
A Model-driven Method and a Tool for Developing

Gesture-based Information System Interfaces

Otto Parra 1,2, Sergio España 1, Oscar Pastor 1

1 PROS Research Centre, Universitat Politècnica de València, Spain
2 Computer Science Department, Universidad de Cuenca, Ecuador

otpargon@upv.es,{sergio.espana, opastor}@pros.upv.es

Abstract. Considering the technological advances in touch-based devices, ges-

ture-based interaction has become a prevalent feature in many application do-

mains. Information systems are starting to explore this type of interaction. Cur-

rently, gesture specifications are hard-coded by developers at the source code

level, hindering its reusability and portability. Similarly, defining new gestures

in line with users’ requirements is further complicated. This paper describes a

model-driven approach to include gesture-based interaction in desktop infor-

mation systems and a tool prototype to: capture user-sketched multi-stroke ges-

tures and transform them into a model, automatically generating the gesture

catalogue for gesture-based interaction technologies and gesture-based interface

source code. We demonstrate our approach in several applications, ranging

from case tools to form-based information systems.

Keywords: Model-driven architecture, gesture-based interaction, multi-stroke

gestures.

1 Introduction

New devices come together with new types on interfaces (e.g. based on gaze,

gesture, voice, haptic, brain-computer interfaces). Their aim is to increase the

naturalness of interaction [1], although this is not exempt from risks. Due to

the popularity of touch-based devices, gesture-based interaction is slowly

gaining ground on mouse and keyboard in domains such as video games and

mobile apps. Information systems (IS) are likely to follow the trend, especial-

ly, in supporting tasks performed outside the office [2].

 Several issues may hinder the wide adoption of gesture-based interaction

in complex information systems engineering. Gesture-based interfaces have

been reported to be more difficult to implement and test than traditional

mouse and pointer interfaces [3]. Gesture-based interaction is supported at the

source code level (typically third-generation languages) [4]. This involves a

mailto:otpargon@upv.es

great coding and maintenance effort when multiple platforms are targeted, has

a negative impact on reusability and portability, and complicates the defini-

tion of new gestures. Some of these challenges can be tackled by following a

model-driven development (MDD) approach provided that gestures and ges-

ture-based interaction can be modelled and that it is possible to automatically

generate the software components that support them.

 This paper introduces an MDD approach and a tool for gesture-based IS

interface development, which is intended to allow software engineers focusing

on the key aspects of gesture based information system interfaces; namely,

defining gestures and specifying gesture-based interaction. Coding and porta-

bility efforts are alleviated by means of model-to-text (M2T) transformations.

2 State of art

2.1 State of the art on gesture representation

The representation of gestures according to related literature can be classified

into some categories: (a) based on regular expressions [5] [6]: a gesture is

defined by means of regular expressions formed by elements such as ground

terms, operators, symbols, etc.; (b) based on a language specification [7]:

XML is used as reference to describe gestures; (c) based on demonstration

[8]: developers to define gestures, test the generated code, refine it, and, once

they are satisfied with them, include the code in the applications.

 In this research work we propose a model-driven approach in order to rep-

resent gestures with a high-level of abstraction, enabling platform-

independence and reusability. By providing the proper transformations, it is

possible to target several gesture recognition technologies. We focus on user-

defined, multi-stroke, semaphoric gestures [9].

2.2 The role of gesture-based interfaces in IS engineering

Gesture-based interfaces can play two major roles in IS engineering, depend-

ing on whether we intend to incorporate this natural interaction into (i) CASE

tools or (ii) into the IS themselves. In the former case, the interest is to in-

crease the IS developers’ efficiency, whereas in the latter the aim is to in-

crease IS usability, especially in operations in the field, where the lack of a

comfortable office space reduces the ergonomics of mouse and keyboard.

In both cases, gesture-based interface development methods and tools are

needed. Some examples of methods and tools are described in [10], [11],

where the authors propose a method to integrate gesture-based interaction in

an interface.

 In this work, we propose a similar flow to that of [10], but automate the

implementation of gesture-based interfaces by means of model transfor-

mations. In future work, we plan to provide support to the ergonomic princi-

ples by [11].

3 The gestUI method

gestUI is a user-driven and iterative method that follows the MDD paradigm.

The main artefacts are models which are conform to the Model-Driven Archi-

tecture, a generic framework of modelling layers that ranges from abstract

specifications to the software code (indicated at the top of Fig. 1).

Fig. 1. gestUI method overview

 The computation-independent layer is omitted because gestUI already

assumes that the IS is going to be computerised. Note that gestUI is expected

to be integrated into a full interface development method (represented with

generic activities and artefacts in grey). Such a method can either be model-

driven or code-centric. gestUI is user-driven because users participate in all

non-automated activities; and it is iterative because it intends to discover the

necessary gestures incrementally and provides several loopbacks. In the plat-

form-independent layer, the gestures are defined (activity A1 in Fig. 1) by

the developer but, preferably, in collaboration with representative users of the

IS. Gestures are defined by sketching and are stored in the ‘Gesture catalogue

model’, and is part of a larger ‘Interaction requirements’ specification. In the

platform specific layer, a concrete gesture-recognition platform is selected

(we currently support three platforms: quill [12], $N [8] and iGesture [13]).

The ‘Platform-specific gesture specification’ (PSGS) is a machine-readable

file format that can be interpreted by a gesture recognition tool. This specifi-

cation can be automatically generated from the ‘Gesture catalogue model’

(during A3). The interface is also designed in this layer, so now the gesture-

based interaction can also be determined (A2) in collaboration with the user.

This mainly consists of defining correspondences between gestures and inter-

face actions. In the code layer, the developer and the user can test the gestures

using the gesture recognition tool (A5). The ‘Gesture based interface’ is au-

tomatically generated from the platform-specific layer artefacts (A4). The tool

generates components (e.g. Java code) that are embedded into the IS interface.

4 The gestUI tool

The gestUI tool is developed using Java and Eclipse Modelling Framework.

As shown in Fig. 2, the tool is structured in three modules. The numbers in

brackets indicate the method activity each component supports. The method’s

internal products are not shown. The relationship with the external gesture

recogniser is represented.

Fig. 2. gestUI tool overview

4.1 Gesture catalogue definition module

It supports the definition of new multi-stroke gestures by means of an inter-

face implemented in Java in which the user sketches the gestures. The set of

gestures sketched by the user constitutes the ‘Gesture catalogue model’, con-

forms to the metamodel defined in this work (Fig. 3).

4.2 Model transformation module

It requires as data: the ‘Gesture catalogue model’, the target technology speci-

fied by the developer, and the target folder to save the output. Depending on

the target technology, a different M2T transformation is executed which cre-

ates the PSGS, in the corresponding file format (i.e. XML for $N and iGesture

and GDT 2.0 for quill). The transformation rules are written in Acceleo. The

PSGS can be imported in a third-party gesture recogniser to test the gestures.

Fig. 3. Metamodel of the gesture catalogue modelling language

4.3 Gesture-action correspondence definition module

It allows the developer and the user to specify what action to execute whenev-

er the gesture-based IS interface recognises a gesture. In a model-based IS

interface development, the actions are specified in the interface model. In a

code-centric interface development, they are implemented in the interface

itself. We currently provide automated support to code-centric developments

made in Java; that is, the gestUI module parses the source code of the user

interface to obtain a list of actions. This module therefore requires two inputs:

the previously created ‘Gesture catalogue model’ and the user interface (e.g. a

Java code). The output of this module is the ‘Gesture-based interaction model’

and the same source code but now supporting the gesture-based interaction.

 When generating the user interface Java source code, many references are

included (e.g., to libraries to manage gestures, to libraries of the gesture-

recognition technology (e.g. $N)), and some methods are added (e.g., to exe-

cute the gesture-action correspondence, and to capture gestures). Additionally,

the class definition is changed to include some listeners, then the source code

should obviously be compiled.

5 Demonstration of the method and tool

We demonstrate the integration of gestUI within a code-centric interface de-

velopment method. For illustration purposes, we use a fictional, simple uni-

versity management case and we narrate the project as if it actually happened.

Fig. 4 shows the domain class diagram of a university with several depart-

ments, to which teachers are assigned and which manage classrooms. For the

sake of brevity, we will just consider the two screens; namely, the initial and

department management screens.

 In the first method iteration, the university representatives tell the develop-

er that they would like the gestures to resemble parts of the university logo.

Thus, they use the Gesture catalogue definition module to create a first ver-

sion of the ‘Gesture catalogue model’ containing these three gestures:  for

departments, || for teachers and  for classrooms. However, when the first

interface design is available (see sketch in Fig. 5), they soon realise that other

gestures are needed. This way, by defining new gestures, and after testing

them, they determine that navigation will be done by means of the above-

mentioned gestures, but that similar actions that appear across different

screens shall have the same gestures (e.g. the gesture  shall be used to create

both new departments and teachers).

Fig. 4. UML class diagram of the demonstration case

 The Model transformation module allows generating the PSGS for any of

the available gesture-based recognition technologies (i.e. $N, quill and iGes-

ture). The developer only needs to choose a single technology but we chose to

demonstrate the multiplatform features of the gestUI method by generating

the three gesture files. Using the appropriate tool, the users can test the ges-

tures. Fig. 6 shows the gestures being recognised by the SN, quill and iGes-

ture tools so the gestures have been properly converted by the Model trans-

formation module.

Fig. 5. Screen mockups (gestures are shown in red, next to action buttons)

 The developer assigns the gesture-action correspondence in collaboration

with the user, supported by the Gesture-action correspondence definition

module. The correspondences are informally shown in Fig. 5, next to each

action button. Once the Java source code of the traditional interface is availa-

ble, then the components that support the gesture-based interaction are gener-

ated. In this case, the chosen underlying gesture-recognition technology is $N;

the users felt more comfortable with multi-stroke gestures (especially with

regards to tracing some letters and symbols) so quill was discarded. The final

IS interface consists of several screens that allow managing university infor-

mation. Users can still interact with the IS in the traditional way (i.e. using the

mouse), but now, they can also draw the gestures with a finger on the touch-

based screen in order to execute the actions. Fig. 7 represents a specific inter-

action with the IS interface in which a department is being created.

Fig. 6. An excerpt of multi-stroke gestures: $N (left) and quill (center) and iGesture (right)

Fig. 7. Using gestures to execute actions on the interfaces

6 Summary and Future Work

We describe gestUI, a model-driven method, and the tool that supports it to

specify multi-stroke gestures and automatically generating the information

system components that support the gesture-based interaction. We validated

the method and tool by applying them to a case and generated the Platform-

specific gesture specification for three gesture-recognition technologies, to

illustrate the multiplatform capability of the tool. The gestures were success-

fully recognised by the corresponding tools. We then automatically generated

the final gesture-based interface components and integrated them into the IS

interface. The advantages of the proposal are: platform independence enabled

by the MDD paradigm, the convenience of including user-defined symbols

and its iterative and user driven approach. Its main current limitations are re-

lated to the target interface technologies (currently, only Java) and the fact

that multi-finger gestures are not supported. These limitations will be ad-

dressed in future work. We also plan further validation by applying the ap-

proach to the development of a real IS and to extending a CASE tool with

gesture-based interaction (the Capability Development Tool being developed

in the FP7 CaaS project). We also plan to integrate gestUI into a full-fledged

model-driven framework capable of automatically generating the presentation

layer, in order to extend it with gesture-based interaction modelling and code

generation.

Acknowledgements

The author is grateful to his supervisors Sergio España and Óscar Pastor for

their invaluable support and advice. This work has been supported by

SENESCYT and Univ. de Cuenca - Ecuador, and received financial support

from Generalitat Valenciana under Project IDEO (PROMETEOII/2014/039).

References

[1] D. Wigdor and D. Wixon, Brave NUI world: designing natural user interfaces for

touch and gesture, USA: Morgan Kaufmann Publishers Inc., 2011.

[2] Fujitsu, “Touch- and gesture-based input to support field work,” Fujitsu

Laboratories Ltd., 18 02 2014. [Online]. Available: http://phys.org/news/2014-

02-touch-gesture-based-field.html. [Accessed 24 11 2014].

[3] M. Hesenius, T. Griebe, S. Gries and V. Gruhn, “Automating UI Tests for

Mobile Applications with Formal Gesture Descriptions,” Proc. of 16th Conf. on

Human-computer interaction with mobile devices & services, pp. 213-222, 2014.

[4] S. H. Khandkar, S. M. Sohan, J. Sillito and F. Maurer, “Tool support for testing

complex multi-touch gestures,” in ACM International Conference on Interactive

Tabletops and Surfaces, ITS'10, NY, USA, 2010.

[5] L. Spano, A. Cisternino and F. Paternò, “A Compositional Model for Gesture

Definition,” LNCS Human-Centered Soft. Eng., vol. 7623, pp. 34-52, 2012.

[6] K. Kin, B. Hartmann, T. DeRose and M. Agrawala, “Proton++: A Customizable

Declarative Multitouch Framework,” in UIST'12, Cambridge, USA, 2012.

[7] Ideum, “GestureML,” Ideum, 22 November 2014. [Online]. Available:

http://www.gestureml.org/. [Accessed 6 December 2014].

[8] L. Anthony and J. O. Wobbrock, “A Lightweight Multistroke Recognizer for

User Interface Prototypes,” Proc. of Graphics Interface, pp. 245-252, 2010.

[9] M. Karam and M. C. Schraefel, “A taxonomy of Gestures in Human-Computer

Interaction,” in Retrieved from http://eprints.soton.ac.uk/261149/, 2005.

[10] M. Guimaraes, V. Farinazzo and J. Ferreira, “A Software Development Process

Model for Gesture-Based Interface,” in IEEE International Conference on

Systems, Man, and Cybernetics , Seoul, Korea, 2012.

[11] M. Nielsen, M. Storring, T. Moeslund and E. Granum, “A Procedure for

Developing Intuitive and Ergonomic Gesture Interfaces for Man-Machine

Interaction,” Aalborg University, Aalborg, Denmark, 2003.

[12] A. C. Long and J. Landay, Quill: a gesture design tool for pen-based user

interfaces, Berkeley: University of California, 2001.

[13] B. Signer, M. Norrie and U. Kurmann, “iGesture: A General Gesture

Recognition Framework,” in Proceedings of ICDAR 2007, 9th Int. Conference

on Document Analysis and Recognition, Brazil, 2007.

