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Abstract. In this paper, we present our experience in applying col-
laborative filtering to real-life corporate data. The quality of collabora-
tive filtering recommendations is highly dependent on the quality of the
data used to identify users’ preferences. To understand the influence that
highly sparse server-side collected data has on the accuracy of collabo-
rative filtering, we ran a series of experiments in which we used publicly
available datasets and, on the other hand, a real-life corporate dataset
that does not fit the profile of ideal data for collaborative filtering. We
have performed a series of experiments on two standard data sets (Each-
Movie and Jester) and a real-life corporate data.

1 Introduction and motivation

The goal of collaborative filtering is to explore a vast collection of items in
order to detect those which might be of interest to the active user. In contrast
to content-based recommender systems which focus on finding contents that
best match the user’s query, collaborative filtering is based on the assumption
that similar users have similar preferences. It explores the database of users’
preferences and searches for users that are similar to the active user. The active
user’s preferences are then inferred from preferences of the similar users. One
of the main advantages of pure collaborative filtering is that it ignores the form
and the content of items and can therefore also be applied to non-textual items.

The accuracy of collaborative filtering recommendations is highly dependant
on the quality of the users’ preferences database. In this paper we would like
to emphasize the differences between applying collaborative filtering to publicly
available datasets and, on the other hand, to a dataset derived from real-life cor-
porate Web logs. The latter does not fit the profile of ideal data for collaborative
filtering.

The rest of this paper is arranged as follows. In Sections 2 and 3 we discuss
collaborative filtering algorithms and data quality for collaborative filtering. Our
evaluation platform and the three datasets used in our experiments are described
in Sections 4 and 5. In Sections 6 and 7 the experimental setting and the eval-
uation results are presented. The paper concludes with the discussion and some
ideas for future work (Section 8).



2 Collaborative filtering

There are basically two approaches to the implementation of a collaborative
filtering algorithm. The first one is the so called “lazy learning” approach (also
known as the memory-based approach) which skips the learning phase. Each
time it is about to make a recommendation, it simply explores the database of
user-item interactions. The model-based approach, on the other hand, first builds
a model out of the user-item interaction database and then uses this model to
make recommendations. “Making recommendations” is equivalent to predicting
the user’s preferences for unobserved items.

The data in the user-item interaction database can be collected either ex-
plicitly (explicit ratings) or implicitly (implicit preferences). In the first case the
user’s participation is required. The user is asked to explicitly submit his/her
rating for the given item. In contrast to this, implicit preferences are inferred
from the user’s actions in the context of an item (that is why the term “user-
item interaction” is used instead of the word “rating” when referring to users’
preferences in this paper). Data can be collected implicitly either on the client
side or on the server side. In the first case the user is bound to use modified
client-side software that logs his/her actions. Since we do not want to enforce
modified client-side software, this possibility is usually omitted. In the second
case the logging is done by a server. In the context of the Web, implicit prefer-
ences can be determined from access logs that are automatically maintained by
Web servers.

Collected data is first preprocessed and arranged into a user-item matrix.
Rows represent users and columns represent items. Each matrix element is in
general a set of actions that a specific user took in the context of a specific item.
In most cases a matrix element is a single number representing either an explicit
rating or a rating that was inferred from the user’s actions.

Since a user usually does not access every item in the repository, the vector
(i.e. the matrix row), representing the user, is missing some/many values. To
emphasize this, we use the terms “sparse vector” and “sparse matrix”.

The most intuitive and widely used algorithm for collaborative filtering is
the so called k-Nearest Neighbors algorithm which is a memory-based approach.
Technical details can be found, for example, in Grcar (2004). The algorithm is
as follows:

1. Represent each user by a sparse vector of his/her ratings.
2. Define the similarity measure between two sparse vectors. In this paper, we

consider two widely used measures: (i) the Pearson correlation coefficient
which is used in statistics to measure the degree of correlation between two
variables (Resnick et al. (1994)), and (ii) the Cosine similarity measure which
is originally used in information retrieval to compare between two documents
(introduced by Salton and McGill in 1983).

3. Find k users that have rated the item in question and are most similar to
the active user (i.e. the user’s neighborhood).



4. Predict the active user’s rating for the item in question by calculating the
weighted average of the ratings given to that item by other users from the
neighborhood.

3 Sparsity problem and data quality for collaborative
filtering

The fact that we are dealing with a sparse matrix can result in the most concern-
ing problem of collaborative filtering – the so called sparsity problem. In order to
be able to compare two sparse vectors, similarity measures require some values
to overlap. What is more, the lower the amount of overlapping values, the lower
the relialibility of these measures. If we are dealing with high level of sparsity, we
are unable to form reliable neighborhoods. Furthermore, in highly sparse data
there might be many unrated (unseen) items and many inactive users. Those
items/users, unfortunately, cannot participate in the collaborative filtering pro-
cess.

Sparsity is not the only reason for the inaccuracy of recommendations pro-
vided by collaborative filtering. If we are dealing with implicit preferences, the
ratings are usually inferred from the user-item interactions, as already men-
tioned earlier in the text. Mapping implicit preferences into explicit ratings is a
non-trivial task and can result in false mappings. The latter is even more true
for server-side collected data in the context of the Web since Web logs contain
very limited information. To determine how much time a user was reading a
document, we need to compute the difference in time-stamps of two consecutive
requests from that user. This, however, does not tell us weather the user was
actually reading the document or he/she, for example, went out to lunch, leaving
the browser opened. What is more, the user may be accessing cached informa-
tion (either from a local cache or from an intermediate proxy server cache) and
there is no way to detect these events on the server side.

Also, if a user is not logged in and he/she does not accept cookies, we are
unable to track him/her. In such case, the only available information that could
potentially help us to track the user is his/her IP address. However, many users
can share the same IP and, what is more, one user can have many IP addresses
even in the same session. The only reliable tracking mechanisms are cookies and
requiring users to log in in order to access relevant contents.

From this brief description of data problems we can conclude that for apply-
ing collaborative filtering, explicitly given data with low sparsity are preferred
to implicitly collected data with high sparsity. The worst case scenario is having
highly sparse data derived from Web logs. When so, why would we want to apply
collaborative filtering to Web logs? The answer is that collecting data in such
manner requires no effort from the users and also, the users are not obliged to
use any kind of specialized Web browsing software. This “conflict of interests”
is illustrated in Figure 1.



Fig. 1. Data characteristics that influence the data quality, and the positioning of the
three datasets used in our experiments, according to their properties.

4 Evaluation platform

To understand the influence that highly sparse server-side collected data has
on the accuracy of collaborative filtering, we built an evaluation platform. This
platform is a set of modules arranged into a pipeline. The pipeline consists of
the following four consecutive steps: (i) importing a user-item matrix (in the
case of implicit preferences, data needs to be preprocessed prior to entering
the pipeline), (ii) splitting data into a training set and a test set, (iii) setting
a collaborative filtering algorithm (in the case of the kNN algorithm we also
need to specify a similarity measure) and an evaluation protocol, (iv) making
predictions about users’ ratings and collecting evaluation results. The platform
is illustrated in Figure 2.

Let us briefly discuss some of these stages. In the process of splitting the
data into a training set and a test set, we randomly select a certain percentage
of users (i.e. rows from the user-item matrix) that serve as our training set. The
training set is, in the case of the kNN algorithm, used to search for neighbors
or, in the case of model-based approaches, as a source for building a model.
Ratings from each user from the test set are further partitioned into “given”
and “hidden” ratings, according to the evaluation protocol. For example, 30% of
randomly selected ratings from a particular user are hidden, the rest are treated
as our sole knowledge about the user (i.e. given ratings). Given ratings are used
to find neighbors in the training set, while hidden ratings are used to evaluate the
accuracy of the selected collaborative filtering algorithm. The algorithm predicts
the hidden ratings and since we know their actual values, we can compute the
mean absolute error (MAE) or apply some other evaluation metric.



Fig. 2. The evaluation platform. The notes in italics illustrate our experimental setting
(see Section 6).

5 Data description

For our experiments we used three distinct datasets. The first dataset was Each-
Movie (provided by Digital Equipment Corporation) which contains explicit rat-
ings for movies. The service was available for 18 months. The second dataset with
explicit ratings was Jester (provided by Goldberg et al.) which contains ratings
for jokes, collected over a 4-year period. Users were using a scrollbar to express
their ratings – they had no notion of actual values. The third dataset was de-
rived from real-life corporate Web logs. The logs contain accesses to an internal
digital library of a fairly large company. The time-span of acquired Web logs is
920 days. In this third case the users’ preferences are implicit and collected on
the server side, which implies the worst data quality for collaborative filtering.

In contrast to EachMovie and Jester, Web logs first needed to be extensively
preprocessed. Raw logs contained over 9.3 million requests. First, failed requests,
redirections, posts, and requests by anonymous users were removed. We were left
with slightly over 1.2 million requests (14% of all the requests). These requests,
however, still contained images, non-content pages (such as index pages), and
other irrelevant pages. What is more, there were several different collections of
documents in the corporate digital library. It turned out that only one of the
collections was relevant for the application of collaborative filtering. Thus, the
amount of potentially relevant requests dropped drastically. At the end we were
left with only slightly over 20,500 useful requests, which is 0.22% of the initial
database size.



The next problem emerged from the fact that we needed to map implicit
preferences contained in log files, into explicit ratings. As already explained, this
is not a trivial task. The easiest way to do this is to label items as 1 (accessed) or 0
(not accessed) as also discussed in Breese et al. (1998). The downside of this kind
of mapping is that it does not give any notion of likes and dislikes. Claypool et al.
(2001) have shown linear correlations between the time spent reading a document
and the explicit rating given to that same document by the same user (this
was already published by Konstan et al. (1997)). However, their test-users were
using specialized client-side software, which made the collected data more reliable
(hence, in their case, we talk about client-side implicit preferences). Despite this
fact we decided to take reading times into account when preprocessing Web logs.

Fig. 3. Mapping implicit preferences contained in the corporate Web logs onto a dis-
crete 3-score scale.

We plotted reading times inferred from consecutive requests onto a scatter
plot shown in Figure 3. The X-axis shows requests ordered by their time-stamps,
and the y-axis shows the inferred reading time on a logarithmic scale. We can
see that the area around 24 hours is very dense. These are the last accesses of a
day. People went home and logged in again the next day, which resulted in ap-
proximately 24-hour “reading” time. Below the 24-hour line, at approximately
10-hour reading time, a gap is evident. We decided to use this gap to define
outliers – accesses above the gap are clearly outliers. We decided to map reding
times onto a discrete 3-score scale (scores being 1=“not interesting”, 2=“inter-
esting”, and 3=“very interesting”). Somewhat ad-hoc (intuitively) we defined



two more boundaries: one at 20 seconds and another at 10 minutes. Since items
were research papers and 20 seconds is merely enough to browse through the
abstract, we decided to label documents with reading times below 20 seconds
as “not interesting”. Documents with reading times between 20 seconds and 10
minutes were labelled as “interesting” and documents with reading times from
10 minutes to 10 hours were labelled as “very interesting”. We decided to keep
the outliers due to the lack of data. In the first scenario they were labelled as
“very interesting” and in the second one as “interesting”. Since we had no re-
liable knowledge about the outliers, the second scenario should have minimized
the error we made by taking them into account.

Table 1 shows the comparison between the three datasets. It is evident that a
low number of requests and somewhat ad-hoc mapping onto a discrete scale are
not the biggest issues with our corporate dataset. The concerning fact is that the
average number of ratings per item is only 1.22, which indicates extremely poor
overlapping. Sparsity is consequently very high, 99.93%. The other two datasets
are much more promising. The most appropriate is the Jester dataset with very
low sparsity, followed by EachMovie with higher sparsity but still relatively high
average number of ratings per item. Also, the latter two contain explicit ratings,
which means that they are more reliable than the corporate dataset (see also
Figure 1).

Table 1. The comparison between the three datasets.

6 Experimental setting

We ran a series of experiments to see how the accuracy of collaborative filtering
recommendations differs between the three datasets (from EachMovie and Jester
we considered only 10,000 randomly selected users to speed up the evaluation
process). First, we randomly selected 70% of the users as our training set (the
remaining 30% were our test set). Ratings from each user in the test set were



further partitioned into “given” and “hidden” ratings according to the “all-but-
30%” evaluation protocol. The name of the protocol implies that 30% of all the
ratings were hidden and the remaining 70% were used to form neighborhoods in
the training set.

We applied three variants of memory-based collaborative filtering algorithms:
(i) k-Nearest Neighbors using the Pearson correlation (kNN Pearson), (ii) k-
Nearest Neighbors using the Cosine similarity measure (kNN Cosine), and (iii)
the popularity predictor (Popularity). The latter predicts the user’s ratings by
simply averaging all the available ratings for the given item. It does not form
neighborhoods and it provides each user with the same recommendations. It
serves merely as a baseline when evaluating collaborative filtering algorithms
(termed “POP” in Breese et al. (1998)). For kNN variants, we used a neighbor-
hood of 80 users (i.e. k=80), as suggested in Goldberg et al. (2001). We decided
to evaluate both variants of the corporate dataset (the one where the outliers
were labelled as “very interesting”, referred to as “1/2/3/3”, and the one where
the outliers were labelled as “interesting”, referred to as “1/2/3/2”).

For each dataset-algorithm pair we ran 5 experiments, each time with a differ-
ent random seed (we also selected a different set of 10,000 users from EachMovie
and Jester each time). When applying collaborative filtering to the variants of
the corporate dataset, we made 10 repetitions (instead of 5) since these datasets
were smaller and highly sparse, which resulted in less reliable evaluation results.
Thus, we ran 90 experiments altogether.

We decided to use normalized mean absolute error (NMAE) as the accuracy
evaluation metric. We first computed NMAE for each user and then we averaged
it over all the users (termed “per-user NMAE”) (see Herlocker et al. (2004)).
MAE is extensively used for evaluating collaborative filtering accuracy and was
normalized in our experiments to enable us to compare evaluation results from
different datasets.

7 Evaluation results

Our evaluation results are shown in Figure 4. The difference between applying
kNN Pearson and kNN Cosine to EachMovie is statistically insignificant (we
used two-tailed paired Student’s t-Test to determine if the differences in re-
sults are statistically significant). However, they both significantly outperform
Popularity. In the case of Jester, which has the smallest degree of sparsity, kNN
Pearson slightly, yet significantly outperforms kNN Cosine. Again, they both sig-
nificantly outperform Popularity. Evaluation results from the corporate datasets
(two variants of the same dataset, more accurately) show that predictions are
less accurate and that NMAE value is relatively unstable (hence the large er-
ror bars showing standard deviations of NMAE values). The main reason for
this is low/no overlapping between values (i.e. extremely high sparsity), which
results in inability to make several predictions. In the first scenario (i.e. with
the 1/2/3/3 dataset) we can see that the differences in NMAE of kNN Pearson,
kNN Cosine and Popularity are all statistically insignificant. In the second sce-



Fig. 4. The evaluation results.

nario (i.e. with the 1/2/3/2 dataset), however, kNN Pearson outperforms kNN
Cosine and Popularity, while the accuracies of kNN Cosine and Popularity are
not significantly different.

8 Discussion and future work

What is evident from the evaluation results is that the corporate dataset does not
contain many overlapping values and that this represents our biggest problem.
Before we will really be able to evaluate collaborative filtering algorithms on
the given corporate dataset, we will need to reduce its sparsity. One idea is
to apply LSI (latent semantic indexing) (Deerwester et al. (1990)) or to use
pLSI (probabilistic latent semantic indexing) (Hofmann (1999)) to reduce the
dimensionality of the user-item matrix, which consequently reduces sparsity.
Another idea, which we believe is even more promising in our context, is to
incorporate textual contents of the items. There were already some researches
done on how to use textual contents to reduce sparsity and improve the accuracy
of collaborative filtering (Melville et al. (2002)). Luckily we are able to obtain
textual contents for the given corporate dataset.

What is also evident is that mapping implicit into explicit ratings has great
influence on the evaluation results. We can see that going from Corporate 1/2/3/3
to Corporate 1/2/3/2 is fatal for kNN Pearson (in contrast to kNN Cosine). This
needs to be investigated in greater depth; we do not wish to draw conclusions on



this until we manage to reduce the sparsity and consequently also the standard
deviations of NMAE values.

Also interesting, the Cosine similarity works just as well as Pearson on Each-
Movie and Jester. Early researches show much poorer performance of the Cosine
similarity measure (Breese et al. (1998)).

As a side-product we noticed that the true value of collaborative filtering
(in general) is shown yet when computing NMAE over some top percentage
of eccentric users. We defined eccentricity intuitively as MAE (mean absolute
error) over the overlapping ratings between “the average user” and the user in
question (greater MAE yields greater eccentricity). The average user was defined
by averaging ratings for each particular item. This is based on the intuition that
the ideal average user would rate every item with the item’s average rating.
The incorporation of the notion of eccentricity can give the more sophisticated
algorithms a fairer trial. We computed average per-user NMAE only over the
top 5% of eccentric users. The power of the kNN algorithms over Popularity
became even more evident. In near future, we will define an accuracy measure
that will weight per-user NMAE according to the user’s eccentricity, and include
it into our evaluation platform. We will also consider ways of handling the more
eccentric users differently.
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