
Automated Silhouette Extraction for Mountain Recognition

Daniel Braun
Heinrich-Heine-Universität

Institut für Informatik
Universitätsstraße 1

40225 Düsseldorf, Deutschland
braun@cs.uni-duesseldorf.de

Michael Singhof
Heinrich-Heine-Universität

Institut für Informatik
Universitätsstraße 1

40225 Düsseldorf, Deutschland
singhof@cs.uni-duesseldorf.de

ABSTRACT
With the rise of digital photography and easy sharing of
images over the internet, a huge amount of images with no
notion of what they are showing exists. In order to overcome
this problem, we – for the example of mountain recognition –
introduce a method, that is able to automatically recognise
a mountain shown in a photography.

Our method does not require GPS information stored in
the image, since most images are not GPS tagged, either
because of the absence of a GPS sensor in the device or
because it has been deactivated for a lesser power consump-
tion, which often is the case with smartphones. Instead, we
propose a method that is able to automatically extract the
mountain’s silhouette from a given image. This silhouette
is then cleaned by removing artefacts and outliers, such as
trees and clouds, with a histogram based approach. Finally,
the cleaned silhouette can be compared to reference data in
order to recognise the mountain that is shown in the pic-
ture. For this, time series comparison techniques can be
used to find matching silhouettes. However, because of the
huge number of reference silhouettes to compare against, we
argue, that a preselection of those silhouettes is necessary
and point out approaches to this problem.

Categories and Subject Descriptors
I.4.8 [IMAGE PROCESSING AND COMPUTER VI-
SION]: Scene Analysis—Object recognition; I.4.6 [IMAGE
PROCESSING AND COMPUTER VISION]: Seg-
mentation—Edge and feature detection; H.2.8 [DATABASE
MANAGEMENT]: Database Applications —Data min-
ing

Keywords
Object Recognition, Image Annotation, Outlier Detection,
Image Segmentation, Skyline Recognition, Mountain Recog-
nition, Time Series

27th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 26.05.2015 - 29.05.2015, Magdeburg, Germany.
Copyright is held by the author/owner(s).

1. INTRODUCTION
Sharing our experiences with digital images is a significant

part of our today’s life, which is partly a result of the high
availability of digital cameras, like in smartphones, and the
high use of social networks, that simplifies the publication
and sharing of images. As a consequence, the number of
images in the world wide web increases significantly. For
example, this can be seen on the image sharing platform
Instagram, where users share an average of 70 million new
photos per day [1].

As a result of such high numbers of images, searching
photos which show specific objects is challenging, because
the majority of these images is not properly tagged with the
names of every object seen in them. So the need for efficient
algorithms for automatic object recognition rises. In the last
decades there were many advances in this research field, but
especially the automatic identification of landmarks, which
are subject to weather changes, areal erosion and vegetation,
is still a challenging task, even if the amount of images with
attached GPS data, which marks the geo-position of the
camera when the photo was shot, is rising.

The growing spread of devices with the capability of gen-
erating GPS tags for the images, like smartphones and dig-
ital cameras with GPS units, enables many possibilities for
an subsequent geo-localisation of images, due to the fact
that GPS tags can significantly reduce the number of pos-
sible sights, buildings or landmarks to compare with. How-
ever, there exist too many images without the advantage
of GPS tags, so that an automatic geo-localisation without
prior knowledge of the camera position is still a valuable
aim.

Our focus lies on the automatic landmark recognition,
which we will describe by using the example of mountain
recognition in images. To solve the question, which moun-
tain can be seen on an given image, we match the skyline
of the mountain in the image with silhouettes of mountains
in our database. For this purpose, we have to automatically
extract the exact skyline from the image, which is a diffi-
cult task, because the segmentation of the image can lead
to artefacts, for instance due to weather conditions, noise,
obstacles or overexposure.

In this paper we introduce a baseline segmentation algo-
rithm, which uses an outlier detection algorithm to identify
and eliminate these artefacts. The article is structured as
follows: In the next section we discuss other papers related
to our algorithm. We then introduce our algorithm, which
consists of the three steps silhouette extraction, silhouette
cleaning and silhouette matching. The section of the latter

18

one will be a perspective of how to use the cleaned silhouette
in further steps. The last chapter summarises this paper and
outlines future work.

2. RELATED WORK
The amount of publications for automated mountain re-

cognition increased significantly in the last two decades.
Given a high number of publicly available digital elevation
maps (DEM), the consensus in many publications [2, 3, 4, 5,
10] is to use image-to-model matching for mountain recog-
nition and orientation identification.

Many approaches, like [3, 4, 10], make use of known GPS
data for the image to align in the terrain. This reduces the
search space for possible mountain silhouettes significantly,
because the search of the correct mountains is limited in
checking the surrounding of the camera’s position.

Baboud et al. [3] need an estimated field-of-view to cal-
culate the rotation which maps the image to the terrain.
Therefore, the authors introduce a robust matching metric,
using extracted edges in combination with a search space
reduction to further reduce computation time. [10] uses a
standard Sobel-filter for the edge extraction. To identify the
edges which are part of the mountain’s contours, the authors
propose the use of the Random Ferns classifier. Afterwards
they match the emerged contour map with the contour map
extracted from the DEM. In [4] a 360-degree panorama of
the surroundings of the image location is synthesized out of
a given DEM and used for matching the skyline extracted
from the image. For that, they use a vector cross correlation
(VCC) technique to find the candidate matches. After fur-
ther refinement and recalculation of the VCC for each peak
they can label the peaks with a high precision.

All three approaches show good results for their issue,
but the need for GPS data for the processed image does
not match our problem specifications, different from Baatz
et al. [2], in which the focus lies on images without GPS
tag. They use an approach based on a cost function for
the belonging of a pixel to the sky respectively foreground.
They combine this approach with a relevance feedback-like
user interference, where the user can mark parts of the sky or
the foreground. This user intervention was needed for 49% of
the images in their dataset, which was collected during there
research. Thankfully, they published this dataset, so that
it will be used in this paper. After the contour extraction,
they match the coded contourlet with the contours extracted
from a DEM at several points on a predefined grid. At
last, when they find a suitable match, they recalculate the
geo-position of the camera. Naval et al. [5] also try to
find the camera position and orientation, using a DEM to
position the camera on the world. For this purpose they
match the extracted skyline from an image with a synthetic
skyline from a DEM. Different to both works we try to get
an automatically cleaned silhouette, thus removing obstacles
or other artefacts, out of the processed image.

Tao et al. [12] focus on the identification of the sky seen
in an image and the search for images with a specific sky
appearance. Therefore they define different sky attributes,
like for example the sun position, which they extract in-
dividually afterwards. At last they present their complete
system SkyFinder, in which an attribute based search is im-
plemented. On top of that, they provide a sky replacement
algorithm for changing the sky in an image. However, the
recognition of the skyline is not part of this system.

3. SILHOUETTE RECOGNITION
The silhouette recognition process is basically a process in

three steps. The first step is the extraction of the silhouette
from a given picture. This silhouette is stored as a polygonal
chain. During the second step, this silhouette is cleaned by
identifying and removing outliers. The cleaned silhouette
is then used as the input to the third and final step, which
consists of matching the silhouette against the reference data
in order to be able to identify the structure in the picture.

3.1 Silhouette Extraction
Extracting the silhouette is the first step in the mountain

identification process described in this paper. The task of
this step is the separation of the sky from the rest of the
processed image. We therefore have a binary segmentation
task to solve, in which we check every pixel p of an image and
decide if p shows a part of the sky or not. For a human this
would be easy to do in most cases, even though it would
be too much work and time to segment great numbers of
pictures manually. Because of that, we use a growing seed
algorithm, like the algorithm described in [11], for which we
use the fact, that in most cases the pixels at the upper bound
of the image are part of the sky. In the following section,
we will first describe some difficulties, which can make the
segmentation task more complex. After that, our baseline
segmentation algorithm will be further explained.

The segmentation of an image generally suffers from dif-
ferent problems, like under-/overexposure, which results in
a smaller difference between the pixel colours, or blur, which
can be, for example, a result of a lossy compression of the
image. In addition, our binary segmentation task has even
some own problems to deal with. The first difficulty is a con-
sequence of the motif itself, because the weather in moun-
tainous terrain is very volatile. This and the fact that, for
example in the alps, many mountain peaks are covered with
snow, can make the extraction of the mountain silhouette
out of an image imprecise. Furthermore differently coloured
bands of cloud can lead to an extracted silhouette which lies
in the sky and is therefore not part of the real skyline. The
second one is a result of possible obstacles, which hide the
real silhouette of the mountain or lead to smaller segments
within the sky segment.

Even though we are aware of these problems, our naive
segmentation algorithm cannot handle all of them. For the
identification of artefacts as result of segmentation errors,
we use the second step of our chain, which is described in
section 3.2. Our segmentation algorithm uses the upper row
of pixels as seed for the sky segment. This means that we
mark the upper pixels as sky and process every neighbouring
pixel to let this segment grow. For this purpose we first
convert the processed photo to a gray-scale image G. Now
we can define VG as overall variance of the brightness values.
Having VG, we now process every pixel p(x,y) which is not a
part of the sky segment and mark it as sky candidate, if for
p(x,y) it holds that

Bp(x,y)
−meanr

p(x,y)
< γ ·

√
VG

with Bp(x,y)
the brightness of the pixel p(x,y), mean

r
p(x,y)

as

the mean of the brightness in an neighbourhood of the pixel
with the radius of r and γ as a factor to scale the impact
of the standard derivation. This means that we mark a
pixel, if its distance to a local mean of brightness values

19

Figure 2: The result of the segmentation algorithm. (Left) The original image out of the dataset from [2].
(Right) The binary image after the segmentation. White pixels mark the ground segment.

is smaller than a fixed percentage of the global standard
derivation of all brightness values. The idea behind this
term is, that the border between sky and ground has in
most cases a stronger contrast than the rest of the image,
especially the sky. Therefore, the distance to the mean will
be higher at the skyline as it will be at the border of possible
clouds. With the connection of the upper bound to the
standard derivation, we want to take into account the images
where the brightness is very homogenous, for example due
to overexposure, and therefore the contrast of the skyline
decreases.

In our experience this naive assumption shows good re-
sults for r = 5 and γ = 0.1 on most images out of the swiss
dataset published in [2]. In the future we will test more
complex algorithms, like for instance the skyline extraction
algorithm proposed in [8], with the expectation that they
will yield even better results. After we have marked all pos-

p

y

−1

0

1

x−1 0 1 −1 0 1

p

Figure 1: Two possible neighbourhoods of a pixel.
(Left) 4-connected neighbourhood of the pixel p.
(Right) 8-connected neighbourhood of the pixel p.

sible candidates, we can finally let the sky segment grow. For
that, we check for every pixel p(x,y), if it is a 4-connected
neighbour, for explanation see the left side of figure 1, to a
pixel of the sky segment and marked as sky candidate (see
the previous step). If so, the pixel will get marked as sky.
This step is repeated until no more pixels can be added to
the sky segment. At this point, we have a binary image,
which represents the skyline as transition between the sky
and the ground, like the one shown in figure 2.

For the silhouette extraction, we search a silhouette S =
(v1, . . . , vn) where every vertex vi = (xi, yi) is a two di-
mensional point where xi describes the x-coordinate and yi

describes the y-coordinate of that point in the picture. We
start at the upper left pixel p(0,0) and search for the first non-
sky pixel as start vertex v1 for our polygonal chain, which
lies on the left pixel column with x1 = 0. Now, we have
two possibilities: First, we can find no pixel, which results
in checking the next column until we find a pixel or we have
reached the lower right pixel of the image. Otherwise, if a
possible skyline pixel was found, the algorithm tracks the
transition between the sky and the ground in the following
manner.

Having vi as the last extracted vertex of the silhouette, the
algorithm checks the 8-connected neighbours of this point
(see the right side of figure 1) and chooses the non-sky point
as next vertex which has the lowest angle between the in-
coming line, defined by the two last vertices vi−1 and vi,
and the outgoing line, defined by vi and the neighbouring
point. This can easily be done, as shown in figure 3, by
checking the 8-connected neighbours from vi in clockwise
direction, starting at the predecessor. The only exception is
the start point v1, where we set v0 = (−1, y1). This means
that we choose in this case the left direct neighbour, which
lies outside of the image, as predecessor.

vi

0

1

7 6

2 3 4

5

vi−1

Figure 3: An example how to choose the next silhou-
ette point. Starting at vi−1 as predecessor of the cur-
rent vertex vi, the algorithm searches in clockwise
direction for the next ground pixel (blue). Therefore
the third pixel will be chosen.

Now, we have the border of the mountain as chain of
neighbouring pixels. To reduce the amount of vertices with-
out loosing any information, we eliminate all vertices which
bring no further information gain to the final silhouette in
the last step of the extraction phase. For this, we define the

20

Figure 4: Silhouette as black line with outliers in red on original image.

information gain I of a vertex vj , with 1 < j < n, as

Ivj =

{
1, if ∠vj−1vjvj+1 6= 180◦

0 otherwise.

This means that every vertex which lies on one line with his
predecessor and successor carries no further information for
the extracted silhouette. After deleting every vertex with
Ivj = 0, we obtain our final polygonal chain, which can
now be analyzed in the the cleaning phase described in the
following section.

3.2 Silhouette Cleaning
The extracted silhouette from the previous step may con-

tain different disturbances. In this step, we try to get rid
of those, so that they cannot affect the step of silhouette
matching that gets described in section 3.3. Examples for
such disturbances are manifold, ranging from objects in front
of the mountain, such as trees, to errors produced during
the extraction process that can be caused by a low contrast
between the mountain line and the sky. Essentially, after
finding an outlier, we currently cut elevations within this
part of the silhouette away.

Some of such outliers are showcased in figure 4. Here, the
black line is the silhouette that has been extracted by the
extraction step as described in section 3.1. The red parts are
those parts of the silhouette, that are automatically detected
as outliers. Examples for outliers are the tree tops to the
left, that have correctly been marked as outliers. In the
center of the picture, there is a part of the mountain, that
has been cut out. Here the contrast between rock and blue
sky gets to low for the extraction step to distinguish them.
Right next to this, clouds around the lower peak in the back

v1

v2

v3
a1 = 45◦

a2 = −45◦

a3 = 0◦

l2
=
|v2
− v

1
|

l3 = |v
3 −
v
2 |

l1 = 0

Figure 5: Conversion of polygonal chain for better
pattern recognition.

get recognised as mountain. Since the outline of this outlier
is not atypical for a mountain silhouette, this outlier is not
recognised. Farther to the right, there are two other outliers
where clouds are recognised as mountain by the extraction
step. These are, in this case, marked red and such detected
by the silhouette cleaning step.

Note, that there are a few parts of the silhouette that
get marked as outliers but are not described above. These
are false positives. However, since the image here is used
to showcase the different kind of outliers, these are not dis-
cussed here.

The silhouette cleaning part of our algorithm is, again,
divided into three parts. As an input, it gets the silhouette
S = (v1, . . . , vn) extracted from a picture.

For the recognition of patterns inside the polygonal chain,
this representation has disadvantages, because all vertices
are given in absolute positions. For outlier detection, a
model where similar structures do look similar in their rep-
resentation is beneficial. Therefore, we convert S to a rep-
resentation AP = (ap1, . . . , apn), with api = (li, ai). Here,
we set

li =

{
|vi − vi−1|, if i > 1

0 else

and ai as the angle between the vector vi+1 − vi, and the
x-axis for i < n and an = 0◦. Figure 5 illustrates this.
During this step, points where the angle does not change
are removed. Also, artefacts consisting of angles of 180◦

between two following segments get removed.
The basic idea of the outlier detection method itself is

to compare histograms created from parts of the polygonal
chain AP to a reference histogram. The latter hereby is
created from the silhouettes of the ground truth data as
given in [2].

The mentioned histograms consist of the two dimensions
segment length and angle size, just as the points in the
transformed polygonal chain AP , and are normalised. This
means, that the sum of the frequencies of each bucket is 1.
For the reference data, we compute one histogram from each
image’s silhouette. Finally, the mean of all these histograms
is computed and becomes the reference histogram Hr.

In order to find outliers, we use a sliding window ap-
proach over the polygonal chain APi of a given input im-
age. We therefore use a section of m successive segments
api, . . . , api+m−1 in order to compute a histogram Hi with
the same bucket distribution as in Hr. Then, for every point

21

used to compute Hi, we store the distance between Hi and
Hr. By this approach, for most points, multiple distance
values get stored when the sliding window is moved on. The
final distance di for a point api is now computed as the
average distance of all distances stored for this point.

As distance function in this case we use the one given in
the following

Definition 1. Let G = (g1, . . . , gk), H = (h1, . . . , hk) be
normalised histograms with the same bucket distribution.

The above average distance of G to H is defined by

D(G,H) := max(|aab(G)|, |aab(H)|)− |aab(G) ∩ aab(H)|,
where

aab(F) :=

{
i ∈ {1, . . . , k}

∣∣∣∣fi ≥
1

k

}

with F being a normalised histogram with k buckets.

This can be implemented to compute in linear time to the
number of buckets, or, for histograms of a fixed length, in
constant time.

Based on a number of images used as training data, in
the same way as described above, the medium distance µ
and the standard deviation σ can be determined. We use
these precomputed values in order to find two thresholds
τin > τout, such that we can characterise a point api as a
strong anomaly if it holds that its distance

di ≥ µ+ τin · σ
and a weak anomaly if

di ≥ µ+ τout · σ.
We also determine a length threshold l. For a part of the
polygonal chain, to be recognised as an outlier, it must hold
that at least l successive points api, . . . , api+l−1 must be
strong anomalies. An outlier can have any length that is
equal to or bigger than l. Finally, if we find such an outlier,
we expand it by adding points to it that are adjacent to
the outlier and weak anomalies. By this, it is possible for
outliers to merge.

As an example, say, ap7, . . . , ap20 are strong anomalies
because their distances d7, . . . , d20 are bigger than µ+τin ·σ.
If we set l = 4 for this example, these thirteen points are
recognised as an outlier o = {7, . . . , 20}. Now, let us assume
that ap5 and ap6 are weak anomalies as well as ap22. Then
ap6 and ap5 belong to the extended outlier, because they
are both adjacent to the outlier. On the other hand, ap22
does not belong to the extended outlier, because ap21 is not
part of the outlier since it is not a weak anomaly.

Once all outliers have been detected, the next step is to
remove them. Currently, we use a very simple approach for
this where, in the original silhouette S, the overhanging part
of the outlier is replaced by a straight line. This is based on
the notion, that the reasons for most outliers in the silhou-
ette are either trees or clouds. By just removing them, in
many cases, we get results that resemble the original shape
of the mountain in an easy way.

Let o = {i, . . . , j} with i + l ≤ j be an outlier. Then we
draw a straight line from vi to vj . Now, while the distance
between vs, starting with s = i + 1, and that straight is
smaller than a preset value d, we find the vertex vs with the
largest index, that is close enough to the original straight
line. The same is done from the other end of the outlier

so that we find a vertex ve. This results in four vertices’
indices j ≤ s < e ≤ j1. From this, the part between vs and
ve is now finally replaced by a straight line between these
two vertices.

By this, we obtain a cleaned silhouette that can be used
in further steps for the silhouette matching.

3.3 Silhouette Matching
Once the silhouette is extracted and cleared of outliers,

it is now time to match it to the reference data in order to
determine the mountain that is shown by the picture. Cur-
rently, we have not implemented any method, yet. However,
we will introduce some methods that we are going to test in
the future.

The converted silhouettes AP = (ap1, . . . , apn) from the
previous section can be easily changed to be interpreted as
time series by setting AP ′ = (ap′1, . . . , ap

′
n) where

ap′i = (l′i, vi) = (

i∑

j=1

li, vi)

for api = (li, vi). By this conversion, every point ap′i has
the length of the polygonal chain until that point as its first
component. Since li > 0 for all i > 1, the length component
of AP ′ is strictly monotonic increasing, just as the time
dimension in a time series. This is because we do not allow
identical points in our silhouette. With this, it is possible
to compare different silhouettes for similarity by using time
series comparison techniques such as [6, 9]. These methods
have the advantage of being rotation invariant which, in our
case, means that the image does not have to have the same
image section as our reference data.

Due to the great number of mountains and peaks that ex-
ist and on the notion, that every peak can be photographed
from different angles, there are hundreds of thousands of sil-
houettes to match for each query image. Due to this it is
clear, that even with a high-performance matching method
a preselection is necessary.

There exist many methods suitable for this, such as the
technique presented in [7] that uses the position of the sun
and the time of day, at which the photo has been taken, in
order to compute the approximate location on earth. How-
ever, this method has an average localisation error of about
100 km. Because of this, it is useful for a rough preselection,
however not sufficient in our case.

Therefore, we aim to reuse the idea of our outlier de-
tection method for matching. Instead of computing his-
tograms of short sequences of the silhouette, in this case the
histogram HS over the whole silhouette AP is computed.
This is then compared to the reference images’ histograms
HRi , i ∈ {1, . . . , nref} with nref the number of the reference
image, which we, as discussed in section 3.2, have to compute
anyway. The comparison between two histograms, with our
distance function, is linear to the number of buckets in the
histograms, or, since this number is fixed, constant. Now,
let d(HS , HRi) denote the distance between the histogram
of the new silhouette S and the ith reference histogram. If
d(HS , HRi) is small, this does not necessarily mean, that
the silhouettes are identical or even really similar, because
the histogram representation does not preserve the order of
the contained elements. On the other hand, if the distance

1In general, it is possible, that s ≥ e. In this case, no
substitution is performed.

22

between two silhouettes is large, we can say that those sil-
houettes are not similar.

Due to this, we plan to only use the time series compar-
ison methods from the beginning of this section on those
reference silhouettes, that yield small histogram distances.
Further on, we will evaluate if the position determination
method presented in [7] is able to boost the performance of
our solution.

4. CONCLUSION AND FUTURE WORK
In this work we presented a new approach to motif recog-

nition based on silhouettes on the example of mountains.
Our method consists of three steps, of which the first two
have already been implemented while we are working on the
third step. First results show that we are able to extract sil-
houettes with relatively few errors from images and that our
outlier detection step does indeed find meaningful anoma-
lies. We have currently tested the first two steps of our

Figure 6: Silhouette as black line with outliers in
red on original image.

approach as described in sections 3.1 and 3.2 on 18 images
from the reference dataset. Results for the first of these im-
ages can be seen in figures 2 and 4. Of these 18 images, 17
result in good silhouettes, i.e. silhouettes with relatively few
outliers of which most get marked and are correctable. The
last image, though, does not get recognised correctly due to
low contrast in terms of brightness. This is illustrated by
figure 6. We do, however, notice this, because most of the
silhouette gets marked as outlier.

The next step is to implement a silhouette matching al-
gorithm. This has already been outlined in section 3.3. Of
course, it is necessary, to benchmark the parts of that step
in order to find weaknesses early on. Once the system is
complete we aim to evaluate it on the whole of the dataset
of [2]. Based on these result, we will tune the parameters of
our method to find settings, that do work well generally.

We also aim to create a mountain recognition corpus of our
own since [2] focuses on images of mountains in Switzerland
only. Our corpus is aimed to be international and should
feature images from mountains from all over the world.

Another interesting perspective is to test, whether our
framework will work on other types of images, such as city
skylines or pictures of single buildings. With these tasks
the method itself could be quite similar, since skylines and

buildings are mostly photographed with the sky as back-
ground, too. Furthermore, we aim to test our method on
more diverse areas, such as the recognition of certain ob-
jects in MRT screenings or X-rays. These tasks will make
it necessary to change some parts of our approach, natu-
rally, because there, it will be interesting to be able to tell,
for example, which organs are shown in a picture, or, as a
next step, to be able to identify different kinds of tumours
automatically.

5. REFERENCES
[1] Instagram @ONLINE, accessed April 7, 2015.

https://instagram.com/press/.

[2] G. Baatz, O. Saurer, K. Köser, and M. Pollefeys.
Large Scale Visual Geo-Localization of Images in
Mountainous Terrain. In Computer Vision - ECCV
2012, Lecture Notes in Computer Science, pages
517–530. 2012.

[3] L. Baboud, M. Čad́ık, E. Eisemann, and H.-P. Seidel.
Automatic Photo-to-terrain Alignment for the
Annotation of Mountain Pictures. In Proc. of the 2011
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’11, pages 41–48, 2011.

[4] R. Fedorov, P. Fraternali, and M. Tagliasacchi.
Mountain Peak Identification in Visual Content Based
on Coarse Digital Elevation Models. In Proc. of the 3rd
ACM International Workshop on Multimedia Analysis
for Ecological Data, MAED ’14, pages 7–11, 2014.

[5] P. C. N. Jr, M. Mukunoki, M. Minoh, and K. Ikeda.
Estimating Camera Position and Orientation from
Geographical Map and Mountain Image. In 38th
Research Meeting of the Pattern Sensing Group,
Society of Instrument and Control Engineers, pages
9–16, 1997.

[6] E. J. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos.
LB Keogh Supports Exact Indexing of Shapes under
Rotation Invariance with Arbitrary Representations
and Distance Measures. In VLDB, pages 882–893,
2006.

[7] J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros.
What Do the Sun and the Sky Tell Us About the
Camera? International Journal of Computer Vision,
88(1):24–51, 2010.

[8] W.-N. Lie, T. C.-I. Lin, T.-C. Lin, and K.-S. Hung. A
robust dynamic programming algorithm to extract
skyline in images for navigation. Pattern Recognition
Letters, 26(2):221–230, 2005.

[9] J. Lin, R. Khade, and Y. Li. Rotation-invariant
similarity in time series using bag-of-patterns
representation. J Intell Inf Syst, 39(2):287–315, 2012.

[10] L. Porzi, S. R. Buló, P. Valigi, O. Lanz, and E. Ricci.
Learning Contours for Automatic Annotations of
Mountains Pictures on a Smartphone. In Proc. of the
International Conference on Distributed Smart
Cameras, ICDSC ’14, pages 13:1–13:6, 2014.

[11] F. Y. Shih and S. Cheng. Automatic seeded region
growing for color image segmentation. Image and
Vision Computing, 23(10):877–886, 2005.

[12] L. Tao, L. Yuan, and J. Sun. SkyFinder:
Attribute-based Sky Image Search. In ACM
SIGGRAPH 2009 Papers, SIGGRAPH ’09, pages
68:1–68:5, 2009.

23

