
Improving Performance of Complex Workflows:
Investigating Moving Net Execution to the Cloud

Sofiane Bendoukha and Thomas Wagner

University of Hamburg, Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. In this paper we propose and discuss mechanisms and im-
plementation issues for moving the execution of computation- and time-
consuming workflows into the Cloud. These complex workflows are spec-
ified by Petri nets, more precisely reference nets using the Renew tool.
We believe that Cloud technology is a suitable solution to (i) overcome
the lack of resources on-premises and to (ii) improve the performance of
the whole system based on quality of service (QoS) constraints. As execu-
tion target for simulations, tests have been performed on an OpenStack
Cloud. Furthermore, the integration and interfaces between workflows,
Cloud computing and agent concepts are also addressed.

Keywords: Petri nets; Cloud Computing; Workflows; Multi-agent Sys-
tems; Reference Nets; Paose.

1 Introduction

Several long-running and high-throughput applications can be designed as com-
plex workflows, which describe the order and relationships between the different
activities and related data (input, output). In such scenarios, these tasks often
need to be mapped to distributed resources, possibly due to a lack of on-premise
resources or failures. Recently, Cloud computing has attracted more interest from
both the industry and academic community. Cloud computing is a recent com-
puting paradigm. It has its origin in distributed computing, parallel, utility and
grid computing. The National Institute of Standards and Technology (NIST)
defines Cloud computing as: “A model for enabling convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.” [19].

In fact, Cloud technology provides an environment that allows to dynamically
allocate resources for the execution of workflow tasks following an on-demand
and pay-as-you-go model. In this work, we aim to take advantage of these re-
sources to improve the performance of the applications. These applications are, in
our case, specified as Petri nets using the REference NEts Workshop (Renew)
editor. In order to make this possible, we need to provide mechanisms and strate-
gies that are based on the integration of workflow concepts and Cloud technology

(and later the agent paradigm). There are different ways to address this. On the
one hand, Cloud for workflow uses Cloud resources to execute complex workflows
and especially scientific workflows [12] [13]. Such works are more resource-centric
and focus on the computational tasks. On the other hand, Clouds need struc-
tured and mature workflow concepts and high-level languages to handle issues
like managing complex task and data dependencies. It should be noted that we
only consider moving the execution of entire nets or systems of nets into the
Cloud. Further distribution aspects of the simulation/execution1 are outside of
the scope of this paper.

The research described in this paper focuses more on performance issues,
which can be considerably improved by using Cloud resources. We present our
approach to provide techniques and tools to move the execution of complex
workflows modelled in Petri nets to the Cloud. The migration to the Cloud is
based mainly on user requirements. Thus Quality of Service (QoS) parameters
are specified in advance. We emphasise response time and cost constraints, but
this can be easily extended to other QoS parameters such as service availability.
Modelling and execution of Petri net models is performed exclusively through
the Renew editor. Furthermore, we discuss different realisation possibilities. We
examine three different types of interfaces, which define how input and output
to the Cloud calls are defined. Simple interfaces provide only basic functionality
to initiate Cloud workflows and receive results. Simulation interfaces are used to
run extensive simulations of workflows in a Cloud environment. Lastly, advanced
interfaces feature advanced mechanisms to process input and output data for
the Cloud. The main avenue of thought for the advanced interfaces is to utilise
autonomous software agents and their characteristics.

This paper is structured as follows. In Section 2, we present the conceptual
and technical background as well as related work. Section 3 introduces the ap-
proach and methodology for moving net simulations to the Cloud. Section 4 pro-
poses the different kinds of interfaces. Finally Section 5 discusses the approach
and Section 6 concludes the paper and presents future work.

2 Background and Related Work

In this section we are going to discuss the conceptual and technical background
for this work. For the specification of workflows Petri nets and especially refer-
ence nets are employed. Related work is also presented.

2.1 Reference Nets

Reference nets were introduced in 2002 by Olaf Kummer (see [14]). Reference
nets are modelled and simulated using the Renew editor and simulation tool
[16]. Both are described in the Renew manual2. In reference nets, tokens can be
1 We use the terms simulation and execution interchangeably. If a distinction has to
be made it will be clear from the context.

2 The latest version of Renew, documentation and articles are available on
(http://www.renew.de)

172 PNSE’15 – Petri Nets and Software Engineering

anonymous, basic data types or references to Java objects or other reference nets.
The referenced objects can be of any class in the Java programming language.

Firing a transition can also create a new instance of a subnet in such a way
that a reference to the new net will be put into a place as a token. This allows for
a specific, hierarchical nesting of networks, which is helpful for building complex
systems in this formalism. The creation of instances is similar to object instances
in object-oriented programming languages and the usage of references allows to
construct reference net systems, whose structures are not fixed at build time.

2.2 Renew

As mentioned above, we use Renew for the modelling of workflows. Renew is
a graphical tool for creating, editing and simulating reference nets. It combines
the ‘nets within nets’ paradigm of reference nets with the implementation power
of Java. The Renew plug-in architecture, which was developed and introduced
in [22], allows the extension of Renew with additional functionality through
the use of interfaces between Renew components without changing the core of
Renew. Additional functionality (e.g. additional net formalisms, simulation and
verification tools, interface extensions) can be added to Renew by providing the
Java classes and nets for the new plug-in. Many such plugins have already been
developed, which makes Renew a versatile and extensive Petri net tool.

2.3 Agents

We also utilise software agents for advanced features regarding the interface to
the Cloud execution (see Section 4.3). We use the Mulan (Multi Agent Nets
[21]) reference architecture and its implementation Capa (Concurrent Agent
Platform Architecture [10]). Both have been created and implemented using
Renew and the majority of the executable code are in fact reference nets.
Agents are executed in a distributed environment and generally communicate
via standardised asynchronous messages. They can feature intelligence, reactive
and proactive behaviour, and autonomy. These kinds of properties are utilised
for the Cloud execution.

2.4 Related Work

Originally, WfMS were not conceived to be used in Cloud-like environments.
With the growth of Cloud computing, several traditional WfMS improved their
kernel and are now able to provide interfaces to communicate with external
Cloud services. The prevalent (scientific) WfMS are: Taverna[18], Pegasus[9],
Triana[23], Askalon[11], Kepler[2] and the General Workflow Execution Service
(GWES)[1]. The originality of these systems is that they run on parallel and dis-
tributed computing systems in order to reach a high level of performance and get
access to wide range of external resources. The Pegasus system allows scientists
to execute workflows in different resources including clusters, Grids and Clouds.

S. Bendoukha, T. Wagner: Improving Performance of Complex Workflows 173

This has been adapted later to execute scientific workflows in the Cloud (within
an Amazon EC2 Instance) [17]. Compared to our work, the migration to the
Cloud is almost the same, the difference lies at the modelling level, where we use
Reference nets as modelling technique. GEWES is an interesting project that
makes use of high-level Petri Nets (HLPN) for the description of workflows. The
GWES coordinates the composition and execution process of workflows in arbi-
trary distributed systems, such as SOA, Cluster, Grid, or Cloud environments.
In the workflow specifications, transitions represent tasks and tokens represent
data flowing through the workflow.

There have also been many more efforts to infuse Cloud and distribution
aspects into general workflow management. The ADEPT project [8, 20] focuses
on flexible and adaptive workflow management but also deals with distribution
and migration aspects to avoid performance bottlenecks in the network. Another
interesting combination of Clouds and workflows is the OpenTosca project [5].
It utilises management plans implemented as workflows to configure Cloud ap-
plications for organisations. [24] also deals with configuration issues but focuses
explicitly on the configuration of interorganisational business processes in the
Cloud. The issues addressed by these and more publications represent advanced
features of workflows in Clouds. They are outside the scope of this paper. Some
of these issues are, however, considered future work.

3 Renew in the Cloud

Renew in the Cloud designs the process of simulating Petri net models not lo-
cally (i.e. on-premises) but in the Cloud. There are different reasons why we are
moving the simulation to other execution environments but the main reason is
to seek gains in performance. Especially (Petri net) models that contain complex
and time consuming tasks are of interest here. In our approach the design/mod-
elling step is performed at the user’s side since it does not require computing
or storage capabilities. After this, the models are pushed to the Cloud provider.
The Cloud provider should be able to provide instances, that support Petri net
simulations. Therefore, Cloud instances need to be provisioned by external Petri
net editors and simulators. Since our chosen editor is Renew it will be installed
and configured before starting the simulation. The whole process consists of the
following steps:

1. modelling the workflow
2. configuring the Cloud instance
3. starting/connecting to the Cloud instance
4. uploading the required nets
5. executing the simulation and getting the results

Technically, our work is based on the Vagrant tool3, which permits us to
create reproducible development environments. According to the Vagrant home-
page, Vagrant ”is a tool for building complete development environments. With
3 https://www.vagrantup.com/

174 PNSE’15 – Petri Nets and Software Engineering

an easy-to-use workflow and focus on automation”. There are three ways to use
Vagrant: with a virtual machine, a Cloud provider, or with VMware.

For creating a Vagrant machine the vagrant tool first needs to be installed
as well as the VirtualBox. For both Vagrant and VirtualBox, the installation
is possible on the three famous operating systems: Linux, Windows and Mac.
Next, a configuration file called Vagrantfile is mandatory to configure a Vagrant
machine. It is a Ruby file used to configure Vagrant and to describe virtual
machines required for a project as well as how to configure and provision these
machines. Finally, the guest Vagrant host can be started using the command
vagrant up.

3.1 First Prototype (with VirtualBox)

To run Renew and all required software on the host machine, configuration using
a Vagrantfile is needed. The latter permits to provision the host machine(s) with
additional softwares (in our case Renew). Since Renew requires Java 6 or later,
this portion of code shows instructions that should be added.

Figure. 2 shows the steps to follow for the execution (simulation) of a work-
flow (Petri net). First of all, the workflow is modelled using Renew and gener-
ates .rnw files. It should be noted that, for now, we focus solely on the simple
execution of workflow nets in the Cloud. Workflow management aspects are cur-
rently considered in the background. For example, human interaction with the
workflow, e.g. a user executing a task, is currently only simulated by the sys-
tem. Later on it is possible to incorporate a workflow management system in
the Cloud which would support these kinds of aspects. Workflow management
within Renew implemented as a reference net (agent) system, which would be
executed in the Cloud, is already possible [25]. For now, the vagrant machine is
equipped with a Renew version without a graphical user interface, i.e that we
are obligated to run the simulation with the command line. The correspondent
console command is startsimulation. The syntax of the command is:

startsimulation <net system > <primary net> [-i]

– net system: The compiled net files (.sns files, Shadow Net System).
– primary net : The name of the net, of which a net instance shall be opened

when the simulation starts. Using the regular GUI, this equals the selecting
of a net before starting the simulation.

– -i : This must be set before starting the simulation (only for this prototype).
Concretely, we use -r, which means to run the whole simulation without
steps. More information about this command can be found in [15, p.106].

For testing purposes we created a simple net (primary net) that contains
a single transition that prints a string on the screen. Since the reference net
formalism allows using java code, this is done simply by the instruction Sys-
tem.print.out("message") (see Figure. 3). Once the required files are prepared
(.rnw and .sns), they are sent to the Vagrant machine. The nets are either copied
to the synced directory with the Vagrant machine or with scp. To start the sim-
ulation on the guest machine, there are three possibilities: (i) by a command

S. Bendoukha, T. Wagner: Improving Performance of Complex Workflows 175

Fig. 1. Run Simulation in a Vagrant Machine

line (using nohup and ssh) (ii) through a web Gui (using NodeJS) (iii) from a
reference net directly (inscribed to transitions). Figure 1, shows the process of
starting a vagrant machine and launching Renew and the simulation. Executing
the command in 2, launches a new terminal and starts Renew and simulate the
net on the Vagrant machine. (1) The Vagrant machine should be up and running
(2) The web server (NodeJS) is started (3) Renew is launched and a simulation
is started with the required nets.

Fig. 2. Remote Simulation with Vagrant

Fig. 3. The Original Net (.rnw)

176 PNSE’15 – Petri Nets and Software Engineering

3.2 Second Prototype (with OpenStack)

The second version of the implementation is based on a concrete Cloud en-
vironment. The instances are not launched in a virtual machine at the host
machine, but in a Cloud (see Figure. 5). We mentioned before that Vagrant uses
specific providers. The default one is VirtualBox 4. Other built-in providers are
VMWare5, Docker6 and Hyper-V7. When executing vagrant up we will have a
virtual machine created on the local host. If we require only one VM then it is
enough to work locally. Nevertheless, when the number of VMs grows we will face
an overload due to a lack of resources. The natural solution is to look for exter-
nal resources which, in our case, are available in a Cloud. Due to financial and
technical constraints, in our testbed we use an open source Cloud framework
called OpenStack8. OpenStack is an open source software for creating private
and public Clouds. It is installed on a CentOS Linux operating system. Thanks
to the plug-in architecture that Vagrant is based on, we are able to connect
to different Cloud providers and launch our instances. This is performed by a
plug-in called vagrant-openstack-provider9. This plug-in permits to control and
provision machines within an OpenStack Cloud. Other features are for instance:
Create and boot OpenStack instances, SSH into the instances and suspend and
resume instances. The principles for running Renew simulation in the Cloud are
almost the same as presented in the previous section. We still need to upload the
required nets (.rnw and .sns) to the VM. The difference is at the configuration
level, which is realised by the Vagrantfile. A minimal configuration consists of
the following:

r e qu i r e ’ vagrant−openstack−provider ’
Vagrant . c on f i gu r e (’ 2 ’) do | c on f i g |

c on f i g .vm. box = ’ openstack ’
c on f i g . ssh . username = ’ stack ’
c on f i g .vm. prov ide r : openstack do | os |
os . openstack _auth_url = ’ http :// keystone−s e r v e r . net /
v2 .0/ tokens ’
os . username = ’ openstackUser ’
os . password = ’ openstackPassword ’
os . tenant _name = ’myTenant ’
os . f l a v o r = ’m1. small ’
os . image = ’ ubuntu ’
os . f l o a t i n g _ip_pool = ’ publicNetwork ’
end

end

4 www.virtualbox.org
5 www.vmware.com
6 www.docker.com
7 www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
8 www.openstack.org
9 https://github.com/ggiamarchi/vagrant-openstack-provider

S. Bendoukha, T. Wagner: Improving Performance of Complex Workflows 177

The configuration presented above concerns only the credentials and the im-
age used to boot the instances. The important next step is to configure these in-
stances to be able to handle Renew simulations. The configuration is performed
exactly in the same way as working with virtual machines (VirtualBox). Config-
uring instances plays an important role and directly affects the performance of
the system. Although, for testing purpose, we worked on a private OpenStack
Cloud , our implementation can be integrated within commercial Cloud providers
like Amazon10, Windows Azure11 or HP12. With providers, Cloud consumers can
configure their instances based on a pay-as-you-go model. Resources provided by
commercial Cloud providers are not free, which can negatively affect the choice
of the Cloud consumers. With respect to the application requirements, there
are different types of instances which depend on the Cloud provider. Instance
types describe the compute, memory and storage capacity of the instances that
Cloud consumers use for hosting (computing) their applications. Therefore, the
requirements for the applications should be clearly specified as QoS parameters.
This issue has been already addressed in [3]. QoS parameters can be specified
as inputs to the transitions. For example, with OpenStack these are called by
names such as “m1.large” or “m1.tiny”. Figure. 4 shows the characteristics of T2
instances.

Fig. 4. Amazon T2 Instance Characteristics

10 http://aws.amazon.com/
11 http://azure.microsoft.com
12 http://www.hpcloud.com/

178 PNSE’15 – Petri Nets and Software Engineering

Fig. 5. Renew Simulation in the OpenStack Cloud

4 Interface

In the previous section we have described how to enable Renew simulations in
a Cloud environment. The basic technical realisation bundles up and simply exe-
cutes a workflow net system and its shadow net representation. In order to practi-
cally utilise this execution we need to define an interface for it. We have examined
possible interfaces that can be grouped into three categories: Simple, Simulation,
Advanced. These categories will be discussed in Sections 4.1 through 4.3.

Prototypes for the simple interfaces already exist. More features for these
interfaces as well as the simulation and advanced interfaces are currently under
development. They will be discussed on a conceptual level here.

Note that how exactly a simulation as a Cloud functionality is called has
already been discussed in the previous section. Generally it can be called either
via the console, a web interface or directly within a (local) running net system.
If an interface restricts these possibilities it will be shortly addressed.

4.1 Simple Interfaces

Simple interfaces offer basic, yet versatile functionality that can later be utilised
in more complex settings. The input for simple interfaces remains the workflow
system and its shadow net representation. The output options vary, but share
that any results obtained are returned as simple data or objects. Simple interfaces
do not support any kind of intelligence or autonomy. They are simply called when
needed and report back the predefined results.

Console Interface This interface uses either the internal Renew con-
sole or the general system console as the output medium. Consequently
it already directly works with reference nets. By simply inscribing a
System.out.println(textVariable) to any transition of the net system being
executed in the Cloud the String representation of the object textVariable is
printed on the console. Figure. 1 already shows a working prototype using such
a console interface.

For very simple use cases (e.g. testing a certain outcome of the net system)
this is already sufficient, but in most cases any obtained result should automati-
cally be made available to the caller in a more utilisable way. This can be realised

S. Bendoukha, T. Wagner: Improving Performance of Complex Workflows 179

Fig. 6. Synchronous Channels Interface

by reading any output in the console and combining these outputs into a result
object that is passed back when the execution has been completed. This way
more complex use cases and computations can also be supported even with this
very simple interface. One problem with this approach is that it is not standard-
ised or regulated by the modelling approach. This is a general problem that will
be discussed in Section 5.

Synchronous Channel Interface Realising the interface through synchronous
channels is another way of providing a simple interface. Synchronous channels,
in general, are a mechanism to allow data and object transfer between net in-
stances. They were first introduced in [7] and are fundamental to the reference
net formalism. Within the Cloud context synchronous channels allow for data
objects created and modified during the execution of a workflow to be trans-
ferred back to its initiator or even directly into other running (local or remote)
net systems. Consequently, the full potential is realised when the Cloud call is in-
corporated into a net system. There are a number of ways in which synchronous
channels can be incorporated into an interface for Cloud-based workflows. The
simplest way is to explicitly inscribe an output channel to a transition in the
net. When this transition fires the synchronous channel is called and the spec-
ified data object transferred to the Cloud call initiator. By extending this to
multiple transitions we can realise a kind of continuous feedback for the initia-
tor. Whenever a transition inscribed with the synchronous channel would fire a
result would be send to the initiator.

Figure 6 illustrates the approach mentioned above. There are two main nets:
Workflow Initiator and Workflow. The Workflow Initiator manages the workflow
locally and is responsible for the communication with the Cloud provider. On the
other side, the Workflow is executed in the Cloud. After modelling the workflows,
the model is saved in Renew (.rnw) and Shadow net (.sns) files. These files are

180 PNSE’15 – Petri Nets and Software Engineering

required for the Workflow to be executed. The communication between both
nets is possible through synchronous channels. For instance, T1 and T4 are for
sending data; T2 and T3 are for receiving data. Furthermore, all the parameters
can be put into a place instead of synchronous channels.

There are two main problems when using synchronous channels. First of all,
similar to the console interface, this interface is not structured. Careless mod-
ellers may set output channels to incorrect transitions so that results may not be
valid. Another issue is related to the continuous update mechanism. If (possibly
partial) results are transferred back to the initiator at multiple times, it may be
difficult to work with these results. Depending on the net a modeller would have
to explicitly build against that specific interface in order to aggregate the re-
sults into a valid composition. For this simple interface it would be cumbersome
and inefficient. This is one of the issues addressed by the advanced interfaces
described in Section 4.3.

Up until now, synchronous channels have only been discussed for output
scenarios. Incorporating synchronous channels for the input of the Cloud-based
workflows is also possible. In the simplest option this would only be used to
incorporate initial input data. This would not change the basic functionality all
too much, as initial data can easily be supplied via the console or simply as
the initial marking of the workflows. It would make it easier though to change
the initial marking. If called from a running net system the Cloud workflow
could be initiated with runtime information. A synchronous input channel would
simply pass the data object directly into the workflow in the Cloud. Without
synchronous channels a new net system with the specified initial marking would
have to be created or the console call would have to be tailored to the runtime
information.

It is also possible to transfer data into the running Cloud workflow. This
would require the initiator to be able to maintain a connection with the Cloud
system. This is mostly feasible when the Cloud call is initiated by a running net
system which would continue with its own execution and provide additional data
to the Cloud net system at some later point. Certain transitions in the Cloud net
system could then be inscribed with an input channel over which this additional
data could be received. Ensuring the correct connection and synchronisation
between local and Cloud net systems is the main challenge in this context. This
is currently considered future work and outside of the scope of this paper.

Using synchronous channels in the proposed ways has some disadvantages
though. Without any restrictions to modelling the placement of input and output
in the net would affect any verification of workflow correctness or other Petri
net properties. This is discussed further in Section 5.

4.2 Simulation Interfaces

The simulation interfaces are not so much interfaces, as they are a utilisation
of Renew in a Cloud environment. Instead of executing a net system remotely
once for some direct usage these interfaces execute the net system a large number
of times. The information about these simulation runs is then reported back to

S. Bendoukha, T. Wagner: Improving Performance of Complex Workflows 181

the initiator. This constitutes the output of these interfaces. The input consists,
beside the net system and shadow net representation, of simulation parameters
(e.g. number of simulation runs). The advantage of running these simulations in
a Cloud environment is that it frees up the modellers local machine.

Result Simulation One possibility is to run a set of simulations and have the sys-
tem report back the results of each run. With the same initial marking different
simulations may still produce different results. This could be due to race con-
ditions, non-deterministic behaviour, etc. With these results the modeller could
validate assumptions about the net system or determine possible error sources.

This kind of simulation could be extended by enabling variable initial mark-
ings. Simulating a net system with differing parameters might influence the re-
sults and help modellers even more.

Timed Simulation Another possibility is to run a set of simulations and compare
the time it takes to complete them. This kind of simulation is more useful for
testing the performance or new features in the runtime environment, in our case
Renew. Running the simulation with new features enabled and comparing the
results obtained without them can yield information about new algorithms.

Focussing more on the performance of the net system it might be of interest
to the modeller to determine the impact of different initial markings. Varying
over the initial marking of the net system could then help modellers deter-
mine performance bottlenecks. When using (reference) Petri nets for processes
in practical software engineering within the Paose (Petri net-based, Agent-
and Organization-oriented Software Engineering [6]) development ap-
proach for example, such simulations and their results become especially useful
and interesting.

4.3 Advanced Interfaces

The advanced interfaces go beyond simple call interfaces like the ones discussed
in Section 4.1. They utilise these simple interfaces but add another layer of
abstraction to them. This leads to additional characteristics like certain degrees
of intelligence and autonomy. They can also feature mechanisms to manage and
store known net systems so that they may even serve as a kind of directory
service. They can also aggregate results, enforce quality of service concerns or
choose the best from a set of results. Consequently, no general statements about
input and output can be made.

Agent Interface Using agents for an advanced interface to the Cloud execution of
Petri net systems has a number of intrinsic advantages. Agents possess autonomy
and a certain degree of intelligence. Reactive and proactive agent behaviour can
also be utilised.

In an advanced interface an agent would serve as a kind of gateway between
the local net systems and the Cloud net systems. For the Mulan and Capa

182 PNSE’15 – Petri Nets and Software Engineering

Fig. 7. Agent Interface Illustration

agents we utilise this would expand upon the ideas introduced by the WebGate-
way agent [4] towards Cloud calls. The WebGateway agent serves as a kind of
bridge between the net execution of a Renew environment and the web envi-
ronment. Agents in Renew can then offer their functionality as web services
and also access remote web services.

For the Cloud context agents would serve in a similar fashion. The idea is
illustrated in Figure 7. Some agents would be responsible for the net systems.
They would take on the role of the initiator. They could act autonomously or
be controlled by a human user via some kind of user interface.

These agents would control and/or create the workflows which should be ex-
ecuted in the Cloud. They would send requests and data to the gateway agent13.
The gateway agent would then use a simple interface (see above) in its internal
functionality to initiate the workflow in the Cloud on behalf of the other agents.
Any result obtained in the Cloud would be send back to the gateway agent which
would then forward it to the other agents.

13 Alternatively the workflows could be stored in a database known to all agents. In that
case the initiator agents would simply send requests and identifiers of the workflows
to the gateway agent.

S. Bendoukha, T. Wagner: Improving Performance of Complex Workflows 183

At this point the characteristics and advantages of software agents can be
utilised. In the following we will cover some ideas of how, starting from the
relatively simple approach described above, this can be done.

The gateway agent can aggregate the results of the Cloud calls into more in-
formative composite results. Partial results could be incorporated into the work-
flows with standardised instructions for the gateway agents to combine them
after the execution has been completed. The gateway agent can also instantiate
the workflow multiple times and choose the best (or fastest) result. Of course,
the gateway agent has to be equipped with mechanisms to aggregate or assess
results in these fashions. This is, however, simply a question for the technical
implementation and not a conceptual one. Aggregation of results is especially
interesting for simulation purposes. The gateway agent could automatically cre-
ate composite results for modellers to inspect. It could also automatically vary
over the initial parameters based on the initial results (e.g. to validate results or
test certain outlier data).

The gateway agent can also react to errors or other problems occurring during
the execution in the Cloud. If the Cloud execution returns an error the gateway
agent can retry the instantiation. If the error was caused by the call it can
also adapt the call (e.g. if input parameters had incorrect types like a string
representation of an integer value). This would happen transparently to the
initiator of the call which would only have to be involved if the gateway agent
was unable to find a solution to the problem.

Using proactive behaviour the agent can also support the execution of Cloud
workflows. For example, it could restart workflows if the returned result strongly
deviated from expected results. Or it could prepare or even already initiate
recurring net executions.

The gateway agent can also handle quality of service (QoS) concerns. As
stated in 3, QoS are specified as parameters either in transitions or places. The
second scenario is the more appropriate since it use synchronous channels. In
this situation, in addition to the workflow model (and its related files .rnw and
.sns) modellers also include QoS parameters. In this work, we focus on time
and budget, but modellers can include other constraints. The gateway agent
can consequently play another role, which is Cloud brokering. By brokering we
mean that the agent looks for the suitable Cloud provider to execute the workflow
based on its requirements. This can be useful when working with multiple Clouds.

One disadvantage of using a gateway agent for the Cloud is that it centralises
the communication. This decouples the communication aspects from the indi-
vidual agents, but gives the system a single point of failure. Only one agent in
the system, the gateway agent, possesses the functionality and mechanisms to
invoke Cloud systems. This makes other agents simpler and possibly more effi-
cient to execute, but if the gateway agent fails communication with the Cloud
is lost. This could be remedied by implementing a solution with multiple gate-
way agents and distributing the functionality. If one gateway agent failed others
could take its place.

184 PNSE’15 – Petri Nets and Software Engineering

Entity Interface The term entity describes a hybrid construct between an agent
and a workflow. Depending on the runtime needs they can act as an agent (e.g. for
communication), a workflow (e.g. for task deployment and execution) or some-
thing between the two (e.g. as a mobile process). Entities and modelling with
them is currently ongoing research. The Cloud context enhances the capabilities
of entities in many regards.

From the interface point of view an entity possesses all the characteristics
of agents and has access to the entire functionality described in the previous
paragraph for an advanced interface provided through an agent. But this inter-
face is extended even more because of the additional possibilities gained through
the workflow properties of an entity. Entities are, in one perspective, a (work-
flow) process. This automatically entails a certain behaviour-centric structure
and purpose to the modelling.

By structuring the calls and instantiations of the Cloud net systems as a
process itself the modeller is directly supported. While anything can be achieved
through regular, less-rigidly structured modelling, restricting the modeller into
such a process perspective is still beneficial. Considering process order, task
subdivisions, processing of partial results and other aspects of a process are
direct requirements in this perspective. Consequently they are obligatory to the
modeller here. But that means that these aspects, which range from helpful to
essential, can also not be ignored or omitted. This is what the entities add on a
conceptual level to the advanced interface of agents.

5 Discussion

One issue that was raised in Section 4 concerned the restrictions on modelling
and the placement of input and output in a net for the interfaces. If that place-
ment is unrestricted it may be error-prone and puts the responsibility solely on
the modeller without any support. An effort could be made to restrict input
and output to the initial and exit places of the workflow. This would ensure
only full results are returned to the caller and make it easier to verify work-
flow net properties. However, there are cases in which partial results (e.g. status
updates) during the execution of a workflow net are desirable. The restriction
would preclude this. A compromise would be to allow simple status reports from
anywhere in the net (e.g. via the console), but only complete results from the
final place or transition of the workflow (e.g. via synchronous channel). Only
these complete results would then be made available for further operations in
the workflow initiator.

Without any restrictions it would also be impossible to make any statements
about the correctness of the executed workflows. For practical purposes allowing
input into already running workflows and arbitrary input/output locations might
be helpful to some use-cases. But from a verification and validation point-of-
view these mechanisms are problematic. Incorporating concepts like workflow
correctness into the Cloud calls and interfaces is currently ongoing work but
outside the scope of this paper.

S. Bendoukha, T. Wagner: Improving Performance of Complex Workflows 185

The question of restrictions raises another interesting point. This paper is
focused on the execution of workflow nets. Arbitrary workflow net systems can be
executed in the Cloud. That includes scientific and interorganisational workflows.

From a technical standpoint though, it is possible to execute any net system
in the Cloud. The only precondition is that a plugin for the net formalism in
question is provided for the Renew instance running in the Cloud. Renew
plugins for many formalisms already exist (e.g. P/T nets, nets supporting time
annotations) and more can be added.

When allowing arbitrary net systems without restrictions to the interface
or without any structured modelling these arbitrary net systems might pose
challenging to modellers in terms of efficiency and manageability. For this reason
it is advisable to use structured modelling paradigms, like agents or entities, for
the Cloud net systems as well. In the following paragraphs we will examine how
this would affect the advanced interfaces described in the previous section.

By executing the agent interface within the Cloud (as opposed to outside the
Cloud as described in Section 4.3) the communication can be simplified. In this
scenario the net system executed in the Cloud is a Capa agent platform with a
running gateway agent. The gateway agent is accessible for other agents via the
standardised FIPA compliant asynchronous message communication supported
in Capa. This would “move” the interface from the local execution into the
Cloud, since to other agents it does not matter where the gateway is executed.
They communicate with him in the same way as any other local or remote agent.
This would lead to efficiency gains as the gateway agent could access resources in
the Cloud environment directly. The technical capabilities of the gateway agent
would also be improved. Other properties of the interface would largely remain
the same.

The entity interface would benefit in the same way as the agent interface. In
addition it would also affect the modelling abstraction of the entity, as it could
be considered a (workflow) process in the Cloud executing other (workflow) pro-
cesses. This is especially interesting in the interorganisational workflow setting
which we are researching for entities. The entity in the Cloud could be consid-
ered as the overall interorganisational workflow while the workflows it controls
are the subworkflows for each involved organisation.

6 Conclusion

In this paper we presented our approach for moving net executions to the Cloud.
The paper described the technical aspects, implementation and methodology.
From a technical point of view it is possible to execute any net system supported
by Renew in the Cloud. However, for the purpose of this paper we focused on
workflows. For this context the notion of Cloud interfaces was introduced. These
interfaces can be classified as simple, simulation and advanced depending on
how the communication and the transfer of data are performed. Furthermore,
we discussed the integration of agent concepts in order to provide gateways to
the Cloud.

186 PNSE’15 – Petri Nets and Software Engineering

Direct future work is related to agents and especially the entity concept.
This paper described how agent and the entity concepts can realise advanced
interfaces for the Cloud net systems. The other direction is currently also being
researched. In general, opening up the capabilities of entities to Cloud functions
is already beneficial in of itself. But agents and especially entities can also feature
very complex behaviour. In fact, some processes of entities can be regarded as
fully-fledged subsystems. Relocating these subsystems to the Cloud can improve
the performance of entity systems greatly.

Concerning workflow complexity, we are also currently working on a concrete
scientific workflow application. This application is related to the remote sensing
domain, especially image processing of satellite imagery. Most of the work has
been achieved: we have implemented an image processing tool that allows mod-
elling and execution of remote sensing applications specified by reference nets.
The next natural step is to execute those workflows in the Cloud based on the
results presented in this paper. Furthermore, this work should be evaluated in
terms of performance. This concerns running several simulations in parallel (in
different virtual machines) in the Cloud.

In conclusion, the realisation of Renew in a Cloud opens up a number of
advantages w.r.t. performance, availability, flexibility, etc. Some of these have
already been discussed in this paper. Other will become more noticeable with the
ongoing work. The continued incorporation of the Cloud aspects with complex
workflow and agent systems is just one of the possible avenues of thought, albeit
the most promising one currently.

References

1. Martin Alt, Sergei Gorlatch, Andreas Hoheisel, and Hans-Werner Pohl. A Grid
Workflow Language Using High-Level Petri Nets. In Roman Wyrzykowski, Jack
Dongarra, Norbert Meyer, and Jerzy Wasniewski, editors, Parallel Processing and
Applied Mathematics, volume 3911 of LNCS, pages 715–722. Springer-Verlag, 2006.

2. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler:
an extensible system for design and execution of scientific workflows. In Scien-
tific and Statistical Database Management, 2004. Proceedings. 16th International
Conference on, pages 423–424, June 2004.

3. Sofiane Bendoukha and Lawrence Cabac. Cloud transition for QoS modeling of
inter-organizational workflows. In Daniel Moldt, editor, Modeling and Buisness
Environments MODBE’13, Milano, Italia, June 2013. Proceedings, volume 989 of
CEUR Workshop Proceedings, pages 355–356. CEUR-WS.org, June 2013.

4. Tobias Betz, Lawrence Cabac, Michael Duvigneau, Thomas Wagner, and Matthias
Wester-Ebbinghaus. Software Engineering with Petri Nets: A Web Service and
Agent Perspective. In Maciej Koutny, Serge Haddad, and Alex Yakovlev, editors,
Transactions on Petri Nets and Other Models of Concurrency IX, Lecture Notes
in Computer Science, pages 41–61. Springer Berlin Heidelberg, 2014.

5. Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann,
Alexander Nowak, and Sebastian Wagner. OpenTOSCA - A Runtime for TOSCA-
based Cloud Applications. In Proceedings of 11th International Conference on
Service-Oriented Computing (ICSOC’13), volume 8274 of LNCS, pages 692–695.
Springer Berlin Heidelberg, December 2013.

S. Bendoukha, T. Wagner: Improving Performance of Complex Workflows 187

6. Lawrence Cabac. Multi-agent system: A guiding metaphor for the organization
of software development projects. In Paolo Petta, editor, Proceedings of the Fifth
German Conference on Multiagent System Technologies, volume 4687 of Lecture
Notes in Computer Science, pages 1–12, Leipzig, Germany, 2007. Springer-Verlag.

7. Søren Christensen and N. D. Hansen. Coloured Petri Nets Extended with Channels
for Synchronous Communication. In Valette, R., editor, Lecture Notes in Computer
Science; Application and Theory of Petri Nets 1994, Proceedings 15th International
Conference, Zaragoza, Spain, volume 815, pages 159–178. Springer-Verlag, 1994.

8. Peter Dadam and Manfred Reichert. The adept project: A decade of research and
development for robust and flexible process support - challenges and achievements.
Computer Science - Research and Development, 23(2):81–97, 2009.

9. Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anasta-
sia Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Sci. Program., 13(3):219–
237, July 2005.

10. Michael Duvigneau. Bereitstellung einer Agentenplattform für petrinetzbasierte
Agenten. Diploma thesis, University of Hamburg, Department of Computer Sci-
ence, Vogt-Kölln Str. 30, D-22527 Hamburg, December 2002.

11. T. Fahringer, R. Prodan, Rubing Duan, F. Nerieri, S. Podlipnig, Jun Qin, M. Sid-
diqui, Hong-Linh Truong, A. Villazon, and M. Wieczorek. Askalon: a grid appli-
cation development and computing environment. In Grid Computing, 2005. The
6th IEEE/ACM International Workshop on, pages 10 pp.–, Nov 2005.

12. Christina Hoffa, Gaurang Mehta, Timothy Freeman, Ewa Deelman, Kate Keahey,
G. Bruce Berriman, and John Good. On the use of cloud computing for scientific
workflows. In eScience, pages 640–645. IEEE Computer Society, 2008.

13. G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B.P. Berman, and P. Maech-
ling. Scientific workflow applications on amazon ec2. In E-Science Workshops, 2009
5th IEEE International Conference on, pages 59 –66, dec. 2009.

14. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
15. Olaf Kummer, FrankWienberg, Michael Duvigneau, and Lawrence Cabac. Renew –

User Guide (Release 2.4). University of Hamburg, Faculty of Informatics, Theoreti-
cal Foundations Group, Hamburg, April 2013. Available at: http://www.renew.de/.

16. Olaf Kummer, FrankWienberg, Michael Duvigneau, Michael Köhler, Daniel Moldt,
and Heiko Rölke. Renew – the Reference Net Workshop. In Eric Veerbeek, editor,
Tool Demonstrations. 24th International Conference on Application and Theory of
Petri Nets (ATPN 2003). International Conference on Business Process Manage-
ment (BPM 2003)., pages 99–102, June 2003.

17. A. Nagavaram, G. Agrawal, M.A. Freitas, K.H. Telu, G. Mehta, R.G. Mayani,
and E. Deelman. A cloud-based dynamic workflow for mass spectrometry data
analysis. In E-Science (e-Science), 2011 IEEE 7th International Conference on,
pages 47–54, Dec 2011.

18. Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Tim Carver, Matthew R.
Pocock, and Anil Wipat. Taverna: A tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, 20:2004, 2004.

19. Tim Grance Peter Mell. The nist definition of cloud computing. Technical report,
National Institute of Standards and Technology, Information Technology Labora-
tory, 2011. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

20. Manfred Reichert, Thomas Bauer, and Peter Dadam. Flexibility for distributed
workflows. In Minhong Wang and Sun Zhaohao, editors, Handbook of Research on

188 PNSE’15 – Petri Nets and Software Engineering

Complex Dynamic Process Management: Techniques for Adaptability in Turbulent
Environments, pages 137–171. IGI Global, Hershey, New York, July 2009.

21. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

22. Jörn Schumacher. Eine Plugin-Architektur für Renew – Konzepte, Methoden,
Umsetzung. Diploma thesis, University of Hamburg, Department of Computer
Science, Vogt-Kölln Str. 30, D-22527 Hamburg, October 2003.

23. Ian Taylor, Matthew Shields, Ian Wang, and Omer Rana. Triana applications
within grid computing and peer to peer environments. Journal of Grid Computing,
1(2):199–217, 2003.

24. W.M.P. van der Aalst. Business process configuration in the cloud: How to support
and analyze multi-tenant processes? In Web Services (ECOWS), 2011 Ninth IEEE
European Conference on, pages 3–10, Sept 2011.

25. Thomas Wagner. A centralized Petri net- and agent-based workflow manage-
ment system. In Michael Duvigneau and Daniel Moldt, editors, Proceedings of the
Fifth International Workshop on Modeling of Objects, Components and Agents,
MOCA’09, Hamburg, number FBI-HH-B-290/09 in Bericht, pages 29–44, Vogt-
Kölln Str. 30, D-22527 Hamburg, September 2009. University of Hamburg, De-
partment of Informatics.

S. Bendoukha, T. Wagner: Improving Performance of Complex Workflows 189

