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Abstract. We present a folding algorithm to construct a business process model
from a specification. The process model is a workflow net, i.e. a Petri net with
explicit split- and join-transitions and the specification is a set of example runs.
Each example run is a labeled partial order of events, and each event relates to
the occurrence of an activity of the underlying business process. In contrast to
sequentially ordered runs, a partially ordered run includes information about de-
pendencies and independencies of events. Consequently, such a run is a precise
and intuitive specification of an execution of a business process [5, 11].
The folding algorithm is based on the algorithm introduced in [1]. This algo-
rithm constructs a process model which is able to execute all example runs of the
specification, but may introduce a significant amount of not specified behavior to
the business process model. We show how to improve this folding procedure, by
adapting ideas known from the theory of regions, in order to restrict additional
and not specified behavior of the process model whenever possible.

1 Introduction

Business process management [2–4] aims to identify, supervise and improve business
processes within companies. It is essential to adapt existing processes to rapidly chang-
ing requirements in order to increase and guarantee corporate success. The basis for
every business process management activity is a valid and faithful model of the busi-
ness process; yet constructing such a model is a challenge.

It is particularly challenging to build a complex process model from scratch. For
most applications it is easier to first explore single example runs and set up a formal
specification before building a complex model [5–7]. In the literature there are many
different approaches to automatically generating a process model from a specification.
According to the requirements, several approaches exist using different types of speci-
fications, process modeling languages, and model generation strategies.

Process mining algorithms (see [8] for an overview) provide very good runtime,
construct readable models, and take into account that recorded or specified behavior
can be incomplete or even faulty. Synthesis algorithms (see for example [9–11]) as-
sume a complete and valid specification and construct a process model representing
the specification as precisely as possible. Synthesis algorithms are only applicable for
medium-size models, but provide excellent control of the produced model and its be-
havior. In this paper, we present a process mining algorithm and use strategies common
in the area of synthesis to improve the construction of the process model. We will show
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that our new algorithm is fast and able to provide perfect control of the constructed
model.

We consider a specification to be a set of labeled partial orders. A labeled partial
order is a partially ordered set of events. An event and its label relate to the occurrence
of an activity in the business process. In contrast to a sequence of events, a partial order
can express dependencies and independencies of events. A set of labeled partial orders
is a precise and intuitive specification of a business process [5, 11].

As an example we consider our coffee brewing process. Figure 1 and Figure 2 depict
two labeled partial orders (we omit transitive arcs) specifying two different runs of this
process. In Figure 1, we grind beans and switch off the coffee machine. We unlock the
machine once it is turned off. We fill the strainer as soon as it is empty. We fetch water
from the kitchen using the coffee-pot. This pot is only available after the machine is
unlocked. Once the strainer is filled and the water is fetched, we assemble the coffee
machine. In Figure 2, we use a glass-pot (instead of the coffee-pot) to fetch water from
the kitchen. This activity does not depend on unlocking the coffee machine. We can
fetch the water right at the beginning of the process. Figure 1 and Figure 2 depict a
complete and intuitive specification of our coffee brewing process.

Fig. 1. A Coffee brewing process.

Fig. 2. Another coffee brewing process.

We present an algorithm to construct a workflow net from a specification. As stated
above, a specification is a set of labeled partial orders. A workflow net is a Petri net
with explicit split- and join-connectors. and-splits and and-joins duplicate and merge
the control flow of a workflow net if actions of the business process occur concurrently.
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xor-splits and xor-joins act like switches and steer the course of the control flow of a
workflow net if activities of the business process are in conflict.

The new algorithm is based on the folding algorithm presented in [1]. This algo-
rithm adds an initial and a final event to every labeled partial order of the specification
and builds a workflow net so that the specification is enabled in this net, i.e. all step
sequences of the labeled partial orders of the specification are enabled. The unique start
and final events are only necessary for technical purposes and are removed after the
folding which leads to a workflow net with a unique start and final place. To build such
a net, every labeled partial order is reduced to its underlying Hasse-diagram. A Hasse-
diagram of a labeled partial order is the set of events together with the smallest relation
so that its transitive closure equals the original partial order. In other words, all tran-
sitive arcs are removed to receive a compact and easy to handle representation of the
specified example run. We use the Hasse-diagrams of the specification to analyze the
neighborhood relation on activities of the business process. For every activity there is
a set of equally labeled events. According to the specification, each of these events is
enabled by the set of events in its direct preset. Of course, equally labeled events can
occur in different contexts. Folding is to arrange actions using splits and joins accord-
ing to the neighborhood relation present in the Hasse-diagrams of the specification. An
xor-split (×) marks exactly one place of its postset, an xor-join (×) needs only one
marked place in its preset to be enabled. and-connectors (∧) use the common Petri net
transition semantics.

Folding the specification depicted in Figure 1 and Figure 2 results in the workflow
net depicted in Figure 3. Both labeled partial orders of the specification are enabled in
this net. For simplification, we omit places between transitions.

Fig. 3. A business process model of our coffee brewing process.

Folding labeled partial orders is an elegant approach to generating a business pro-
cess model from a specification. Folding constructs well readable results in very good
runtime. Every labeled partial order of the specification is enabled in the generated pro-
cess model. Unfortunately, folding algorithms tend to introduce additional, not speci-
fied behavior to the business process model. Such additional behavior is either a suitable
completion of the specification or an inadequate extension yielding an inaccurate busi-
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ness process model. The risk of creating an unfaithful model is due to the fact that the
basis for folding is the neighborhood relation introduced by the Hasse-diagrams. Some
of the causal structure of the business process may be hidden in the transitive closure of
the specified example runs. Transitive dependencies are not considered by the folding
algorithm.

Fig. 4. A run of the business process model depicted in Figure 3.

Figure 4 illustrates additional behavior enabled in the workflow net depicted in Fig-
ure 3. In compliance with the diagram in Figure 1, we grind beans, turn the machine
off, and get water using the glass-pot right at the beginning. We also unlock the coffee
machine and fetch water using the coffee-pot. This behavior is possible in the workflow
net, because the alternative between using the glass- and coffee-pot is not reflected by
any neighborhood relation of the diagrams depicted in Figure 1 and Figure 2.

In this paper we present a revised folding algorithm. We fold the Hasse-diagrams
of the specification into a workflow net. If the workflow net contains additional and
inadequate behavior, the revised folding algorithm proceeds to exclude this behavior by
changing the workflow net. Nevertheless, all changes lead to a new model which is still
able to perform the specified behavior. To improve the model, we use methods known
from the theory of synthesis. Each non-specified run of a workflow net has a maximal,
specified (not necessarily unique) prefix. Any event ordered after this specified part
should not occur at this point. Such specified prefix together with such an event is called
a wrong continuation of the workflow net. To eliminate such a wrong continuation from
our workflow net, we modify the Hasse-diagrams of our specification. We add a set of
transitive arcs to the Hasse-diagrams, so that folding regarding these updated diagrams
leads to a workflow net without the wrong continuation. Note, we only add arcs of the
transitive closure of the Hasse-diagrams. Thereby, the initial specified behavior is not
changed. A more detailed neighborhood relation yields a more restrictive workflow net.
We stop if we can not get a more restrictive workflow net by adding transitive arcs. This
solution is not unique. It depends on the unfolding and the selected arcs.

We will present the theory and implementation of this revised folding algorithm
and we will show that it constructs well readable models. The main advantage of such
a folding procedure is that it provides good control of the behavior of the constructed
business process model. In an interactive version of our algorithm, it is even possible
to distinguish two sets of wrong continuations. The first set is not specified but valid
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process behavior and extends the specification, the second set is excluded from the
model.

The paper is organized as follows: Section 2 defines workflow nets and labeled
partial orders. Section 3 presents a folding algorithm. Section 4 presents our new revised
folding algorithm and outlines its implementation. Section 5 concludes the paper.

2 Workflow Nets and Labeled Partial Orders

In this paper, a workflow net is a Petri net with additional connector nodes. We consider
a special class of these nets where transitions and places do not branch. This class of
nets has a very intuitive semantics and is built with elements present in almost every
other process modeling language. A workflow net can easily be translated into any
business process modeling language such as place/transition nets [12], Event-driven
Process Chains (EPCs) [13], Business Process Model and Notation (BPMN) [14], Yet
Another Workflow Language (YAWL) [15] or Activity Diagrams (a part of the Unified
Modeling Language (UML) [16, 17]).

Definition 1. A workflow net structure is a tuple wn = (T, P,Cxor, Cand, F ) where T
is a finite set of transitions, P is a finite set of places, Cxor resp. Cand are finite sets of
xor- resp. and-connectors, and F ⊆ ((T∪Cxor∪Cand)×P )∪(P×(T∪Cxor∪Cand))
is a set of directed arcs connecting transitions and connectors to places and vice versa.
A workflow net structure is a workflow net if:

(i) There is one place, called initial place, having one outgoing and no incoming arc.
There is one place, called final place, having one incoming and no outgoing arc.
All other places have one incoming and one outgoing arc.

(ii) Transitions have one incoming and one outgoing arc.
(iii) Connectors have either one incoming and multiple outgoing arcs, or multiple in-

coming and one outgoing arc.

Figure 3 depicts a workflow net. For the sake of clarity, places are hidden in this
figure. Let n ∈ {T ∪ Cxor ∪ Cand} be a node. We call •n := {p ∈ P | (p, n) ∈ F}
the preset of n. We call n• := {p ∈ P | (n, p) ∈ F} the postset of n. A marking of a
workflow net assigns tokens to places.

Definition 2. Let w = (T, P,Cxor, Cand, F ) be a workflow net. A marking of w is a
function m : P → N0. A pair (w,m) is called marked workflow net. A place p ∈ P
is called marked if m(p) > 0, marked by one if m(p) = 1 and unmarked if m(p) = 0
holds. The initial marking m0 of a workflow net is defined as follows: The initial place
is marked by one and all other places are unmarked.

There is a simple firing rule for workflow nets. A node is enabled to fire if every
place in its preset is marked. An xor-join is also enabled if there is at least one marked
place in its preset.

Definition 3. Let wn = (T, P,Cxor, Cand, F,m) be a marked workflow net. A node
n ∈ {T ∪Cand} is enabled if every place in •n is marked. A node n ∈ Cxor is enabled
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if there is a marked place in •n. If a node is enabled, it can fire, changing the marking
of the workflow net. Firing n ∈ (T ∪ Cand) leads to the marking m′ defined by:

m′(p) =

m(p)− 1, p ∈ •n \ n•
m(p) + 1, p ∈ n • \ • n
m(p) else.

If a node n ∈ Cxor is enabled, choose a marked place pin ∈ •n and a place
pout ∈ n•. Firing n leads to the marking m′ defined by:

m′(p) =

m(p)− 1, pin = p 6= pout
m(p) + 1, pout = p 6= pin
m(p) else.

If an enabled node n fires and changes m to m′, we write m[n〉m′.

A set of nodes is called a step. In a workflow net there are no conflicts regarding
the consumption of tokens. Consequently, a step is enabled if each node of the step is
enabled. Firing a step leads to the same marking as firing all nodes.

Definition 4. LetN ⊆ {T ∪Cxor∪Cand} be a step andm be a marking.N is enabled
in m if each n ∈ N is enabled in m. If an enabled step N fires and changes m to m′,
we write m[N〉m′. Firing N = {n1, . . . , nn} leads to the same marking as firing all
n ∈ N , i.e. m[n1〉m1[n2〉 . . . [nn〉m′.

Let σ = N1N2 . . . Nn be a sequence of steps. The sequence σ is enabled in m if
there are m1,m2, . . . ,mn, so that m[N1〉m1[N2〉 . . . [Nn〉mn holds. If σ is enabled,
we define σ∅T = (N1 ∩ T ) (N2 ∩ T ) . . . (Nn ∩ T ). We omit all empty sets in σ∅T to
define σT . We call σT the transition step sequence of σ.

We call a step N a transition step if N ⊆ T . A sequence of transition steps τ is
enabled in m if there is an enabled sequence of steps σ′ so that τ = σ′T holds.

In Figure 3, the transition step sequence {grind beans, turn off}{unlock}{empty
strainer, get water using coffee-pot}{fill strainer}{assemble and turn on} is enabled in
the initial marking. We use transition step sequences to define enabled labeled partial
orders [18, 19].

Definition 5. Let T be a set of labels, a labeled partial order is a triple lpo = (V,<, l),
where V is a finite set of events, < is an irreflexive and transitive binary relation over
V , and l : V → T is a labeling function. We consider labeled partial orders without
autoconcurrency, i.e. e, e′ ∈ V, e 6= e′, e 6< e′, e′ 6< e⇒ l(e) 6= l(e′).

The Hasse-diagram of a labeled partial order is lpo/ = (V, /, l), where / is the set
of skeleton arcs, i.e. / = {(v, v′) | v < v′ ∧ @v′′ : v < v′′ < v′}.

Let lpo = (V,<, l) and lpo′ = (V,<′, l) be labeled partial orders. If <⊆<′ holds,
lpo′ is a sequentialisation of lpo. If V = V1 ∪̇ . . . ∪̇Vn and <′=

⋃
i<j Vi×Vj hold, we

call the sequence l(V1) . . . l(Vn) a transition step sequence of lpo.

The sequence {grind beans, turn off}{unlock}{empty strainer, get water using
coffee-pot}{fill strainer}{assemble and turn on} is a transition step sequence of the
labeled partial order of Figure 1.
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Definition 6. Let wn be a marked workflow net. A labeled partial order lpo is enabled
in wn if all transition step sequences of lpo are enabled in the initial marking of wn.

Figure 1, Figure 2, and Figure 4 depict Hasse-diagrams of labeled partial orders
enabled in the initial marking of the workflow net depicted in Figure 3.

3 Folding Algorithm

We introduce a folding algorithm to construct a workflow net from a specification which
is a set of labeled partial orders. Each partial order corresponds to a run of the busi-
ness process. Events model occurrences of activities, arcs model dependencies between
events, and unordered events can occur concurrently. Our revised folding algorithm is
based on the folding algorithm presented in [1]. We add an initial and a final event to ev-
ery labeled partial order, before reducing every order to its Hasse-diagram. From these
we deduce a neighborhood relation on the set of labels. We define a set of preceding
and succeeding label sets for each label. Every label of the specification can, of course,
occur multiple times, even in one labeled partial order.

Definition 7. Let lpo = (V,<, l) be a labeled partial order, let (V, /, l) be its Hasse-
diagram, and let T be a set of labels with l(V ) ⊂ T . Let e ∈ V be an event, denote
pred(e) = {l(e′)|e′ /e} the set of preceding labels, and denote succ(e) = {l(e′)|e/e′}
the set of succeeding labels.

Let L be a set of labeled partial orders. Let t ∈ T be a label, denote predset(t) =
{pred(e)|(V,<, l) ∈ L, e ∈ V, l(e) = t} the set of preceding label sets, and denote
succset(t) = {succ(e)|(V,<, l) ∈ L, e ∈ V, l(e) = t} the set of succeeding label sets.

To construct a workflow net from a specification, we construct a transition for every
label and connect transitions according to the corresponding preceding and succeeding
label sets. For every transition we will define a so called building block. The center of
each building block is the transition, surrounded by three layers of connectors. Next to
the transition is a layer of two xor-connectors, because each transition can have multiple
preceding and multiple succeeding label sets. For each of these sets, there is an and-
connector on the second layer, because each set can have multiple labels. If succeeding
or preceding label sets share labels, there is a xor-connector on the third layer. We define
a building block as follows:

Definition 8. Let L be a set of labeled partial orders and T be its set of labels. For
each label t ∈ T we define a workflow net structure wnt = ({t}, P t, Ct

xor, C
t
and, F

t)
called building block of t. The sets P t, Ct

xor, and Ct
and are defined as follows:

Ct
xor = {xortpre, xortpost}∪ {xortpre,t′ |t′ ∈ X,X ∈ predset(t)}∪

{xortpost,t′ |t′ ∈ X,X ∈ succset(t)},

Ct
and = {andtpre,X |X ∈ predset(t)}∪ {andtpost,X |X ∈ succset(t)},

P t = {ptpre, ptpost}∪
{ptpre,X |X ∈ predset(t)}∪ {ptpost,X |X ∈ succset(t)}∪
{ptpre,t′,X |t′ ∈ X,X ∈ predset(t)}∪ {ptpost,X,t′ |t′ ∈ X,X ∈ succset(t)}∪
{ptpre,t′ |t′ ∈ X,X ∈ predset(t)}∪ {ptpost,t′ |t′ ∈ X,X ∈ succset(t)}.
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The set of arcs F t is defined as follows:

F t = {(xortpre, ptpre), (ptpre, t), (t, ptpost), (ptpost, xortpost)}∪
{(andtpre,X , ptpre,X)|X ∈ predset(t)}∪
{(ptpre,X , xortpre)|X ∈ predset(t)}∪
{(xortpost, ptpost,X)|X ∈ succset(t)}∪
{(ptpost,X , andtpost,X |X ∈ succset(t)}∪
{(xortpre,t′ , ptpre,t′,X)|t′ ∈ X,X ∈ predset(t)}∪
{(ptpre,t′,X , andtpre,X)|t′ ∈ X,X ∈ predset(t)}∪
{(andtpost,X , ptpost,X,t′)|t′ ∈ X,X ∈ succset(t)}∪
{(ptpost,X,t′ , xor

t
post,t′)|t′ ∈ X,X ∈ succset(t)}∪

{(ptpre,t′ , xortpre,t′)|t′ ∈ X,X ∈ predset(t)}∪
{(xortpost,t′ , ptpost,t′)|t′ ∈ X,X ∈ succset(t)}.

Figure 5 depicts the building block of label unlock. There are two events labeled by
unlock in Figure 1 and Figure 2. Both events have the same set of preceding labels, i.e.
{turn off}, but have different sets of succeeding labels. According to these sets there is
one xor-connector and two and-connectors right behind transition unlock. Since both
sets share the label empty strainer, the control flow is joined with xorunlockpost, empty strainer

in front of the outgoing interface place punlockpost, empty strainer.

Fig. 5. The building block of label unlock.

We call a building block a compressed building block if all superfluous connectors
and the corresponding places are removed. A connector is superfluous if it has one
ingoing and one outgoing arc. As an example, Figure 6 depicts the set of compressed
building blocks of our coffee brewing process. Note that, before building these blocks,
an event labeled with start, and an event labeled with stop, are added to every labeled
partial order. In this figure, we depict transition start by a big black dot, transition stop
by a circle with a dot. We hide most places and only sketch interface places by small dots
labeled by the corresponding preceding or succeeding labels. On the top left of Figure
6, we depict the building block of label start. Next to this block, there is the compressed
version of the building block depicted in Figure 5. We merge all compressed building
blocks depicted in Figure 6 to get the workflow net depicted in Figure 3.
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Fig. 6. Compressed building blocks.

Algorithm 1 Folding
1: input: Specification L
2: L← add an initial event labeled start to every lpo ∈ L
3: L← add a final event labeled stop to every lpo ∈ L
4: H ← Hasse-diagrams of L
5: T ← Labels of L
6: B← Building blocks of T
7: wn←Merge all building blocks at matching interface places
8: wn← Delete superfluous connectors from wn by merging the preset and postset places
9: wn← Remove place pstartpre and transition start

10: wn←Mark pstartpost by one token
11: wn← Remove place pstoppost and transition stop
12: return wn

Algorithm 1 implements the folding procedure. The input is a set of labeled partial
orders. In Line 2 and Line 3 we add two additional events, one labeled start and one
labeled stop, to every labeled partial order. We extend each partial order so that the start
events are earlier than every other event of their partial order and the stop events are
later than every other event of their partial order. These new events will result in two
additional building blocks responsible for starting and ending runs of the workflow net
model. In Line 4, we reduce the specifications to Hasse-diagrams and collect the set
of labels (including start and stop). In Line 6, according to Definition 8, we build a
building block for every label and in Line 7, we merge all building blocks at matching
interface places, i.e. for every pair of labels we merge all places ptpost,t′ and pt

′

pre,t. In
Line 8, we delete superfluous connectors. In addition, we remove the xor-connector in
front of transition start and the xor-connector right behind transition stop. We remove
connectors by merging preset and postset places and we also delete corresponding arcs.
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In Line 9, we delete transition start and place pstartpre in its preset. Thereby, place pstartpre

becomes the initial place of the workflow net and we mark this place by one token. In
Line 11, we remove transition stop and place pstoppost in its preset to get the final result
of the folding procedure. Altogether, Algorithm 1 constructs a workflow net enabled to
execute every labeled partial order of the specification. For the proof we refer the reader
to [1] but state the following theorem.

Theorem 1. Let L be a set of labeled partial orders and construct a workflow net wn
from L using Algorithm 1. Each labeled partial order lpo ∈ L is enabled in wn.

4 Revised Folding Algorithm

In this section we will introduce a revised folding algorithm to construct a workflow
net from a specification. Folding is very efficient and generates an intuitive workflow
net, but for most examples the workflow net is able to execute additional runs. This is
reasonable if the specification is incomplete. However, if we assume that the specifi-
cation is complete, additional behavior should not be included in the business process
model. In the following, we detect and deal with additional behavior introduced within
the folding procedure.

During the folding procedure, Hasse-diagrams define sets of preceding and suc-
ceeding transitions but sometimes, considering only these dependencies is insufficient.
In a business process an early decision can easily determine later alternatives.

We consider Figure 1 and Figure 2 as an example. There is only one event labeled
get water using coffee-pot. The building block of get water using coffee-pot has one
preceding label set, i.e. {unlock}. According to Figure 2, the transitions get water using
glass-pot, turn off, and unlock can occur. This prefix enables get water using coffee-pot
by the occurrence of unlock. This results in the Hasse-diagram depicted in Figure 4.

As stated above, the Hasse-diagrams of the specification define preceding and suc-
ceeding label sets to construct building blocks. Considering these sets defined by the
transitive relation of the labeled partial orders constructs a workflow net with minimal
additional behavior. The occurrence of any transition in this net is conditioned by the
occurrence of all transitions corresponding to the complete history of a correspond-
ing event. Obviously, this leads to an unreadable workflow net with a huge number of
connectors and arcs.

Our aim is to identify so-called dependency diagrams, a compromise between the
Hasse-diagrams and the partial orders, in order to modify the specification thus that
additional behavior of a folded model is restricted as far as possible. The fewer depen-
dencies we add, the smaller is the constructed workflow net.

Definition 9. Let (V,<, l) be a labeled partial order, let (V, /, l) be its Hasse-diagram,
and denote T the set of labels. Let (D,E) be a pair of sets of labels, we denote /[D,E] =
/ ∪ {(e, e′)|e < e′, l(e) ∈ D, l(e′) ∈ E} the dependency relation of < with regard
to (D,E). We call (V, /[D,E], l) the dependency diagram of (V,<, l) with regard to
(D,E).

Of course, /[∅,∅] = / and /[T,T ] =<, i.e. every dependency diagram is some tradeoff
between the Hasse-diagram and the labeled partial order.
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Our revised folding algorithm starts by constructing a workflow net from a set of
Hasse-diagrams. If this workflow net contains additional behavior, an enabled but not
specified partial order is generated. We modify the set of Hasse-diagrams to get a set of
dependency diagrams so that folding these diagrams leads to a net that does not enable
the additional partial order. We repeat this procedure to get a workflow net that has no
additional behavior if such a workflow net exists. Let us now take a closer look at every
step of the revised folding algorithm.

We construct the initial workflow net using Algorithm 1. We generate the behavior
of this model by an unfolding procedure. We calculate a so-called branching process
[21, 20, 22] describing all enabled labeled partial orders. It is easy to calculate such
branching processes for workflow nets because they only branch at xor-splits. More-
over, we do not calculate the complete (maybe infinite) behavior of the workflow net
but stop generating the behavior as soon as we construct not specified behavior. If there
is not specified behavior, there is at least one so-called wrong continuation. A wrong
continuation is a labeled partial order enabled in the workflow net and not part of the
specification. Removing one event from a wrong continuation yields a specified partial
order. Wrong continuations were originally defined in the area of synthesis of Petri nets
from step sequences [9] and for synthesizing Petri nets from partial orders [11].

Definition 10. Let L be a specification and let T be the set of labels. A labeled partial
order (V,<, l) 6∈ L is called a wrong continuation if there is an event e ∈ V so that
(V \{e}, < |(V \{e})×(V \{e}), l|V \{e}) ∈ L holds.

We consider Figure 4 as an example. The events grind beans, turn off, unlock, get
water using coffee-pot, and get water using glass-pot form a wrong continuation.

In the last step of the revised folding algorithm, we modify the specification to
exclude a wrong continuation. The main idea is to extend the preceding and succeeding
label sets appropriately, before restarting the folding procedure.

Definition 11. Let L = {(V1, <1, l1), . . . , (Vn, <n, ln)} be a specification and L/ =
{(V1, /1, l1), . . . , (Vn, /n, ln)} be its set of Hasse-diagrams. Denote T the set of labels.
Let (Vw, <w, lw) be a wrong continuation and (Vw, /w, lw) be its Hasse-diagram.

Let (D,E) be a pair of label sets and let l, l′ be two labels. We call l dependent on l′

if for all (V,<, l) ∈ L, v ∈ V, l(v) = l: l′ ∈ {l(v′)|v′ /[D,E] v}. We denote M [D,E](l′)
the set of all labels that depend on l′.

(D,E) is called disabling pair of (Vw, <w, lw) if one of the following conditions
holds:

(a) There is an e′ ∈ Vw so that there is no (Vi, <i, li) ∈ L, e ∈ Vi, li(e) = lw(e
′):

{li(v)|v /[D,E]
i e} ⊆ {lw(v)|v <w e′} holds.

(b) There is an e′ ∈ Vw so that there is no (Vi, <i, li) ∈ L, e ∈ Vi, li(e) = lw(e
′):

{li(v)|e /[D,E]
i v} ⊇ {lw(v)|e′ /[D,E]

w v} ∩M [D,E](lw(e
′)) holds.

A disabling pair (D,E) defines a modification of a specification. This modification
yields a set of dependency diagrams. Every dependency diagram includes the Hasse-
diagram and extends this diagram by all transitive arcs leading from labels in D to
labels in E. We denote the resulting specification by L[D,E].
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Theorem 2. Let L be a specification, lpow be a wrong continuation, and (D,E) be
a disabling pair of lpow. If we construct a workflow net wn from L[D,E] using Algo-
rithm 1, lpow is not enabled in wn.

Proof. Either (a) or (b) of Definition 11 holds.
If (a) holds, there is an event e′ ∈ Vw for which no event e ∈ Vi, (Vi, <i, li) ∈ L,

li(e) = lw(e
′) exists so that {li(v)|v /[D,E]

i e} ⊆ {lw(v)|v <w e′} holds.
Algorithm 1 will build and-connectors related to preceding label sets in the building

block of l(e′). For every and-connector there is a choice of e ∈ Vi, (Vi, <i, li) ∈ L,
li(e) = lw(e

′) so that the and-connector is related to {li(v)|v /[D,E]
i e}. {li(v)|v /[D,E]

i

e} is not included in {lw(v)|v <w e′}. After the occurrence of {lw(v)|v <w e′} the
and-connector is not enabled. The same holds for every other preceding and-connector
of the building block of lw(e′). e′ can not occur after the occurrence of its prefix. lpow
is not enabled in wn.

If (b) holds, there is an event e′ ∈ Vw for which no event e ∈ Vi, (Vi, <i, li) ∈ L,
li(e) = lw(e

′) exists so that {li(v)|e /[D,E]
i v} ⊇ {lw(v)|e′ /[D,E]

w v}∩M [D,E](lw(e
′))

holds.
Algorithm 1 will build and-connectors related to succeeding label sets in the build-

ing block of l(e′). For every and-connector there is a choice of e ∈ Vi, (Vi, <i, li) ∈ L,
li(e) = lw(e

′) so that the and-connector is related to {li(v)|e/[D,E]
i v}. {lw(v)|e′/[D,E]

w

v} ∩M [D,E](lw(e
′)) is not included in {li(v)|e /[D,E]

i v}. The occurrence of this and-
connector will not enable all actions in {lw(v)|e′ /[D,E]

w v}∩M [D,E](lw(e
′)), but every

such action depends on the occurrence of l(e′). The same holds for every other and-
connector of the building block l(e′). When executing lpow in wn there is at least one
action missing a token from the building block l(e′). lpow is not enabled in wn.

Both conditions (a) and (b) suppress the executability of a wrong continuation in a
workflow net representing the dependencies introduced from the disabling pair. As an
example, we consider the wrong continuation depicted in Figure 4. A disabling pair of
label sets is ({start}, {get water using coffee-pot}). In the Hasse-diagram depicted in
Figure 1, the succeeding label set B1 of start according to this disabling pair is {grind
beans, turn off, get water using coffee-pot}. In other words, get water using coffee-pot
is added to the original succeeding label set. The succeeding label set B2 of start of
Figure 2 stays unchanged. In Figure 4 the succeeding label set W of start according to
the disabling pair is {grind beans, turn off, get water using glass-pot, get water using
coffee-pot}. This setW is not covered byB1 orB2 so that condition (b) of Definition 11
holds. The wrong continuation is not enabled if the additional dependency between start
and get water using coffee-pot is considered when constructing corresponding building
blocks. Altogether, if we add one transitive arc to the Hasse-diagram depicted in Figure
1 (from start to get water using coffee-pot) and apply Algorithm 1, we construct a
workflow net which is not able to execute the Hasse-diagram depicted in Figure 4.
In this example, the resulting workflow net (depicted in Figure 7) behaves exactly as
specified.

Algorithm 2 implements the revised folding procedure. The input is a set of labeled
partial orders. In Line 3 and Line 4, we invoke Algorithm 1. While the result of Al-
gorithm 1 has additional behavior, we calculate a wrong continuation in Line 6. We
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Fig. 7. A business process model of our coffee brewing process.

Algorithm 2 Revised Folding
1: input: Specification L
2: W ← ∅
3: H ← Hasse-diagrams of L
4: wn← Folding of H
5: while L(wn) ⊃ (L ∪W ) do
6: w← a wrong continuation of wn
7: if there is a disabling pair (D,E) of w then
8: H ← expand H by all arcs of L in (D × E)
9: wn← Folding of H

10: else
11: W ←W ∪ {w}
12: return wn

construct a disabling pair (if such a pair exists) or add the wrong continuation to a set
W . W contains all wrong continuations which cannot be excluded from a workflow
net including the specified behavior. In Line 8, we update the set of Hasse-diagrams by
constructing a set of dependency diagrams. We fold again to get a new workflow net
still including the specified behavior (and W ), but excluding the wrong continuations
(Line 9). Just like Algorithm 1, Algorithm 2 constructs a workflow net able to execute
every labeled partial order of the specification. Furthermore, Algorithm 2 excludes not
specified behavior whenever possible.

The runtime of the new algorithm consists of three parts. It is the sum of the run-
time of the folding procedures, the runtime of the unfolding procedures (to check for
wrong continuations), and the runtime of the calculations of disabling pairs. Every fold-
ing procedure is fast. For every event we compute the preceding and succeeding labels
and build the corresponding connectors in the workflow net. The worst case complex-
ity of the unfolding procedure is in exponential time. However, the average runtime,
where a workflow net has a reasonable level of concurrent activities, is still fast and is
determined by the number of xor-split connectors. The most time consuming part is to
find a disabling pair. Altogether, the presented algorithm can be slow, especially if the
workflow net has a lot of wrong behavior and describes a lot of concurrency. But in this
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case, it is possible to stop the algorithm after each iteration and still have a reasonable
result.

Fig. 8. Screenshot of folding results in MoPeBs

The presented revised folding approach is implemented and available in our tool
called MoPeBs Cheetah. MoPeBs Cheetah is a lightweight editor showcasing the re-
vised folding algorithm plug-in of our tool set VipTool [23]. VipTool supports various
algorithms related to partially ordered behavior of Petri nets [24, 25]. Figure 8 depicts
a screenshot of MoPeBs Cheetah. MoPeBs Cheetah (including examples for the fold-
ing algorithm and the revised folding algorithm) is available at https://www.fernuni-
hagen.de/sttp/forschung/mopebs.shtml.

5 Conclusion

We recapitulated a folding algorithm to generate a workflow net from a specification.
The specification is a set of labeled partial orders. The presented algorithm generates
an intuitive model by representing the direct dependencies included in the specification.
The generated workflow net is able to execute all specified runs. Moreover, this algo-
rithm usually rounds off the specification, i.e. additional runs which are similar to the
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specified labeled partial orders are executable in the generated workflow net as well.
This is reasonable in cases where the specification is considered to be incomplete.

Reusing the folding algorithm, we introduced a revised folding approach. Starting
with an initial model, this iterative approach is able to discover transitive dependencies
in the specification which yield a more precise process model. The size of the generated
model heavily depends on the number of wrong continuations but for most examples,
the generated results are readable as well. The generated workflow net can easily be
translated into an EPC, BMPN-model, YAWL-model or an Activity Diagram. These are
often used for practical applications. Using an interactive version of the revised folding
approach, it is easy to validate the specification while generating a process model. We
can add reasonable wrong continuations to the specification while excluding unwanted
behavior. All in all, in contrast to other process mining algorithms, the revised folding
approach provides perfect control over the language of the generated business process
model.
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