
Large-scale Analysis of Event Data

Stefan Hagedorn
TU Ilmenau, Germany

stefan.hagedorn@tu-
ilmenau.de

Kai-Uwe Sattler
TU Ilmenau, Germany
kus@tu-ilmenau.de

Michael Gertz
Heidelberg University,

Germany
gertz@informatik.uni-

heidelberg.de

ABSTRACT
With the availability of numerous sources and the devel-
opment of sophisticated text analysis and information re-
trieval techniques, more and more spatio-temporal data are
extracted from texts such as news documents or social net-
work data. Temporal and geographic information obtained
this way often form some kind of event, describing when
and where something happened. An important task in the
context of business intelligence and document exploration
applications is the correlation of events in terms of their
temporal, geographic or even semantic properties. In this
paper we discuss the tasks related to event data analysis,
ranging from the extraction of events to determining events
that are similar in terms of space and time by using skyline
processing and clustering. We present a framework imple-
mented in Apache Spark that provides operators supporting
these tasks and thus allows to build analysis pipelines.

1. INTRODUCTION
Traditionally, research on querying and analyzing spatio-

temporal data focuses on data obtained from sensors that
record the evolution and movement of objects in 2- or 3-
dimensional space over time. Typical examples of such data
include trajectories of moving objects (e.g., [7]) and remotely-
sensed data (e.g., [10]). Spatio-temporal data, however, do
not only arise in the context of sensor data or, more gen-
erally, from observing objects with their spatial extent over
time. In this paper, we consider events as an important type
of spatio-temporal data that thus far have been neglected
in the context of data analysis. Events play an important
role in information retrieval and text analysis in general,
most prominently in the task of topic detection and track-
ing (TDT) [2, 13]. An event is often described as“something
that happens at some place at some time”, e.g., [24]. Thus,
events inherently have a spatial and a temporal component.

A prominent source for event data are textual informa-
tion from newsfeeds, websites, and social media such as
blogs, tweets or social networks. Underlying the extraction

27th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 26.05.2015 - 29.05.2015, Magdeburg, Germany.
Copyright is held by the author/owner(s).

of such information about events are temporal taggers for
the temporal component and geo-taggers for the spatial or
geographic components [21]. Such taggers detect, extract,
and normalize respective expressions in textual data and
provide subsequent tools as the basis for further tasks such
as document clustering or classification. For example, from
the sentence“Obama visited Germany in April 2009”, a tem-
poral tagger would detect the expression “April 2009” and
normalize it to “2009-04”; similarly, a geo-tagger would ex-
tract the expression “Germany” and often associate further
information with it. This might include the spatial extent in
the form of a polygonal description or that Germany is part
of Europe (using some concept hierarchy). Such a pair of
temporal component and geographic component then forms
an event. Given that today’s taggers become more and more
sophisticated, large repositories of event information can be
built from news articles, blog entries, social network post-
ings, and medical records, to name but a few. The task we
focus on in this paper is to find events that are correlated to
a given event in terms of its time and place of occurrence.
The result of such a query is a list of pointers to documents
in which similar (correlated) events have been detected.

For such correlation tasks, one is facing several challenges
ranging from extracting event data from documents, deal-
ing with imprecise event specifications resulting from the
extraction process, to exploiting different correlation tech-
niques for finding similar events, to scalable processing for
large datasets.

In this paper, we describe a framework for analyzing event
data and detecting correlations between events. Based on
a model for spatio-temporal events at different granularities
we discuss corresponding distance measures. We present the
analysis tasks and discuss how these tasks can be supported
by a set of basic operators for extracting event data from text
documents, preparing the data, and analyzing event correla-
tions using top-k and skyline processing as well as clustering.
We further describe how these operators are supported as
transformation operators in Apache Spark and outline the
support for explorative analyses.

2. EVENT MODEL
An important data analysis task is to find similar events,

i.e. events that share the same context or have other values
in common. In this paper, we consider the spatio-temporal
aspect of events for determining similarities, i.e., we focus
on the similarity of their respective location and/or time of
occurrence.

90

For our analysis framework, we assume an event model in
which information about events has been extracted from
some document (see Sect. 4) and is represented by useful
and necessary information like ID, description, origin, etc.
as well as a temporal and a geographic component, describ-
ing the when and where. The expressions underlying these
components are based on concept hierarchies for time and
space, as shown in Figure 1.

day

month

year

city

state

country

Figure 1: Concept hierarchies for temporal and ge-
ographic information

The temporal as well as the spatial expressions can be
of different granularities. For temporal expressions we con-
sider days to be of the finest and years of the coarsest gran-
ularity. Of course one could also extend this model with
further granularity levels, such as weeks, hours, or minutes.
In this paper, however, and for the sake of simplicity, we
will only consider days, months, and years. We denote the
corresponding domains as T = {Tday, Tmonth, Tyear}. For
example, “2001-05-20”, “2013-05”, and “1995” are all valid
temporal expressions from these three different domains.

Analogously, geographic expressions are taken from the
domains in G = {Gcity, Gstate, Gcountry}. We assume that
with each expression a spatial object in the form of a single
polygon (without holes) is associated. For example, the ge-
ographic expressions “Heidelberg” and “Germany” are both
valid expressions of type Gcity and Gcountry, respectively.

Definition. (Event) Given concept hierarchies T and G for
temporal and geographic expressions, respectively. An
event e = 〈t, g〉 consists of a temporal expression t
with t.type ∈ T and a geographic expression g with
g.type ∈ G.

Examples of (imprecise) event specifications are (2013-09-
02, Munich), (1955, Germany), or (2000-04, Bavaria). To
account for these types of uncertainties, in our framework
we make the following assumptions:

1. Temporal and geographic expressions of the finest gran-
ularity are certain.

2. Every temporal (resp. geographic) expression of type
P ′ that refines a given temporal (resp. geographic) ex-
pression of type P , with P ′ being of finer granularity
than P , is equally likely.

Distance Measures. To determine the similarity between
events, a distance measure is needed that takes both the
temporal and the geographic component of an event into
account, both of which can be imprecise.

Precise events are those events for which both the location
and temporal information is given as a fine-grained concept,
i.e., they are defined on the city and day level. For such
events, calculating the distance is trivial resulting in a scalar

value for time (e.g., distance in days) and location (e.g. dis-
tance in meters). Both values can be combined into a single
(weighted) result. Although we cannot use the traditional
distance functions for events that are imprecise in at least
one component, we can specify new distance functions ac-
cordingly. However, the definition of such functions is be-
yond the scope of this paper and we will give only a brief
overview below.

First, we convert the imprecise event data into intervals
and regions. As imprecise temporal data is defined as a
month or year (to be imprecise the day part is missing), we
can create an interval of days that starts with the minimal
possible day, i.e., the first day of the corresponding month or
a year and ends with the maximal possible day, which is the
last day of the month or year, respectively. Each subinter-
val is called a valid instance of this interval. As an example
consider the imprecise temporal expression “2014-05” that is
mapped to the (right-open) interval i = [2014-05-01, 2014-
05-30]). Note that any subinterval in i is a valid instance
of the temporal expression. Analogously, for imprecise ge-
ographic expression, i.e., expressions not at the city level,
a polygon (or its minimum bounding box) is used. Then,
a function that calculates the distance between such inter-
vals and between polygons/boxes is needed. Such distance
function can yield a scalar value, which may be the average
distance between points in the respective intervals or poly-
gons, or it can yield an interval, representing the minimum
and maximum distance between the intervals/polygons.

The Hausdorff distance is a typical approach to calculate
the distance between two intervals or polygons as a scalar
value. Its main idea is to compute the maximum distance
between any point in one interval to any other point of the
second interval. For two temporal intervals t1 and t2, the
distance can be computed as

dH(t1, t2) := max{max
i1∈t1

dh(i1, t2), max
i2∈t2

dh(i2, t1)}

where the distance dh(i, t) between a day i and a temporal
interval t defined as dh(i, t) := mini′∈t(|i− i′|).

For polygons/boxes, the Hausdorff distance can be defined
as follows:

dH(g1, g2) := max
x∈g1

min
y∈g2
||x− y||

This is the greatest distance from a point in g1 to the
closest point in g2. However, the calculation of this distance
measure can become very expensive as the distance from
every point in the first interval to every other point in the
second interval has to be computed. For temporal intervals
this is not a big problem, because when taking years as the
most imprecise and days as most precise level, such an in-
terval can have only 365 (or 366) points at most. However,
for polygons the set of inner points is in principle infinite.
On the one hand, one could use the cities that are located
in the respective region. This approach may not lead to
good results as many cities may be clustered around a large
metropolis, whereas in rural regions only very few cities can
be found. On the other hand, one could impose a raster
on the respective regions using a fixed grid. Then, only
the points of this grid will be used for calculations. Then,
however, the definition of the grid size may be difficult since
choosing a small grid step size may lead to many data points
that will take part in the calculation and thus, will not im-
prove the computation time. Choosing a large grid size will

91

result in only very few data points, which might again re-
sult in incorrect distance values. In order to use common
distance functions, one could reduce a polygon to a single
point that represents this polygon, e.g., the center point.
However, these simplifications result in distances that may
not necessarily reflect the real distances. Therefore, more
sophisticated distance functions are needed.

3. ANALYSIS TASKS
Analysis of event data comprises several tasks. Depending

on the sources of events (structured data, text documents)
and the specific questions different tasks have to be com-
bined in an analysis pipeline. In addition, such analyses
are often interactive and explorative processes requiring a
flexible combination of a set of powerful extraction and cor-
relation operators. The whole process is depicted in Fig. 2.
In the following, we describe a basic set of tasks that our
framework supports by dedicated operators.

3.1 Event Information Extraction
Prior to any analysis task event information needs to be

extracted from the text documents of a given corpus, such
as Wikipedia or news articles. As an event is assumed to be
composed of a temporal expression describing the “when” of
an event and a geographic expression describing the “where”
of an event, respective event components need to be de-
termined in a given text and mapped to some standard for-
mat. The function of a temporal tagger is to determine such
temporal information and to map each piece of information
found to a temporal expression. One typically distinguishes
between explicit, implicit and relative information tempo-
ral information. Explicit temporal information refers to a
sequence of tokens that describe an exact date, month in a
year or year, e.g., “April 1, 2015”. Implicit temporal infor-
mation often refers to holidays or some named events, such
as “Independence Day 2015” or “Summer Olympics 2012”.
Finally, relative temporal information can only be deter-
mined using the context or document in which the token
sequence appears. For example, in this paper, the string
“last year” would refer to the year 2014. Popular tempo-
ral taggers such as HeidelTime [21] are able to detect such
information and map them to a standard format, which is
mostly based on the TIMEX3 annotation standard. For
example, the above explicit temporal information “April 1,
2015” would be mapped to the temporal expression “2015-
04-01”.

Similarly, for geographic information in documents, a geo-
tagger is employed. Popular tools include GeoNames1 or Ya-
hoo! Placemaker2. Mapping token sequences found in a text
to some standardized format, however, is less trivial. For ex-
ample, most taggers would map the string “Magdeburg” to
a latitude/longitude pair rather than to some complex poly-
gon description. Also, several geo-taggers also include some
information about the granularity of the geographic expres-
sion based on concept hierarchies.

Once a temporal tagger and a geo-tagger have extracted
and mapped temporal expressions from a given text, events
are formed. In the most simple case, an event is a pair con-
sisting of a temporal expression and a geographic expression
found in close text proximity, typically at the sentence level.

1http://www.geonames.org/
2https://developer.yahoo.com/boss/geo/

All events extracted from a document or document col-
lection are then stored based on our event model described
in Sect. 2. For each event detected, it describes the normal-
ized temporal and geographic expression, the granularity of
the expressions, and also some offset information (in what
document and at what position each of the two components
have been determined).

3.2 Correlation Analysis
Correlations on event data can be computed in different

ways, depending on specific applications. In the following,
we discuss the three operations for correlation computations.

Nearest Neighbor Queries.
A straightforward solution to find correlated, i.e., similar,

events is to find the neighbors of a given reference event.
Given a set of events E , a reference event er and a dis-
tance function dist, the task is to find the set kNN(er) of
the k nearest events. In the case of our spatio-temporal
event data this requires a single distance measure, which is
usually defined using weights for the spatial and temporal
distances. These weights are necessary, because we cannot
directly combine the spatial distance with the temporal dis-
tance into one distance measure. However, with the weights
we can adjust the impact of the spatial and temporal dis-
tance to the overall distance:

dist(e1, e2) = wg · distg(e1, e2) + wt · distt(e1, e2)

where wt, wg ∈ [0, 1] and wt + wg = 1.

Skyline.
In contrast to the Nearest Neighbor search, Skyline queries

do not need weights for the spatial and temporal distance,
which are often difficult to determine. Adapted to our sce-
nario, the notion of the Skyline algorithm is to find those
events in E that “match” a query event q = 〈tq, gq〉 best.
Since we consider two dimension for events, time and space,
it is thus intuitive to employ a skyline-based approach as
there might be events that match tq well but not gq, and
vice versa. A core concept of skylines is the dominance re-
lationship. The skyline Sq consists of all events that are not
dominated by any other event in E with respect to q:

Sq = {ei|ei ∈ E ∧ ¬∃ej ∈ E : ej 6= ei ∧ ej �q ei}
where �q denotes a dominance relationship with ej �q ei

meaning that ej is“in closer proximity to q”than ei. Because
the dominance of an event with respect to another event
is determined based on their respective distances to q, the
distance function outlined before comes into play.

Clustering.
Other than in the two approaches mentioned before, for

clustering, a definition of a reference event is not needed. It
is typically understood as the task of grouping objects based
on the principle of maximizing the intra-class similarity and
minimizing the inter-class similarity. However, there is a
rich diversity in specific definitions of clustering and many
different techniques exist [1].

The clusters can be formed using distance values between
other events. Thus, events that belong to the same cluster
can be considered to be correlated as they occur around the
same time and place.

92

Extraction

Mapping &
Normalization

Event
Correlation &
Resolution

Event
Model

Vocabularies

YAGO2
Import

Applications

Processing pipeline

Event
repository

Raw event
data

Contextual Information
(e.g., GeoNames)

Text documents

Figure 2: Overview of event analysis pipeline.

4. PROCESSING PIPELINE
After the events have been extracted from the text docu-

ment using the approach as outline in Section 2, the events
are fed into the correlation pipeline. This pipeline is imple-
mented using the Apache Spark3 platform. However, it can
be easily ported to other platforms like Apache Flink4 or
even Google’s new DataFlow SDK5 if they provide a Scala-
based API. We chose Spark over other MapReduce based ap-
proaches, e.g., Pig, because it provides a very efficient data
structure called resilient distributed datasets (RDD). RDDs
are immutable, in-memory partitioned collections that can
be distributed among the cluster nodes. With the help of
such a data structure, the performance of the computations
is significantly faster than in MapReduce programs that ma-
terialize their intermediate results to disk. Furthermore,
Spark allows to implement iterative models that are needed
for our computations as well as for programs following the
MapReduce paradigm.

SkylineOp

EventCluster

ClusteringOpCalcDistance

PrepareEvents EventData

EventSkyline

RawEventData

EventDistanceData

time, location

distancedominates

reference
event

GeoDB

TopKOp

EventList

k, weights

distance-func

Figure 3: Framework overview

The Spark operators represent transformations on these
RDD. Fig. 3 gives an overview of the correlation pipeline,
where the tasks of the operators is described below:

PrepareEvents: This operator transforms a set of raw (tex-
tual) event data into a set of event records 〈t, q〉 con-
forming to our framework. This means that textual
temporal and geographic properties are normalized into
numerical values, i.e., date/time values and points or
polygons for the spatial descriptions such as names of
cities or locations.

3http://spark.apache.org
4http://flink.apache.org
5https://cloud.google.com/dataflow/

CalcDistance: This implements a transformation operator
for calculating the geographic and temporal distance
dist of each event of an RDD to a given reference event.

TopKOp: This operator computes the k nearest neighbors as
a top-k list of events from an input RDD produced by
CalcDistance. Parameters to this operator are k as
well as the weights for the geographic (wg) and tem-
poral (wt) distance.

SkylineOp: This operator computes the skyline of event re-
cords from an RDD produced by CalcDistance. Our
implementation adopts the grid-based approach using
bitsets described in [14] for the Spark platform. The
dominance relation can be passed as parameter to the
operator.

ClusteringOp: Finding groups of correlated events is real-
ized by the ClusteringOp operator implementing a
parallel variant of DBSCAN [9] for spatio-temporal
data. Parameters are the standard clustering parame-
ters ε and MinPts as well as a global distance function
taking both geographic and temporal distances into
account.

5. TOWARDS AN INTERACTIVE EXPLO-
RATION OF EVENT CORRELATIONS

We will use the above processing pipeline to build an
event repository that makes the extracted event data pub-
licly available as Open Data. As an underlying data struc-
ture we are going to use the Linked Data principle, which
allows for a flexible schema for different types of events and
also makes the information contained in the event itself ma-
chine readable. Furthermore, one can easily add links be-
tween events that have been identified to be correlated and
thus make these correlations also available for querying and
processing. Adding links to other datasets like YAGO2 or
DBpedia will enrich our event repository with even more
useful and broader information that can be used for data
analysis and exploration.

The event repository will be free to download and will also
be made queryable via web services. Via an API users can
run Spark programs (using operators introduced in Sect. 3)
or SPARQL queries.

Next to the event repository we plan to develop a data
exploration platform that will allow users to interactively
analyze the data. Different from traditional business intelli-
gence frameworks that provide only a predefined set of tools

93

Figure 4: Screenshot of Zeppelin after executing a Pig script. The results are visualized as bar chart.

for reporting and visualization, our planned platform allows
very different interaction paradigms. We integrate the idea
of notebooks that was inspired by Mathematica’s interac-
tive documents and IPython’s (and Jupyter’s) notebooks.
With the help of such notebooks users can create their own
programs that fit their needs and run them in a managed
cluster environment without the need to set up any hardware
or other software before. The idea of web-based notebooks
allows users to organize text, scripts, and plots on a single
webpage so that all information for data analytics can be
kept in one place.

For our data exploration tool we chose the Apache Zep-
pelin6, because it already has support for Spark programs
and also provides the possibility to visualize script results.
Content in the format of CSV, HTML, or images can di-
rectly be visualized as tables, bar charts, line graphs, and
scatter plots. A notebook in Zeppelin is organized in para-
graphs where each of them can contain and execute a script
of a different (supported) language. On execution, the script
content of a paragraph is sent to the server, which will for-
ward it to the appropriate interpreter. The interpreter is
chosen by a magic keyword given by the user at the begin-
ning of the script, e.g. %spark. When the execution has
finished, the interpreter will return the results to the server,
which in turn will publish them on the website. Figure 4
shows a screenshot of a notebook in Zeppelin that executed
a Pig [16] script and shows the results of that script in a bar
chart.

Zeppelin currently supports shell scripts and Spark pro-
grams written in Scala or Python out of the box and can

6https://zeppelin.incubator.apache.org

also make use of Spark modules like SparkSQL and Spark
Streaming. Although the Spark support lets users create
efficient data analytics programs, it may be hard for a non-
programmer to create such programs.

We argue that a declarative approach will be easier to use
for users that are not familiar with the Spark API and the
concepts of their RDDs. For this reason, we integrate a new
interpreter that allows to run Pig scripts. Since our event
repository uses Linked Data, we do not use the conventional
Pig interpreter, but our extended Pig version that allows to
use SPARQL-like features, such as BGP, in Pig scripts [11].
To do so, we enhanced Pig’s FILTER operator. This allows
the user to easily define queries on the Linked Data sets with
a more powerful language than SPARQL. Though, the triple
structure of the Linked Data concept is not very well suited
for a tuple-based execution environment as it requires a lot
of (self-)joins to reconstruct all details of an entity from the
triples. To solve this issue, in [11] we introduced a new triple
bag format (based on the concept introduced in [12]) that
keeps the flexibility of triples with the convenience of tuples.
We also showed that this format can lead to significant per-
formance gains.

However, since Pig programs are compiled into MapRe-
duce programs, the execution of these programs will take
longer than for Spark programs. Thus, to combine the ad-
vantages of both approaches, in our ongoing work we use
the Pig Latin language and compile it into Spark programs.
This will allow users to write intuitive data flow scripts with-
out the need to know a specific API and characteristics of
the underlying platform and to get very efficient programs
that will execute faster than MapReduce programs.

94

6. RELATED WORK
For our event correlation framework, we employ concepts

developed in different areas of information extraction, event
similarity especially for spatio-temporal similarity, as well
as skylines and clustering algorithms for distributed envi-
ronments.

To extract the spatial and temporal information from tex-
tual data, we use concepts that were described, e.g., in [22,
23]. In addition to these works, the notions of event similar-
ity and relationships between events has also been studied
in the context of social media, e.g., [3, 17, 18].

Our correlation operators mainly focus on Skylines and
clustering. Among the numerous techniques that build on
the concept of skyline queries [5], there also has been some
work that study skylines for geographic and uncertain or
probabilistic data. These include spatial skyline queries [19,
20] where no temporal aspects are considered for data points.

To compute skylines for large datasets, new algorithms
have been proposed that allow the computation in MapRe-
duce environments. Here, an important challenge is to parti-
tion the data in a way, that the partitioning itself is efficient
and data is distributed to all nodes equally to ensure that
all nodes get approx. the same workload to avoid one node
having to do all the work while the others are idle. In [14]
an approach using a grid based partitioning is introduced,
and [6] shows an angular based partitioning approach.

For clustering, density based algorithms like DBSCAN [9]
are chosen if the number of clusters is not known apriori. For
dealing with spatio-temporal data an extension to DBSCAN
has been proposed in [4], that uses two ε parameters (one for
spatial and one for temporal distance). To run the clustering
algorithms in a distributed environment for MapReduce, we
rely on concepts developed in [15, 8].

7. SUMMARY
In this paper we presented our approach for an event cor-

relation framework based on Apache Spark. The framework
provides operators for importing data as well as for clus-
tering, skylines and k nearest neighbor queries. We chose
Apache Zeppelin for our exploration tool to allow an incre-
mental creation of scripts and an immediate visualization of
results.

Acknowledgements
This work was funded by the German Research Foundation
(DFG) under grant no. SA782/22.

8. REFERENCES
[1] C. C. Aggarwal and C. K. Reddy. Data clustering:

algorithms and applications. CRC Press, 2013.

[2] J. Allan, editor. Topic detection and tracking:
event-based information organization. Kluwer
Academic Publishers, 2002.

[3] H. Becker, M. Naaman, and L. Gravano. Learning
similarity metrics for event identification in social
media. In WSDM, pages 291–300, 2010.

[4] D. Birant and A. Kut. ST-DBSCAN: An algorithm for
clustering spatial–temporal data. Data & Knowledge
Engineering, 2007.

[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430, 2001.

[6] L. Chen, K. Hwang, and J. Wu. MapReduce Skyline
Query Processing with a New Angular Partitioning
Approach. In IPDPSW, May 2012.

[7] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In
SIGMOD, 2005.

[8] B.-R. Dai and I.-C. Lin. Efficient Map/Reduce-Based
DBSCAN Algorithm with Optimized Data Partition.
In CLOUD, June 2012.

[9] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. KDD, 1996.

[10] A. Ganguly, O. Omitaomu, Y. Fang, S. Khan, and
B. Bhaduri. Knowledge discovery from sensor data for
scientific applications. In Learning from Data Streams.
2007.

[11] S. Hagedorn, K. Hose, and K.-U. Sattler. Sparqling
pig - processing linked data with pig latin. In BTW,
March 2015.

[12] H. Kim, P. Ravindra, and K. Anyanwu. From
SPARQL to MapReduce: The Journey Using a Nested
TripleGroup Algebra. PVLDB, 4(12):1426–1429, 2011.

[13] J. Makkonen, H. Ahonen-Myka, and M. Salmenkivi.
Topic detection and tracking with spatio-temporal
evidence. In Advances in Information Retrieval,
volume 2633, pages 251–265. 2003.

[14] K. Mullesgaard, J. L. Pederseny, H. Lu, and Y. Zhou.
Efficient Skyline Computation in MapReduce. In
EDBT, 2014.

[15] M. Noticewala and D. Vaghela. MR-IDBSCAN:
Efficient Parallel Incremental DBSCAN Algorithm
using MapReduce. Intl J Computer Applications,
93(4):13–17, 2014.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD, 2008.

[17] W. Ribarsky, D. Skau, X. Wang, W. Dou, and M. X.
Zhou. Leadline: Interactive visual analysis of text data
through event identification and exploration. VAST,
0:93–102, 2012.

[18] A. D. Sarma, A. Jain, and C. Yu. Dynamic
relationship and event discovery. In WSDM, pages
207–216, 2011.

[19] M. Sharifzadeh, C. Shahabi, and L. Kazemi.
Processing spatial skyline queries in both vector
spaces and spatial network databases. TODS, 2009.

[20] W. Son, M.-W. Lee, H.-K. Ahn, and S. won Hwang.
Spatial skyline queries: An efficient geometric
algorithm. In SSTD, pages 247–264, 2009.

[21] J. Strötgen and M. Gertz. Multilingual and
cross-domain temporal tagging. Language Resources
and Evaluation, 47(2):269–298, 2013.

[22] J. Strötgen and M. Gertz. Proximity2-aware ranking
for textual, temporal, and geographic queries. In
CIKM, pages 739–744, 2013.

[23] J. Strötgen, M. Gertz, and C. Junghans. An
event-centric model for multilingual document
similarity. In SIGIR, pages 953–962, 2011.

[24] Y. Yang, T. Pierce, and J. Carbonell. A study of
retrospective and on-line event detection. In SIGIR,
pages 28–36, 1998.

95

