Merkle Hash Tree based Techniques for Data Integrity of
Outsourced Data

Muhammad Sagqib Niaz

Dept. of Computer Science

Otto von Guericke University
Magdeburg, Germany

sagib@iti.cs.uni-magdeburg.de

ABSTRACT

One of the problems associated with outsourcing data to
cloud service providers is the data integrity of outsourced
data. In this paper we present data integrity techniques
for the outsourced data. Data integrity encompasses the
completeness, correctness and freshness of the data. This
paper focuses on the Merkle Hash Tree based data integrity
techniques. It also presents the techniques for storage and
retrieval of Merkle Hash Tree based authentication data to
and from cloud data service provider. Critical analysis of
the Radix Path Identifiers, a technique for storage of Merkle
Hash Trees in the databases, is presented in this paper.

General Terms
Cloud Databases, Security

Keywords
Database Security, Data Integrity, Outsourced Data

1. INTRODUCTION

Data outsourcing means to store your data on third party
cloud data service providers. It is cheaper and easier to
maintain the data on a cloud data service instead of main-
taining it in data owner’s own premises. Besides all the
benefits, data outsourcing poses numerous security threats
to the outsourced data. The list includes but is not limited
to data integrity, access privacy and unauthorized access of
data. The focus of this paper is data integrity that encom-
passes completeness, correctness and freshness.

There are three parties involved in these schemes. Data
owner (DO), data clients and data service provider (DSP).
A DSP provides all the data services and can be trusted
with the server availability, timely backups, replications and
disaster recovery. But the DSP cannot be trusted with the
integrity of outsourced data. A DSP has unlimited access
to the data to make it possible for the DSP to forge the
data in anyway. It is assumed that the link between the DO

27t GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 26.05.2015 - 29.05.2015, Magdeburg, Germany.
Copyright is held by the author/owner(s).

66

Gunter Saake
Dept. of Computer Science
Otto von Guericke University
Magdeburg, Germany

gunter.saake@ovgu.de

and DSP and the links between clients and DSP are secure
using some technique like SSL and the forgery of the data
over these links can be easily detectable.

Following are some the features that need to be considered
in designing data integrity techniques for outsourced data:

e Computation overhead for the DO

e Computation overhead of the DSP

e Storage overhead of DSP

e Computation overhead of the client

e Storage overhead of the client

The rest of the paper is organized as follows. A basic data
integrity technique is presented in Section 2. The Merkle
Hash Tree based data integrity scheme is presented in Sec-
tion 3. Section 4 explains the storage and retrieval technique
for Merkle Hash Tree based authentication data. Section 5
presents our analysis of the Radix Path Identifiers technique
and the ongoing work on a new technique. Finally, the con-
clusions follow in Section 6.

2. BASIC TECHNIQUE

For the rest of the paper, we assume that there is a mech-
anism in place to securely share some data between DO and
clients. This data could be the public key of the DO or some
hash data. Only the DO can modify the data and the clients
have read-only access of the data at the DSP.

The simplest data integrity technique could be to indi-
vidually sign all the tuples in a data table and storing the
signatures in a separate column in the same data table. Af-
terwards, on query of client, this signature can be sent to a
client along with the tuple data. Clients can then check the
integrity of the data by verifying the signature of the DO for
the associated tuple. This scheme poses a huge computation
overhead for the DO and the clients. Despite the computa-
tional overhead, it has a linear storage overhead as a distinct
signature needs to be stored with each tuple. Still, attacks
are possible on this scheme. DSP can delete some valid tu-
ples from the data and the client would never be able to
establish this fact. DSP can send an incomplete data set to
the client and this forgery will also go undetected at client’s
end.

Data integrity schemes can be divided into two main cat-
egories, i.e., probabilistic and deterministic. Probabilistic
approaches for data integrity have been suggested in [7, 11,
12]. The proposed techniques do not require any changes

(HL2) | (HE4) | [H(s.6) | (H78) |

(w) (w2] [wa)] [wea)] (ws)] (i)] (win)] [wee))

Figure 1: Merkle Hash Tree

at the DSP end, but sometimes the integrity results can be
doubtful, as evident from the name.

The second category consists of deterministic approaches
that generally base on Authenticated Data Structures (ADS)
[6, 5, 10, 1, 2]. ADS based schemes will be the focus of the
rest of the paper.

3. MERKLE HASH TREES

Authenticated Data Structures is a technique in which
some kind of authentication data is stored on the DSP. On
the client’s query, a DSP returns the queried data along
with some extra authentication data that is then used by
the client to verify the authenticity of returned data.

Numerous techniques have been proposed that utilizes
ADS for checking the data integrity. Signature aggrega-
tion based schemes have been proposed in [6, 5]. These
approaches require to modify signatures of all the records,
which renders it impractical considering the number of sig-
natures [10]. The authenticated skip lists based approach
has been proposed in [1]. A modified Merkle Hash Tree
(MHT) based scheme has been proposed in [2] named super-
efficient data integrity scheme. In this scheme the main
MHT is divided into smaller MHT's and the root hashes of
these sub-trees are signed. The purpose of the division in
smaller MHT's is to avoid the unnecessary calculation up to
the root of the main hash tree.

The Merkle Hash Tree based data integrity techniques for
outsourced data are based on a signature scheme proposed
by Merkle in [4]. This scheme eliminated the need of digital
signatures for the data integrity purposes. MHT based data
integrity techniques are based on two sub-components, i.e.,
Merkle’s Signature Scheme and B+ Trees.

3.1 Merkle’s Signature Scheme

Merkle proposed a Signature Scheme based on a binary
tree of hashes in [4]. Figure 1 shows a typical example of
an MHT. Each leaf node holds the hash of a data block,
e.g.,H(1) holds the hash of the data block 1. Internal nodes
hold the hash of the concatenated hashes of their children
e.g. H(1,2) = H(H(1) | H(2)) where ’|’ indicates concate-
nation. This scheme is based on the assumption that a
safe/trusted way exists to share the root of the tree between
the signer and the verifier. To verify the integrity of any
data block, the whole tree of hashes does not need to be
transmitted to the verifier. A signer transmits the hashes of
only those nodes which are involved in the authentication
path of the data block under consideration. For example,
if the receiver needs to verify the integrity of data block 2
then only H(1), H(3,4) and H(5,8) need to be transfered to

67

Figure 2: B+ Tree of order 3

the receiver. The receiver can calculate the H(2) from data
block 2. H(1,2) can then be calculated by using the received
H(1) and calculated H(2). In the same way, H(1,4) can be
calculated and then H(1,8). The receiver then can compare
the calculated H(1,8) with the already shared H (1,8) and
if both the hashes match then the integrity of data block 2
is confirmed.

Some important facts regarding Merkle’s Signature Scheme
are as follows:

e Security of this signature scheme depends on the secu-
rity of the hash function.

e Only one hash needs to be maintained /shared securely.

e To authenticate any data block only log, n hashes need
to be transfered, where n denotes total number of data
blocks.

e In case of integrity checking of a continuous range of
blocks, even less than log, n hashes need to be trans-
fered.

3.2 B+ Trees

B+ trees are a special case of B trees as shown in Figure
2. They are n-ary trees. The root node can be a leaf node
or it can be an internal node. Internal nodes only hold keys,
they do not hold data. Data always stays in the leaf nodes.
Leaf nodes are connected through pointers to form a kind of
linked list. This linkage helps in sequential traversal of the
data.

Let n be the order of a B+ tree. The root node can hold
1 to n-1 keys when root node is the only node in the tree.
If root node is an internal node then it can have 2 to n child
nodes. Internal nodes can have [n/2] to n child nodes.
Leaf nodes can hold [n/2] to n-I keys [8].

3.3 Data Integrity based on Merkle Hash Tree

Data integrity schemes based on MHT have been designed
by replacing binary trees with B+ trees in original Merkle’s
Signature Scheme. The B+ tree presented in Figure 2 is
used with some modifications. Leaf nodes are linked with
direct pointers. Besides keys, leaf nodes also hold the hashes
of the data records pointed by corresponding keys. As an
example, the leaf node 20, 30 also holds the hashes of the
data records of the keys 20 and 30. Internal nodes’ pointers
also hold the hashes of the concatenated hashes of its child
nodes. Like right pointer of the internal node 20 holds the
hash of the concatenated hashes of the data records pointed
by keys 20 and 30 i.e. H(20,30) = H(H(20) | H(30)).

Security of Merkle Hash Tree based data integrity schemes
depend on the security of the hash function as in original

Table 1: Employee Data Table

ID | Name | Salary
10 | Alice 1000
20 | Bob 2000
30 | Cindy | 3000
40 | Dan 3000
50 | Eva 2000
60 | Felix 1000
‘ ‘ ki \ Pi \hi=H{hi1|"'|hin) - |

Figure 3: Merkle Hash Tree based on Table 1

Merkle’s signature scheme. This scheme resolves the fresh-
ness issue of the query results, too. Each time a DO updates
the data in the DSP, a new root hash is calculated based on
the newly updated state of the data. By sharing the new
root hash with the clients, freshness can be ensured.

3.4 Implementation Issues

A problem associated with the MHT's based data integrity
schemes is the efficient storage and retrieval of MHT's in the
DSP’s database. Numerous approaches exist to store hier-
archical or tree like data in a database, e.g., adjacency list,
nested set, nested interval and closure table etc. Each ap-
proach has its pros and cons. For this specific problem of
storing MHTSs, a new technique named Radix Path Identi-
fiers has been proposed in [10].

4. RADIX PATH IDENTIFIER

Consider a data table named Employee as shown in Table
1. A Merkle Hash Tree is created based on the data in
Employee table as shown in Figure 3. Data is inserted in
the MHT in an ascending order. Fanout of this B+ tree is
three that’s why every node holds either one or two keys.

The basic idea is to assign numbers based on a radix to
each pointer of the internal node and each key of the leaf
node in order to uniquely identify them in a MHT. Radix
could be any number equal to or greater than fanout of
the MHT. We take 3 as the radix for the MHT created for
Employee table.

Radix path identifiers have been added to the MHT shown
in Figure 3 and the modified MHT is shown in 4. Radix Path
Identifier of a pointer or key (in leaf node) depends upon its
level in MHT and position in a node. Let [be the level of
the MHT. The level of root node is 0 and the level of leaf
nodes is the maximum. 7, is the radix base. f denotes the
fanout of the MHT. i denotes the index of a pointer or a
key in a node, ranging from 0 to f. Radix Path Identifier
rpi can be computed using the following equation:

68

[—Im

00 01 10
40
50 60
121

50
110

i
000

010 120

Figure 4: MHT with Radix Path Identifiers

. ifl == (1)
P= TPlparent * Tp + § ifl >0

For example, to calculate the RPI of the key 60 in the leaf
node, the level of the key is determined. The level is not zero
so the lower part of the equation is applicable and also note
that all the calculations done are based on ternary number
system. ¢ in this case is 1 as 60 is the second key in the leaf
node. RPI of the parent is 12 and the m, is 3. Multiplying
TDiparent With 1, gives 120 and adding ¢ into it gives 121, so
the RPI of the key 60 in leaf node is 121.

The proposed Radix Path Identifier scheme has several
important properties:

1. RPIs are continuous in nodes, but not continuous among
two consecutive nodes. For example, the base-3 num-
bers 10, 11, 12 are continuous but 170 and 120 are
not continuous as shown in Figure 4.

2. From an RPI, we can easily find the RPI of its par-
ent pointer based on the fact that mpiperent equals to

Lrpi/ms] .

3. From the RPI in a node, we can easily calculate the
min and max RPIs in the node, which are (|rpi/ry]) *
ry and (|rpi/re]) * 6 + (rp — 1).

4. From an RPI in a node, we can easily compute the
index 4 of the pointer or key in the node, which is rpi
mod 7.

4.1 MHT Storage in the Database

Two models have been suggested in [10] for storage of
Radix Path Identifiers based MHTSs in the database. The
first method is to store the whole data in one authentication
table called Single Authentication Table (SAT). The second
method is to store each level of MHT in an individual table
called Level Based Authentication Table (LBAT).

4.1.1 Single Authentication Table

In this technique, one table holds the entire authentica-
tion data as shown in Table 2. A tuple in this table rep-
resents either a pointer in an internal node or a key in a
leaf node of the MHT. The authentication table has four
columns named as ID, RPI, Hash and Level. The ID col-
umn in authentication table corresponds to the values in ID
column in Employee table. In case of leaf nodes, each key
corresponds to a tuple in the Employee table so the map-
ping is straight forward. However in case of internal nodes,

Table 2: Single Authentication Table (SAT)

ID | RPI | Hash | Level
-1 0 hash 2
30 |1 hash 2
-1 0 hash 1
20 |1 hash 1
-1 3 hash 1
40 | 4 hash 1
50 | 5 hash 1
10 | O hash 0
20 | 3 hash 0
30 |9 hash 0
40 | 12 hash 0
50 | 15 hash 0
60 | 16 hash 0

the number of pointers is always I more than the number
of keys. Because of that one pointer is stored in the table
with -1 as the ID. Rest of the pointers are saved with the
IDs of the corresponding keys in the node. Considering the
left most pointer in each internal node as an extra pointer,
-1 is assigned in the ID column of these pointers. The Hash
column holds the hashes associated with the pointers in in-
ternal nodes and keys in leaf nodes.

The RPI holds the Radix Path Identifier of the pointer
in internal node or key in leaf node. RPIs shown in Figure
4 are unique because these numbers are written in base 3
with their preceding zeros. However, for storing RPIs in
authentication table, preceding zeros are ignored and the
RPIs are converted into base 10 numbers. This results in
mapping of different base 8 numbers to the same base 10
numbers. For example, 011 in third level and 11 in second
level transform to the same base 10 number i.e. 4. Con-
sequently, the transformed RPIs are unique in a level but
they can be repeated among different levels of the tree. In
order to distinguish between the same RPIs, a Level column
is added to the authentication table.

4.1.2 Level Based Authentication Table

In the LBAT technique, authentication data for each level
of an MHT is stored in an individual table. Besides this, an
extra table is created that holds the data about the authen-
tication tables i.e. name of the table and its associated level.
LBATS for the MHT shown in Figure 4 are shown in Table 3.
As every LBAT table represents one level in the tree, there is
no need to have a column Level in the authentication tables.
Level 0 authentication table has exactly the same number of
records as the Employee table so both tables can be merged
to form one. RPI and Hash columns have been added at
the end of Employee table to hold the authentication data
for Level 0.

4.1.3 Performance comparison between both schemes

Considering the table level locks during updates and in-
serts, it is easier/faster to update authentication data in
LBAT than SAT. In the LBAT, as authentication data is
stored along with the data record, it makes it straight for-
ward to retrieve authentication data for the leaf level along
with the required table data.

4.2 Authentication Data Extraction

69

Table 3: Level Based Authentication Tables (LBAT)

Emp_1
ID | RPI | Hash
Emp_2 (Root) -1 |0 hash
ID | RPI | Hash || 20 | 1 hash
-1 10 hash -1 |3 hash
30 |1 hash 40 | 4 hash
50 |5 hash
Employee (Leaf Nodes)
ID | Name | Salary | RPI | Hash
10 | Alice 1000 0 hash
20 | Bob 2000 3 hash
30 | Cindy | 3000 9 hash
40 | Dan 3000 12 hash
50 | Eva 2000 15 hash
60 | Felix 1000 16 hash

Authentication data extracted from LBAT is used to com-
pute the root hash of the MHT. For data extraction from
LBAT table, four different ways have been presented i.e.
Multi-Join, Single-Join, Zero-Join and Range-Condition in
[9]. In all the following methods, data will be extracted from
LBATS to verify the authenticity of data record with ID 40.
All the required data involved in the authentication path of
ID 40 also needs to be extracted from the LBAT and the
pointers involved in authentication path are marked with
black color in Figure 4.

4.2.1 Multi-Join

In the Multi-Join approach, all the authentication data
from respective LBAT's are retrieved in a single query. Fol-
lowing SQL statement retrieves the authentication data of
record with ID 40. In order to fetch all the authentication
data in one query, multiple left outer joins have been used
which introduces redundancy in the result.

select a0.RPI as RPIO, a0.hash as hashO,
al.RPI as RPI1, al.hash as hashl,

a2.RPI as RPI2, a2.hash as hash2

from Employee emp
left join Employee
left join Emp_1 al
left join Emp_2 a2
where emp.ID = 40;

4.2.2 Single-Join

In the Single-Join approach, data from each authentica-
tion table is retrieved separately. As ID column does not
exist in authentication tables that’s why in each query, the
authentication table has been joined with the Employee ta-
ble on column RPI.

a0 on a0.RPI/3 = emp.RPI/3
on al.RPI/3 = emp.RPI/(3%3)
on a2.RPI/3 = emp.RPI/(3%3%3)

select e0.RPI, e0O.hash

from Employee emp

left outer join Employee e0 on e0.RPI/3 = emp.RPI/3
where ID = 40;

select el.RPI, el.hash
from Employee emp
left outer join Emp_1 el on el.RPI/3 = emp.RPI/(3%3)

where emp.ID = 40;

select e2.RPI, e2.hash
from Employee emp

left outer join Emp_2 e2 on e2.RPI/3 = emp.RPI/(3%3%3)

where emp.ID = 40;
4.2.3 Zero-Join

As evident from the name, no tables are joined for query-
ing authentication data. Each table is queried individually.
To query each table without any joins, the RPI of the record
under consideration have to be extracted first and stored in
some variable. Afterwards this stored RPI is used to extract
authentication data from the LBATSs.

declare @rpid as int;
select @rpid = RPI from Employee where ID = 40;

select RPI, hash from Employee where RPI/3=Q@rpid/3;

select RPI, hash from Emp_1 where RPI/3=@rpid/(3%*3);

select RPI, hash from Emp_2 where RPI/3=Q@rpid/(3*3%3);

4.2.4 Range-Condition

Execution of queries presented in Zero-Join section scans
RPI for each query. This scan can be replaced with index
seek by creating an index on RPI and replacing the Zero-
Join queries with Range-Conditions. Following queries show
how to utilize an index created on RPI and efficiently query
data from LBAT for authentication of data record ID 40.

declare @rpid as int;
select Q@rpid = RPI from Employee where ID = 40;

select RPI, hash from Employee
where RPI >= (@rpid/3)*3
and RPI < (@rpid/3)*3+3;

select RPI, hash from Emp_1
where RPI >= (Qrpid/(3%3))*3
and RPI < (@rpid/(3%3))*3+3;

select RPI, hash from Emp_2
where RPI >= (@rpid/(3x3%3))*3
and RPI < (Q@rpid/(3*3%3))*3+3;

Each of the above given queries retrieve authentication data
from a specific level of the MHT. The range condition spec-
ified in the above queries encompasses all the RPIs of the
elements present in a node. For example, at level three, a
node can have following RPIs i.e. 120, 121 and 122. In the
RPIs, the last digit always stays less than the fanout of the
tree that is why & is mentioned as the upper bound in the
query.

4.3 Data Operations
Four data operations, i.e. select, insert, update and delete,
will be discussed.

4.3.1 Select

Selection of a single record along with its associated au-
thentication data has already been discussed in detail. Au-
thentication of a continuous range of records is a bit different

70

10) \ 1
40 || 50
30 40 50 60
A [y T T
(100] (1210]) (120] 122

Figure 5: Updating a Record

than the authentication of a single record. Let suppose, our
range query returns a set of records from ID 20 to 40. User
needs to find the two bounding values of the range under
consideration. In this case, the two bounding values would
be 10 and 50. The user just needs to fetch the range of
records from ID 20 to 40 without their authentication data.
In order to authenticate this range, only the authentication
data of the two bounding values is required, i.e., 10 and 50.
By verifying the data integrity of the bounding values, user
can be assured of the data integrity of the whole range.

4.3.2 Update

Update is a more complicated operation than Select. In
updating a record, along with updating the data table, the
user also needs to update the hashes in all the records in-
volved in the authentication path of the updated record. For
example, if user updates the data record with ID 60, hash
of this record will be updated in the Employee table along
with the data update. In addition user needs to update the
hash data in the pointers marked as 12 and I as shown in
Figure 5.

4.3.3 Insert & Delete

Insert & Delete are more complicated operations than up-
dating a record. Insert & Delete could affect the associated
MHT in three different ways. Simplest case could be that
the insertion or deletion of a record effects only a single leaf
i.e. a key can be added or deleted from a leaf node, in this
case only the data involved in the authentication path of the
affected leaf node needs to be updated. A little more com-
plicated case could be the change in a subtree of the MHT,
in this case all the authentication records of that subtree
needs to be updated. In addition the authentication path of
the root of the updated subtree also needs to be updated.
The most complex case could be the addition or deletion of
a new level in the MHT. In case of addition of a new level
following needs to be done:

1. Addition of a new LBAT table in the database for the
newly inserted level in the MHT.

2. Information regarding the new LBAT table needs to
be inserted in the table that holds the data about the
LBATS.

3. Update of data in all the LBATS.

5. ANALYSIS & ONGOING WORK
5.1 Analysis

In this section, we analyze the properties of Radix Path
Identifiers and identify our next steps based on it. Merkle
Hash Tree based data integrity technique guarantees all three
aspects of data integrity, i.e., completeness, correctness and
freshness [3]. And in doing so, it completely avoids digital
signatures which pose a lot of computation overhead. Anal-
ysis of the Radix Path Identifier technique is as follows:

e It is assumed that only the DO can change the data.

e All the tests are performed on traditional DBMS i.e.
SQL Server [10]. NoSQL databases may perform dif-
ferently.

e Cached technique for Update results in the lowest over-
head. Without caching of data at DO’s end, the over-
head can go up to 100%.

e Insert at the end of the table gives better result than
the Insert at the beginning of the table. Both cases
poses significant overhead. No results have been pub-
lished for Delete.

e In order to modify the data, DO either has to download
the whole copy of the table along with authentication
data or has to keep the whole data cached at DO’s
premises.

5.2 Ongoing Work

We are currently starting to work on a Data Integrity
Technique that is based on Merkle Hash Trees and Radix
Path Identifiers. We want to achieve following goals in this
new technique:

e Multiple users should be able to manipulate data.
e A user should not be required to keep a copy of the
data in order to modify the data because keeping a

copy of data eliminates the purpose of data outsourc-
ing.

e Communication overhead should be minimized to a

level near to performing operations in a normal database.

For instance, to insert a row of data, a single insert
statement should be sent to the database.

e The technique is being designed keeping in view the
NoSQL database concepts, too.

6. CONCLUSIONS

Numerous techniques have been proposed in the litera-
ture to check the data integrity of the outsourced data to
untrusted clouds. Focus of our paper was on Merkle Hash
Tree based techniques. Despite a lot of research on MHT
based techniques, still insertion and deletion pose a lot of
communication and computation overhead. We have also
discussed a technique named Radix Path Identifiers to store
and retrieve authentication data in the DSP’s database. We
plan to design a new technique to eliminate the shortcomings
of the current data integrity techniques. The main purpose
of our technique is to avoid keeping or fetching the copy of
whole data in order to run an insert or update statement.
We are also going to simplify the process of inserting and
deleting the data the way we are used to do in traditional
DBMSs.

71

7. REFERENCES

[1] G. Di Battista and B. Palazzi. Authenticated
relational tables and authenticated skip lists. In
Proceedings of the 21st Annual IFIP WG 11.8
Working Conference on Data and Applications
Security, pages 31-46, Berlin, Heidelberg, 2007.
Springer-Verlag.

M. T. Goodrich, R. Tamassia, and N. Triandopoulos.
Super-efficient verification of dynamic outsourced
databases. In Proceedings of the 2008 The
Cryptopgraphers’ Track at the RSA Conference on
Topics in Cryptology, CT-RSA’08, pages 407-424,
Berlin, Heidelberg, 2008. Springer-Verlag.

F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic authenticated index structures for
outsourced databases. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’06, pages 121-132, New York, NY,
USA, 2006. ACM.

R. C. Merkle. A certified digital signature. In
Advances in Cryptology - CRYPTO ’89, 9th Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 1989, Proceedings,
pages 218-238, 1989.

M. Narasimha and G. Tsudik. Authentication of
outsourced databases using signature aggregation and
chaining. In In International Conference on Database
Systems for Advanced Applications (DASFAA, pages
420-436. DASFAA, 2006.

H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan.
Verifying completeness of relational query results in
data publishing. In Proceedings of the 2005 ACM
SIGMOD International Conference on Management of
Data, SIGMOD 05, pages 407-418, New York, NY,
USA, 2005. ACM.

R. Sion. Query execution assurance for outsourced
databases. In Proceedings of the 81st International
Conference on Very Large Data Bases, VLDB ’05,
pages 601-612. VLDB Endowment, 2005.

[8] A. L. Tharp. File Organization and Processing. John
Wiley & Sons, Inc., New York, NY, USA, 1988.

W. Wei and T. Yu. Practical integrity assurance for
big data processing deployed over open cloud, 2013.
W. Wei and T. Yu. Integrity assurance for outsourced
databases without DBMS modification. In Data and
Applications Security and Privacy XXVIII - 28th
Annual IFIP WG 11.3 Working Conference, DBSec
2014, Vienna, Austria, July 14-16, 2014. Proceedings,
pages 1-16, 2014.

M. Xie, H. Wang, J. Yin, and X. Meng. Integrity
auditing of outsourced data. In Proceedings of the 33rd
International Conference on Very Large Data Bases,
VLDB ’07, pages 782-793. VLDB Endowment, 2007.
M. Xie, H. Wang, J. Yin, and X. Meng. Providing
freshness guarantees for outsourced databases. In
Proceedings of the 11th International Conference on
Ezxtending Database Technology: Advances in Database
Technology, EDBT ’08, pages 323-332, New York, NY,
USA, 2008. ACM.

[4]

[5]

[11]

[12]

