Gamifying Softwar e Development Environments Using
Cognitive Principles
Position Paper

Naomi Unkelos-Shpigel, Irit Hadar

Information Systems Department, University of Haifa
Carmel Mountain 31905, Haifa, Israel
{naomiu, hadari}@is.haifa.ac.il

Abstract. The topic of enhancing the software developmentess has re-
ceived much attention in recent decades. Severdelmdave been developed
to this end, typically addressing the charactesstif the process or the organi-
zation. We believe that an additional, substargidgiancement of software de-
velopment can be achieved via encouraging prodediehavior among indi-
vidual software developers. In this paper, we psepa framework for enhanc-
ing motivation among software developers, usingifieation principles. As a
first step in this ongoing research, we designgdototype for a game, which
can be used in various tasks in the software dpwadot process. The game is
based on cognitive theories, which address motimaimong practitioners.

Keywords: Gamification, motivation, flow theory

1 Introduction

Software development processes and their enhantdraga been vastly researched
in recent years. Many models have been proposednapldmented in industry, re-
placing the outdated waterfall model, such as tmdn-centered agile development
methodology, and maturity models such as the CMMI.

The use of these models has contributed to thetsteiand maturity of the soft-
ware development process. Nonetheless, while pgednas been made, many chal-
lenges and difficulties still exist, introducingks to their success. Additional solu-
tions are needed to encourage and guide produséfiavior among software engi-
neers to further enhance the software developmeceps and its outcomes [1]. More
specifically, we believe that analyzing developdrshaviors and exploring potential
solutions from a cognitive perspective would bedfieial to progress this objective.

Several cognitive theories address the topic ofvaton in workplaces, including
salient examples such as SDT — Self Determinatioeoty [2], the Flow Theory [3],
and the Group Flow Theory [4]. These theories mle\guidelines as to how to moti-
vate employees to take active part in the work, @mndncourage them to strive for
more productive behavior, mainly by encouragingimsic and extrinsic motivation
[2] and by achieving a state of flow, where the kewsris immersed into the task [3].

Persuasive technologies, and specifically gamifioatwere acknowledged as
changing employees’ motivation and behavior. Gamaifon is defined as “the inte-
gration of Game Mechanics in non-game environmtniacrease audience engage-
ment, loyalty and fun” [5, p.2], and was found taceurage users to participate and
contribute in computer-supported applications. doent years, various gamification
elements have been embedded in different informadigstems and applications in
general, and, in some rare cases, in applicatioehded for software engineers in
particular. In this research, we aim to explored ampirically examine, new and
effective ways for enhancing software engineerilaggamification.

Leveraging on the principles of gamification andsdxh on cognitive motivation
theories, our research questions are: (1) Whatwealearn from cognitive motivation
theories toward designing effective gamified emvinents for software developers?
(2) How can we promote software developers’ prastacbehavior via gamifying
software engineering practices? (3) What are théahbenefits of embedding gamifi-
cation techniques in software development envirarie®e

The next section presents the background for csgareh. Section 3 details our
proposed solution. Section 4 presents the planeedarch method, and section 5
discusses the expected contribution of the research

2 Scientific Background

2.1 Gamification

Coined by Nick Pelling in 2002 [6] the term "garnition" is used in order to de-
scribe how any task can be performed as a gamecknt years, various research
works have been conducted with regard to gamiboatits mechanisms, and their
use. While the early use of gamification was intxhdor games and application for
users, research from the last few years is targatedsing gamification mechanisms
for changing behaviors of specific populationsd$pecific purposes. In the context of
software development, several attempts to use gatidn techniques were conduct-
ed.

Sheth et al. [7] gamified a number of software d@weent activities in education-
al settings, in order to engage software engingestndents in development, docu-
mentation, bug reporting, and test coverage, usawal rewords. The students who
used the system showed statistically proven imprerg in their work results. The
system was later used to encourage students intwg dmftware testing, using a
method they called "Secret Ninja Testing," whetelshts were presented with quests
using characters from various action movies, ane\asked to act as these characters
while solving testing problems [8]. The system leelghe students to be exposed to
the complete lifecycle of software development, andouraged students to choose
software engineering as a major in their studies.

Research was also conducted in the context of wangfication at early stages of
software development. Dubois and Tamburrelli [9jgested a framework to success-
fully integrate gamification elements into softwaeegineering, starting from re-
quirement elicitation. They identified three typesactivities needed to be performed
when engaging gamification into software enginegranalysis, integration and eval-
uation and found that students performing theswites had better results in soft-

ware engineering. Another attempt to use gamificatit early stages of software
development showed that using gamification in watteams during requirement
elicitation assisted the teams to locate expedssaare their knowledge [10].Another
effort to gamify software development in educatiseitings was done in the context
of early stages of software development, succdgsiindegrating gamification ele-

ments into requirement elicitation [11]. This studentified three types of activities
needed to be performed when integrating gamificatido software development:
analysis, integration and evaluation, and found $hadents performing these activi-
ties produced better outcomes.

Thus far, gamification for software engineering fiasused on education, using
gamification principles borrowed from the domainapflications and website usage.
We did not find research in this context relying amgnitive theories in order to de-
sign games for software engineers, or using gadifiBvironments in industry in
order to motivate practitioners to enhance workgrerance.

2.2 Motivation Theories

Several cognitive theories address the topic oberaging motivation for work tasks.
Here we briefly present three of the most influglrifieories in this field.

The Self Determination Theory (SDT) [2] present&amtinuum of motivation
types, from intrinsic motivation that emerges frdm employee, to extrinsic motiva-
tion created by rules and regulation in the workplaAlthough intrinsic motivation is
considered to be linked to positive human beha\8®T suggests that proper use in
extrinsic motivation can lead to motivated behavircording to the Theory of Flow
[3] there are five elements of reaching to a stdtere the individual is immersed into
the performed task (some of which can be extrifigitaduced): Clarity, Centering,
Choice, Commitment, Challenge. Sawyer [4] extendhede elements to the context
of group flow, to contain, among others, the folliogvcharacteristics: A compelling,
shared goal, a sense of being in control, blendgs, equal participation, familiari-
ty, constant and spontaneous communication, angdtential for failure. We relied
on these characteristics when designing our selutioeating an environment that
would encourage group flow. The proposed solutiotkescribed in the next section.

3 The Proposed Solution: Gamifying Softwar e Development

The objective of this ongoing research is to idgmdifferent opportunities within the
software development process for enhancing progeibighavior via gamification. In
this paper we refer, as examples for demonstratimgision, to six of the major tasks
of the software development process. We view thepairs:

e Software architecture design and software architeaeview

e Coding and code review

e Customization (adapting the solution to the custirand Integration

Testing
We chose to focus on these pairs since we canifigl@aneach pair two parties: The

creator (architect, programmer, customizer) andréveewer (architecture reviewer,

code reviewer, tester). Each of these pairs willehits own game, according to the
following principles (see Fig. 1):

Create — The creator creates a segment of work, accotdimgr task (architecture,
coding or customizing). Creating the segment assppints to the creator and to her
team.

Request review — The creator sends the artifact for reviewer. féhgewer is ran-
domly selected from a group of potential review@itse creator does not know which
reviewer was selected. The reviewer and the teaeiuwe points for this action.

Review — The reviewer receives the anonymous artifagteves it and writes a re-
view. She then submits the review to the systerth wireview score, which reflects
the quality of the artifact. The reviewer and tearh receive points for this action.
Additional points are given to the reviewer for timy comments for improvement.

Extend the knowledge — upon receiving the review, the creator and keeiecan fur-
ther extend the knowledge created from the revitkw artifact and the review com-
ments), to their team or to an extended group atfiioners in the organization. Each
such knowledge extension results in additional gpoiets for the creator, the review-
er and the team. When the knowledge is used (acthecked-out) by another practi-
tioner from the organization, the team is givenitiolohl points.

Fig.1 describes the principles of the game:

Figure 1. The principle of the game of CARE

[— Z
- — o - ¢
—
Extend— The
Create Ask for review Review knowledge is

extended to the
teams

The game we designed has several key principles:

1. The game is embedded in the eclipse IDE. Theresfeaial tab for the game in
IDE, where the players can view their profile atidyame related information.

2. Each player can see her profile as a creator oa asviewer (seeCreator/
Reviewer Mode button in Fig. 2 and 3 respectively). The creatscreen contains
information about previous segments created arid dkierage quality score (see
Fig. 2,My segments). The reviewer’s scree contains a section, whidars to the
current segment (Fig. 3, segment of code markeddh She can write a textual
review, and provide a quality score for the segniEigt. 3,Segment review).

3. When a segment of code is created and ready, ¢la¢ocrasks for a review, and is
immediately rewarded with points.

4. The reviewer reviews the relevant segment, inggrbinth comments and a
quality score. If the reviewer approves the cotle,is granted with points as well.
Additional score is given for writing a review, whi helps the programmer to

10.

improve the code. For bug detection, the reviewdirbe rewarded extra points
for each bug found.

The reviewers can choose to share their review camtsrwith members of other
teams (pending creators’ permission), raising bottividual and team score.
When the reviewer wishes to share the comment,saage will be prompt to the
creator to ensure he agrees to share the segnmtiieanomments. The names of
the teams that used the comments are displaydwiteam’s profile (see Fig.4,
bottom). Additional mechanism is needed to evaliubgequality of the shared
information, and its contribution to other staketesk in the project.

The creator can also search for tips and lessanstlfom the review with other
creator and reviewers (Fig. Sgarch). Using this knowledge (by checking it into
the project) raises both individual and team score

The creators and reviewers are also given badgasdieg to their individual
scores. The badge indicates their level in the gdabeled: kilo, mega, or giga,
etc., according to the number of points they eafffiégl 2 and 3, top). All the
badges of the team members are displayed in the sgarofile, sorted in groups
according to levels (Fig. 4).

In addition to the individual scores, there is adsteam score managed, which is
updated according to the individually rewarded akg. 2, top).

The teams are rewarded each month according tosttmies. The reward can be
in the form of monetary incentive or other rewafdsy., breakfast with a high
management representative or coupons for fun detyi

If other creators or reviewers use the knowledge tggs shared, the individual
who wrote and/or shared this knowledge receivegiaddl points.

Figure2 .The creator’s screen

&) Carjava B =0 5 outline 2 “ =
o - W e W
* This §nt field shall have o valus of at least 2
. = .
i

My score: 128
My team score: 450

public Car(String manufacturer, String licencePlote, int m

this.manufacturer = manufacturer;
this.licensePlate = licencePlate;
this.seatCount = seatCount;

} Segments | wrote: 28

public String getManuFacturer() { - ! Quality : | wrote: 2
return manufacturer;

=}
-

&
] i
te int seatCount;

My segments

L ; My reviews
L] Flnthull

o
public void setManufacturer(String manufactures) { Reviews | wrote: 28
this.monufackurer = manufacturer; -

}

_ Reviews waiting:2

public String getlicensePlate() {
return licensePlake; .
) - | T
[e —————— 3 alm

Figure 3 .The reviewer's screen

&) Carjana B = 0 outine & H =]
o - IS e

* This ink Field shall have o volue of at least 2.

oD
-
ma
[+
#
¥ J

e int seatCount; My score: 250
My team score: 450

public Car(5tring manufacturer, String licencePlate, int m
this.manufocturer = manufacturer;
this.licensePlate = licencePlate; {’ Segment review Y
this.seotCount = seatCount; Commanta:

}

Good waork]

You should check for
proper values.

Bugs:

public void setManufocturer{String manufacturer) { Quality score:

this.manufacturer = manufacturer;
1

public String getMomufacturer() { B
return manufacturer;

public String getlicensePlate() {

..
return TicensePlote; .
1 . Share to others
s - o\)

Figure4 .The team's screen

&l Carjava B =0)/% ouine 82 (4 cane 8 S

. : BRN o T

This ink Field shall have o value of ok least 2

» —
Team Lions =2
o —#3
@ Valid
privote int seatCount; Team score: 450
public Cor{String manufacturer, String licencePlate, int Team leader n
this.manufacturer = manufacturer;
this.licensaPlate - licencePlate; E
this.seotCount = seatCount;
} []
public String getManufacturer() { B .
return manufacturer;
}
o otNul] = Your team contributed to :
Bnthull

public void setManufacturer{String msanufocturer) [)
this.manufacturer = manufacturer; @x “f m

3 4

public String getlicensePlate() { L
return licensePlate; a

} . Back to profile

) faim

The game includes the following gamification eletsen

Personal profile — the team members have individual profiles, whbey can view
their personal and team score. Each team has apiedite, presenting the team mem-
bers and the team’s score.

Badges — the team members are assigned with badges &ugdodtheir individual
scores. The badge indicates their level in the gaweording to the number of points
they earned.

Scoreboard — each team has its members rated bystwges, and at the end of
each month one team member is rewarded as "thergshyhe month."

The game supports SDT[2], since it offers rules egllation (in the form of a
game), to encourage employees to ask for revied tarshare their knowledge with
practitioners outside of their team, thus creaéirginsic motivation.

According to the theory of flow, the conceptualigasof the gamified environment
we propose supports the five elements of flow @arity — The game and scoring in
the game are simple and cle@entering — the game is designed to make players feel
they are in the center, gaining individual pointsl anaking their contributing to the
team visible; Choice — players can choose whether to share their kmigete
Commitment — since all the players are team members, thegrazeurages to perform
activities which raise team scor@hallenge — the game provides challenges to all the
stakeholders in the process, when they are reqtgrigdprove the quality of their work,
or the work they review, in order to earn additiandividual and team points.

The game’s conceptual design also supports thepgfmw elements [4]:A
compelling, shared goal — all the players have the shared goal of ge#iimigh team
score;a sense of being in control — since players send their work when they choose,
they have full control on their progress in the gabiending egos — since there is a
team goal, along with the personal goal, all treypls' egos are blended to achieve
high team scoregqual participation — each of the players is allowed to participate in
the game equally; familiarity — all the players in the same team are personally
familiar (with at least part) with each othegnstant, spontaneous communication —

the virtual game allows all the players to commaté with each othethe potential

for failure —As there is an ongoing race among the individleygrs and among the
teams, low achievements relative to other playansbe considered as failures..

To conclude, our proposed gamified environment edgpprinciple of three cognitive
theories — referring to individual and group motiva — designed to meet the
challenge of achieving full commitment to the takkm both individual and team
points of view.

4 Validation

This ongoing study will apply both qualitative agdantitative research method for
validating and further refining CARE. As derivediin the research objective and
questions, the research focuses on human-relatszkgses, calling for the use of
qualitative research methods [12], and on perfom@amwhich can be quantitatively
measured.

The qualitative study will focus on understandirayvdifferent gamification tech-
niques affect software developers’ motivation aetidvior. The main population of
this study will be software developers with differdéevels of seniority. Additionally,
as the research settings and its preliminary eswill require, we will expand the
research population to other roles within the safendevelopment process.

Following the findings of the qualitative study, waéll refine our conceptual de-
sign of the gamified development environment. Tdesign will be implemented and
evaluated according to the principles of desigrassh [13]. More specifically, we
will focus on measuring the quality and quantitytlod software developed, with and
without the use of the gamified environment. Wengia conduct this study with the
participation of software engineering students dnoossible, practitioners, to find if,
and to what extent these means improve their pegoce and promote desired be-
havior.

5 Expected Contribution

Gamification has been quite thoroughly researchedng different types of users in
recent years. However, we find only few examplegjafification research in the
context of software development, most of which iatended for students and dis-
cussed in the context of education.

Since we wish to contribute to the software andrimiation systems engineering
industry, we plan to elicit data and validate andings and results with practitioners,
thus receiving non-biased opinions, aiming at #rget population. The results of our
study are expected to help organizations in inéngasoftware developers’ motiva-
tion to complete their tasks successfully and effitty.

This research will contribute to the academic rege@ommunity by providing
empirical insights into the use of gamification aaneans for enhancing software
development processes, and the cognitive and sogiications thereof.

6 References

(1]
(2]
(3]

(4]
(5]

(6]
(7]

(8]
(9]

(10]
(11]

(12]

(13]

Hadar, I.: When Intuition and Logic Clash: Thes€af the Object Oriented Paradigm,
Science of Computer Programming, vol. 78 (2013),714426 (2013)

Ryan, R. M., and Deci, E. L.: Self-determinatithreory and the facilitation of intrinsic
motivation,social development,and well-being. Aroan psychologist, 55(1),68 (2000)
Csikszentmihalyi, M.: Flow and the Psychology Biscovery and Invention. Harper
Perennial, New York (1997)

Sawyer, K.: Group Genius: The Creative PoweCollaboration, Basic books.(2008)

Deterding, S., Khaled, R., Nacke, L., and Dix@n: Gamification: Toward a definition.
In CHI 2011 gamification Workshop Proceedings ,122@11)

Hagglund, P.: Taking gamification to the neawél (2012)

Sheth, S. K., Bell, J. S., and Kaiser, G. E.: Insirgg Student Engagement in Software
Engineering with gamification (2012)

Bell, J., Sheth, S., and Kaiser, G.: Secret nirgtirtg with HALO software engineering.
Proceedings of the 4th int'l worksop on Socialwafe engineering ,43-47ACM (2011)
Dubois, D. J., and Tamburrelli, G.: Understargdigamification mechanisms for soft-
ware development. In Proceedings of the 2013 9iht Meeting on Foundations of
Software Engineering , 659-662 ACM (2013)

Marshburn, David G. and Henry, Raymond M.: Improvifrtppwledge Coordination in
Early Stages of Software Development. SAIS 2013&&dings. Paper 23 (2013)
Hevner, A. R., and March, S. T.: The information tegss research cycle.
Computer, 36(11), 111-113 (2003)

Bogdan, R. C., and Sari K. B..: Qualitative researcledncation. An introduction to
theory and methods. Allyn & Bacon, A Viacom Compahg0 Gould St., Needham
Heights, MA 02194; (1998).

Hevner, A. R., and March, S. T.: The information tegss research cycle.
Computer, 36(11), 111-113 (2003).

