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Abstract. In distributed systems, it is often important that a user is
not able to infer if a given action has been performed by another compo-
nent, while still being able to interact with that component. This kind
of problems has been studied with the help of a notion of “interference”
in formal models of concurrent systems (e.g. CCS, Petri nets). Here, we
propose several new notions of interference for ordinary Petri nets, study
some of their properties, and compare them with notions already pro-
posed in the literature. Our new notions rely on the unfolding of Petri
nets, and on an adaptation of the “reveals” relation for ordinary Petri
nets, previously defined on occurrence nets, and on a new relation, called
“excludes”, here introduced for detecting negative information flow.
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1 Introduction

In distributed systems, information flows among components. The flow can be
used to rule the behavior of the system, to guarantee the correct synchronization
of tasks, to implement a communication protocol, and so on.

In some cases, a flow of information from one component to another is ac-
tually a leakage: that piece of information should not have passed from here to
there. Such unwanted flows can endanger the working of the system.

In this paper, we study formal notions of unwanted information flow, based
on a general notion of non-interference, within the theory of Petri nets, and
compare our approach with existing approaches.

Non-interference was first defined for deterministic programs [1]. Later, sev-
eral adaptations were proposed for more abstract settings, like transition sys-
tems, usually related to observational semantics [2–6].

Broadly speaking, these approaches assume that the actions performed in a
system belong to two types, conventionally called high (hidden) and low (observ-
able). A system is then said to be free from interference if a user, by interacting
only via low actions, cannot deduce information about which high actions have
been performed.



This approach was formalized in terms of 1-safe Petri nets in [7], relying on
known observational equivalences, including bisimulation. Similarly to Busi and
Gorrieri [7], in this paper we analyze systems that can perform high and low level
actions and we check if an observer, who knows the structure of the system, can
deduce information about the high actions by observing low actions. We rely
on a progress assumption which was ignored in non-interference notions in the
literature.

We propose new notions of non-interference for ordinary Petri nets. They deal
with positive information flow as well as negative information flow, regarding
both past and future occurrences and are based on unfoldings and on reveals
and excludes relations which are formally defined in Section 3. Reveals was
originally defined as a relation between events of an occurrence net in [8] and
applied in fault diagnosis. Here, we adapt this relation to transitions of Petri
nets. Intuitively, a transition t1 reveals another transition t2 if, by observing
the occurrence of t1, it is possible to deduce the occurrence of t2. Excludes is a
new relation between transitions of a Petri net, which is introduced in order to
detect negative information flow. A transition t1 excludes another transition t2
if, by observing the occurrence of t1, it is possible to deduce that t2 has not yet
occurred and will not occur in the future, i.e., they never appear together in the
same run.

The first notion of non-interference we introduce is called Reveals based Non-
Interference (RNI) and it states that a net is secure if no low transition reveals
any high transition. This new notion is introduced in Section 4.1. We also pro-
pose more restrictive notions called k-Extended-Reveals based Non-Interference
(k-ERNI) and n-Repeated-Reveals based Non-Interference (n-ReRNI), they are
based on observation of multiple occurrences of low transitions. These two para-
metric non-interference notions are introduced and discussed in Section 4.2 and
Section 4.3. In Section 4.4, Positive/Negative Non-Interference (PNNI) is intro-
duced on the basis of both the reveals and excludes relations between low and
high transitions capturing both positive and negative information flow. The new
notions are discussed and compared with each other while they are introduced.
In Section 5, we compare, on the basis of examples, the new introduced notions
with the ones already introduced in the literature and mentioned at the begin-
ning of Section 4. Finally, Section 6 concludes the paper and discusses some
possible developments.

2 Basic Definitions

In this section we collect preliminary definitions and set the notation which will
be used in the rest of the paper.

Let R ⊆ I × I be a binary relation, the transitive closure of R is denoted by
R+; the reflexive and transitive closure of R is denoted by R∗.

A net is a triple N = (B,E, F ), where B and E are disjoint sets, and F ⊆
(B×E)∪(E×B) is called the flow relation. The pre-set of an element x ∈ B∪E
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is the set •x = {y ∈ B ∪ E | (y, x) ∈ F}. The post-set of x is the set x• = {y ∈
B ∪ E | (x, y) ∈ F}.

An (ordinary) Petri net N = (P, T, F,m0) is defined by a net (P, T, F ), and
an initial marking m0 : P → N. The elements of P are called places, the elements
of T are called transitions. A net is finite if the sets of places and of transitions
are finite.

A marking is a map m : P → N. A marking m is safe if m(p) ∈ {0, 1} for all
p ∈ P . Markings represent global states of a net.

A transition t is enabled at a marking m if, for each p ∈ •t, m(p) > 0. We
write m[t〉 when t is enabled at m. A transition enabled at a marking can fire,
producing a new marking. Let t be enabled at m; then, the firing of t in m
produces the new marking m′, defined as follows:

m′(p) =





m(p)− 1 for all p ∈ •t \ t•
m(p) + 1 for all p ∈ t• \ •t
m(p) in all other cases

We will write m[t〉m′ to mean that t is enabled at m, and that firing t in m
produces m′.

A marking q is reachable from a marking m if there exist transitions t1 . . . tk+1

and intermediate markings m1 . . .mk such that

m[t1〉m1[t2〉m2 . . .mk[tk+1〉q

The set of markings reachable from m will be denoted by [m〉. If all the markings
reachable from m0 are safe, then N = (P, T, F,m0) is said to be 1-safe (or,
shortly, safe).

Let N = (B,E, F ) be a net, and x, y ∈ B ∪E. If there exist e1, e2 ∈ E, such
that e1 6= e2, e1F

∗x, e2F
∗y, and there is b ∈ •e1 ∩ •e2, then we write x#y.

A net N = (B,E, F ) is an occurrence net if the following restrictions hold:

1. ∀x ∈ B ∪ E : ¬(xF+x)
2. ∀x ∈ B ∪ E : ¬(x#x)
3. ∀e ∈ E : {x ∈ B ∪ E | xF ∗e} is finite
4. ∀b ∈ B : |•b| ≤ 1

The set of minimal elements of an occurrence net N with respect to F ∗ will be
denoted by ◦N . The elements of B are called conditions and the elements of E
are called events. If x#y in an occurrence net, then we say that x and y are in
conflict. Let e ∈ E be an event in an occurrence net; then the past of e is the
set of events preceding e in the partial order given by F ∗: ↑ e = {t ∈ E | tF ∗e}.
An occurrence net represents the alternative histories of a process; therefore its
underlying graph is acyclic, and paths branching from a condition, corresponding
to a choice between alternative behaviors, never converge.

A run of an occurrence net N = (B,E, F ) is a set R of events which is closed
with respect to the past, and free of conflicts: (1) for each e ∈ R, ↑ e ⊆ R; (2)
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for each e1, e2 ∈ R, ¬(e1#e2). A run is maximal if it is maximal with respect to
set inclusion.

Let Ni = (Pi, Ti, Fi) be a net for i = 1, 2. A map π : P1 ∪ T1 → P2 ∪ T2 is a
morphism from N1 to N2 if:

1. π(P1) ⊆ P2; π(T1) ⊆ T2
2. ∀t ∈ T1 the restriction of π to •t is a bijection from •t to •π(t)
3. ∀t ∈ T1 the restriction of π to t• is a bijection from t• to π(t)•

In the rest of the paper, we will consider finite Petri nets, i.e., Petri nets whose
underlying net is finite, except for occurrence nets. Of course, Petri nets may
have infinite behavior. Moreover, we assume that all transitions of a Petri net
have non-empty preset, i.e., all have input places.

A branching process of a Petri net N = (P, T, F,m0) is a pair (O, π), where
O = (B,E,G) is an occurrence net, and π is a morphism from O to N such that:

1. ∀p ∈ P m0(p) = |π−1(p) ∩ ◦O|
2. ∀x, y ∈ E, if •x = •y and π(x) = π(y), then x = y

A branching process Π1 = (O1, π1) is a prefix of Π2 = (O2, π2) if there is an
injective morphism f from O1 to O2 which is a bijection when restricted to ◦O1,
and such that π1 = π2f .

Any finite Petri net N has a unique branching process which is maximal
with respect to the prefix relation. This maximal process, called the unfolding of
N , will be denoted by Unf(N) = ((B,E, F ), λ), where λ is the morphism from
(B,E, F ) to N [9]. In Fig. 1, a Petri net with its infinite unfolding is illustrated.

The following definition will be used in the rest of the paper to denote the set
of events of an unfolding corresponding to a specific transition of a given Petri
net.

Definition 1. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ), λ)
be its unfolding and t ∈ T , the set of events corresponding to t is denoted Et =
{e ∈ E | λ(e) = t}.
The following definitions concern the reveals relation, originally introduced in [8]
and applied to diagnostics problems. This notion has been further studied in [10]
and [11].

Definition 2. Let O = (B,E, F ) be an occurrence net, Ω ⊆ 2E be the set of
its maximal runs, and e1, e2 be two of its events. Event e1 reveals e2, denoted
e1 � e2, iff ∀σ ∈ Ω, e1 ∈ σ =⇒ e2 ∈ σ
Definition 3. [10]Let O = (B,E, F ) be an occurrence net, Ω ⊆ 2E be the set
of its maximal runs, and A,B two sets of events. A extended-reveals B, A _ B,
iff ∀ω ∈ Ω,A ⊆ ω =⇒ B ∩ ω 6= ∅.
In other words, a set of events, A, extended-reveals another set of events, B,
written A _ B, iff every maximal run that contains A also hits B. The reveals
relation can be expressed as extended-reveals relation between singletons: a� b
can be written as {a}_ {b}.
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Fig. 1. A Petri net and its unfolding

Example 1. To give a simple example on the original reveals and extended-
reveals notions, we examine the occurrence net in Fig. 2. In this net, e2� e4 and
e4 � e2. In general reveals relation is not symmetrical. As an example, e6 � e4
but e4 6� e6 since after e4, e7 can occur instead of e6.

In the same occurrence net, the occurrence of e1 does not necessarily mean
that e5 will occur, but e1 together with e2 extended-reveals e5, denoted as
{e1, e2} _ {e5}. The occurrence of e4 reveals neither e6 nor e7. However, it
reveals that either e6 or e7 will occur, denoted as {e4}_ {e6, e7}.

3 Excludes and Reveals Relations on Petri Nets

In this section, we first introduce a new relation between transitions, called
excludes, which will be used to detect negative information flow. Later, we define
a reveals and an extended-reveals relation on the set of transitions of a Petri net,
relying on the corresponding relations on occurrence nets as recalled in Section 2.
Moreover, we introduce a new parametric relation, called repeated-reveals, again
on the set of transitions of a Petri net. Reveals, extended-reveals and repeated-
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Fig. 2. An occurrence net.

reveals relations will be used to detect positive information flow, however they
can also be applied in other areas, e.g. fault diagnosis as explored in [8] by using
original reveals relation on occurrence nets. In the following three definitions
we assume progress in the behavior of the nets, which means that a constantly
enabled transition occurs if it is not disabled by another transition. This means
that we consider only maximal runs in the unfolding.

Definition 4. Let N = (P, T, F,m0) be a Petri net and Unf(N) = ((B,E, F ), λ)
be its unfolding, Ω be the set of all its maximal runs. Let t1, t2 ∈ T be two
transitions, we say t1 excludes t2, denoted t1 ex t2, iff ∀ω ∈ Ω Et1 ∩ω 6= ∅ =⇒
Et2 ∩ ω = ∅, i.e., they never appear in the same run.

It is easy to see that excludes is a symmetric relation and it is not transitive as
well as obviously not reflexive.

In the case of Petri nets whose underlying net is an acyclic graph, if two
transitions are in conflict, i.e., they are both enabled and the firing of one disables
the other one, then one excludes the other. However, in general, transitions which
are in conflict can still appear in the same maximal run and therefore they could
be in not-excludes relation.

Example 2. The transitions t2 and t4 of N1 in Fig. 1 are in conflict whereas
¬(t2 ex t4). In the unfolding in the same figure, it is possible to see a maximal
run including occurrences of both.

t5 ex t4 although they are not in conflict.
t7 ex t5, t5 ex t1 but ¬(t7 ex t1), indeed the relation is not transitive.

Definition 5. Let N = (P, T, F,m0) be a Petri net, and Unf(N) = ((B,E, F ),λ),
be the unfolding of N . Let Ω be the set of all maximal runs of N . Let t1, t2 ∈ T be
two transitions, we say that t1 reveals t2, denoted t1�tr t2, iff ∀ ω ∈ Ω Et1∩ω 6=
∅ =⇒ Et2 ∩ ω 6= ∅.

We say transition t1 reveals transition t2 if and only if each maximal run which
contains an occurrence of t1 also contains at least one occurrence of t2. This
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means that for each observation of t1, t2 has been already observed or will be
observed.

Remark 1. The reveals relation on transitions is reflexive and transitive, i.e., let
N = (P, T, F,m0) be a Petri net, t1, t2, t3 ∈ T , then t1 �tr t1, and (t1 �tr t2 ∧
t2 �tr t3) =⇒ t1 �tr t3.

Example 3. In the net N1, in Fig. 1, t3 reveals both t2 and t1. It is easy to notice
that to be able to fire t3 we must first fire t1 and t2. In fact, in the unfolding,
Unf(N1), given in Fig. 1, for each occurrence of t3 there is at least one occurrence
of t2 and similarly, for each occurrence of t3 there is at least one occurrence of
t1. However, t1 does not reveal t2 or t3, since there is a run in which t1 occurs
and neither t2 nor t3 occurs. If an observer, who knows the structure of N1, can
only observe t1 he cannot have information about t2 or t3, however if he is able
to observe t3, he can deduce that t2 and t1 must have occurred.

Transition t1 also reveals transition t6 because when t1 fires, t5 cannot fire
anymore and, since the net progresses, t6 must fire. Since we do not assume strong
fairness, t1 6� tr t4, after the occurrence of t1, t2 and t3 can loop forever. Reveals
relation is not only about past occurrences but also about future occurrences.
Observing t1 does not tell us when t6 fires. It might have fired already or it will
fire in the future. t1 �tr t6 tells us that when t1 occurs, an occurrence of t6 is
inevitable.

Remark 2. Reveals relation is neither symmetric nor antisymmetric. For exam-
ple, in Fig. 1, t2 �tr t3 and t3 �tr t2 , however t2 �tr t1 and t1 6� trt2.

In some cases, one transition alone does not give much information about the be-
havior of the net whereas a set of transitions together can give some information
about the behavior of the net. This relation is defined as in the following.

Definition 6. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ), λ)
be its unfolding and Ω be the set of all maximal runs. Let W,Z ⊆ T and W
extended-reveals Z, denoted W _tr Z, iff ∀ ω ∈ Ω

∧

t∈W
(ω ∩ Et 6= ∅) =⇒

∨

t∈Z
(ω ∩ Et 6= ∅)

We say that a set of transitions W extended-reveals another set of transitions
Z, if and only if each maximal run, which contains at least an occurrence of each
transition in W , also contains at least an occurrence of a transition in Z.

The reveals relation on transitions, t1 �tr t2, corresponds to the extended-
reveals relation between singletons, {t1}_tr {t2}.

Example 4. In the net shown in Fig. 3, t2 alone does not reveal t5, whereas t2
and t3 together tell us that t5 will fire, denoted as {t2, t3} _tr {t5}. In the
same net, the occurrence of t5 tells us that either t8 or t9 will fire, denoted as
{t5} _tr {t8, t9}. Similarly, {t7, t8} _tr {t10}, i.e., there is no maximal run
which includes occurrences of t7, t8 and not t10.
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Fig. 3.

In some cases, repeated occurrences of the same transition can give more infor-
mation about the behavior of a net than only one occurrence of that transition.
A relation based on this fact is defined in the following.

Definition 7. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ),λ) be
its unfolding and R be the set of all runs. Let t1, t2 ∈ T be two transitions of N ,
and n be a positive integer. Let Rn

ti = {ω ∈ R : |ω ∩ Eti | = n} and Ωn
ti denotes

the set of maximal runs in Rn
ti with respect to set inclusion (i.e., Ωn

ti ⊆ Rn
ti such

that if u, v ∈ Ωn
ti ∧ u ⊆ v then u = v).

If Ωn
t1 6= ∅ then t1 n-repeated reveals t2, denoted t1 Re

n
�tr

t2, iff ∀ω ∈
Ωn

t1 Et2 ∩ ω 6= ∅.
If Ωn

t1 = ∅ then t1 Re
n
�tr

t2 is not defined.

Notation. t1 Re
n
6�tr

t2 will denote that there is at least one run in Ωn
t1 such that

t1 appears n times and t2 does not appear. ¬(t1 Re
n
�tr

t2) will denote that either
t1 Re

n
�tr

t2 is not defined, or t1 Re
n
6�tr

t2.

Example 5. Let us consider N3 in Fig. 3. Transition t11 does not reveal t12,
however if the occurrence of t11 is observed twice then it is evident that t12
occurred, therefore t11 2-Repeated reveals t12, denoted t11 Re

2
�tr

t12, whereas
t11 Re

1
6�tr

t12 since after the first occurrence of t11, t14 can fire instead of t12.

Note that t11 Re
3
�tr

t12 and t11 Re
3
6�tr

t12 are both not defined since t11 can

fire at most twice, therefore in this case ¬(t11 Re
3
�tr

t12).

Proposition 1. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ),λ)
its unfolding and R be the set of all runs. Let t1, t2 ∈ T be two transitions of N ,

t1 Re
1
�tr

t2 =⇒ t1 �tr t2
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Proof. Let R1
t1 = {ω ∈ R : |ω ∩ Et1 | = 1} and Ω1

t1 be the set of maximal runs
in R1

t1 . If t1 Re
1
�tr

t2, then Ω1
t1 6= ∅ and ∀ω ∈ Ω1

t1 ω ∩ Et2 6= ∅. Let σ be an
arbitrary maximal run of Unf(N). Suppose that σ∩Et1 6= ∅ then we can always
take a run ω ∈ Ω1

t1 such that ω ⊆ σ. Then we know that σ contains at least one
occurrence of t2 and so t1 �tr t2. ut

Fig. 4.

However, the implication of the previous proposition does not hold in the other
direction. In fact, consider the net in Fig. 4, t1 �tr t2, t1 �tr t3, t1Re

1
6�tr

t2 and

t1Re
1
6�tr

t3. The main difference is that we consider only maximal runs for reveals
relation. For this net there is only one maximal run which contains t1 (twice), t2
and t3. However, there is a run in Ω1

t1 in which t1 appears and t2 does not appear,
as well as a run in which t1 appears and t3 does not appear. All runs in Ω2

t1 , i.e.,
including t1 twice, contain both t2 and t3, i.e., t1Re

2
�tr

t2 and t1Re
2
�tr

t3.

Proposition 2. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ),λ)
be its unfolding and R be the set of all runs. Let t1, t2 ∈ T be two transitions, if
t1 Re

n
�tr

t2 and Ωn+1
t1 6= ∅ then t1 Re

n+1
�tr

t2.

Proof. Let Rn
t1 = {ω ∈ R : |ω ∩ Et1 | = n} and Ωn

t1 be the set of maximal runs

in Rn
t1 . If t1 Re

n
�tr

t2, then Ωn
t1 6= ∅ and ∀ω ∈ Ωn

t1 ω ∩ Et2 6= ∅. Let σ ∈ Ωn+1
t1 ,

we can always choose a run ω ∈ Ωn
t1 such that ω ⊆ σ. Then we know that

σ ∩ Et2 6= ∅, so t1 Re
n+1
�tr

t2. ut

4 Non-interference

In this section, before introducing the new notions, we briefly recall the most
used non-interference notions in the literature and discuss our motivation for
introducing new non-interference notions based on reveals and excludes relations.

The notions recalled in the following are based on some notion of low ob-
servability of a system. It is what can be observed of a system from the point of
view of low users.
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There are mainly two kinds of information flows that non-interference notions
deal with. These are positive information flow and negative information flow. A
positive information flow arises when the occurrence of a high level transition
can be deduced from the low level behavior of the system, whereas a negative
information flow is concerned with the non-occurrences of a high transition.

Fig. 5. Relation between some existing interference notions in the literature.
SNNI≡NDC, BSNNI ⊆SNNI, SBNDC ≡ BNDC ≡ PBNI+ ⊆ BSNNI, PBNI⊆PBNI+
(see [7])

In the following, we will use acronyms to denote the set of nets satisfying the
corresponding security notion.

The less restrictive notion, introduced in [6, 3] and also studied on 1-safe
Petri nets in [7], is Strong Nondeterministic Non-Interference (SNNI). It is a
trace-based property (trace as sequence of event occurrences), that intuitively
says that a system is secure if what the low part can see does not depend on
what the high level part does. If a net system N is SNNI secure, then it should
offer, from the low point of view, the same traces as the system where the high
level transitions are prevented. In SNNI secure systems, information can flow
from low to high but not from high to low. A different characterization of the
same notion, called Non-Deducibility on Composition (NDC), is given in [7].

While SNNI is based on trace equivalence, the more restrictive notions Bisim-
ulation based Strong Nondeterministic Non-Interference (BSNNI) and Bisimu-
lation based Non-Deducible on Composition (BNDC) are based on bisimulation.

Strong Bisimulation based Non-Deducible on Composition (SBNDC) is an
alternative characterization of BNDC [6, 3]. In fact, Busi and Gorrieri in [7]
show that BNDC is equivalent to SBNDC, and it is stronger than BSNNI.

Another non-interference notion called Place Based Non-Interference (PBNI)
was introduced in [7]. It is based on the absence of some kinds of specific places
in the net, namely causal and conflict places. A causal place is a place between
a low transition and a high transition such that the low transition consumes the
token from the place which was produced by the high transition. A conflict place
is a place such that at least one low transition and one high transition consume
a token from it. A net is considered to be PBNI secure in the absence of such
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places. In [7], it is shown that if a net is PBNI secure then it is also SBNDC
secure.

In [12], a similar notion, called Positive Place Based Non-Interference (PBNI+),
is proposed by introducing the notions of active causal and active conflict places.
PBNI+ is weaker than PBNI and it coincides with SBNDC.

The overall relationship between these mentioned notions is illustrated in
Fig. 5. In the rest of the paper, we will refer only to the notions which are
illustrated in the figure since the others are equivalent to those.

With respect to the above mentioned different kinds of information flow,
SNNI, BSNNI and PBNI+ deal with positive information flow, whereas PBNI
deals also with negative information flow.

All these notions seem to aim mainly at deducing past occurrences of high
transitions, for example they all consider system N6 in Fig. 7 secure, whereas, by
considering progress, after the occurrence of l, a low user deduces h is inevitable
and therefore N6 is not secure with respect to the ability of deducing information
about the future behavior.

Differently from the previous notions, the ones we are going to propose do
not only capture information flow about past occurrences of high transitions,
but also information flow about inevitable or impossible future occurrences of
high transitions.

Fig. 6. A net modeling paper submission and evaluation.

In some cases, the mere ability to deduce that some high transition has
occurred is not a security threat, provided the low user cannot know which one
occurred.

Let us illustrate this issue with the help of an example. The net in Fig. 6 rep-
resents a system in which a user can repeatedly submit a paper to a committee,
each time receiving a judgment (accept or reject). The black squares represent
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high transitions. The review process can follow either of two paths, and we do
not want the user to know which one was chosen. When the user receives an
answer, he knows that some high transition occurred, however he cannot infer
which one.

For this reason, the new notions we are going to introduce in the following
will consider such a system secure, whereas it is not secure with respect to SNNI,
and the other above recalled notions.

In the sequel, the set of high transitions will be denoted by H and the set of
low transitions will be denoted by L.

4.1 Non-Interference Based on Reveals

Reveals-based Non-Interference accepts a net as secure if no low transition reveals
any high transition.

Definition 8. Let N = (P, T, F,m0) be a Petri net, T = H ∪ L, H ∩ L = ∅,
L,H 6= ∅. N is secure with respect to Reveals-based Non-Interference (RNI) iff
∀l ∈ L ∀h ∈ H: l 6� trh.

Fig. 7.

Example 6. N4 in Fig. 6 is RNI secure. N5 and N6 in Fig. 7 are not secure with
respect to RNI, since in both nets a low transition reveals a high transition,
i.e., l �tr h. An observer who knows the structure of the net can deduce that
h has already fired in N5 by observing l. For N6, again by observing l, he can
deduce that h will fire. N7 in Fig. 7 is also not secure in this context because
the observation of l1 tells the observer that h has already fired or will fire since
l2 cannot fire anymore.

With RNI, we are able to capture positive information flow. Moreover, we not
only capture past occurrences of high transitions but also future occurrences,
and this is because of the progress assumption.
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Although it is useful to capture positive information flow, RNI is not able
to capture the negative information flow. N8 in Fig. 7 is considered to be secure
with respect to RNI since it cannot capture the flow between h and l. However,
an observer could deduce that h has not fired and will not fire in the future by
observing the occurrence of l. In Section 4.4 we will introduce a notion which
deals with this kind of information flow.

4.2 Non-Interference Based on Extended-Reveals

As explained in Section 3, in some cases, a transition does not tell much about the
behavior of the net, whereas a set of transitions together gives some more infor-
mation. Extended-reveals deals with this relation between transitions of a Petri
net. We propose to use this relation in order to define a new non-interference no-
tion in which the occurrences of a set of low transition together give information
about some high transitions.

Definition 9. Let N = (P, T, F,m0) be a Petri net, T = H ∪ L, H ∩ L = ∅,
L,H 6= ∅, |L| ≥ k ≥ 1. N is secure with respect to k-Extended-Reveals based
Non-Interference (k-ERNI) iff ∀{l1, ..., lk} ⊆ L ∀h ∈ H, {l1, ..., lk} 6_ tr{h}.

N is ERNI secure if it satisfies the above condition for k = |L|.

Intuitively, we say that a net is k-ERNI secure, if an attacker is not able to
deduce information about the hidden part of the net by observing occurrences
of k low level transitions. If a net is k-ERNI secure then it is secure with respect
to all n-ERNI where 1 ≤ n ≤ k.

Fig. 8.

Example 7. N9 in Fig. 8 is not secure with respect to 2-ERNI. When l2 and l3
occur, a low level observer can deduce that h will occur, i.e., {l2, l3} _tr {h}.
In this net, the occurrence of only one low transition does not give sufficient
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Fig. 9.

information about any high transitions, whereas the occurrence of two low level
transitions together does. In the net in Fig. 9, no low transition alone reveals a
high transition as well as no pair of low level transitions reveals a high transition.
However, {l2, l4, l6} _tr {h1}, i.e., a low user, observing that all these three
transitions occurred, can deduce that h1 will inevitably occur. Thus, this net is
2-ERNI secure whereas it is not 3-ERNI secure.

Obviously, 1-ERNI coincides with RNI, where no low transition alone reveals
a high transition. Moreover, k-ERNI ⊆ RNI, for k ≥ 1. N9 is RNI secure since
none of the low transitions reveals a high transition alone.

4.3 Non-Interference Based on Repeated-Reveals

Another case can be the one in which an attacker is not able to deduce informa-
tion by observing low transitions and this is because only repeated occurrence
of a low transition gives information about the hidden part of the net. Thus, we
assume that the attacker can count the occurrences of low transitions and so he
can deduce information about the high transitions.

Definition 10. Let N = (P, T, F,m0) be a Petri net, T = H ∪ L, H ∩ L = ∅,
L,H 6= ∅. Let Unf(N) be the unfolding of N , where Unf(N) = ((B,E, F, c0), λ), λ :
B ∪ E → P ∪ T . Let n > 0.

N is secure with respect to n-Repeated-Reveals based Non-Interference (n-
ReRNI) iff ∀l ∈ L ∀h ∈ H ∀m ≤ n ¬(l Rem�tr

h).
N is ReRNI, iff it is n-ReRNI for all n > 0.

Proposition 3. n-ReRNI =⇒ (n− 1)-ReRNI

The proof follows from the definition.

Example 8. N10 in Fig. 8 is not 2-ReRNI secure. Although the first occurrence
of l1 does not reveal a high transition, by observing its second occurrence an
observer can deduce that h2 occurred. However, the net is RNI secure as well
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Fig. 10.

as ERNI secure. In the net in Fig. 10, an observer cannot infer about the high
transitions by observing l1 occurring only once. Also the second occurrence of l1
does not tell the observer which high transition occurred or will occur. However,
the observer can deduce that h2 has already occurred or will occur inevitably if
he observes three occurrences of l1. Therefore, this net is 2-ReRNI secure but
it is not 3-ReRNI secure. Note that if the transition h3 was absent then every
maximal run would include at least one occurrence of h2 and then, even without
observing l1, the occurrence of h2 would be inevitable.

The following proposition is directly derived from Prop. 1.

Proposition 4. If a net is RNI secure then it is 1-ReRNI secure.

However, the previous implication does not hold in the opposite direction.
Consider the net in Fig. 4 and let t1 be a low transition, t2 and t3 be high
transitions. This net is 1-ReRNI secure since the first occurrence of t1 does not
reveal information about t2 and t3, as discussed in Example 5. However the net
is not RNI secure since t1 �tr t2 and t1 �tr t3. Note that this net is not secure
with respect to 2-ReRNI since the second occurrence of t1 reveals both t2 and
t3, i.e. t1 Re

2
�tr

t2 and t1 Re
2
�tr

t3.
Although k-ERNI and n-ReRNI are not comparable since they are para-

metric notions which are based on observing different things (for k-ERNI it is
observation of occurrences of different low transitions together whereas for n-
ReRNI it is observation of multiple occurrences of the same low transition) there
are nets which are secure with respect to both and which are secure with respect
to only one of them.

Both k-ERNI and n-ReRNI catch positive information flow about the past or
future occurrences of high transitions, whereas they allow negative information
flow. In the following we will introduce a notion considering both positive and
negative information flow.
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4.4 Positive/Negative Non-Interference Based on Reveals and
Excludes

Until now we explored positive information flow on Petri nets. In order to catch
negative information flow which is related to non-occurrence of high transitions,
we need to consider the excludes relation between low and high transitions, as
introduced in Def. 4.

Definition 11. Let N = (P, T, F,m0) be a Petri net, T = H ∪ L, H ∩ L = ∅,
L,H 6= ∅. N is secure with respect to Positive/Negative Non-Interference (PNNI)
iff ∀l ∈ L ∀h ∈ H, l 6� trh and ¬(l ex h).

If in a Petri net N , no low transition reveals a high transition and no low
transition excludes a high transition, N is considered to be PNNI secure. PNNI
is stronger than RNI, i.e., PNNI ⊆ RNI, and this follows directly from the
definitions. In order to be PNNI secure, a net has to be RNI secure (no low
transition reveals a high transition) and to satisfy an additional requirement (no
low transition excludes a high transition).

Fig. 11.

Example 9. Both N11 and N12 in Fig. 11 are not PNNI secure since a low
transition l1 excludes a high transition h. Thus, by observing occurrence of l1,
an observer can deduce that h did not occur and will not occur.

N13 in Fig. 12 is not secure with respect to PNNI because of the negative
information flow, i.e., l2 excludes h1 as well as it excludes h2. An observer can
deduce that none of the high transitions occurred and they will not occur in the
future by observing l2 or l3. This net is RNI, ERNI and ReRNI secure.

In the same figure, N14 is a PNNI secure Petri net. No low transition reveals
a high transition as well as no low transition excludes a high transition. However
an observer is able to deduce that h1 will occur inevitably by observing the
occurrences of both l2 and l3, i.e., {l2, l3} _tr {h1}. In other words, this net is
not 2-ERNI while it is RNI and ReRNI secure.
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Fig. 12.

As seen in the previous example, PNNI is strictly stronger than RNI.
PNNI and k-ERNI are intersecting for any k, PNNI ∩ k-ERNI 6= ∅, PNNI

\ k-ERNI 6= ∅, k-ERNI \ PNNI 6= ∅. None of them is stronger than the other
one. The net N15 in Fig. 13 is both ERNI and PNNI secure, whereas N16 in
Fig. 13 is not PNNI secure, however it is ERNI secure. N14 of Fig. 12 is PNNI
secure, whereas it is not secure with respect to 2-ERNI as it is discussed in
example 9.

PNNI and n-ReRNI are also intersecting for any n. A net which is both
PNNI and ReRNI secure is the one in Fig. 6. The net in Fig. 10 is not secure
with respect to 3-ReRNI whereas it is PNNI secure. If we add to the net another
low transition l2 which consumes a token from p5, the net becomes not secure
with respect to PNNI as well as with respect to RNI, since l2 reveals h1.

Fig. 13.
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5 Comparison of Non-interference Notions

We have introduced new notions of non-interference for Petri nets. These no-
tions are based on the reveals and the excludes relations and on the progress
assumption.

One major difference between these notions with the existing ones, recalled
in Section 4, is that the new notions explicitly consider the information flow both
about the past and the future occurrences of high transitions. For example, if
a low user can tell that the occurrence of a high transition is inevitable in the
future, such a system is considered to be not secure according to the notions we
have here introduced, whereas it is considered secure by the old notions such as
SNNI, BSNNI, PBNI+ and PBNI. Similarly, for the negative information flow,
we consider both past and future non-occurrences of high transitions.

Another important difference is shown by N4 in Fig. 6. This net is not secure
according to SNNI even if a low user cannot infer which high transitions actu-
ally occurred. On the other hand, it is secure with respect to all non-interference
notions based on reveals and excludes, since these require the capability of dif-
ferentiating among the high transitions.

Moreover, the notions recalled in Section 4 are defined for 1-safe Petri nets,
whereas RNI, k-ERNI, n-ReRNI and PNNI are defined for general Petri nets.

Fig. 14.

Figure 14 illustrates the relation between our notions and the other notions we
have discussed so far. For the sake of simplicity, we only consider the weakest
(SNNI ) and the strongest (PBNI ) notions from the ones recalled in Section 4.
with the weakest of the new notions, i.e., RNI, and with the intersection set,
denoted R-E in Fig. 14, of the new notions RNI, k-ERNI, n-ReRNI and PNNI.

We will examine three examples to discuss the differences of these classes.
A net which is secure with respect to all notions based on reveals and excludes

and which is not secure with respect to SNNI is denoted by X in Fig. 14 and
it is the one in Fig. 6. We consider this net secure since an observer cannot
differentiate among the high transitions even if he can know some high actions
have been performed (or will be performed). However, this net is not secure with
respect to SNNI.
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The net denoted by Y in Fig. 14 is secure with respect to all non-interference
notions based on reveals and excludes as well as with respect to PBNI. This
net can be N15 in Fig. 13. This net is secure since no low transition reveals
a high transition (alone or together with another transition) as well as no low
transition excludes a high transition. Thus there is neither positive nor negative
information flow. It is also secure with respect to PBNI due to the fact that
there is no active causal or active conflict place.

Two nets which are secure with respect to PBNI but not secure with respect
to any of the non-interference notions based on reveals and excludes, denoted
by Z in Fig. 14, are for example N6 in Fig. 7 and N12 in Fig. 11.

6 Conclusion

In this paper, we have proposed several new notions of non-interference for Petri
nets, and compared them with notions already proposed in the literature. In this
approach, the transitions of a system net are partitioned into two disjoint sets:
the low and the high transitions. A system net is considered secure, or free from
interference, if, from the observation of the occurrence of a low transition, or a
set of low transitions, it is not possible to infer information on the occurrence of
a high transition. Our new non-interference notions rely on net unfolding and on
two relations among transitions. The first one is an adaptation to Petri nets of
the reveals relation, previously defined on occurrence nets and not yet considered
in this context; in particular we have introduced a class of parametrized reveals
relations for Petri nets. The second relation is called excludes and it has been
introduced here with the aim of capturing negative information flow.

The notion of RNI states that a net is secure if no low transition reveals any
high transition. We have shown that this notion captures some situations which
were not captured by the existing notions. We also propose more restrictive
notions: k-ERNI based on observing occurrences of multiple low transitions and
n-ReRNI based on the ability of the low user to count the occurrences of a low
transition.

By adding the excludes relation to the picture, we allow one to infer negative
information, namely the fact that a high transition has not occurred and will
not occur. This is the basis of PNNI. The paper includes a comparison between
the notions introduced here and those found in the literature on the subject.

The notions proposed in this paper, and further variants of them, should now
be tested on more realistic cases. Our aim is to build a collection of different
non-interference properties, so that a system designer, or a system analyzer, can
choose those more appropriate to a specific case. A generalization could be a non-
interference notion based on a parametric reveals relation between multisets of
transitions.

We are currently starting to explore algorithms to check non-interference. In
particular, along a similar line to that followed in [13], we are evaluating the use
of finite prefixes of the unfoldings of nets.
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We are also interested in further investigating the excludes relation and the
possibility to apply it in different contexts.
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