
CoreEAF – a Model Driven Approach to
Information Systems

Tomas Jonsson1 and H̊akan Enquist2

1 Genicore AB, Göteborg, Sweden
tomas@genicore.se,

WWW home page: http://www.genicore.se
2 IT University, Göteborg, Sweden

enquist@chalmers.se

WWW home page: http://www.ituniv.se/english

Abstract. Model driven IT systems development with code generation
is today used in several, mostly technical, application areas. However, for
large IT based Information Systems (ITbIS) it is still quite uncommon.
An innovative case of low cost and high quality ITbIS is presented along
with the model driven framework applied. This innovation is made pos-
sible by a coherent model driven approach with integrated method and
tool support for the complete development and maintenance cycles of an
ITbIS. For over 20 years and still, the FMV ERP system has been de-
signed, extended and modified in pace with changes in the organization
as well as disruptive changes in information technology.

Keywords: Business Information System, Business Knowledge Model,
Domain Model, Model Driven Design, Innovation, Information Engine

1 IT based Information Systems (ITbIS) Development

Large IT based Information System (ITbIS) projects frequently miss targets or
fail completely [1] [2]. In Europe, the cost of missed targets and failures was
estimated to 142 Billion Euros per year[3]. Obviously, methods in current use
are not sufficient to solve the task. There are only a few examples of large ITbIS
being built with a model driven approach [4] although very promising results
are shown by some model driven approaches [5] [6].

Core Enterprise Architecture Framework (CoreEAFTM) – a model driven
ITbIS framework – comprises method, tools and platform for building and ex-
ecuting ITbIS from models. CoreEAF represents an interdisciplinary approach
to ITbIS design, combining theories from disciplines such as management [7],
information theory [8] [9], cognition [10] [11] and computer science [12].

Focus in this paper and demo is on illustrating the unbroken chain of support
for model driven design and execution of ITbIS, leaving in-depth descriptions of
each enabling concept and its implementation to be presented in the future.

The framework Fig. 1, is designed to produce ITbIS with a Model View Ar-
chitecture, as originally proposed by Reenskaug [13]. The Business Knowledge



Reality Business Knowledge Model Runtime

Business phenomena

Value creation

Actors

Phenomena map

Value chains

Organization

Software
Platform

ITbIS
Engine

Model
Statements

Data
Interchange

User Views

Model
Tools

Enterprise
Analyst Technology

Views

ITbIS
Tools

Authorization

Hardware
Platform

User 
Authentication
& Authorization

ITbIS Usage

XML100 €

Fig. 1. Core Enterprise Architecture Framework

Model (BKM) is from a business perspective, formalized business knowledge.
From a technical perspective, the BKM is an object oriented declarative model
describing information structure, information processing and information rules,
including information access rules. Views are defined declaratively and connected
to model elements, which in runtime operates as windows for accessing informa-
tion in the ITbIS. There are different types of views: graphical user interface;
word processor interface; document generation; report generation and data in-
terchange views. Each type of view is described either with a tool or a language.

Building an ITbIS with CoreEAF is done solely by declaring a BKM and it’s
views, excluding programming in the traditional sense.

2 ITbIS Case – ERP System for Defence Material
Acquisition

The Swedish Defence Material Administration’s (FMV’s) Enterprise Resource
Planning (ERP) system called FMV-Core, Fig. 2, is the most extensive system
out of five, built and executed with the current version of CoreEAF. Applying
the CoreEAF for FMV-Core is by now a proven innovation for providing ITbIS to
an organization at low cost, low error rate, short lead time and high requirement
fulfillment. This innovation is made possible by coherent design support for
consistent model driven development and change actions throughout the ITbIS



life cycle, along with a coherent runtime environment for ITBIS execution with
full consistency between models and target system behavior.

FMV - Defence Material Administration

R&D

Suppliers

Armed Forces
FMV-Core 

Operations Administration

Purchase

Accounting

Core Information Engine

EDI

PRIO 
(SAP)

Material flow
Administration

Data

FMV BKM

Project

HR

Back 
Office

10 Year 
plan

Accounting PRIOHR

View packagePlanning PurchaseProjects Back Office

Fig. 2. Organizational structure and FMV-Core

FMV has ongoing material acquisition projects worth about 6 Billion Euros
and a turnover of 2 Billion Euros per year. FMV-Core is an ITbIS with 1.200
users and handles information in FMV’s core business. This includes project
planning, project execution and accounting as well as complex purchasing pro-
cesses from RFQ, tenders, complex contract drafting to delivery and payments.
FMV-Core is integrated with several other IT systems, one of which is the
Swedish Armed Forces SAP based ERP system (PRIO), using the integration
facility CoreCom of the CoreEAF information engine.

Regarding design metrics, the FMV-Core system is defined with 33.000 decl-
arative statements, whereof 13.000 statements define the BKM and 20.000 de-
fine views. FMV-Core BKM includes 230 business phenomena with 7 levels of
generalization and 400 relations. The phenomena altogether carry 3000 value
attributes all managed by 5600 rules and calculations.

This level of content complexity implemented in e.g. standard systems would
typically include millions (>1.000.000) of lines of program code. For instance
SAP is built with more than 300.000.000 lines of code [14].

3 Modeling the Enterprise – Method, Language and
Tools

The key concepts applied to implement coherent support for consistent model
driven design of ITbIS are described below.



3.1 Business Phenomena – Understanding the Reality of an
Organization

The first and most profound aspect is the business phenomena aspect. The model
of business phenomena shall directly and only directly correspond to actual
business phenomena and be labelled with the business terminology.

Concrete as well as abstract business phenomena such as agreements, pro-
jects, services, etc. need to be understood and documented in the model. It is
often challenging to understand and document abstract phenomena as they only
exist in the minds of people and are constantly undergoing changes and redefini-
tions. Thus, business phenomena modelling requires fundamental understanding
of human perception and of how to capture human knowledge into formal models
using a modelling language.

3.2 Value Creation – What is Being Achieved

The second aspect is the value creation aspect, documented with value chains,
as in Fig. 3.

Start state Process Activities Transition Desired final state

Less desired
final states

Fig. 3. Value Chain Diagram

Some of the business phenomena can be considered more or less static, i.e.,
they exist in the business and do not undergo any transformation of value. Other
phenomena undergo value transformations, such as products being assembled in
a factory. Also intangible phenomena undergo value transformations and are
most likely the only kind of value transforming phenomena in organizations that
produce something other than tangible products.

Examples of value transforming intangible phenomena are business agree-
ments such as sales agreements or purchase agreements. In the public sector we
can find value transforming phenomena such as claims and license applications.

For each value transforming phenomenon, a state diagram is defined repre-
senting the value chain of the phenomenon. The value chain has a start state
and typically one or more final states, where one of the final states represents the
desired final state of the value transformation. The intermediate states represent
steps towards and sometimes away from the desired final state.



E.g. the value chain of a sales agreement can be composed of the states
suggested, quoted, rejected, ordered, delivered, returned, paid and refunded,
where suggested is the start state and paid is the desired final state. Note that a
state transition such as quoted to ordered represents a positive value progression
and quoted to rejected represent a negative value progression.

Connected to each state is a set of activities to be performed in order to reach
one of the next states of the value chain. E.g. the transition ordered to delivered
could be connected to several activities such as picking items in warehouse,
package items, attach address label, give to post office, etc.

3.3 Organizational Structure – Roles, Responsibilities and Actors

The third aspect is the organizational structure. Business roles with responsibil-
ities are added and connected to value chains of value transforming phenomena
in the model.

Business roles can have two different kinds of responsibilities in relation to
the value chains. Firstly, a role can have the overall responsibility for a certain
phenomenon to progress to certain states. Secondly, for performing activities
moving the phenomenon closer to a following state in the value chain. Roles
can further be grouped into organizational structures representing e.g. manage-
ment structure, team structure etc., depending on phenomenon, activity and
organizational policies.

Finally, actors can be connected to the roles. Actors are either individuals
e.g. staff members of the organization, customers, suppliers, etc. or machines
performing some activity. Machines could be mechanical machines or IT systems.

3.4 Core Model Language (CML) – How to Describe BKM

Core BKMs are created and maintained in modelling tools allowing graphical
editing and navigation of the model. The tools are based on a declarative lan-
guage, Core Model Language (CML)

CML formalism follows the basic principles of a strongly typed class based ob-
ject oriented (OO) language. However, CML is declarative and all data process-
ing is described with parameterless functions without side effects (expressions).
I.e. the value of an attribute can only be set by the attribute’s value function, not
by instructions in several different methods in the class. This means that each
calculated value of the system is clearly defined in one place and one place only,
usually as a single line of declarative statement. This gives a great advantage
in terms of changeability, predictability and fault localisation. A change in one
expression will only affect the values of one attribute or if a value of an attribute
is incorrect, the problem will be located in its value expression.

In CML the OO class concept is called phenomenon.
Data container: A phenomenon has attributes which when instantiated can
hold values.



Generalization: A phenomenon can be part of a generalization – specialization
hierarchy.
Encapsulation: Stronger than in classic OO since attribute values can only
be set by the attribute’s value function, not by other components of the phe-
nomenon (class).
Polymorphism: An attribute can have different definitions in a generalization
– specialization hierarchy.

Additional structural components have been added to the traditional OO
concept, such as relation, view and change permissions, value chain, activity,
role and organizational entity.

Examples of attribute and value declarations (identifiers in ’ ’)
phenomenon ’person’
attribute ’full name’ value ’given name’ + ” ” + ’family name’
phenomenon ’order’
attribute ’order total’ value sum ’items’ [not ’complimentary’].’price’

The language, as shown, defines data flow graphs not execution order. It is
up to the underlying information engine to resolve execution order depending
on events in the data flow graphs.

3.5 Tools for Enterprise Modeling

There are two tools which can be used for modeling as described in sections
3.1-3.4. They fit in to the CoreEAF as shown in Fig. 4.
Browser: WEB based environment for creating and viewing models.
Builder: Windows based environment for creating and viewing models.

4 Modeling the ITbIS – Tools and Languages

Once the business model is created it is time to design an ITbIS that meet the
information management needs of the organization and its people.

Designing the ITbIS essentially means modeling various views of the BKM.
For this purpose various tools and languages are used, which assumes and is
connected to the BKM. The design tools and languages architecture is shown in
Fig. 4.

AppBuilder: Tool for building a component based graphical user interface,
connected to a model, i.e. an application.
Reporter: User tool for creating reports with flexible search and result criteria.
IDoc-L: XML based language to define document oriented interactive user in-
terface using MS-Word as platform.



Builder

Core Model Language

AppBuilder

IDoc-L
Doc-L

Reporter

CoreCom-L

Model
Information Engine

Business Knowledge
Documentation and GovernanceMethod

Runtime 

Browser

Model Tools View Tools and Languages

Mgmt

Language

Tools

Views
GNU C++Target Code

Database Server

Scripts

Process-L

View Engines

Fig. 4. Method and Tool architecture

Doc-L: XML based language to define paper documents from model data.
CoreCom-L: XML based language to define import/export of model data in
XML or other text formats.
Process-L: XML based scripting language to monitor and modify data in the
model based system.
Target Code The tool chain is based on C++ and executable on Linux and
MS-Window. The script languages are CoreEAF specific.

5 ITbIS Runtime Components

Information Engine: The Information Engine handles persistence, information
consistency, serving multiple users with real-time information while maintaining
transactional integrity over a distributed network of resources, information secu-
rity and a timeline for each phenomenon and its context. The information engine
is programmed in C++ and uses an SQL database engine for data storage.
Applications: Model, information engine, view engines and views created by
AppBuilder are compiled together into user applications. In an ITbIS there can
be several different applications, where all applications have the same model but
different views.
Dynamic data input and output: There are four dynamic view engines active



in runtime. One view engine which interprets report definitions and three view
engines which run XML defined scripts one for each type of view tool: IDoc-L,
Doc-L, CoreCom-L.
Management (Mgmt): Component for administrating users roles in the orga-
nization and for authorization in the ITbIS.

6 Current Status and Future Developments of CoreEAF

Ongoing research and publication on Model Driven ITbIS Design (MDID) in-
clude a case study and subsequent thematic studies on FMV Core.

A community for collaboration on knowledge development on MDID is be-
ing formed with academia, industry and public sector. The community will also
provide knowledge resources and a web based platform for tools and experimen-
tation.

Genicore is currently developing a new web based modeling tool with a
lightweight information engine and auto generated UI for MDID to enable edu-
cation and training.

References

1. L. Laird and C. Brennan : Software Measurement and Estimation A Practical Ap-
proach. IEEE Computer Society / John Wiley & Sons (2006)

2. The Standish Group: The CHAOS Manifesto. The Standish Group (2013)
3. McManus, J. & Wood-Harper T. : Understanding the sources of information systems

project failure. Management Services, 51(Autumn), 3843 (2007)
4. Enquist, H. & Jonsson, T. : Sammanställning av information om Model Based Sys-

tem Development (MBSD) för informationssystem typ affärssystem. Research re-
port, Genicore AB, Gothenburg (2013)

5. Pawson, R. : Naked Objects. Thesis, University of Dublin, Trinity College (2004)
6. Whittle J., Hutchinson J. Rouncefield M. : The State of Practice in Model-Driven

Engineering. Software, IEEE Volume: 31, Issue: 3, Page 79 - 85 (2014)
7. Mintzberg H. : Structure in fives, designing effective organizations. Englewood Cliffs,

N.J. Prentice-Hall (1983)
8. Langefors B. : Essays on Infology. Studentlitteratur: Lund (1995)
9. Enquist H. Makrygiannis N. : Understanding Misunderstandings. HICSS 82480083

(1998)
10. Hauser M.D., Chomsky N., Fitch W.T. : The faculty of language: what is it, who

has it, and how did it evolve? Science vol 298 p.1569-79 (2002)
11. Kohonen T. : Associative and self organizing memory. Springer-Verlag (1988)
12. Lindskov Knudsen J., Lofgren M., Lehrmann Madsen O., Magnusson B. Et. al. :

Object-Oriented Environments - The Mjølner Approach. Prentice Hall (1993)
13. Reenskaug T. : THING-MODEL-VIEW-EDITOR an Example from a planningsys-

tem. Xerox PARC technical note. (1979)
http://heim.ifi.uio.no/˜trygver/1979/mvc-1/1979-05-MVC.pdf

14. Vishal Sikka, Keynote (2008)
http://scn.sap.com/docs/DOC-14735


