestamps of the tweets can disambiguate the mentions ”now”, reveal date of
the event and indicate the ”hot spots” on the game timeline, such as the last
relation in Table 3.

Relations extracted from the SNOW dataset are less homogeneous contain-
ing various political statements, business and sport announcements, as well as
snapshots of historical events. Sample relations (with their support): Ukraine’s
leaders - warn - ”of Crimea separatism threat” (106); Chelsea fans - attending -
”the Galatasaray match”, ”on 26 Feb” (84).

World Cup dataset is another noisy collection containing many tweets not
related to the football championship. Nevertheless, the three top-most relations
reveal the major conflict in the football association: director David Gill - walks
out - ”of FIFA meeting in Sao Paulo” (902); director David Gill - says - ”Sepp
Blatter should stand down” (901); FA Vice-Chairman David Gill - calls on -
”Sepp Blatter not to stand for re-election as FIFA President” (481).

In general, due to our broad definition of ’event’ (as any kind of action re-
flected in a physical world) relations can be extracted from virtually any col-



lection of tweets. However, in order to achieve comprehensive results the tweets
need to be previously clustered according to the common topic, e.g. using a set
of hashtags.

Subject Predicate Object Count Sample tweet

The Chelsea
players

are
throwing

”Robbie Di Matteo
high in the air”

129 RT @chelseafc: What celebra-
tions! The Chelsea players are
throwing Robbie Di Matteo high
in the air. And catching ...

Chelsea have won ”17 major
trophies”, ”now”

58 RT @chelseafc: Chelsea have
now won 17 major trophies.
We’ve caught Tottenham who
are on the same total.

Liverpool are out ”for the second
half”

27 RT @chelseafc: Liverpool are out
for the second half, and Chelsea
are on the way. #CFCWembley
#FACupFinal (SL)

Chelsea beat ”Liverpool 2-1 to
win the FA Cup at

Wembley”

24 RT @premierleague: Chelsea
beat Liverpool 2-1 to win the
FA Cup at Wembley, their
fourth win in six years in the
competition. #cfc #lfc ...

Liverpool is ”much”, ”pretty”,
”giving every

Chelsea fan a heart
attack right now”

21 RT @espn: Liverpool is pretty
much giving every Chelsea
fan a heart attack right now:
http://t.co/MGxAkv94

Table 3: Results from FA Cup dataset

We performed only limited experimental evaluation for the proof-of-concept
of our approach and can not quantatively compare our results with other ap-
proaches to event extraction. Moreover, the relation extraction algorithm is cur-
rently computationally rather expensive, which might prevent us from running
the system on Twitter stream data in real time.

Nevertheless, our initial results provide further motivation and help to outline
directions for the future work:

1. Linking relations that convey the same information. Disambiguating and
clustering these relations will help to improve quality of the results by in-
creasing support of the frequent relations and removing semantic duplicates.
This can be achieved by:
– grouping the predicates into semantic groups using existing lexical re-

sources, such as FrameNet (e.g. verbs related to communication, cogni-
tion, perception: say = tell = report, believe = think = consider);

– disambiguating and linking named entities contained in subjects and
objects of the relations (e.g. President Obama = Barack Obama, next
month = June 2015 )

2. Linking relations that describe the same event. This can be achieved by
building an event knowlege model, e.g. an event ontology, that will incorpo-
rate and meaningfully combine event facets extracted from di↵erent sources.



3. Linking events between each other. This task will help to reveal patterns
within spatial/temporal/social dimensions by projecting the events on a
timeline or a geographic map. This approach may help to learn the common-
sense rules useful for reasoning and inference over the event data, such as
the ’finish’ event follows the ’start’ event, but also reveal non-trivial patterns
and the outliers.

5 Conclusion

We presented a novel approach to event extraction from Twitter, which builds
upon current state-of-the-art relation extraction techniques. We manually eval-
uated the quality of extracted relations in terms of precision on three real-world
datasets. Most of the results returned by the system are correct (88%) and con-
tain descriptive and potentially useful event-related information (71%). However,
recall and computational performance of the system was out of scope of this intial
evaluation run.
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Abstract. In this paper we investigate the contextualized representation of events.
In particular, we re-interpret the formalization of events and situations adopted in
the NewsReader Event and Situation Ontology (ESO) according to the notions
of context and module proposed in the Contextualized Knowledge Repositories
(CKR) framework. This contextualized formalization sets the basis for exploiting
logical reasoning on events and situations, enabling to automatize tasks such as:
recognizing incompatible event descriptions or inconsistent situations, inferring
missing or implicit events.

1 Introduction

With the growth of technologies managing the extraction of events and their participants
from texts (e.g. [1,7]), interest has spread in using these low level tools as the base for
event processing and reasoning in a higher level abstraction for events. The idea is
to be able to discover, starting from low level descriptions of events extracted from
text, complex events and their succession (viz. stories) with respect to their participant
entities.

This is one of the goals of the NewsReader project3. In this project, Natural Lan-
guage Processing (NLP) technologies, such as Named Entity Recognition (NER) and
Semantic Role Labelling (SRL), are exploited to process large streams of news in multi-
ple languages, to extract events and event participants, locations, dates. At the end of the
extraction and processing, events and related information are represented using RDF.
In order to define and reason over the features and e↵ects of events, an OWL ontology
has been defined for such data, called the Event and Situation Ontology (ESO) [11].

In this paper we propose to reinterpret and formalize the event model defined by the
ESO ontology using a context-based framework for representation of Semantic Web
data, the Contextualized Knowledge Repositories (CKR) framework [12,2,4,5]: this en-
ables to exploit the structure and reasoning possibilities o↵ered by the contextual frame-
work in order to perform complex inferences about and inside knowledge associated
with events.

Intuitively, CKR is a description logics (DL) based framework defined as a two-
layered structure: a lower layer contains a set of knowledge bases representing each
context, while the upper layer contains context independent knowledge and meta-data

3
www.newsreader-project.eu

www.newsreader-project.eu


defining the structure of contexts. The CKR framework has not only been presented as
a theoretical framework, but also actual implementations based on its definitions [5,3]
have been proposed. In particular, in [5] we presented an implementation for the CKR
framework over state-of-the-art tools for storage and inference over RDF graphs: in-
tuitively, the CKR architecture can be implemented by representing the global context
and the local object contexts as distinct RDF named graphs, while inference inside (and
across) named graphs is implemented as SPARQL-based forward rules.

From a formal ontology point of view, in the approach we propose in this paper
we clearly distinguish ontology from knowledge. The upper layer of our system con-
tains the underlying ontology, that is, the description of the organization of the world.
This part lists types of entities, relations and constraints that are assumed to exist or to
simply be possible. More generally, the upper layer should be thought as including two
elements: a general (foundational or domain) ontology describing what can exist, and
the organization of a set of knowledge modules characterizing roles and relationships
in (typically social) standardized scenarios like economic transactions or soccer games.
Regarding the first, we do not make a specific commitment towards one ontology or an-
other although we explicitly commit to the existence of physical and social objects, like
people and organizations, and temporal happenings like weddings and thunderstorms.
These entities come with their usual physical and temporal properties: weight, shape,
duration and so on. Regarding the modules, we do explore their role in the system to
infer new facts from given knowledge and thus we will present their general setting and
how they are used. The lower layer of the system, on the other hand, collects claims
about what happens in the world, that is, claims about how things are or change at some
time. Throughout the paper these are what we call events, but note that they are not
events in the ontological sense, rather they are descriptions of happenings.

Each event is associated with three state-like entities, namely happenings charac-
terized by some continuously holding property or relation like “begin married”, “being
running” or “being employed by” (e.g. see the notion of stative perdurant in DOLCE [9]).
These state-like entities are called situations in our system; more specifically the situa-
tion holding before the event is called pre-situation, the one holding after post-situation
and the one holding during the event itself is the during-situation. Informally, these sit-
uations are used to make explicit relevant properties that (a) persist during the whole
event, or (b) hold (or don’t hold) before/after the event and their truth values change
“because” of the event. We will use situations to formalize (and reason on) the precon-
ditions for an event of a certain type to happen, the postconditions (or consequences) of
its happening, and what can be taken as stable during the whole event of that type.

Although we take the received events at face value, it is possible that the news are
imprecise or incomplete, that the text processing used to acquire the news is faulty
and misinterprets them, that statements extracted from di↵erent sources about the same
happenings contradict each other. For this reason, we take each piece of information ex-
tracted from an outside source as a contextual perspective on the world. This means that
the content of a news is not equated to absolute knowledge (it is not indisputable). In-
deed, the extracted information constitutes a context annotated with its original source
(possibly with di↵erent degrees of reliability which can change over time). This allows
to integrate pieces of information coming from di↵erent sources into large and artic-
ulated event descriptions by integrating di↵erent contexts (in turn, news statements).
These extrapolated events reconstruct how an entity like a person or an organization,
changes over time by changing its status (size, capacity, death) or its relationships with



other entities (property acquisition, employment, marriage). Furthermore, missing in-
formation on these complex events can be detected via logical reasoning based on the
ontology at the upper layer, leading to infer changes that have not been reported (or
detected) in the news. Finally, note that, when a contradiction arises, the system can
isolate the conflicting pieces of information and establish which contexts are to be kept
apart and need to be verified.

In this paper we propose the first sketch and example of use for the contextual-
ized ESO model: in the next section we briefly present the ESO model and provide an
example of event modelling; in Section 3, we summarize the base definitions for the
CKR framework; in the following section we describe the CKR-ESO model, that is our
contextual based realization of ESO, we show how it models the previously presented
event example and provide some insights in the advantages of such representation; we
conclude by outlining some of the current and future directions for our work.

2 Events and Situations

One of the objectives in the NewsReader project is the representation of events and of
their e↵ects on the entities participating in them. For example, in a “giving” event, we
have at least two actors (people, organizations) and an object, e.g., a person A giving
something to another person B at some time T . The event also describes a change in
these entities: at the time T , person A owns the object, while person B does not (aka,
pre-situation); after T , the opposite is true (aka, post-situation).

To achieve this objective, the Event and Situation Ontology (ESO) [11] has been
developed. It defines two main classes of entities: events and situations. An event de-
scribes an happening, typically a change, in the world (for instance, person A giving
an object to person B at time T ), has a certain number of participants (here, the two
people and the object) and an associated period of time (here, T ). A situation describes
a state, i.e., takes a set of statements as describing (part of) the world at some point or
interval of time. In the example “person A gives an object to person B at time T”, we
can identify a pre-situation (the state of the world at the initial time point of T ):

– person A owns the object,
– person B does not own the object

and a post-situation (the state of the world at the ending time point of T ):

– person A does not own the object
– person B owns the object.

For instance, in the sentence: “The chairman of India’s Tata Group has confirmed that
his company is acquiring the Jaguar and Land Rover businesses from Ford.”, an event
is described: the acquisition by Tata Group of Jaguar and Land Rover from Ford. The
event is represented in ESO terminology as follows:

<:evID, rdf:type, sem:Event>
<:evID, rdf:type, eso:Getting>
<:evID, rdfs:label, acquire>
<:evID, eso:possession-owner 1, dbp:Ford>
<:evID, eso:possession-owner 2, dbp:Tata Group>
<:evID, eso:possession-theme, :Jag and L. Rover>
<:evID, sem:hasTime, #tmxID>



where #tmxID is the RDF representation of “August 26th, 2007”.
According to ESO, the event eso:Getting has both pre- and post-situation, con-

taining eso:hasInPossession and eso:notHasInPossession assertions, respectively. In the
pre-situation of our example, Ford has in possession Jaguar and Land Rover, and Tata
Group does not have in possession them; in the post-situation, the contrary holds. In the
ESO model, such facts specific to a situation are stored in a RDF named graph identified
by the URI of the situation. Therefore, the following set of n-tuples is generated:4

<:evID, eso:hasPreSituation, :evID pre>
<:evID pre, rdf:type, eso:Situation>
<:evID pre, sem:hasTime, #tmxID>
<dbp:Ford, eso:hasInPossession, :Jag and L. Rover, :evID pre>
<dbp:Tata Group, eso:notHasInPossession, :Jag and L. Rover, :evID pre>

<:evID, eso:hasPostSituation, :evID post>
<:evID post, rdf:type, eso:Situation>
<:evID post, sem:hasTime, #tmxID>
<dbp:Ford, eso:notHasInPossession, :Jag and L. Rover, :evID post>
<dbp:Tata Group, eso:hasInPossession, :Jag and L. Rover, :evID post>

In NewsReader, all the events and related information, instantiated according to the
ESO metamodel, are stored, together with the original news article from where they
were extracted in the KnowledgeStore [6], a scalable, fault-tolerant, and Semantic
Web grounded storage system to jointly store, manage, retrieve, and query both struc-
tured and unstructured data.

3 Contextualized Knowledge Repositories

In the following we provide an informal summary of the definitions for the CKR frame-
work: for a formal and detailed description and for complete examples, we refer to [5].

A CKR is a two layered structure: (1) the upper layer consists of a knowledge base
G, called global context, containing (a) meta-knowledge, i.e. the structure and properties
of contexts, and (b) global (context-independent) object knowledge, i.e., knowledge that
applies to every context; (2) the lower layer consists of a set of (local) contexts that
contain locally valid facts and can refer to what holds in other contexts. The intuitive
structure of a CKR knowledge base is depicted in Figure 1: in the following we detail
its formal components and interpretation.
Syntax. The meta-knowledge of a CKR is expressed in a DL language containing the
elements that define the contextual structure: the meta-vocabulary � is a DL signature
containing, in particular, the sets of symbols for context names N, module names M and
context classes C, including the class of all contexts Ctx. Intuitively, modules represent
pieces of knowledge specific to a context or a context class. The role mod defined on
N ⇥M expresses associations between contexts and their modules. The meta-language
L� of a CKR is a DL language over �.

The knowledge in contexts of a CKR is expressed via a DL language L⌃ , called
object-language, based on an object-vocabulary ⌃. The expressions of the object lan-
guage are evaluated locally to each context, i.e., contexts can interpret each symbol

4 Whenever applicable, default named graph is omitted.
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independently. To access the interpretation of expressions inside a specific context or
context class, we extend L⌃ to Le

⌃ with eval expressions of the form eval(X,C), where
X is a concept or role expression of L⌃ and C is a concept expression of L� (with
C v Ctx). Intuitively, eval(X,C) can be read as “the interpretation of X in all the con-
texts of type C”.

We define a Contextualized Knowledge Repository (CKR) as a structureK = hG, {Km}m2Mi
where: (i) G is a DL knowledge base over L� [ L⌃ ; (ii) every Km is a DL knowledge
base over Le

⌃ , for each module name m 2 M. We note that the knowledge in a CKR can
be expressed by means of any DL language: in our work, we consider SROIQ-RL [5]
as language of reference. SROIQ-RL is a restriction of SROIQ syntax corresponding
to OWL RL [10].

Semantics. The semantics of CKR basically extends the usual model-based semantics
of DL knowledge bases to the two layered structure of the framework. A CKR interpre-
tation is a structure I = hM,Ii s.t.: (i)M is a DL interpretation of � [ ⌃ (respecting
the intuitive interpretation of Ctx as the class of all contexts); (ii) for every context
x 2 CtxM, I(x) is a DL interpretation over ⌃ (with same domain and interpretation
of individual names of M). The interpretation of ordinary DL expressions on M and
I(x) is as usual while eval expressions are interpreted as follows: for every x 2 CtxM,
eval(X,C)I(x) represents the union of all elements in XI(e) for all contexts e in CM.

A CKR interpretation I is a CKR model of K i↵: (i) for ↵ 2 L⌃ [L� in G,M |= ↵;
(ii) for hx, yi 2 modM with y = mM, I(x) |= Km; (iii) for ↵ 2 G \ L⌃ and x 2 CtxM,
I(x) |= ↵. Intuitively, this means that I verifies the contents of global and local modules
associated with contexts and global object knowledge has to be propagated to local
contexts.

Materialization calculus. Reasoning in CKR has been formalized as a materialization
calculus [8], a datalog-based calculus for instance checking in SROIQ-RL CKRs.

Intuitively, the calculus is based on a translation to datalog of the input CKR. It
has three components: (i) the input translations Iglob, Iloc, Irl, where given an axiom ↵
and c 2 N, each I(↵, c) is a set of datalog facts or rules encoding the contents of input
global and local DL knowledge bases; (ii) the deduction rules Ploc, Prl, which are sets
of datalog rules representing the inference rules for the instance-level reasoning over
the translated axioms; and (iii) the output translation O, where given an axiom ↵ and



c 2 N, O(↵, c) is a single datalog fact encoding the ABox assertion ↵ that we want to
prove to be entailed by the input CKR (in the context c).

Intuitively, SROIQ-RL input Irl and deduction Prl rules provide the translation and
interpretation of SROIQ-RL axioms from the input CKR. Global input rules in Iglob
encode the interpretation of Ctx in the global context. Similarly, local input rules Iloc
and deduction rules Ploc provide the translation and rules for the local eval expressions.
The rules in O provide the translation of ABox assertions that can be verified to hold in
a context c by applying the rules of the final program.

The translation of a CKR K to its datalog program PK(K) proceeds in four steps:
we first translate G in the global program PG(G) by applying input rules Iglob and Irl
to G and adding deduction rules Prl; then, for every context name c 2 N appearing in
PG(G), we compute its knowledge base Kc as the set of modules Km 2 K s.t. mod(c,m)
is proved by PG(G); we translate each local program PC(c) by applying input rules Iloc
and Irl to Kc and adding deduction rules Ploc and Prl; the final CKR program PK(K)
is then obtained as the union of PG(G) with all local programs PC(c). We say that K
entails an axiom ↵ in a context c 2 N if PK(K) |= O(↵, c). We can show (see [5]) that
the presented rules and translation process provide a sound and complete calculus for
instance checking in SROIQ-RL CKR.

CKR implementation on RDF. We recently presented a prototype [5] that implements
the forward reasoning procedure over CKR defined by the materialization calculus. The
prototype accepts RDF input data expressing OWL-RL axioms and assertions for global
and local knowledge modules: these di↵erent pieces of knowledge are represented as
distinct named graphs, while we encoded in a OWL vocabulary the CKR contextual
primitives (e.g. the class Context of all context individuals, the class Module of all
modules and the property hasModule corresponding to the role mod). The prototype is
based on an extension of the Sesame RDF Framework5 and structured in a client-server
architecture: the main component, called CKR core and residing in the server-side part,
o↵ers the ability to compute and materialize the inference closure of the input CKR,
add and remove knowledge and execute queries over the complete CKR structure.

The distribution of knowledge in di↵erent named graphs asks for a component to
compute inference over multiple graphs in a RDF store, since inference mechanisms
in current stores usually ignore the graph part. This component has been realized as a
general software layer called SPRINGLES (SParql-based Rule Inference over Named
Graphs Layer Extending Sesame) [5]. Intuitively, SPRINGLES provides methods to
demand a closure materialization on the RDF store data: rules are encoded as (named
graphs aware) SPARQL queries and it is possible to customize both the used ruleset and
the evaluation strategy.

In our case, the ruleset basically encodes the rules of the presented materializa-
tion calculus. The rules are evaluated with a strategy that follows the same steps of
the translation process defined for the calculus. The plan goes as follows: (i) we com-
pute the inference closure on the graph for global context G, by a fixpoint on rules
corresponding to Prl; (ii) we derive associations between contexts and their modules,
by adding dependencies for every assertion of the kind hasModule(c,m) in the global
closure; (iii) we compute the closure of the contexts, by applying rules encoded from
Prl and Ploc and resolving eval expressions by the metaknowledge information in the
global closure.

5
http://www.openrdf.org/

http://www.openrdf.org/


4 Representing events in CKR: CKR-ESO ontology

We can now describe how we translated and implemented a first prototype of the ESO
model in the form of a contextualized ontology for the CKR, that we call the CKR-ESO
ontology.

In this model, the event and situation structures are modelled in the metaknowledge.
Similarly to the ESO model, each event instance is associated in the metaknowledge
with its pre-, during- and post-situations using the object properties hasPreSituation,
hasPostSituation and hasDuringSituation, subproperties of hasSituation. Situation el-
ements associated with events can be generated automatically by SPRINGLES rules
when importing an event.

Each event is represented in the metaknowledge as an instance of the class Event:
in particular, each event is associated, analogously to the ESO model, with a sub-
class of the Event class that determines the type of associated situations: in particular,
DynamicEvents (e.g. ChangeOfPossession, Constructing) are typically characterized
by their pre- and post-situations, while StaticEvents (e.g. BeingOperational) by their
during-situations.

This classification is provided by restrictions over the definition of such classes. For
example, for the ChangeOfPossession event class, the CKR-ESO ontology states that:

ChangeOfPossession v 8hasPreSituation.Pre ChangeOfPossession
ChangeOfPossession v 8hasPostSituation.Post ChangeOfPossession

Each event individual is associated with a knowledge module that corresponds to the
RDF graph of the event in the ESO model. This association is represented in the meta-
knowledge by the property hasEventModule. The following chain axiom is defined
over this property, asserting that situations related to an event inherit the facts asserted
in the event module: (hasSituation)� � hasEventModule v hasModule. As defined
by the ESO model, we expect to find in the event module the instantiation for all the
required roles involved in the event.

The class Situation is defined as a subclass of the Context class in the CKR vocab-
ulary: in other words, in our model we consider situations and their local knowledge
as contexts. The particular (pre, post and during) situations associated with event types
are modelled by specific context classes. Thus, for example, we have that the pre- and
post-situations for events of type ChangeOfPossession are classified as members of
the classes Pre ChangeOfPossession and Post ChangeOfPossession. The associ-
ation between such type of situations and their local axioms (i.e. what its modelled
in the ESO ontology by situation assertions) is performed by linking specific knowl-
edge modules to these context classes. For example, in CKR-ESO we declare that ev-
ery pre-situation of ChangeOfPossession is associated with the knowledge module
pre change-of-possession-m and post-situations to post change-of-possession-m:

Pre ChangeOfPossession v 9hasModule.{pre change-of-possession-m}
Post ChangeOfPossession v 9hasModule.{post change-of-possession-m}

Situation assertions are thus encoded inside these specific modules: the assertions can
be basically translated to chain axioms across the roles specified in the event. For ex-
ample, assertions for pre-situations of ChangeOfPossession stating that:

hasInPossession(possession-owner 1, possession-theme)
notHasInPossession(possession-owner 2, possession-theme)



Situation 

Pre_CoP Post_CoP 

event1 
pre-event1 post-event1 

pre_cop-m 

event1_m 

post_cop-m 

Kpre_cop-m (possession-owner_1)– ○ possession-theme ⊑ hasInPossession 
(possession-owner_2)– ○ possession-theme ⊑ notHasInPossession 

G
lobal context 

Local m
odules 

Event 

DynamicEvent 

ChangeOf 
Possession 

hasPreSituation 
hasPostSituation 

Kpost_cop-m (possession-owner_2)– ○ possession-theme ⊑ hasInPossession 
(possession-owner_1)– ○ possession-theme ⊑ notHasInPossession 

Kevent1 possession-owner_1(event1,Ford) 
possession-owner_2(event1,Tata_Group) 
possession-theme(event1,Jaguar_and_Land_Rover) 

Context 

Fig. 2. Example event in CKR-ESO model.

is translated in CKR-ESO to these chain axioms across role properties:

(possession-owner 1)� � possession-theme v hasInPossession
(possession-owner 2)� � possession-theme v notHasInPossession

We now can show how to represent our example event from Section 2 using the CKR-
ESO model: we depict this modelling in Figure 2. In the global context, we define
event1 to be of type ChangeOfPossession and associate it with its situations:

ChangeOfPossession(event1)
hasPreSituation(event1, pre-event1)
hasPostSituation(event1, post-event1)

By the above axioms for such event type, we know that the pre- and post-situations of
event1 have to be of type Pre ChangeOfPossession and Post ChangeOfPossession.
By metalevel reasoning, this implies that:

hasModule(pre-event1, pre change-of-possession-m)
hasModule(post-event1, post change-of-possession-m)

and thus the situation assertions associated with the pre- and post-situations of ChangeOfPossession
are imported in the two situations6. Moreover, the graph associated with the original
event is now defined as a module associated with event1 in the metalevel: hasEventModule(event1, event1 m).
The event1 m module (i.e. the associated RDF graph) now contains the following facts
that are shared with all the situations associated with this event:

possession-owner 1(event1, Ford)
possession-owner 2(event1,Tata Group)
possession-theme(event1, Jaguar and Land Rover)

6 In Figure 2 we abbreviate classes of pre- and post-situations of ChangeOfPossession with
Pre CoP and Post CoP and their modules with pre cop-m and post cop-m.



Using the situation assertions in the module associated with the pre-situation, the CKR
thus derives the following facts in the context of pre-event1:

hasInPossession(Ford, Jaguar and Land Rover)
notHasInPossession(Tata Group, Jaguar and Land Rover)

Similarly, in the context of post-event1 we obtain:

notHasInPossession(Ford, Jaguar and Land Rover)
hasInPossession(Tata Group, Jaguar and Land Rover)

We note that representation of the described event can be completed with its associated
during-situation: among the facts that are known to hold during the event, for example,
we can assert the existence of the actors and of the possession theme (using the exists
property in the ESO).

This contextual re-interpretation of the ESO model can bring several advantages from
the point of view of reasoning capabilities inside and across events. First of all, every
aspect of the reasoning procedure is now strictly ruled by logical reasoning: situation
assertions and their association with the type of situation are now directly modelled
by the CKR structure and local axioms, without demanding an external reasoner to
consider the situation rules and the local reasoning inside situations. Furthermore, the
propagation of global object knowledge to local knowledge allows the use of context
independent background knowledge in local reasoning. In our example, we can assert
in the global knowledge that both actors (Ford and Tata Group) are classified as car
companies and their features can be used in local reasoning. More in general, the ad-
vantages of an explicit and structured representation of contexts (as the one o↵ered by
the CKR) with respect to a modelling based on reification have been shown in [2].

On the other hand, the clear separation of meta and object level reasoning can be
exploited to exchange information across the two levels. For example, depending on
the type and specific patterns of situation and events, by adding custom SPRINGLES
rules it is possible to generate implicit events that have to occur for the completion
of the event sequence in a story. In our example, if we have a second event event2
representing another ChangeOfPossession of Jaguar and Land Rover between two
companies Company1 and Company2, di↵erent than the two companies from event1,
and event2 has a timestamp greater than event1, then we can infer that there have been
another two events (possibly being the same one): in one Jaguar and Land Rover has
been sold from Tata Group and in the other it has been acquired from Company1. Sim-
ilarly, we can recognize cases in which we can assert the equality of certain situations:
this can be used to compile sequences of events in a story.

Metalevel information for situations and events can be derived from local reason-
ing: we might recognize incompatible descriptions of the same event from di↵erent
news. For example, let us suppose a di↵erent representation of the scenario shown in
the example in Figure 2: assume that event1 is now classified as Buying (subclass of
ChangeOfPossession) while another event event2 is extracted as Selling (also sub-
class of ChangeOfPossession), but they both represent the same conceptual event (i.e.
the acquisition of Jaguar and Land Rover by Tata Group from Ford). Thus, at the
level of the metaknowledge, the two events are modelled as:



Buying(event1)
hasPreSituation(event1, pre-event1)
hasPostSituation(event1, post-event1)
Selling(event2)
hasPreSituation(event2, pre-event2)
hasPostSituation(event2, post-event2)

Since they represent the same happening, the event modules event1 m and event2 m
basically share the same contents: that is, the actors are the same and they take the
same role. However, suppose that, due to the extraction from di↵erent news sources, the
metamodel property sem:hasTime associated to post-event1 has value “August 26th,
2007” while the value associated to pre-event2 is “August 28th, 2007”. Then, using
this metalevel information and the local contents of the event modules, we can easily
write a reasoning rule that recognizes that the two events are incompatible and adds
the assertion event1 incompatibleWith event2 in the global context. Similarly, we can
recognize inconsistent situations by local reasoning: this can be used both to exclude
further inferences from inconsistent contexts, by marking as “inconsistent” the situation
individual in the metaknowledge, but also to repair (possibly with some ad-hoc rules)
the local axioms. We note that, on the other hand, this kind of reasoning requires to
define ad-hoc rules to recognize such di↵erent situations.

Another interesting possibility is the one of having inter-situation knowledge prop-
agation. For example, if two situations or two events are recognized as consequent in a
story, unmodified knowledge from the previous situations can be propagated to subse-
quent situations (e.g. the marital status of Obama did not change when he was elected
US president). This clearly presents problems of non-monotonicity, since one has to
consider which knowledge can be seamlessly propagated without incurring in contra-
dictory states. In this regard, we recently introduced in CKR a notion of defeasible
axioms and their overriding across di↵erent contexts [3].

5 Conclusions and future works

In this paper we introduced the model of the CKR-ESO ontology, a re-interpretation
of the Event and Situation Ontology under the contextual view of knowledge o↵ered
by the CKR framework. We discussed informally the advantages of such representation
and demonstrated its application by means of an example.

We are currently completing the translation of the full ESO ontology to its contex-
tualized version: we remark that, given the direct translation across the two models, we
can easily automatize this transformation.

Our goal is to be able to apply some of the proposed complex reasoning services to
the events currently represented in the KnowledgeStore of the NewsReader project:
to this aim, we plan to integrate the RDF-based CKR implementation with the Knowl-
edgeStore and encode such reasoning services with respect to CKR contextual model.

Acknowledgments. The research leading to this paper was supported by the European
Union’s 7th Framework Programme via the NewsReader Project (ICT-316404).
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Abstract. Events of various sorts make up an important subset of the entities rel-
evant not only in knowledge representation but also in natural language processing
and numerous other fields and tasks. How to represent these in a homogeneous yet
expressive, extensive, and extensible way remains a challenge. In this paper, we
propose an approach based on FrameBase, a broad RDFS-based schema consisting
of frames and roles. The concept of a frame, which is a very general one, can
be considered as subsuming existing definitions of events. This ensures a broad
coverage and a uniform representation of various kinds of events, thus bearing the
potential to serve as a unified event model. We show how FrameBase can represent
events from several different sources and domains. These include events from a
specific taxonomy related to organized crime, events captured using schema.org,
and events from DBpedia.

1 Introduction
The surge of research on large-scale knowledge bases in recent years has largely been
driven by the availability of new sources of information about entities. While structured
data about millions of places, people, or companies are very valuable, there have been
comparably few new results on capturing events of various sorts. Most existing event-
oriented ontologies have introduced only a few abstract classes of events, and typical
knowledge bases tend to describe just a small number of specific types of events.

Often, however, there is a need to talk about a broad range of very specific sorts of
events. For instance, one might want to distinguish battles from both gunfights and from
wars, and capture the class-specific details of such events. We adopt a broad notion of
events here. This includes the prototypical cases, e.g. local happenings such as concerts,
gatherings, or competitions, and world events such as those reported in the news. It also
encompasses the more general abstract definition of events, for instance as “happenings
in the real world” [15], which would include, e.g., the birth of a person or a commercial
transaction between two people. Clearly, such events make up an important aspect of
the world that is relevant in knowledge representation, natural language processing, and
numerous other fields and tasks. Occasionally, the term eventuality is used to denote a
broader notion of events that explicitly includes states, e.g. two people knowing each
other.

In this paper, we address this challenge of representing many different notions of
events under a common schema, from the very prototypical cases to the very abstract, in
a way that has both a broad coverage yet supplies sufficient detail to model event-specific



properties. For this, we present a new approach for representing event information that is
based on FrameBase [12], a broad RDFS-based schema made of frames and their roles.
FrameBase provides a predefined vocabulary with event-specific properties for thousands
of different kinds of events. For instance, FrameBase’s schema accounts for the fact
that a battle takes place in a certain time and place and normally involves two parties.
For this, the schema draws on two linguistic resources, FrameNet [2] and WordNet [6].
As these describe important fragments of the English lexicon, their coverage is quite
substantial. Additionally, as we illustrate later on, FrameBase can be easily extended.

In the following, we prove the suitability of FrameBase for representing different
kinds of events by creating rules that integrate instances from different domains:

– A taxonomy of event classes relating to organized crime from the EU FP7 project
ePOOLICE3. In the project, the event classes in the taxonomy are used as types
of entities that are extracted from documents crawled from the web, as part of a
strategic early-warning system. The taxonomy was originally captured using the
Conceptual Graphs formalism [17]. We use and integrate the event taxonomy as it
is, without ad-hoc modifications to the schema.

– The subclasses and properties of the “Event” class in schema.org, which “provides
a collection of schemas that webmasters can use to markup HTML pages in ways
recognized by major search providers, and that can also be used for structured data
interoperability” [1].

– The subclasses and properties of the “Event” class in DBpedia [4], which are
extracted from the infoboxes in Wikipedia.

– We conclude with a more general overview of how salient aspects of events [15] can
be mapped into FrameBase.
This paper is structured as follows. After describing previous approaches and research

in Section 2, a brief overview of the FrameBase schema is given in Section 3. Section 4
then shows how we can rely on the FrameBase schema to represent events from several
different sources and domains. Finally, Section 5 provides concluding remarks and
describes avenues for future research and applications of our work.

2 Related Work
Considering their importance and unique characteristics, events have been included in
numerous upper-level ontologies and vocabularies. In [15], existing event models are
reviewed, but these define very broad abstract categorizations or meta-models. Only few
example specializations or vocabularies for narrow domains exist, and their overall size
is relatively small.

For instance, the Simple Event Model (SEM) Ontology [18] introduces the four types
Event, Actor, Place, and Time. While it provides a mechanism to create more specific
ones by extending these, it does not actually define any specific kinds of events itself.
Similarly, the LODE (Linking Open Descriptions of Events) model [16] provides very
general concepts, such as the four just mentioned. The event model E [14] proposes
a generic structure for the definition of events, but a specific vocabulary is provided

3 https://www.epoolice.eu/



only for the domain of media events with sensor data. The Event Ontology [11] defines
a single event class, for which time, place, agents, factors, products, and meronymic
relations can be specified, and the domain of focus is music events. Likewise, the Context
Ontology (CONON) is limited to the domain of pervasive computing environments [19].

FrameBase’s schema instead aims at a broader coverage of many domains by build-
ing on natural language resources. Previous work has made use of natural language
processing techniques to extract events from text. For instance, one study [5] relies on
semantic role labelling (SRL) in conjunction with VerbNet to collect events from text and
convert them to the LODE vocabulary mentioned above. Another system [10] extracts
events both from text and from semi-structured data. We believe that such automatic
extraction methods would benefit from being able to use a standardized wide-coverage
representation schema for their output.

3 The FrameBase Schema
The FrameBase schema [12] consists of classes representing frames, and properties
representing frame elements. A frame describes any kind of situation, state or action, in
which several elements, participants (agents, patients, etc.) or properties are involved.
Examples include commercial exchanges, marriages, or the act of stomping. The frame
elements refer to the participants or properties that are involved in a particular frame
instance. Common general frame elements include those of agent, patient, time, and
location, but not all frames involve these. Frame elements are sometimes also referred to
as semantic roles, roles, or theta roles, especially when they are very general.

The frames and the frame elements in FrameBase are organized in hierarchies of
classes (based on subclass relationships) and of properties (based on subproperty rela-
tionships), respectively. There are three kinds of frames in FrameBase: LU-microframes,
synset-microframes and non-lexical frames. Non-lexical frames are very general and are
situated in the upper part of the hierarchy. LU-microframes (lexical unit microframes)
descend from non-lexical frames, but are much more specific by being associated with
the meaning of particular words (the lexical units). They come from FrameNet [7, 13].
Synset-microframes allow an intermediate level of granularity connecting synonymous
LU-microframes, e.g. for marriage and matrimony. These are based on WordNet [6], and
thus also have allowed us to extend the coverage of FrameBase beyond that of FrameNet.
In the field of linguistics, frames are said to be evoked by words: for example, both the
verb to create and the noun creation evoke the Creation frame.

FrameBase additionally provides direct binary predicates to directly connect certain
values for elements of a given frame. For example, in a creation event, the agent and the
place are directly connected via the establishesInPlace relation. This enables more
concise queries and representations when only two elements are involved in a particular
frame. The frame patterns and the direct binary predicates are logically connected by
means of definite clauses that can be used with different kinds of inference systems.

For interoperability with existing resources, FrameBase relies on the standard RDF
model [9], which has become a common choice for representing knowledge. This is
particularly true in the context of the Linked Data [3], a large Web of datasets referring to
and reusing each other’s elements. The RDF model uses subject-predicate-object triples
to represent statements. Each triple can also be seen as an edge in a directed labelled



entity-relationship graph. SPARQL [8] is the standard query language for RDF, which is
what we use in order to integrate other event representations into FrameBase.

Event frames are specific kinds of frames, subsuming a range of different notions
of events, from the very abstract (e.g., “a natural abstraction of happenings in the real
world” [15]) to notions with a notably narrower scope, such as that of widely-known
events [10]. Frame elements correspond to what are referred to as aspects in the event
literature [15]. However, frames can also be more general, and include what the event
model E categorizes separately as entities [14]. For example, FrameNet, from which
FrameBase is derived, includes a frame People that is evoked by lexical units (LUs)
such as the noun man, and with frame elements such as Age and Origin.

We believe that the advantage of FrameBase over the existing event models lies on the
fact that while extensible as the others, it already provides a broad-coverage vocabulary
out of the box in order to bootstrap widespread adoption. Besides, its connection to
natural language provides potential advantages, like interfacing with text for question
answering or text mining.

FrameBase includes, from FrameNet, an Event frame, which inherits from the
Change of state scenario frame, and includes a relatively rich hierarchy below for
events like creation and destruction events (including more specific ones such as births
and deaths), and some others. However, not every event must necessarily fall below
this event frame, nor does doing so preclude it from being mapped to other frames that
represent other conceptualizations for events, or reflect other perspectives of the frame
that stress different aspects than the eventive one. Therefore, the representation of events
in FrameBase is not confined to the Event frame and its subframes. We will see examples
of this in the next section.

4 Integrating Events
In the first subsections of this section, we present manually built rules for integrating
events from three different sources into FrameBase. Later, we add further explanations
about these rules and discuss the complexity of the integration rules, and the challenges
they present, in particular when they are to be established automatically.

4.1 Representing Events about Organized Crime

The following list of integration rules shows, for each instance of an event class in the
organized crime conceptual graph (in bold), the corresponding representation in RDF
that it would have in FrameBase. In particular, the main event instance is represented by
the anonymous node _:e. The default prefix indicates elements that already existed in
the core FrameBase schema created from FrameNet and WordNet.

Event _:e a :frame-Event-event.n
Act _:e a :frame-Intentionally_act-act.n

Arrest _:e a :frame-Arrest-arrest.n
Drug Possession Arrest _:e a :frame-Arrest-arrest.n .
_:e :fe-Arrest-Offense _:e2 .
_:e2 a :frame-Offenses-possession.n



Human Trafficking Arrest _:e a :frame-Arrest-arrest.n .
_:e :fe-Arrest-Offense _:e2 .
_:e2 a :frame-Commerce_scenario-trafficker.n .
_:e2 :fe-Commerce_scenario-Goods :frame-People-human.n

Metal Theft Arrest _:e a :frame-Arrest-arrest.n .
_:e :fe-Arrest-Offense _:e2 .
_:e2 a :frame-Theft-theft.n .
_:e2 :fe-Theft-Goods :frame-Substance-metal.n .
_:e2 a :frame-Offenses-theft.n

Buy _:e a :frame-Commerce_buy-buy.v
Crime _:e a :frame-Committing_crime-crime.n

Illegal Drug Use _:e a :frame-Ingest_substance-use.v
Consume _:e a :frame-Ingestion-consume.v
Inhale _:e a :frame-Ingest_substance-sniff.v
Inject _:e a :frame-Ingest_substance-inject.v
Possession _:e a :frame-Offenses-possession.n
Smoke _:e a :frame-Ingest_substance-smoke.v

Organised Crime
_:e a fbe:frame-Organization-criminal%20organization.n

Theft _:e a :frame-Theft-theft.n .
_:e a :frame-Offenses-theft.n

Metal Theft _:e a :frame-Theft-theft.n .
_:e :fe-Theft-Goods :frame-Substance-metal.n .
_:e a :frame-Offenses-theft.n

Trafficking _:e a :frame-Commerce_scenario-trafficker.n
Drug Trafficking

_:e a :frame-Commerce_scenario-trafficker.n .
_:e :fe-Commerce_scenario-Goods :frame-Intoxicants-drug.n

Human Trafficking
_:e a :frame-Commerce_scenario-trafficker.n .
_:e :fe-Commerce_scenario-Goods :frame-People-human.n

Seizure _:e a :frame-Taking-seizure.n
Drug Seizure _:e a :frame-Taking-seizure.n .

_:e :fe-Taking-Theme :frame-Intoxicants-drug.n

Sell _:e a :frame-Commerce_sell-sell.v
Transaction _:e a :frame-Commercial_transaction-transaction.n

Crime Transaction
_:e a :frame-Commercial_transaction-transaction.n .
_:e a :frame-Committing_crime-crime.n

Drug Trafficking Transaction
_:e a :frame-Commercial_transaction-transaction.n .
_:e a :frame-Committing_crime-crime.n .
_:e :fe-Commercial_transaction-Goods :frame-Intoxicants-drug.n

Human Trafficking Transaction



_:e a :frame-Commercial_transaction-transaction.n .
_:e a :frame-Committing_crime-crime.n .
_:e :fe-Commercial_transaction-Goods :frame-People-human.n

Metal Theft Transaction
_:e a :frame-Commercial_transaction-transaction.n .
_:e a :frame-Committing_crime-crime.n .
_:e :fe-Commercial_transaction-Goods :frame-Substance-metal.n

The hierarchy in the original ontology is not necessarily consistent with the hierarchy
in FrameBase. Only in certain cases does a superclass relationship between two elements
of the source also exist between the two elements’ respective translations to FrameBase.
Therefore, for each translation of an original class of event, the translations of the parents
in the original ontology can be added to the set of instances (ABox) in FrameBase,
and this will provide additional knowledge that would not always be inferred by the
FrameBase schema alone.

We minimize the need for declaring new frames and frame elements for specialized
domains by making use of the compositionality of most specialized terms, creating
complex structures that combine the semantics of simpler, basic elements. For instance,
the translation for the event of type “Drug Possession Arrest” declares an event of
type arrest, and specifies that it is about drug possession by assigning drug possession
(Offenses-possession.n) as the offence.

Owing to this flexibility, we merely needed to mint one single new entity that had not
existed in the core FrameBase schema (the microframe Organization-criminal%20-
organization.n, with the prefix fbe: denoting that this is an extension). This ex-
emplifies the potential of FrameBase to represent events from relatively specialized
domains, but at the same time the capacity to be extended to fill any possible gaps.

For representing timelines, the frame Individual_history-history.n can be
used. Each timeline can be represented with one instance of that frame. This instance can
be linked with the frame element Individual_history-Domain to the topic, which
is preferably an entity (or alternatively, a literal or an anonymous node or dummy
entity named with a literal). The instance can also be linked with the frame element
Individual_history-Event to each of the elements in the timeline. Additional frame
elements are available in FrameBase, originating from FrameNet, for expressing partici-
pants, total duration, etc.

Then, complex queries such as retrieving all events in a given timeline between two
given dates, can be built in SPARQL. Similarly, sub-events can be represented with the
property path: ^:fe-Part_whole-Part/:fe-Part_whole-Whole.

4.2 Representing Events from DBpedia.org
We now turn to the Event class in DBpedia, and its subclasses, showing how these
can be integrated into FrameBase. The integration is implemented using SPARQL
CONSTRUCT rules because DBpedia is already in RDF. We only add a couple of
subclasses, but most of the properties belong to the parent Event class itself.

Top event
CONSTRUCT {
?e a :frame-Event-event.n .



?e :fe-Event-Time _:timePeriod .
_:timePeriod a fbe:frame-Timespan-period.n ;
fbe:fe-Timespan-Start ?o1 ; fbe:fe-Timespan-End ?o2 .

_:e2 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?e ;
:fe-Relative_time-Focal_occasion ?o3 .

_:e3 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?o3 ;
:fe-Relative_time-Focal_occasion ?e .

_:e4 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?e ;
:fe-Relative_time-Focal_occasion ?o4 .

_:e5 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?o4 ;
:fe-Relative_time-Focal_occasion ?e .

?e :fe-Event-Reason ?o5 .
?e a :frame-Social_event-meeting.n ;
:fe-Social_event-Attendee ?o8 .

} WHERE {
?e a dbpedia-owl:Event .
OPTIONAL{?e dbpedia-owl:startDate ?o1}
OPTIONAL{?e dbpedia-owl:endDate ?o2}
OPTIONAL{?e dbpedia-owl:previousEvent ?o3}
OPTIONAL{?e dbpedia-owl:followingEvent|dbpedia-owl:nextEvent ?o4}
OPTIONAL{?e dbpedia-owl:causedBy ?o5}
OPTIONAL{?e dbpedia-owl:duration ?o6}
OPTIONAL{?e dbpedia-owl:numberOfPeopleAttending ?o7} #Omitted
OPTIONAL{?e dbpedia-owl:participant ?o8}

}

For sub-classes of dbpedia-owl:Event
CONSTRUCT {
?e a :frame-Social_event-meeting.n .

} WHERE {?e a dbpedia-owl:SocietalEvent}

For sub-classes of dbpedia-owl:SocietalEvent
CONSTRUCT {
?e a :frame-Project-project.n .
?e :fe-Project-Activity dbpedia:Space_exploration .

} WHERE {?e a dbpedia-owl:SpaceMission}

For sub-classes of dbpedia-owl:SocietalEvent
CONSTRUCT {
?e a fbe:frame-Social_event-convention.n .

} WHERE {?e a dbpedia-owl:Convention}

Out of the 9 properties of the class Event, the only omitted one was
numberOfPeopleAttending, because the class Event is too general for it, as it has sub-
classes such as NaturalEvent (SolarEclipse) and PersonalEvent (Birth, etc.).
The SocietalEvent class appears more appropriate for this.



4.3 Representing Events from schema.org
Finally, we present the translation of the Event class in schema.org. Again, SPARQL
CONSTRUCT rules are used because schema.org can be expressed using RDFa, and
SPARQL offers a standard way of representing knowledge graph transformations. Due
to space restrictions, we omit the subclasses here, but these have very few genuine
properties, and therefore the specialization is relatively simple. Besides, the taxonomy
of schema.org events has some inconsistency issues that makes its use complex: the
Event class is defined as capturing events such as concerts, lectures, and festivals, with
properties such as “typical age range”, but there are sub-events such as UserInteraction
and UserPlusOnes that actually represent a more general kind of events.
CONSTRUCT {
?e a :frame-Social_event-meeting.n .
?e :fe-Social_event-Time _:timePeriod .
_:timePeriod a fbe:frame-Timespan-period.n ;
fbe:fe-Timespan-Start ?Osta ; fbe:fe-Timespan-End ?Oend .

?e :fe-Social_event-Duration ?Odur . ?e :fe-Social_event-Place ?Oloc .
?e :fe-Social_event-Attendee ?Oatt . ?e :fe-Social_event-Host ?Oorg .
?e :fe-Social_event-Occasion ?Osup . ?Osub :fe-Social_event-Occasion ?e .
?Ooff a :frame-Offering-offer.v ;
:fe-Offering-Theme ?e .

?e a :frame-Performing_arts-performance.n ;
:fe-Performing_arts-Performer ?Oper ;
:fe-Performing_arts-Performance ?Owor .

_: a :frame-Recording-record.v ;
:fe-Recording-Phenomenon ?e ;
:fe-Recording-Medium ?Orec .

} WHERE {
?e a sch:Event .
# Unambiguous translation
OPTIONAL{?e sch:startDate ?Osta} OPTIONAL{?e sch:endDate ?Oend}
OPTIONAL{?e sch:duration ?Odur} OPTIONAL{?e sch:location ?Oloc}
OPTIONAL{?e sch:attendee ?Oatt} OPTIONAL{?e sch:organizer ?Oorg}
OPTIONAL{?e sch:superEvent ?Osup} OPTIONAL{?e sch:subEvent ?Osub}
OPTIONAL{?e sch:offers ?Ooff} OPTIONAL{?e sch:performer ?Oper}
OPTIONAL{?e sch:workPerformed ?Owor} OPTIONAL{?e sch:recordedIn ?Orec}
# Ambiguous translation
OPTIONAL{?e sch:doorTime ?Odoo}
# No translation
OPTIONAL{?e sch:eventStatus ?Oeve}
OPTIONAL{?e sch:typicalAgeRange ?Otyp}
OPTIONAL{?e sch:previousStartDate ?Opre}

}

The only extension of the FrameBase schema used here was the frame
:frame-Timespan-period.n with the start and end frame elements, used to denote
periods of time. This, however, is not an ad-hoc extension motivated by a particular
need of only one source, but a very general one. Out of the 16 properties of the Event
class, 12 were translated without loss of meaning. One was translated with partial loss of



meaning (doorTime, translated as a generic start time) and 3 of them were not translated.
Whether these can be integrated too, by means of more complex structures, is something
we are investigating.

4.4 Mapping Event Aspects to Frame Elements
The survey by Scherp and Mezaris [15] proposes a classification of salient aspects of
events. We use this classification to show in a more general way how event aspects can
relate to frame elements in the FrameNet-based schema of FrameBase.

– Time and Space: When applicable, frames include frame elements Time and Place.
– Participation: The classification defines this as “participation of objects in event,

where objects can be any living as well as non-living things and include peo-
ple, buildings, and other even intangible objects like the roles a person plays
in a specific situation” [15]. FrameBase provides a large inventory of more spe-
cific roles to capture such participants. Often, these correspond to what are some-
times called the proto-agent and proto-patient roles, whose realization in Frame-
Base depends on the frame. Some examples are :fe-Commerce_buy-Buyer,
:fe-Destroying-Destroyer and :fe-Destroying-Undergoer, which are sub-
properties of :fe-Getting-Recipient, :fe-Transitive_action-Agent and
:fe-Transitive_action-Patient, respectively.

– Relations between events.
• Mereology: The relation between two events, when one is part of an-

other. Some frames will have a frame element that will fill this role,
like :fe-Social_event-Occasion in the example of the Event class
in schema.org. In other cases, an additional frame instance of type
:frame-Part_whole can be used.

• Causality: One event is the cause of another. Some frames will have a frame
element that will fill this role, like :fe-Event-Reason in the example for the
Event class in DBpedia. In other cases, an additional frame instance of type
:frame-Causation can be used.

• Correlation: When “two (or more) events have a common cause, but this
common cause cannot be explained”. If we can assume there is a common cause
as in the definition, then the causal relationships can be represented with two
instances of :frame-Causation connecting with an anonymous node for the
unknown cause.

– Documentation: Events can be “documented using some media like photos or
videos captured during the event”. This relation is between an event and such
documentation. It can be expressed connecting the events by an additional frame
of type :frame-Recording-document.v, :frame-Recording-record.v, and
:frame-Recording-register.v, or some extension if needed.

– Interpretation: This aspect aims at capturing “subjectivity that may exist on the
other aspects of events”. This is a very broad category that may include different
phenomena. The perspectivization relation in FrameNet [13] connects frames repre-
senting objective events with frames describing them from a particular perspective.
For instance, :frame-Commerce_Sell and :frame-Commerce_Buy are perspec-



tivizations of :frame-Commerce_Scenario. In other cases, an additional frame
instance of a pertinent type can be used, for instance :frame-Becoming_aware.

4.5 Complex Transformations

Most of the integration rules we have described follow a pattern which involves an event
class in the source being translated as a frame class, and each of their outgoing properties
being mapped to individual frame elements. However, there are multiple ways in which
the rules can differ from this basic pattern.

1. Sometimes, a class integration rule may need to instantiate multiple frames rather
than just a single one. We distinguish two main types of this phenomenon.

a) The instantiated frame instances may be connected by frame elements. Examples
of this include the frame :frame-Timespan-period.n created to represent
time periods, and the subframes of Relative_time to express precedence
between events (all in the example for dbpedia-owl:Event). The same applies
when a frame element is used to specify a frame beyond the lexical unit (see the
rule for dbpedia:Space_exploration).

b) Several frames can also be evoked separately, without the instances being
directly connected by any frame element. When these frames describe dif-
ferent perspectives of the same event, there is the possibility that FrameNet
links them by means of perspectivization, and therefore FrameBase can in-
fer one from another. For example, classes :frame-Commerce_buy-buy.v
and :frame-Commerce_sell-sell.v, which are used for classes Buy
and Sell in the organized crime taxonomy, are both perspectiviza-
tions of :frame-Commerce_goods-transfer. In this case, inference
is possible because RDFS subclass and subproperty properties are
used in FrameBase to reflect the perspectivization relation between
frame classes and frame elements respectively. Another example are
:frame-Receive_visitor_scenario and :frame-Visit_host, which
are perspectives of :frame-Visitor_and_host. However, in other cases
one cannot rely on existing inference. For instance, see how the rule
to translate Event from schema.org, besides frames Event-event.n and
Timespan-period.n, also instantiates Performing_arts-performance.n,
Recording-record.v and Offering-offer.v when certain properties are
present.

2. Another possible source of complexity is that frame elements can be inverted. In
this case, the integration rules need to invert the order of the arguments, like in the
second appearance of :fe-Social_event-Occasion in the integration rule for
the class Event in schema.org.

3. Oftentimes, a property (rather than a class) in the source can be translated as evoking
a frame on its own. In this case, the two involved entities become connected to
the new frame by means of frame elements. This would be the case for a property
like fightAgainst, which might evoke an event or frame of type armed conflict,
about which additional information could be added. None of the examples we have



covered above are of this kind, because we use sources that explicitly represent, or
reify, events. In other sources, however, this phenomenon appears quite frequently.

Arbitrary combinations of these phenomena are possible (e.g. the rule integrating the
Event class from schema.org). Overall, this makes automatic generation of the integration
rules a very hard task, because it generates so many free variables that any attempt to
train a system would face extreme sparsity. In some cases, it may thus make sense to
sacrifice some recall, developing a system that only covers simpler transformations.

4.6 Representational Flexibility
Finally, another potential challenge for data integration is that even when a homogeneous
schema such as FrameBase is used, certain kinds of knowledge can still be expressed in
multiple possible ways.

– One example is that there are several ways of narrowing down the meaning of
a frame instance. One is creating a new sub-microframe associated with a new
lexical unit. Another one is assigning a value to a frame element (see example
for SpaceMission), as mentioned above. This may lead to divergent choices of
representation even within the core part of the schema that comes from FrameNet.

– Another example of this is when a frame element needs to be reified, i.e. represented
as a frame instance, to express something additional about it (as would be the case
of the property previousStartDate in schema.org), or when there is no direct
frame element available and creating it would lead to a combinatorial explosion
in the size of the schema. An example of the latter is the difference between our
proposal for using the frame Part_whole for expressing sub-event relations, and
how we used the frame element Occasion for the frame Social_event, but this is
a particularity of that frame. Again, this may lead to an incoherent representations
in the knowledge base. One potential way of addressing this would be extending the
reification–dereification mechanism of FrameBase [12].

5 Conclusion
We have shown how events from specialized domains can be represented with the
FrameBase schema under a unified model, integrating events in the prototypical sense
with more general kinds of events in the sense of abstract happenings or situations. This
model has proven to have a high degree of coverage because it needed just few extensions
to accommodate the integrated knowledge, and we have illustrated how these extensions
can be performed when needed. We have also discussed the various challenges and
problems one faces when the integration rules from disparate structured sources of event
information are to be built automatically.

Extremely specialized domains, such as quantum physics, may produce lower cover-
age and need more extensions, although in some cases the creators of FrameNet have
also been involved in projects that led to the inclusion of specific scientific and technical
domains.

The integration rules that we produce can be used in the future as gold standards
for training and testing automatic methods for creating rules from other schemas. We
are currently performing research on these methods to integrate further sources such as
YAGO2s, Freebase, and Wikidata.



Please refer to http://framebase.org for information on using FrameBase and
the integration rules.
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