
Applying Petri Nets to Approximation of the
Euclidean Distance with the Example of SIFT

Jan Henrik Röwekamp and Michael Haustermann

University of Hamburg, MIN Faculty, Department of Informatics, Theoretical
Computer Science Group and Cognitive Systems Group, Hamburg, Germany

http://www.informatik.uni-hamburg.de/TGI/
http://kogs-www.informatik.uni-hamburg.de/

Abstract. SIFT (Scale Invariant Feature Transform) is a complex im-
age processing procedure for matching objects or patterns in images.
Involving the computation of Euclidean distances in high dimensional
space of many pairs of points and matching them against a threshold,
this work proposes a speedup for the procedure utilizing colored Petri
nets. Being sped up more pairs can be evaluated within reasonable time
leading to better overall results.

Keywords: SIFT, object recognition, image processing, Euclidean distance, per-
formance evaluation, binary squaring, complexity reduction, colored Petri nets

1 Introduction

Looking at the recent development of society towards omnipresence of computers co-
ming in form of smart phones, handhelds, embedded systems and more the necessity
of semi and fully automated processing of images to handle the amount of data and
related requests produced by people becomes more and more severe. Efficient algo-
rithms – in both running time as well as quality regard – cut down time spent by users
to achieve their goals. SIFT [1](short for Scale Invariant Feature Transform) is a very
powerful process for recognition of real world objects in an – from the queries point of
view – unknown, heterogeneous image environment. At one critical point within the
procedure it is necessary to compute the Euclidean distance between several pairs of
high dimensional vectors and compare it against a certain threshold. Since this task
is rather demanding in regards to computation time when done in the traditional way
by just computing the distance, this work presents a method using Petri nets to lower
the computation time for each distance calculation and comparison.

Object recognition as well as image processing in general is an extensive field of
research with a lot of applications. Examples of applications benefiting from improved
running times are panorama photos which a lot of modern mobile devices (smart
phones) are able to take, Optical character recognition (OCR) in which an ap-
plication for a live translator that automatically translates text seen in the real world
is imaginable, automated counting of cars, people, coins, . . . using images and/or
video streams and also assignment of photos in a sense where objects depicted on
a photo known to an online database, but unknown to the user, are matched.



As several other image processing algorithms, the procedure of SIFT involves cal-
culating the Euclidean distance in high dimensional spaces of a significant amount of
points.

Binary Squaring
One of the basic ideas in this work is the bit-wise squaring bsq(n) of binary numbers
which will be called "binary squaring". Assume n = [42]10 = [0000101010]2 = 21+23+
25. The binary square would be: bsq(n) = [1092]10 = [0100100100]2 = 22 + 26 + 210.
Obviously this value does not coincide with the correct squared value of 42 (1792).

There will follow some propositions related to binary squaring, which (analytical)
proofs are omitted due to space constraints. For the factor Rf (n) between binary square
and conventional square of an integer n it holds: 1 ≤ Rf (n) < 3. The average sum
of binary squares of uniform distributed random integers between two powers of two
differs from the sum of conventional squares by factor 1.944 with high probability. This
also holds for values between 0 and a power of two. The computation of the Euclidean
distance can be approximated using the sum of binary squares times 1.944. The major
advantage of the binary square version of this computation is, that summands (on
the binary level) can be interchanged before computing the squared value. Thus the
computation of the Euclidean distance using binary squares can be rearranged to handle
most significant bits first being able to recognize distances above the threshold very
fast.

The Petri Net Model
The general idea is to model the computation of the binary square based Euclidean
distance with a colored Petri net. By doing so some of the computations can be done
by the net design itself, for example using edge weights / (computations) and also
the distance calculation can be split up and parallelized utilizing Petri nets’ inherent
concurrency by using the concept of binary squaring. The net consists of three major
parts: The bit-splitting component, the bit analyzer component and a decision com-
ponent (which decides whether the points are below or above the threshold). The bit
splitter utilizes the results above and splits the differences in each dimension of two
points into its bits, subsequently placing all bits of same significance i over all dimen-
sions into the same place of the net ki. The analyzer component contains a place which
again contains the (classic) squared value divided by 1.944 of the desired threshold. The
analyzer component continuously removes marks from the pool for each mark removed
from a pool ki. As soon as the pool runs out of marks, but there are still marks in one
of the ki to be processed the decision component decides "false" otherwise it decides
"true".

As there are only a very few pairs below the threshold and the majority above
(depends on the algorithm, that requires to calculate the Euclidean distance, but in
most cases this holds), most of the computations will end in only a few firings instead
of d squares and additions when looking at a d-dimensional space.

References

1. David G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the International Conference on Computer Vision-Volume 2 - Volume 2, ICCV
’99, pages 1150–1157, Washington, DC, USA, 1999. IEEE Computer Society.

324 PNSE’15 – Petri Nets and Software Engineering


