
Improving Design Patterns Finder Precision
Using a Model Checking Approach

Mario L. Bernardi, Marta Cimitile, Giuseppe De Ruvo, Giuseppe A. Di Lucca,
and Antonella Santone

Department of Engineering, University of Sannio, Benevento, Italy
e-mail: {mlbernar,dilucca,gderuvo,santone}@unisannio.it

Unitelma Sapienza University, Rome, Italy
e-mail: marta.cimitile@unitelma.it

Abstract. In this paper we propose an approach exploiting the model
checking technique to automatically refine the results produced by a De-
sign Patterns mining tool called Design Pattern Finder (DPF) to improve
the precision of its results by verifying the detected DPs automatically.
To assess the feasibility of the proposed approach along with its effec-
tiveness, we have applied it to an open source Object Oriented system
with good results in improving the precision of the detected DPs.

Key words: Software Engineering, Design Patterns, Model Checking, Formal
Methods, Models, Mining

1 Introduction

The detection of Design Patterns (DPs) [1] istances in Object Oriented (OO)
software systems is valuable to assess the quality of the source code [2] , improve
program comprehension, maintenance and reuse [3]. According to this, an in-
creasing interest is adressed to the study and experimentation of DPs detection
approaches [4]. Bernardi et al. in [5] have proposed an approach called Design
Pattern Finder (DPF), based on a meta-model and a Domain Specific Language
(DSL) to represent both the software system and the searched DPs. The DPs
models are organized as a hierarchy of declarative specifications and expressed as
a wide set of high level properties that can be added, removed or relaxed obtain-
ing new pattern variants. The DPF effectiveness, was evaluated by applying it to
several systems and the obtained results are reported in [5]. Even if the obtained
results are very encouraging, we observed that the precision of the DPF can be
further improved. Indeed, DPF, as any other existing DPs detecting approach,
can suffer in lacking of precision and completeness. Starting from these consider-
ations, in this work we exploit formal methods to automatically refine the results
produced by DPF; in particular we employ model checking using the Language
of Temporal Ordering Specification (LOTOS) and selective-µ-calculus.

The model checking (MC) methodology aims to analyse the number of DPs
instances, detected by the DPF, evaluating their correctness with respect to for-
mally encoded properties checked against the entire system model represented

with (basic) LOTOS. This allows to reduce the number of wrongly detected pat-
terns (false positives) with respect to the original approach. We decided to apply
the MC refinement to the DPF, mainly because DPF is based on a meta-model
that can be exploited by the model checking refinement to create (basic) LO-
TOS processes. Therefore, we embodied a new refinement stage adopting DPF
outcomes as inputs. From the DPF model we create (basic) LOTOS processes
and from DPF detected patterns we generate selective-µ-calculus properties in
order to verify the existence of design patterns through model checking.

The approach has been assessed by a preliminary experiment where it was
applied to a system from an open benchmark proposed in [6], [7]. Of course, the
proposed refining approach can be extended to any other DP mining approach.
The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 gives definitions of basic LOTOS and selective-µ-calculus. Sec-
tion 4 presents and discusses the proposed detection process, the implemented
tools and their integration aspects. Finally, in Section 5, conclusive remarks and
future works are presented.

2 Related work

Several pattern recovery techniques and tools have been introduced in the last
years. Some reviews about the existing approaches are reported in [4]. Here for
brevity, we limit our discussion only to the formal methods (model checking)
based approaches. In [8] a formal framework to specify the DPs at different
levels of abstraction is proposed. The framework uses stepwise refinement to in-
crementally add details to a specification after starting from the most abstract
one. Moreover, a validation through model checking will verify that a specifica-
tion in a given level of abstraction is indeed a refinement of a specification of a
higher level. The limit of this approach is that a domain specific language to de-
scribe DPs is missing and applications in real systems has been never performed.
In [9] authors propose an approach aiming to validate DPs using formal method,
but the approach is not validated on real software systems. Finally, in [10], a
fully automated DPs mining approach performing both static and dynamic anal-
ysis to verify the behavior of pattern instances, is proposed. The static analysis
exploits model checking to analyze the interactions among objects, while the
dynamic analysis of the pattern behavior is performed through a code instru-
mentation and monitoring phase, applied on the candidate pattern instances.
This approach, differently from ours, requires the analysis of the collaboration
among objects at runtime by identifying and executing test cases on the software
system.

3 Preliminaries

Let us now recall the main concepts of Basic LOTOS [11]. A Basic LOTOS
program is defined as:

process ProcName := B

where E

endproc

where B is a behaviour expression, process ProcName := B is a process dec-
laration and E is a process environment, i.e., a set of process declarations. A
behaviour expression is the composition, by means of a set of operators, of a
finite set A={i,a,b, ...} of atomic actions. Each occurrence of an action in
A represents an event of the system. An occurrence of an action a ∈ A−{i} rep-
resents a communication on the gate a. The action i does not correspond to a
communication and it is called the unobservable action. The syntax of behaviour
expressions (also called processes) is the following:

B ::= stop | α;B | B[]B| P | B|[S]|B | B[f] | hide S in B | exit

| B>>B | B[>B

where P ranges over a set of process names and α ranges over A. he following:

– The action prefix a;B means that the corresponding process executes the
action a and then behaves as B.

– The choice B1 [] B2 composes the two alternative behavior descriptions B1
and B2.

– The expression stop cannot perform any move.
– The parallel composition B1|[S]|B2, where S is a subset of A−{i}, composes

in parallel the two behaviors B1 and B2. B1 and B2 interleave the actions not
belonging to S, while they must synchronize at each gate in S. A synchroniza-
tion at gate a is the simultaneous execution of an action a by both partners
and produces the single event a. If S=∅ or S=A, the parallel composition
means pure interleaving or complete synchronization.

– Cyclic behaviors are expressed by recursive process declarations.
– The relabeling B[f], where f: A → A is an action relabeling function, re-

names the actions occurring in the transition system of B as specified by the
function f. This function is syntactically defined as a0 -> b0,...,an->bn,
meaning f(a0)=b0,...,f(an)=bn, and f(a)=a for each a not belonging
to {a0,...,an}. Note that each relabelling function has the property that
f(i) = i.

– The hiding hide S in B renames the actions in S, occurring in the transition
system of B, with the unobservable action i.

– The expression exit represents successful termination; it can be used by
the enabling (B >> B) and disabling (B[> B) operators: B >> B represents
sequentialization between B1 and B2 and B[> B models interruptions. For
the sake of simplicity, we do not discuss these operators in the paper.

The semantics of a process B is rules describing the transition relation of the
automaton corresponding to the behavior expression defining B. This automaton
is called standard transition system for B and is denoted by S(B). The reader can
refer to [11] for details. From now on, we write LOTOS instead of Basic LOTOS.

In the following we recall the selective-µ-calculus, introduced in [12], which
is a branching temporal logic to express behavioral properties of systems. It
is equi-expressive to µ-calculus [13], but it differs from it in the definition of
the modal operators. Given a set A of actions and a set Var of variables, the
selective-µ-calculus logic is the set of formulae given by the following inductive
definition:

– tt and ff are selective-µ-calculus formulae;
– Y , for all Y ∈ Var, is a selective-µ-calculus formula;
– if φ1 and φ2 are selective-µ-calculus formulae then φ1 ∧ φ2 or φ1 ∨ φ2 are

selective-µ-calculus formulae;
– if φ is a selective-µ-calculus formula then ⟨K⟩R φ and [K]R φ are selective-

µ-calculus formulae, where K,R ⊆ A;
– if φ is a selective-µ-calculus formula then µX.φ and νX.φ are selective-µ-

calculus formulae, where X ∈ Var.

The satisfaction of a formula φ by a state s of a transition system, written
s |= φ, is defined as follows: each state satisfies tt and no state satisfies ff; a
state satisfies φ1 ∨ φ2 (φ1 ∧ φ2) if it satisfies φ1 or (and) φ2. [K]R φ is satisfied
by a state which, for every performance of a sequence of actions not belonging to
R∪K, followed by an action inK, evolves to a state obeying φ. ⟨K⟩R φ is satisfied
by a state which can evolve to a state obeying φ by performing a sequence of
actions not belonging to R∪K, followed by an action in K. The precise definition
of the satisfaction of a closed formula φ by a state of a transition system can be
found in [12].

4 Approach

The overall Design Pattern mining approach follows a process structured in two
main sub-processes. The first performs the design pattern detection applying the
Graph-Matching approach implemented by DPF [5]. The second performs the
refinement of DPF results using the model checking approach proposed in this
paper.

In the following is a short description of each process activity, while next
sub-sections will provide more details about them:

– Source Code Analysis — The source and bytecodes of the system under
study are parsed and the complete ASTs of the system are produced.

– Model Instantiation — A traversal of the system AST is performed to
generate an instance of the system model (i.e. the system graph S), con-
forming to the meta-model defined for DPF. Rapid type analysis (RTA),
class flattening and inlining of not public methods are exploited in order to
build a system’s representation suitable for the matching algorithm.

– Graph-Matching DPs Detection — The DPF graph matching algo-
rithm, described in [5], is performed to match the system graph, built in
the previous step, with the pattern specifications graphs of the DPs to be
detected.

– Pattern2MU—Each pattern specification to be detected is written as a set
of templates µ-properties (also MU-properties used in the following). These
properties involve the patterns roles and their relationships. The template
parameters are bound to the concrete system elements using information
extracted from the pattern instances found in the detection step (i.e. roles
and the system elements related to them).

– Model2LOTOS — In order to check if a given set of parametrized MU-
properties holds, the system graph should be expressed in a suitable model
(in our approach LOTOS was exploited). Hence this step takes the system
graph as input and translates it to a LOTOS model instance. This translation
has to be performed only one time for each system to be mined.

– Results refinement — This step checks the parametrized sets of MU-
properties obtained from the pattern specifications catalogue against the
LOTOS model of the system in order to reduce the number of false positives.

4.1 Graph-Matching DPs Detection

The detection of the DPs instances is performed according to the DPF approach
[5], based on a meta-model and a Domain Specific Language (DSL) to model the
structure of both OO systems and DPs. Each pattern, in order to be detected, is
modeled by a DSL pattern specification that can be translated into DP Graph
(DPG) which is part of the input for the graph-matching detection algorithm.

Along the execution of the DPF Graph Matching algorithm, the system graph
(i.e., the instance of the system model) is traversed and each pattern instance
sub-graph is mapped to the corresponding matching DPG (to identify the actu-
ally implemented patterns). More insights and details about the DPF approach
can be found in [5].

4.2 DPF Refinement

The proposed approach is based on the use of formal methods (to the authors’
knowledge, never used before). From the DPF outcomes we derive LOTOS pro-
cesses, which are successively used to perform model checking. The goal of the
approach is to increase the precision of DPs mining results produced by DPF.
This part of the approach is addressed by the second sub-process which com-
prises the following steps:

1. LOTOS System model creation (Model2LOTOS activity)
2. Pattern Property generation (Pattern2MU activity)
3. Pattern Matching through Model Checking (Results Refinement activity)

In the following subsections the three steps are discussed in detail.

LOTOS model creation We use, as internal representation, the LOTOS lan-
guage. Thus, LOTOS specifications are generated starting from the internal

representation of DPF. This is obtained by defining a DPF-to-LOTOS trans-
form operator T . The function T directly applies to Java system outcomes of
DPF and translates them into LOTOS process specifications. The function T is
defined for each part of a Java system such as classes, interfaces, methods, fields.
Each one has been translated into LOTOS processes. First of all, a System is
composed of a set of Types. A Type may be a ClassType or an InterfaceType.
A ClassType is made up of Methods. Types may be tied by inheritance rela-
tions and a ClassType may implement an InterfaceType, as usually occurs in
OO software systems.

System
The generic Java System containing k types is translated into the following
LOTOS process:

T (C) = process SY STEM := Type1[] · · · []Typek endproc

where Typei is written using the fully qualified Java name. The LOTOS pro-
cess SY STEM represents the parent process of all the types. Each translated
LOTOS model has a System process.

Type
As stated, a Type may be a ClassType or an InterfaceType. For example, if
FQN is the fully qualified name of a Type, an InterfaceType is translated into
the following LOTOS process:

T (I) = process
FQN InterfaceType :=
name InterfaceType; (FQN Methodi;FQN Methodi Method[] · · · []
FQN Methodk;FQN Methodk Method[]
inherits; (FQN InterfaceTypel[] · · · []
FQN InterfaceTypey))
endproc

where implements and inherits are actions which respectively indicate imple-
mentation of interfaces and inheritance relation between types.

Method
A method is represented with its own arguments and with a modifier, thus it is
translated into the following LOTOS process:

T (M) = process
FQN Method := name Method; (argi[] · · · []argk[]modifier mod)
endproc

where argi is the name of the argument and mod is the type of modifier such as
public, private, protected.

Pattern Property generation In our approach, we use model checking to
verify the existence of specific patterns. Once we have the LOTOS processes
of the Java software system, we can use selective-µ-calculus logic to specify
desired properties. A pattern is translated into a selective-µ-calculus property.
Each design pattern leads to a different property, although a set of common
properties are used as building blocks:

1. Existence of Interface Implementation:
⟨implements⟩∅ ⟨name InterfaceType⟩∅ tt

2. Existence of Inheritance:
⟨inherits⟩∅ ⟨name ClassType⟩∅ tt ∧ ⟨inherits⟩∅ ⟨name InterfaceType⟩∅ tt

3. Existence of a Method:
⟨name Method⟩∅ tt

4. Existence of a Field:
⟨field⟩∅ ⟨name InterfaceType⟩∅ tt ∧ ⟨field⟩∅ ⟨name ClassType⟩∅ tt

5. Existence of an Argument:
⟨arg⟩∅ ⟨name InterfaceType⟩∅ tt ∧ ⟨arg⟩∅ ⟨name ClassType⟩∅ tt

Pattern Matching through Model Checking Once we have created the
LOTOS model of a Java software system and we also have built all the properties
which represent the design patterns, we can proceed with model checking. As
aforementioned, in this paper both model and properties (patterns) come out
translating the ones of DPF. We have used CADP [14] as formal verification
environment. The CADP model checker is applied verifying each pattern against
the System model. When the result is TRUE, it means that the pattern has been
found. FALSE otherwise. Thanks to a very detailed LOTOS model we are able
to detect false positives of DPF.

5 Conclusions and future works

In this work we exploit formal methods to automatically refine the results pro-
duced by a previous approach called DPF. DPF approach introduces a meta-
model to represent both the patterns and the system under study as graphs in
order to apply a graph matching algorithm. In this paper the detection process
is enriched with a model-checking refinement step in which the system model is
represented using LOTOS and patterns as selective-µ-calculus properties checked
against it. The defined LOTOS model allows to check a wider set of properties
that lead to a reduction of the number of false positives. Preliminary experiments
performed on a middle sized system (QuickUML 2.1) confirmed the feasibility,
correctness, and effectiveness of the approach showing, improvement of the pre-
cision (30% on average) with a very reduced impact on the original recall. The
model-checking step indeed reduced to zero the number of false positives for
Command and Strategy patterns, raising the precision, respectively, from 0.88
and 0.67 to 1. In QuickUML system in both cases the MC properties were able to

consider structural or behavioral relationships that the original DPF approach
was unable to take into account.

As future works, a more complete translation of pattern specifications to
selective-µ-calculus properties will be defined. Moreover, we want to develop
new user friendly tools to assist software engineers during the model checking
step, as done in [15]. Finally, we plan to perform the translation of the entire
DP catalogue defined in [5] as selective-µ-calculus properties.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1995)

2. Bergenti, F., Poggi, A.: Improving uml designs using automatic design pattern
detection. In: SEKE 2000. (2000) 336–343

3. L. Prechelt, B. Unger-Lamprecht, M.P., Tichy, W.: Two controlled experiments
assessing the usefulness of design pattern documentation in program maintenance.
IEEE Trans. Softw. Eng. 28(6) (2002) 595–606

4. Rasool, G., Streitfdert, D.: A survey on design pattern recovery techniques. IJCSI
International Journal of Computer Science Issues 8(2) (2011) 251 – 260

5. Bernardi, M., Cimitile, M., Di Lucca, G.: Design patterns detection using a dsl-
driven graph matching approach. Journal of Software: Evolution and Process Wi-
ley Online Library (2014)

6. Guéhéneuc, Y.G.: P-mart: Pattern-like micro architecture repository,. In: Pro-
ceedings of the 1st EuroPLoP Focus Group on Pattern Repositories, Michael ,
Aliaksandr Birukou, and Paolo Giorgini (2007, http://www.ptidej.net/tool/

designpatterns/)
7. : Comsats institute of information technology. http://research.ciitlahore.

edu.pk/Groups/SERC/DesignPatterns.aspx

8. Taibi, T., Herranz-Nieva, Á., Moreno-Navarro, J.J.: Stepwise refinement validation
of design patterns formalized in TLA+ using the TLC model checker. Journal of
Object Technology 8(2) (2009) 137–161

9. Aranda, G., Moore, R.: A formal model for verifying compound design patterns.
In: Proceedings of the 14th International Conference on Software Engineering and
Knowledge Engineering. SEKE ’02, New York, NY, USA, ACM (2002) 213–214

10. De Lucia, A., Deufemia, V., Gravino, C., Risi, M.: Improving behavioral design
pattern detection through model checking. In: CSMR, 2010. (2010) 176–185

11. Bolognesi, T., Brinksma, E.: Introduction to the iso specification language lotos.
Computer Networks 14 (1987) 25–59

12. Barbuti, R., De Francesco, N., Santone, A., Vaglini, G.: Selective mu-calculus
and formula-based equivalence of transition systems. J. Comput. Syst. Sci. 59(3)
(1999) 537–556

13. Stirling, C.: An introduction to modal and temporal logics for ccs. In: Concurrency:
Theory, Language, And Architecture. (1989) 2–20

14. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2) (2013) 89–107

15. De Ruvo, G., Santone, A.: An eclipse-based editor to support lotos newcomers. In:
WETICE, 2014 IEEE 23rd. (June 2014)

