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Preface

These are the proceedings of the International Workshop on Petri Nets
and Software Engineering (PNSE’15), which also includes the papers of the
International Workshop on Petri Nets for Adaptive Discrete Event Control
Systems (ADECS’15) in Brussels, Belgium, June 22–23, 2015.

They are co-located events of Petri Nets 2015, the 36th International Con-
ference on Applications and Theory of Petri Nets and Concurrency and ACSD
2015, the 16th International Conference on Application of Concurrency to Sys-
tem Design. More information about the workshops can be found at:

For PNSE’15:

http://www.informatik.uni-hamburg.de/TGI/events/pnse15/

For ADECS’15:

http://adecs2015.cnam.fr/

PNSE’15 preface:
For the successful realisation of complex systems of interacting and reactive

software and hardware components the use of a precise language at different
stages of the development process is of crucial importance. Petri nets are be-
coming increasingly popular in this area, as they provide a uniform language
supporting the tasks of modelling, validation, and verification. Their popular-
ity is due to the fact that Petri nets capture fundamental aspects of causality,
concurrency and choice in a natural and mathematically precise way without
compromising readability.

The use of Petri Nets (P/T-Nets, Coloured Petri Nets and extensions) in
the formal process of software engineering, covering modelling, validation, and
verification, will be presented as well as their application and tools supporting
the disciplines mentioned above.

ADECS’15 preface:
The new generation of Discrete Event Control Systems (DECS) is address-

ing new important criteria as flexibility and agility. This year concentrated on
Dynamic Software Architectures and Adaptable Systems.
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We included the papers of ADECS’15 in PNSE’15 and received more than
30 high-quality contributions. For each paper at least three reviews were pro-
vided. The program committees have accepted seven of them for full presenta-
tion. Furthermore the committee accepted eight papers as short presentations.
Several more contributions were submitted and accepted as posters.

The two invited talks are presented by

Fabio Gadducci (University of Pisa, Italy).
Nicolas Guelfi (University of Luxembourg, Luxembourg)

The international program committee of PNSE’15 was supported by the val-
ued work of following sub reviewers:

Thomas Brand,
Cesar Rodriguez,
Marisa Llorens,
Benjamin Meis,
Pedro Alvarez,
Marcin Hewelt and
Dimitri Plotnikov

Their work is highly appreciated.

Furthermore, we would like to thank our colleagues
in Hamburg, Germany, for their support in the compilation of the proceedings,
in Hagen, Germany, for the support with the CEUR handling and
in Brussels, Belgium, for their excellent and responsive organizational support.

Without the enormous efforts of authors, reviewers, PC members and the or-
ganizational team this workshop wouldn’t provide such an interesting booklet.

Thank you,

Daniel Moldt, Heiko Rölke and Harald Störrle (Chairs for PNSE’15) and
Kamel Barkaoui and Chadlia Jerad (Chairs for ADECS’15)
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Software Engineering and Modeling Education:
Problems and Solutions

Nicolas Guelfi

Faculté des Sciences, de la Technologie et de la Communication,
Université du Luxembourg, nicolas.guelfi@uni.lu

Abstract:

Mastering the development of software having the required quality level is a
complex task. Since 1968, the software engineering discipline has grown in order
to offer theories, methods and tools to software engineers to tackle this com-
plex task. The role of software engineering educators is to help the learners to
acquire competencies in those theories, methods and tools to better master the
production of quality products.

– After near than 50 years of development what is the status of software en-
gineering and modeling education?

– What are the attributes, threats and means for quality software engineering
education?

This talk will present the outcomes of an individual experience of 25 years
of teaching software engineering and modeling in computer science programs
at bachelor and master levels. A concrete educational software engineering and
modeling environment will be presented as one of the means to better educate
our engineers to our discipline and be prepared for facing their future professional
challenges.





Awareness and Control
in Adaptable Transition Systems?

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1,
Alberto Lluch Lafuente2, and Andrea Vandin3

1 Department of Informatics, University of Pisa, IT
2 DTU Compute, Technical University of Denmark, DK

3 Electronics and Computer Science, University of Southampton, UK

The CoDa approach. Self-adaptive systems are advocated as a solution to
the problem of mastering the complexity of modern software systems and the
continuous evolution of the environment where they operate. Self-adaptation is
considered a fundamental feature of autonomic systems, one that can specialise
to several other self-* properties, like self-configuration and self-optimisation.

Should the analysis favour a black-box perspective, a software system is called
“self-adaptive” if it can modify its behaviour in response to a change in its context.
On the contrary, white-box adaptation focuses on how adaptation is realised
in terms of architectural and linguistic mechanisms and usually promotes a
clear separation of adaptation and application logics. Our own approach [2, 5]
characterizes adaptivity on the basis of a precisely identified collection of control
data (CoDa), deemed to be interpreted as those data whose manipulation triggers
an adaptation. This view is agnostic with respect to the form of interaction
with the environment, the level of context-awareness, the use of reflection for
self-awareness. In fact, our definition applies equally well to most of the existing
approaches for designing adaptive systems. Overall, it provides a satisfactory
answer to the question “what is adaptation conceptually?”.

But “what is adaptation formally?” and “which is the right way to reason about
adaptation, formally?”. We are aware of only a few works (e.g. [8]) that address
the foundational aspects of adaptive systems, including their semantics and the
use of formal reasoning methods, and often only generic analysis techniques are
applied. An example of the possibilities of such technique is our approach [4] to
adaptive self-assembly strategies using Maude (and following precisely both [8]
and [2]), where we applied standard simulation and statistical model checking.

Adaptable Transition Systems. Building on the intuitions briefly discussed
above and on some foundational models of component based systems (like I/O
automata [7] and interface automata [1]), we proposed a simple formal model
based on a new class of transition systems [3], and we sketched how this definition
can be used to specify properties related to the adaptive behaviour of a system.
A central role is again played by control data, as well as by the interaction among
components and with the enviroment (not addressed explicitly in [2]).
? Research partially supported by the MIUR PRIN 2010LHT4KM CINA.



Let us recall that the steps of I/O and interface automata are labeled over
three disjoint sets of actions, namely input, output and internal actions. The
composition of two automata is defined only if certain disjointness constraints over
the sets of actions are satisfied, and it is obtained conceptually as a synchronous
composition on shared actions and asynchronous on the others, the differences
between the two models not being relevant at this level of abstraction.

Adaptable Transition Systems (ATSs) combine these features on actions
within an extended Kripke frame presentation, in order to capture the essence
of adaptativity. An ATS is a tuple A = 〈S,A, T, Φ, l, Φc〉 where S are the states,
A = 〈I,O,H〉 is a triple of three disjoint sets of input, output and internal actions,
and T ⊆ S ×A×S is a transition relation, where by A here we denote the union
I ] O ] H. Furthermore, Φ is a set of atomic propositions, and l : S → 2Φ is
a labeling function mapping states to sets of propositions. Finally, Φc ⊆ Φ is a
subset of control propositions, which play the role of the control data [2].

A transition s a→ s′ ∈ T is called an adaptation if it changes the control data,
i.e., if there exists a φ ∈ Φc such that φ ∈ l(s) ⇐⇒ φ 6∈ l(s′). Otherwise, it is
called a basic transition. An action a ∈ A is called a control action if it labels at
least one adaptation, and the set of all control actions is denoted by C.

The relationship between the action set C and the alphabets I, O and H
is arbitrary in general, but it could satisfy some pretty obvious constraints for
specific classes of systems. For example, an ATS A is self-adaptive if C ∩ I = ∅,
i.e., if all adaptations are under the control of the system. If instead C ⊆ I
the system is adaptable; intuitively, adaptations cannot be executed locally but
should be triggered by an external manager. Hybrid situations are possible as
well, when a system has both input and local control actions.

The composition operations on I/O automata can be extended seamlessly to
ATSs. They have been exploited to model the composition of an adaptable basic
componentAB and an adaptation managerAM that realizes the adaptation logics,
for example a control loop in the style of the MAPE-K architecture [6]. In this
case, natural well-formedness constraints could be expressed as relations among
sets of actions. For example, the manager controls completely the adaptivity
features of the basic component if CB ⊆ OM ; and if the manager itself is at least
partly adaptable (i.e., CM ∩ IM 6= ∅), a natural requirement to avoid circularities
would be that OB ∩ CM = ∅, i.e. that the basic component cannot govern the
adaptivity of the manager. Composition of ATSs will also be used to model
different kinds of aggregation of adaptive systems, like ensembles and swarms.

Summing up the talk. ATSs are a concrete instance of a methodological
approach to white-box adaptation for software systems. More precisely, the CoDa
approach we sketched in the first section provides the designer with a criterion
to specify where adaptation is located and, as a consequence, which parts of a
system have to be adapted. It assumes the possibility to inspect, to some extent,
the internal structure of a system, and requires to identify a set of control data,
which can be changed to adapt the component’s behaviour. Adaptation is the
run-time modification of such data.
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As described in the second section, ATSs extend interface automata by
equipping them with a set of control propositions evaluated on states, which
represent the formal counterpart of control data. As for control data, the choice
of control propositions is arbitrary but it imposes a clear separation between
the ordinary, functional behaviours and the adaptive ones. Control propositions
can then be exploited in the specification and analysis of adaptive systems,
formally recovering various notions proposed in the literature, such as adaptability,
feedback control loops, and control synthesis.

The talk presents ATSs and some applications, and it introduces an explicit
representation of awareness data, ideally intended as those “sensor” data that
are exploited at the control level in order to possibly enforce an adaptation.
Awareness and control data complement each other in answering the question
regarding where and when adaptation takes places: A clear identification of
awareness data helps selecting which artifacts indicate that it may be necessary
to perform an adaptation, and precisely stating when that may occur.

References
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ACM SIGSOFT Software Engineering Notes, vol. 26(5), pp. 109–120. ACM (2001)
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Unifying Patterns for Modelling Timed
Relationships in Systems and Properties

Étienne André and Laure Petrucci

LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité, France

Abstract. Specifying the correctness of complex concurrent and real-
time systems is a crucial problem. Many property languages have been
proposed to do so; however, these techniques often involve formalisms
not easily handled by engineers, and furthermore require dedicated tools.
We propose here a set of patterns that encode common specification or
verification components when dealing with concurrent real-time systems.
We provide a formal semantics for these patterns, as time Petri nets, and
show that they can encode previous approaches.

1 Introduction

In the past few decades, many formal languages for specifying and verifying
complex concurrent and real-time systems have been proposed. However, these
formalisms are not always easy to handle by industry engineers. Temporal logics
(e.g. [14,6]) offer a very powerful way of expressing correctness properties for
concurrent systems but they are often considered too complicated (and maybe
too rich as well) to be widely adopted by engineers. Furthermore, they generally
need advanced tools dedicated to model checking.

To overcome these difficulties, several pattern-based solutions have been pro-
posed. Patterns allow to identify frequent components of systems or properties
in a standardised manner and (sometimes) to compose them so as to build more
complex components. Here, we unify three sets of patterns proposed in the past.

In [11], patterns are proposed for modelling scheduling problems; they are
then translated into timed automata [4]. In [7], tasks scheduling for operational
planning is tackled. A coloured Petri net [10] model is then derived. Both
works address the specification of systems [11,7] whereas [5] proposes real-time
patterns for verification. These patterns are non-compositional, and do not aim
at exhaustiveness; on the contrary, they correspond to common correctness issues
met in the literature and in industrial case studies. They are translated to both
timed automata [4] and Stateful timed CSP [15] , and their verification reduces
to simple reachability checking.

Contribution In this paper, we unify previous approaches to propose a pattern-
based language for the specification of real-time systems and/or properties for
their verification. Each pattern has a syntax as human-readable as possible,
so that engineers non-experts in formal methods can use them. Furthermore,



we propose a Time Petri Net [13] semantics of these patterns for both system
models and properties. For verification, the patterns are thus translated into pure
reachability properties using simple observers, i.e. additional subsystems that
observe some system actions using synchronisation and may also use time. Hence,
their verification in practice avoids the use of complex verification algorithms or
dedicated tools, and tool developers can implement them at little cost.

Our patterns can be used for two distinct purposes:

1. specify a system, by means of simple English-like constructs, rather than
using complex formalisms. Nevertheless the translation of our patterns into
time Petri nets provides a formal model of the system.

2. verify a system (not necessarily specified by our patterns), by means of the
same syntax. In this situation, our patterns are again translated into time
Petri nets, and can be used to verify the system model by synchronisation on
transitions, and using the sole reachability of some “bad” place. This avoids
the use of complex model checking algorithms.

Even though the syntax is identical for both purposes, the translation into time
Petri nets for verification contains a few more places and transitions.

Related Work Concerning the specification of properties for verifying real-time
systems, temporal logics (e.g. [14,6]) and their timed extensions (e.g. [3] among
others) are by far the most commonly used, although many other formalisms
have been proposed. Much more expressive than our patterns, temporal logics
are more difficult to handle by non-experts. Furthermore, many tools do not
actually support their full expressiveness, but only some fragments.

The idea of reducing (some) properties to reachability checking is not new:
in [2], safety and bounded-liveness properties are translated into test automata,
equivalent to our notion of observers. Among the differences are i) the fact
that we do not only verify but also specify systems using our patterns, and
ii) the fact that (as in [5]) we exhibit commonly used patterns, whereas [2]
aims at completeness (the expressiveness of such reachability checking has been
characterised in [1]).

In [11], typical temporal constraints dedicated to modelling scheduling prob-
lems are identified, and then translated into timed automata. In [12], patterns for
specifying the system correctness are defined using UML statecharts, and then
translated into timed automata. As in our approach, their correctness reduces
to reachability checking. Differences include the choice of the target formalism
(time Petri nets for us) and the fact that our patterns can encode either the
system or its correctness property.

Outline First, Section 2 recalls the earlier definitions of patterns we base on. We
then propose our new set of patterns in Section 3, and formalise them using time
Petri nets in Section 4. The patterns of [11,7,5] are encoded using our unified
patterns in Section 5. Finally, Section 6 concludes and gives perspectives for
future work.
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2 Earlier Works

Earlier works we base on ([11,7,5]) are concerned on the one hand with causality
or timing relations between events, and on the other hand with patterns to
encode behavioural properties. Hence they address altogether different aspects
(model or property) that are nevertheless very intertwined.

2.1 Scheduling Patterns [11]

In [11], planning constraints are mapped into timed automata, using elementary
rules. A set of 17 interval-based temporal relations is defined. As in [11], we
group these 17 patterns in 6 categories.

The temporal relations [11] allow for stating timing constraints between tasks.
These tasks are composed of two events, that are the start and the end of the
task. Time is often specified as an interval (d,D), to express that an event
happens between d and D units of time w.r.t. its reference.

The temporal relations from [11] are the following ones (the words in brackets
are added in order to improve readability). The major ones (one per category)
are represented in Fig. 1.

1. “A [ends] before (d,D) B [starts]” (Fig. 1a)
2. “A meets B” [i.e. A ends exactly when B starts] (degenerated case of rule 1

with d = D = 0)
3. “B [starts] after (d,D) A [ends]” (inverse temporal relation of rule 1)
4. “B met by A” [i.e. A ends exactly when B starts] (degenerated case of rule 3

with d = D = 0, and inverse of 2)
5. “A starts before (d,D) B [starts]” (Fig. 1b)
6. “A starts B” [i.e. A starts exactly when B starts] (degenerated case of rule 5

with d = D = 0)
7. “B starts after (d,D) A [starts]” (inverse temporal relation of rule 5)
8. “A ends before (d,D) B [ends]” (Fig. 1c)
9. “A ends B” [i.e. A ends exactly when B ends] (degenerated case of rule 8

with d = D = 0)
10. “B ends after (d,D) A [ends]” (inverse temporal relation of rule 8)
11. “A starts_before_end (d,D) B”, i.e. A starts (d,D) time units before B

ends (Fig. 1d)
12. “T2 ends_after_start (d,D) T1”, i.e. B ends (d,D) time units after A starts

(inverse temporal relation of rule 11)
13. “A contains ((d1, D1)(d2, D2)) B”, i.e. A starts (d1, D1) time units before B

starts, and A ends (d2, D2) time units after B ends (Fig. 1e)
14. “B contained_by ((d1, D1)(d2, D2)) A” (inverse temporal relation of rule 13)
15. “A equals B” (degenerated case of rule 13 with d1 = D1 = d2 = D2 = 0)
16. “A parallels ((d1, D1)(d2, D2)) B”, i.e. A starts (d1, D1) time units before B

starts, and A ends (d2, D2) time units before B ends (Fig. 1f)
17. “B paralleled_by ((d1, D1)(d2, D2)) A” (inverse temporal relation of rule 16)
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Fig. 1: Some temporal planning constraints

2.2 Patterns for Operational Planning [7]

As in [11], [7] was concerned with tasks scheduling for operational planning, each
task having a beginning and an end. Both of these can be timely related to those
of another task, as stated in the grammar and figures below.

// synchronisation between tasks
synch = BilateralSynch | UnilateralSynch
// lists of tasks
Tasks = task | Tasks, task

The synchronisation between tasks can be either bilateral (the execution of
any of them is related to the execution of the others), or unilateral (the execution
of a task is related to that of the other one, but the converse is not true).

In other words, in a bilateral synchronisation, all tasks occur or none of them
does. Note that in [7] tasks can synchronise either at their beginning (i.e. they
start together) or at their end (i.e. they finish at the same time). In this paper, we
will be interested in events (beginning or end) and not in a full task. Therefore,
bilateral synchronisation only specifies a set of interrelated events.

BilateralSynch = BILATERALSYNCH(Tasks)
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Fig. 2: Bilateral synchronisation between tasks A and B, on their start date.

Fig. 2 depicts the bilateral synchronisation BILATERALSYNCH(A,B).
When the synchronisation is unilateral, a task occurs w.r.t. either a timing

or another task, possibly with a delay.

UnilateralSynch = Relation(task1, task2, delay)
| Relation(task, delay)

Relation = AFTER | BEFORE | AT

Examples in Fig. 3 depict the following relations:

(a) AT(A,10): task A starts at time 10;
(b) AFTER(A,10): task A starts after time 10;
(c) AT(A,B,15): task A begins 15 units of time after the end of task B;
(d) AFTER(A,B,10): task A begins at least 10 units of time after the end of

task B.

2.3 Observer Patterns for Real-Time Systems

In [5], we proposed a set of observer patterns encoding common properties en-
countered when verifying concurrent real-time systems. These patterns are based
on observers, hence can be translated into pure reachability problems, thus
avoiding the use of complex verification algorithms. These patterns are non-
compositional, do not aim at completeness, but rather at exhibiting common
properties met in the case studies of the literature.

The main patterns from this section are depicted in Fig. 4 where the arrows
show that the occurrence of an event implies the occurrence of the related event.

BeforeDeadline The first pattern relates an event with an absolute timing.

BeforeDeadline = a no later than d
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Fig. 4: Some observer patterns for real-time systems

Precedence The following patterns allow for expressing the precedence of the
current event by another, with or without an explicit time frame.

The cyclic version of these patterns denotes that a pattern is repeatedly
valid, whereas in the strict cyclic version the pattern is not only repeatedly
valid, but no event mentioned in the pattern can happen in between (i.e. the
events mentioned in the pattern are alternating).

The precedence pattern requires that, whenever event a2 happens, then
the event a1 must have happened before (at least once). Note that a2 is not
required to happen. In the CyclicPrecedence pattern, every time a2 happens,
then the event a1 must have happened before (at least once) since the last
occurrence of a2. In the strict cyclic version, every time a2 happens, then event
a1 must have happened exactly once since the last occurrence of a2, i.e. a1 and
a2 alternate. (They do not need to alternate forever though.) For example, in
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the CyclicPrecedence, the sequence a1 a1 a2 can happen but not a1 a2 a2,
while in the StrictCyclicPrecedence none of them can happen.

This pattern is extended to a timed version in a straightforward manner.

Precedence = if a2 then a1 has happened before
CyclicPrecedence = everytime a2 then a1 has happened before
StrictCyclicPrecedence = everytime a2 then

a1 has happened exactly once before

TimedPrecedence = if a2 then
a1 has happened
at most d units of time before

CyclicTimedPrecedence = everytime a2 then
a1 has happened
at most d units of time before

StrictCyclicTimedPrecedence = everytime a2 then
a1 has happened exactly once
at most d units of time before

Response Expressing that the current event will be followed by a response is
formulated by the following pattern. This pattern is equivalent to the “even-
tually” in linear temporal logics. None of the two events is required to happen;
however, if the first one does, then second must eventually happen too. The cyclic
and strictly cyclic versions are defined as for precedence. A timed extension (as
in timed temporal logics) is also defined.

EventualResponse = if a1 then eventually a2
CyclicEventualResponse = everytime a1 then eventually a2
StrictCyclicEventualResponse = everytime a1 then

eventually a2 once before next a1

TimedResponse = if a1 then eventually a2 within d
CyclicTimedResponse = everytime a1 then eventually a2 within d
StrictCyclicTimedResponse = everytime a1 then

eventually a2 within d
once before next a1

Sequence Events can also be ordered as a sequence. None of the n events is
required to happen; however, if some (or all) do, then they must follow exactly
the order defined by the sequence. The cyclic version is straightforward. However,
no strict cyclic version is defined, as it would be identical to the cyclic version.

Sequence = SEQUENCE a1, ..., an
CyclicSequence = always SEQUENCE a1, ..., an
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eventlist =
eventlist EVENT

| EVENT

interval = (d, D) | [d, D] | [d, D) | (d, D]
timing = WITHIN interval

simplePattern =
EVENT AT timing

| EVENT EVENTUALLY timing EVENT
| EVENT timing AFTER EVENT
| SEQUENCE (eventlist)

pattern =
pattern OR simplePattern

| pattern AND simplePattern
| ALWAYS simplePattern
| simplePattern

SYNTACTIC SUGAR:
AT LEAST d = WITHIN [d, infinity)
AT MOST d = WITHIN [0, d]
EXACTLY d = WITHIN [d, d]

Fig. 5: A grammar for unified patterns

Unreachability The last pattern of [5] is rather different from others, as it
only expresses the model safety (i.e. non-reachability of a undesired state). It
was considered in [5] because this property is by far the most commonly met in
case studies from the literature, and because all other patterns can be reduced
to (non-)reachability.

Unreachable = UNREACHABLE(Bad)

3 Towards a More Complete Patterns Language

The primitives in the grammars of Section 2.1 and Section 2.2 are dedicated
to temporal or causal relations between tasks which are characterised by both
their starting and ending times. But, in practice, most systems are concerned
with individual events, as is the case in [5]. We present in this section a unified
version of patterns previously introduced. We will show in Section 5 that our
patterns subsume the primitives from Section 2.

We introduce a grammar for unified patterns Fig. 5. Our grammar considers
individual events that can form a list of events in order to construct a sequence.
The timing of events can be specified as being within a time frame (from d to
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D time units, where d ∈ R+ and D ∈ R+ ∪ {∞}). The only restriction is that
the interval [d,D] 6= [0,∞) (see Remark 1 infra).

Simple patterns express basic relations between individual events. An event
can happen w.r.t. an absolute timing constraint. An event can eventually entail
the occurrence of another event w.r.t. some timing constraint. Conversely, an
event can occur only w.r.t. a timing after another event already occurred. Events
can be ordered in a sequence, thus all occurring one after another.

Simple Patterns The simple patterns contain four kinds of relationships, that
we describe in more details in the following.

The pattern fragment EVENT AT encodes an absolute timing; it is used to
describe events that must happen exactly at an (absolute) time.

The pattern fragment EVENT EVENTUALLY timing EVENT encodes that,
whenever the first event happens, then the second will eventually happen, with
the timing constraint specified by timing. That is, if the first event happens,
the second must happen. The converse is not true: if the second event happens,
the first one did not necessarily happen before.

The pattern fragment EVENT timing AFTER EVENT encodes that, whenever
the first event happens it is necessarily after the second one, together with some
timing constraint. For example, e2 WITHIN(d,D) AFTER e1 denotes that e2may
or may not happen, but if e2 happens, then it must be at least d and at most D
time units after the first occurrence of e1. Also note that, if e2 does not happen,
then e1 may or may not happen.

Finally, the SEQUENCE ensures that a list of events happen in the particular
order specified.

Complex Patterns Patterns can be combined in order to form more complex
ones. First, we can use Boolean AND and OR operators to express the conjunction
of patterns (i.e. both must be executed, for patterns expressing systems, or must
be valid, for patterns expressing the properties) or the disjunction (i.e. either
one of them can be executed/valid).

The ALWAYS is a sort of fixpoint, with a semantics similar as the notion of
“cyclic” pattern in [5]. That is, once the pattern has been executed / verified, then
it must again be executed / verified. This typically describes a cyclic behaviour.
We restrict here the ALWAYS pattern to simple patterns (simple pattern in
Fig. 5 ant not, e.g. pattern). The reason is on the one hand to keep our language
simple1, and on the other hand to make a translation to time Petri nets relatively
easy.

Finally, it is often convenient to use some syntactic sugar for expressing
timing constraints: AT LEAST, AT MOST and EXACTLY.

Remark 1 (untimed patterns). We could encode untimed patterns using our
timed patterns (by allowing a syntactic sugar construct UNTIMED = WITHIN [0,

1 Furthermore, while designing the patterns in [5], such ALWAYS-like properties were
only encountered in the literature on (very) simple patterns.
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infinity)), but we leave it out so as to keep the exposé simple. Indeed, although
this does not bring theoretical problems, the translation of the untimed patterns
into time Petri nets for verification purposes then exceeds the set of properties
that can be checked using sole unreachability. In particular, the negation of the
untimed “eventually” construct cannot be checked using the unreachability of
a “bad” state, but it becomes necessary to additionally check the reachability
of some “good state”; this was performed in [5]. Here, to keep the translation
simple, we temporarily leave out the untimed patterns. Formalising the untimed
patterns for the verification purpose will be performed in an extended version of
this work.

4 Semantics: Translation to Time Petri Nets

Time Petri nets [13] are Petri nets where transition are equipped with a time
interval, that specifies the minimum and maximum time for the transition to
be enabled before it actually fires. The different patterns in the grammar of
Fig. 5 are modelled as time Petri nets in Fig. 6a–6h. Let us now describe our
translation. We start with simple (i.e. non-compositional) patterns, and then go
for complex patterns (i.e. that rely on others).

Observers Let us recall the concept of observers, as formalised in [5]. Observers
are standard subsystems, with some assumptions. An observer must not have any
effect on the system, and must not prevent any behaviour to occur. In particular,
it must not block time, nor prevent actions to occur, nor create deadlocks that
would not occur otherwise. As a consequence, observers must be complete: in
the example of timed automata, all actions declared by the observer must be
allowed in any of the locations. Similarly, in time Petri nets, an observer must
be able to synchronise at any time with any of the actions used on its transitions.

General Idea of our Translation Recall that our patterns aim at encoding both
systems and properties. Although they are defined in a unified manner in Sec-
tion 3, they must be differentiated when formalised using time Petri nets. Indeed,
our patterns seen as properties reduce verification to simple reachability analysis
(as in [2,1,5]).

For the verification, we define a “bad” place (labelled in Fig. 6a–6h using
the “/” symbol); this place is assumed to be unique, i.e. one must fuse all
occurrences of this place when composing patterns. The verification can then be
carried out as follows: given a model of the system specified using time Petri
nets (but not necessarily specified using our specification patterns), and given a
property of the system specified using our patterns and translated into a time
Petri nets, we perform the synchronisation (on transitions) of the entire system.
Then, the property (expressed by the pattern) is satisfied iff the “/” place is
unmarkable, i.e. cannot be marked in any marking of the synchronised net.

In order to differentiate between the specification of systems and the specifi-
cation of properties, we depict in dotted red the places and transitions necessary
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to add to our translated patterns so as to be able to perform verification. In
other words, these dotted red places and transitions shall be omitted when spec-
ifying systems and not properties. Conversely, we depict in plain light blue the
places and transitions only necessary for the system specification, but that must
be omitted for the verification.
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Fig. 6: Translation of our patterns into time Petri nets
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Simple Patterns Fig. 6a gives the translation of the A AT WITHIN (d, D) pat-
tern. For the property, the translation is straightforward: a place is followed by
a timed transition with firing time [d,D] labelled with A. This correctly encodes
the fact that A must occur within [d,D] after the system start. (We assume
closed intervals in the remainder of the translation; open or semi-open intervals
can be handled similarly.) Concerning the verification, in addition to the cor-
rect behaviour, we need also to specify the bad behaviour, hence in this case
another transition that can occur only if the timing is not satisfied, leading to
the “bad” place. That is, the bad place is reachable iff the property is violated.
Additionally, for our pattern to be a good “observer” (i.e. that must not dis-
turb the system), it must be able to synchronise at any time with the system
on the transition the pattern declares (here only A). This explains the loop on
transition A on the right-hand side of Fig. 6a. (In fact, self-loops should also be
added to the bad place; we omit them for sake of space, but also because it is
less important to block the system once the property has been proved invalid.)

Pattern A1 EVENTUALLY WITHIN (d, D) A2 is modelled by the TPN in
Fig. 6b. For the specification, two cases are admitted: one where A1 is fired,
and one where it is not. Moreover the possibility of firing A1 depends on other
actions in the system which may put a token in the initial place of the pattern
(depicted by an incoming arrow). The additional places and transitions for the
verification counterpart of this pattern are explained as follows: the first self-
loop allows A2 to happen anytime as long as A1 has not happened. Then, if A2
happens strictly before or strictly after [d,D], the observer enters the bad place.
Otherwise, the property is satisfied, and both A1 and A2 can happen anytime,
which is depicted using the two self-loops.

The A2 WITHIN (d, D) AFTER A1 pattern (given in Fig. 6c) is similar to the
previous one but, in this case, it is not possible to have A2 without A1. As for the
verification, note that A2 cannot occur before A1, hence the transition between
the initial place and the bad place. Furthermore, several A1 may occur before A2
occurs: this is encoded using the second output from A1 and a self-loop. Thus
the time for firing A2 is counted from the first occurrence of A1. The rest of the
pattern is similar to the previous one.

The SEQUENCE(A1,A2,...,An) pattern is given in Fig. 6h. Naturally, it is
made of a sequence of transitions. Additionally, the verification version is such
that, as soon as a transition violates the order imposed by the sequence, the
system goes to the bad place. An additional self-loop in the last good place,
synchronising on any transition, makes the observer non-blocking.

Complex Patterns These patterns are used to combine the previous ones (even-
tually with complex patterns as well). In Fig. 6d to Fig. 6g, they are pictured in
dashed boxes, which would also include the “bad” place. For the specification, the
complex patterns are straightforward: they syntactically combine existing pat-
terns. For the verification, this is a little less simple: first, recall that all “bad”
locations must be fused into a single one. Second, the “and” verification pattern
becomes identical to the. . . “or” specification pattern: this is because the prop-
erty P1 AND P2 is violated if P1 is violated (i.e. the bad place is reachable in the
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corresponding pattern) or P2 is violated. The “or” pattern is not translated for
verification; this is because this cannot be checked with sole unreachability (see
Section 6). Concerning the ALWAYS pattern for verification, one must fuse the
last non-dotted place of the pattern (usually the right-most place in the figures)
with the initial place. However, the self-loops (generally on A1 and A2) on the
last non-dotted place must be removed.

Initial Marking In addition to the tokens introduced by the absolute time pat-
terns (A AT WITHIN (d,D)), a single initial token must be put in the top-most
pattern of the composed pattern expression. (We assume that, if the top-most
expression is a pattern A AT WITHIN (d,D), then no further token is added.)

5 Encoding Previous Patterns Using our Unified Patterns

In this section we show how all primitives from Section 2 can be expressed using
our new set of patterns.

In order to express the relations between tasks described in Section 2.1 and
Section 2.2 with these new primitives, a task A is transformed into two events,
specifying the task Beginning (A.start) and its end (A.end).

5.1 Encoding Patterns from [11]

The expression of patterns from Section 2.1 is summarised in Table 1.
Note that several rules are expressed identically. For example, rule 2 is re-

flecting the point of view from event A, and rule 4 the one of event B, while in
our patterns we express the relation as seen from an external observer.

5.2 Encoding Patterns from [7]

Table 2 shows the mapping for the patterns of Section 2.2.
Note that formula 5 implies that if B does not occur, neither does A. On the

contrary, if B occurs, A can occur or not. If it does, it is d units of time after B
ended. A similar remark applies to formula 6. Finally, in formula 7, A necessarily
occurs d units of time after the end of B.

5.3 Encoding Patterns from [5]

Patterns from Section 2.3 are presented in Table 3. Our translation is straight-
forward. The only “trick” is the translation of the “strict cyclic” patterns of [5],
that are encoded using both the cyclic version of these patterns (using ALWAYS)
and the SEQUENCE pattern, that requires A1 and A2 to alternate.

6 Conclusion

We proposed a unified pattern mechanism to both specify and verify real-time
systems, together with a semantics using time Petri nets. Our new set of patterns
unifies the patterns of [11,7,5] into a single homogeneous pattern language.
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Rule 1 A [ends] before (d,D) B [starts] B.start WITHIN (d,D) AFTER A.end
Rule 2 A meets B B.start EXACTLY 0 AFTER A.end
Rule 3 B [starts] after (d,D) A [ends] B.start WITHIN (d,D) AFTER A.end
Rule 4 B met by A B.start EXACTLY 0 AFTER A.end
Rule 5 A starts before (d,D) B [starts] B.start WITHIN (d,D) AFTER A.start
Rule 6 A starts B B.start EXACTLY 0 AFTER A.start
Rule 7 B starts after (d,D) A [starts] B.start WITHIN (d,D) AFTER A.start
Rule 8 A ends before (d,D) B [ends] B.end WITHIN (d,D) AFTER A.end
Rule 9 A ends B B.end EXACTLY 0 AFTER A.end
Rule 10 A ends before (d,D) B [ends] B.end WITHIN (d,D) AFTER A.end
Rule 11 A starts_before_end (d,D) B B.end WITHIN (d,D) AFTER A.start
Rule 12 B ends_after_start (d,D) A B.end WITHIN (d,D) AFTER A.start
Rule 13 A contains ((d1, D1)(d2, D2)) B B.start WITHIN (d1, D1) AFTER A.start

AND A.end WITHIN (d2, D2) AFTER B.end
Rule 14 B contained_by

((d1, D1)(d2, D2)) A
B.start WITHIN (d1, D1) AFTER A.start
AND A.end WITHIN (d2, D2) AFTER B.end

Rule 15 A equals B B.start EXACTLY 0 AFTER A.start AND
B.end EXACTLY 0 AFTER A.end

Rule 16 A parallels ((d1, D1)(d2, D2)) B B.start WITHIN (d1, D1) AFTER A.start
AND B.end WITHIN (d2, D2) AFTER A.end

Rule 17 B parallelled ((d1, D1)(d2, D2))
by A

B.start WITHIN (d1, D1) AFTER A.start
AND B.end WITHIN (d2, D2) AFTER A.end

Table 1: Encoding patterns from [11]

Future Works First, translating the untimed EVENTUALLY and the OR patterns
for verification purposes is in our agenda; this will be done by checking, not only
the unreachability of the bad, but also the reachability of a good place.

Second, more patterns from the literature should be integrated to our encod-
ing. Although we shall not develop too complex a pattern system, so as to avoid
giving birth to a complicated property language, the patterns in [12] seem inter-
esting to us. Furthermore, the patterns of [9] seem to fit directly in our unified
pattern systems, but this should be shown formally. It would also be interesting
to formally compare the expressiveness of our patterns with [2,1] or (subsets of)
temporal logics such as LTL/CTL.

Third, although it is relatively easy to convince oneself that we correctly
encoded the patterns of [11,7,5], formally proving their semantic equivalence
would be interesting. It would also be nice to provide tool support, helping a
designer to write patterns to model a system and its properties.

Finally, our translation to time Petri nets was done manually. An alternative
option would be to define an ad-hoc domain specific language (DSL), and then
to use model transformation techniques (such as in [8]) to obtain time Petri nets.
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Formula 1 BILATERALSYNCH(A,B) A.start EXACTLY 0 AFTER B.start
OR A.end EXACTLY 0 AFTER B.end

Formula 2 AT(A,d) A.start AT EXACTLY d
Formula 3 AFTER(A,d) A.start AT AT LEAST d
Formula 4 BEFORE(A,d) A.start AT AT MOST d
Formula 5 AT(A,B,d) A.start EXACTLY d AFTER B.end
Formula 6 AFTER(A,B,d) A.start AT LEAST d AFTER B.end
Formula 7 BEFORE(A,B,d) B.end EVENTUALLY AT MOST d A.start

Table 2: Encoding patterns from [7]
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Abstract. Negotiations have recently been introduced as a model of
concurrency with multi-party negotiation atoms as primitive. This paper
studies the relation between negotiations and Petri nets. In particular,
we show that each negotiation can be translated into a 1-safe labelled
Petri net with equivalent behaviour. In the general case, this Petri net
is exponentially larger than the negotiation. For deterministic negotia-
tions however, the corresponding Petri has linear size compared to the
negotiation, and it enjoys the free-choice property. We show that for this
class the negotiation is sound if and only if the corresponding Petri net
is sound. Finally, we have a look at the converse direction; given a Petri
net; can we find a corresponding negotiation?

Keywords: Negotiations, Petri nets, soundness, free-choice nets

1 Introduction

Distributed negotiations have been identified as a paradigm for process interac-
tion since some decades, in particular in the context of multi-agent systems. A
distributed negotiation is based on a set of agents that communicate with each
other to eventually reach a common decision. It can be viewed as a protocol
with atomic negotiations as smallest elements. Multiparty negotiations can em-
ploy more than two agents, both in the entire negotiation and in its atoms. A
natural way to formally model distributed negotiations is to model the behaviour
of the agents separately and then to model the communication between agents
by composition of these agent models. Petri nets and related process languages
have been used with this aim, see e.g. [2, 8, 7].

In [4, 5] we have introduced a novel approach to formally model negotia-
tions. We argue that this model is sometimes more intuitive than Petri nets
for negotiations, but it can also be applied to other application areas which are
based on the same communication principles. Like Petri nets, our formalism has
a graphical representation. Atomic negotiations are represented as nodes, with
a specific representation of the participating agents. Roughly speaking, the se-
mantics of a negotiation atom is that these agents, called participants of the
atom, come together (and are thus not distributed and do not need any commu-
nication means during the atomic negotiation) to agree on one of some possible



outcomes. Given an outcome, the model specifies, for each participating agent,
the next possible atomic negotiations in which it can participate. Agents have
local states which are only changed when an agent participates in a negotia-
tion. Atomic negotiations are combined into distributed negotiations. The state
of a distributed negotiation is determined by the atomic negotiations which the
agents can participate in next and by all local states. As in Petri nets, these two
aspects are carefully distinguished; the current next possible atomic negotiations
are represented as markings of negotiations.

Our previous contributions [4, 5] concentrate on the analysis of negotiations.
In particular, we studied the efficient analysis of well-behavedness of negotiations
by means of structural reduction rules. Our work was inspired by known reduc-
tion rules of Petri nets but leads to significantly better results when a translation
to Petri nets is avoided, at least for the general case. The present paper makes
the relation to Petri nets explicit, providing a translation rule from distributed
negotiations to Petri nets. It turns out that, for restricted classes of negotiations,
the corresponding Petri nets enjoy nice properties, and in this case the converse
direction is possible, too.

The paper is organised as follows. Section 2 repeats the syntax and semantics
of negotiations. Section 3 provides the translation to Petri nets with the same
behaviour. Section 4 discusses properties of these Petri nets. In Section 5 we show
that Petri nets enjoying these properties can be translated back to negotiations,
this way characterizing a class of Petri nets representable by negotiations.

2 Negotiations: Syntax and Semantics

We recall the main definitions of [4, 5] for syntax and semantics of negotia-
tions. Let A be a finite set (of agents), representing potential parties of a
negotiation. Each agent a ∈ A has a (possibly infinite) nonempty set Qa
of internal states with a distinguished subset Q0a ⊆ Qa of initial states.
We denote by QA the cartesian product

∏
a∈AQa. So a state is represented

by a tuple (qa1 , . . . , qa|A|) ∈ QA. A transformer is a left-total relation τ ⊆
QA × QA, representing a nondeterministic state transforming function. Given
S ⊆ A, we say that a transformer τ is an S-transformer if, for each ai /∈ S,
((qa1 , . . . , qai , . . . , qa|A|), (q

′
a1 , . . . , q

′
ai , . . . , q

′
a|A|)) ∈ τ implies qai = q′ai . So an

S-transformer only transforms internal states of agents in S or in a subset of S.
Internal states of agents and their transformers won’t play an important role

in this contribution. As will become clear later, states do not influence behaviour
in negotiations, i.e., we can consider the control flow and data aspects separately.
For the Petri net translation to be defined, local states and their transformers
can be modelled by means of token colours and transition modes, respectively,
i.e. by means of Coloured Petri nets. These Coloured Petri nets are without
guards, because guards restrict transition occurrences by regarding data values.
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2.1 Atomic Negotiations

Definition 1. An atomic negotiation, or just an atom, over a set of agents A is
a triple n = (P,R, δ), where P ⊆ A is a nonempty set of parties or participants
of n, R is a finite, nonempty set (results), and δ is a mapping assigning to each
result r ∈ R a P -transformer δ(r).

In the sequel, Pn, Rn and δn will denote the components of an atom n. For each
result r ∈ Rn, the pair (n, r) is called an outcome. The difference between results
and outcomes is that the same result can belong to different atoms whereas the
sets of outcomes are pairwise disjoint. If we choose disjoint sets for the respective
sets of results then we do not have to distinguish results and outcomes.

If the states of the agents before an atomic negotiation n are given by a tuple
q and the result of the negotiation is r, then the agents change their states to q′
for some (q, q′) ∈ δn(r). Only the parties of n can change their internal states.
However, it is not required that a Pn-transformer δn(r) actually changes the
states of all agents in Pn. Each result r ∈ Rn is possible, independent of the
previous internal states of the parties of n.

As a simple example, consider an atomic negotiation nFD with parties F (Fa-
ther) and D (teenage Daughter). The goal of the negotiation is to determine
whether D can go to a party, and the time (a number between 8 and 12) at which
she must return home. The possible results are {yes, no, ask_mother}. Both sets
QF and QD contain a state angry plus a state t for every time T1 ≤ t ≤ T2 in a
given interval [T1, T2]. The transformer δnFD includes

δnFD(yes) = { ((tf , td), (t, t)) | tf ≤ t ≤ td ∨ td ≤ t ≤ tf }
δnFD(no) = { ((tf , td), (angry , angry)) }

δnFD(ask_mother) = { ((tf , td), (tf , td)) }

where tf and td are variables used to denote that F is in state tf 6= angry and
D in state td 6= angry before engaging in the negotiation atom nFD. Moreover, if
one of the local states before the negotiation atom was angry, then δnFD specifies
that both agents will be angry after executing the atom.

If both parties are not angry and the result is yes, then F and D agree on a
time t which is not earlier and not later than both suggested times. If it is no,
then there is a quarrel and both parties get angry. If it is ask_mother, then the
parties keep their previous times.

2.2 Combining Atomic Negotiations

If the result of the atomic negotiation above is ask_mother, then nFD is followed
by a second atomic negotiation nDM between D and M (Mother). The combined
negotiation is the composition of nFD and nDM, where the possible internal states
of M are the same as those of F and D, and nDM is a “copy” of nFD, but without
the ask_mother result. In order to compose atomic negotiations, we add a tran-
sition function X that assigns to every triple (n, a, r) consisting of an atom n, a
participant a of n, and a result r of n a set X(n, a, r) of atoms. Intuitively, this

J. Desel, J. Esparza: Negotiations and Petri Nets 43



DF

M

F D M

MDF

D
y,n,am

st stst

nFD

am

y,n

y,n y,n

nDM

n0

nf

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

D

D MF

F D

D

F D M

M

n0

am

st

nf

st st

af

y,n y,n y,n

gu

afy,n c

am

nFD

nDM

nD

Fig. 1. An acyclic negotiation and the ping-pong negotiation.

is the set of atomic negotiations agent a is ready to engage in after the atom n,
if the result of n is r.

Definition 2. Given a finite set of agents A and a finite set of atoms N over A,
let T (N) denote the set of triples (n, a, r) such that n ∈ N , a ∈ Pn, and r ∈ Rn.
A (distributed) negotiation is a tuple N = (N,n0, nf ,X), where n0, nf ∈ N
are the initial and final atoms, and X : T (N) → 2N is the transition function.
Further, N satisfies the following properties:

(1) every agent of A participates in both n0 and nf ;
(2) for every (n, a, r) ∈ T (N): X(n, a, r) = ∅ iff n = nf .

The graph associated with N has vertices N and edges

{(n, n′) ∈ N ×N | ∃ (n, a, r) ∈ T (N) : n′ ∈ X(n, a, r)}.

The initial and final atoms mark the beginning and the end of the negotiation
(and sometimes this is their only role). We may have n0 = nf . In this case, due
to (2), N = {n0}, i.e, the negotiation has only one single atom. Notice that nf
has, as all other atoms, at least one result end ∈ Rnf

.

2.3 Graphical Representation of Negotiations

Negotiations are graphically represented as shown in Figure 1. For each atom
n ∈ N we draw a bar; for each participant a of Pn we draw a circle on the bar,
called a port. For each (n, a, r) ∈ T (N) with n 6= nf , a hyperarc leads from the
port of a in n to all the ports of a in the atoms of X(n, a, r), labelled by the result
r. Figure 1 shows on the left the graphical representation of a negotiation where
Father (F), Daughter (D) and Mother (M) are the involved agents. After the initial
atom n0, which has only one possible result st (start), the negotiation atoms
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sketched above take place. Notice that possibly Father and Daughter come to
an agreement without involving Mother. So the agents of a negotiation can be
viewed as potential participants, which necessarily participate only in the initial
and the final atom. Instead of multiple (hyper)arcs connecting the same input
port to the same output ports we draw a single (hyper)arc with multiple labels.
In the figure, we write y for yes, n for no, and am for ask mother. Since nf has
no outgoing arc, the results of nf do not appear in the graphical representation.

The negotiation on the right (ignore the black dots on the arcs for the mo-
ment) is the ping-pong negotiation, well-known in every family. The nDM atom
has now an extra result ask_father (af), and Daughter can be sent back and
forth between Mother and Father. After each round, D “negotiates with herself”
(atom nD) with possible outcomes continue (c) and give up (gu).

2.4 Semantics

A marking of a negotiation N = (N,n0, nf ,X) is a mapping x : A → 2N . Intu-
itively, x(a) is the set of atoms that agent a is currently ready to engage in next.
The initial and final markings, denoted by x0 and xf , are given by x0(a) = {n0}
and xf (a) = ∅ for every a ∈ A. Obviously, the set of markings is finite.

A marking x enables an atom n if n ∈ x(a) for every a ∈ Pn, i.e., if every
agent that participates in n is currently ready to engage in n. If x enables n,
then n can take place and its participants agree on a result r; we say that the
outcome (n, r) occurs. The occurrence of (n, r) produces a next marking x′ given
by x′(a) = X(n, a, r) for every a ∈ Pn, and x′(a) = x(a) for every a ∈ A \ Pn.
We write x

(n,r)−−−−→ x′ to denote this, and call it a small step.
We write x1

σ−→ to denote that there is a sequence

x1
(n1,r1)−−−−−→ x2

(n2,r2)−−−−−→ · · · (nk−1,rk−1)−−−−−−−−→ xk
(nk,rk)−−−−−→ xk+1 · · ·

of small steps such that σ = (n1, r1) . . . (nk, rk) . . .. If x1
σ−→ , then σ is an

occurrence sequence from the marking x1, and x1 enables σ. If σ is finite, then
we write x1

σ−→ xk+1 and say that xk+1 is reachable from x1. If x1 is the initial
marking then we call σ initial occurrence sequence. If moreover xk+1 is the final
marking xf , then σ is a large step.

As a consequence of this definition, for each agent a, x(a) is always either
{n0} or equals X(n, a, r) for some outcome (n, r). The marking xf can only be
reached by the occurrence of (nf , end) (end being a possible result of nf ), and
it does not enable any atom.

Reachable markings can be graphically represented by placing tokens (black
dots) on the forking points of the hyperarcs (or in the middle of an arc). Thus,
both the initial marking and the final marking are represented by no tokens, and
all other reachable markings are represented by exactly one token per agent.

Figure 1 shows on the right the marking in which Father is ready to engage
in the atomic negotiations nFD and nf , Daughter is only ready to engage in nFD,
and Mother is ready to engage in both nDM and nf .
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As mentioned before, the enabledness of an atom does not depend on the
internal states of the agents involved; it suffices that all agents are ready to
engage in this atom, no matter which internal states they have. Moreover, each
result of the atom is possible, independent from the internal states. A given
result then determines a state transformer and thus possible next states.

2.5 Reachability Graphs

As known from any family, an occurrence sequence of a negotiation can be arbi-
trarily long (see the ping-pong negotiation above). Therefore, the set of possible
occurrence sequences can be infinite. Since we have markings and steps, an ob-
vious way to describe behaviour with finite means is by reachability graphs:

Definition 3. The reachability graph of a negotiation N has all markings reach-
able from x0 as vertices, and an arc leading from x to x′ and annotated by (n, r)

whenever x
(n,r)−−−−→ x′. The initial marking x0 is the distinguished initial vertex.

Generally, atoms with disjoint sets of parties can proceed concurrently,
whereas atoms sharing a party cannot. Formally, if two outcomes (n1, r1) and
(n2, r2) are enabled by the same reachable marking x and Pn1

∩Pn2
= ∅ then the

outcomes can occur concurrently. The condition Pn1
∩ Pn2

= ∅ is also necessary
for concurrent occurrences of outcomes because, in our model, a single agent
cannot be engaged concurrently in two different atoms, and because two state
transformers cannot operate concurrently on the local state of an agent. Thus
concurrency between outcomes depends only on the involved atoms (and their
parties) and not on the results.

Concurrency is formally captured by the concurrent step reachability graph,
defined next. A concurrent step enabled at a reachable marking x is a nonempty
set of pairwise concurrent outcomes, each of them enabled by x. It is immediate
to see that all the outcomes of a concurrent step can be executed subsequently
in arbitrary order and that the marking finally reached does not depend on the
chosen order. We call this marking reached by the concurrent step.

Definition 4. The concurrent step reachability graph of a negotiation N has
all markings reachable from x0 as vertices. An arc, annotated by a nonempty
set of outcomes, leads from x to x′ whenever the outcomes of this set are pair-
wise concurrent and the concurrent step leads from x to x′. Again, x0 is the
distinguished initial vertex.

3 From Negotiations to Petri Nets

We assume that the reader is acquainted with (low-level) initially marked Petri
nets, the occurrence rule, reachable markings, liveness, and the graphical repre-
sentation of nets as directed graphs. For each place, there are directed arcs from
all input transitions to the place and directed arcs from the place to all output
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[D, nDM]

[F, nf ] [D, nf ]

[M, {nDM, nf}]

[M, nf ]

Fig. 2. Petri net semantics of the negotiation of Figure 1

transitions. Input places and output places of transitions are defined analogously.
A labelled Petri net is a Petri net with a labelling function λ, mapping transitions
to some set of labels. Graphically, the label λ(t) of a transition t is depicted as
an annotation of t.

3.1 Examples

The semantics of negotiations uses many notions from Petri net theory. In this
section, we provide a translation and begin with an example.

Figure 2 shows on the right the net for the negotiation shown on the left
(which was also shown in Figure 1). Since the number of places of the net equals
the number of ports of the negotiation, one might assume that the relation be-
tween ports and places is a simple one-to-one mapping. Moreover, the transitions
of the net have an obvious relation to the outcomes, i.e., to the results of the
negotiation atoms (if the two end-transitions are ignored).

Now we have a look at the two end-transitions of the Petri net. The
left transition refers to the last result of the negotiation’s occurrence se-
quence (n0, st), (nFD, am), (nDM, y), (nf , end), where end is a result of nf .
The right transition refers to the last result of the occurrence sequence
(n0, st), (nFD, y), (nf , end). Hence, roughly speaking, the left transition refers to
the left branch of the (only) proper hyperarc of the graphical representation of
the negotiation, and the right transition refers to the right branch.
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Fig. 3. A (not yet completely correct) negotiation for unanimous vote (all agents par-
ticipate in all atoms)

For a negotiation with more than one proper hyperarc, each occurrence se-
quence can involve a particular branching of a hyperarc (moreover, an atom can
occur more than once, leading to different branches of the same hyperarc). For k
hyperarcs with binary branching, this results in 2k possible patterns. As can be
seen in the following example, this can result in exponentially many transitions
of the associated Petri net.

Figure 3 shows a class of negotiations with parameter k, involving agents
a1, . . . , ak. These negotiations represent a distributed voting process. Each agent
votes with possible outcome yes or no (one-party-negotiations). For each yes-
outcome there are two possible next atoms, naccept and nreject, whereas for each
no-outcome nreject is the only possibility. So the atom naccept is only enabled
if all agents vote yes, while the atom nreject is always enabled when all agents
have voted.

A Petri net representing this behaviour necessarily has to distinguish the k
possible yes-outcomes and no-outcomes, because final acceptance is only possible
if all agents have accepted. So we need 2·k corresponding places, k for acceptance
and k for rejection. When all agents came to a result, one of 2k possible markings
is reached. Only for one of these markings (all agents accepted), final acceptance
is possible, and this will be represented by one transition. For each of the 2k − 1
alternative constellations, we need a separate transition to remove the tokens
and come to final rejection. So we end up with 2k transitions.

3.2 Formal Translation of Negotiations

We associate with a negotiation N = (N,n0, nf ,X) a (labelled) Petri net. The
places of this net are, for each atom n except nf , the pairs [a, S] such that
a ∈ Pn, r ∈ Rn, and X(n, a, r) = S, plus, for each a ∈ A, the pair [a, {n0}].
Observe that the number of places is linear in the size of N (which might exceed
|N | significantly, because, for each n in N , for each a in Pn and for each result
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r ∈ Rn we have a set of possible successor negotiations in X). In the sequel (and
in the figures) we write [a, n] instead of [a, {n}]. The initial marking assigns one
token to each place [a, {n0}] and no token to all other places.

The net has a set of transitions T (n, r) for each outcome (n, r). An input
place of a transition in T (n, r) reflects that a party of negotiation n is actually
ready to engage in n (and possibly in other atoms as well). For a single agent,
there might be more than one such place, resulting in several transitions. Each
transition in T (n, r) has input places referring to all involved parties, which
results in a transition for each combination of respective input places.

Formally, let Pn = {a1, . . . , ak}. T (n, r) contains a transition [n, r, L] for
every tuple L = ([a1, S1], . . . , [ak, Sk]) such that n ∈ S1 ∩ . . . ∩ Sk. The set
of input places of [n, r, L] is {[a1, S1], . . . , [ak, Sk]}, and its set of output places
is {[a1,X(n, a1, r)], . . . , [ak,X(n, ak, r)]}. All transitions of the set T (n, r) are
labelled by the outcome (n, r). They all have the same output places. Moreover,
they have the same number of input and output places, both of them equal to
the number of parties of n.

For the negotiation on the left of Figure 2, we get seven sets of transitions:
T (n0, st), T (nFD, y), T (nFD, n), T (nFD, am), T (nDM, y), T (nDM, n), and T (nf , end).
All of them are singletons, with the exception of T (nf , end), which contains the
two transitions shown at the bottom of the figure. In the figure, we annotate
transitions only by results r instead of outcomes (n, r). Notice that here we
assume a unique result end of nf .

Proposition 1. For each atom n 6= nf , each transition labelled by (n, r) has
exactly one input place [a,X] for each agent a ∈ Pn, and exactly one output
place [a, Y ] for each agent a ∈ Pn. Transitions labelled by (nf , end) have no
output places. ut

Corollary 1. For each agent a, the number of tokens on places [a,X] never
increases. Since this number is one initially, it is at most one for each reachable
marking. ut

Corollary 2. The net associated with a negotiation is 1-safe, i.e., no reachable
marking assigns more than one token to a place. ut

Lemma 1. The net associated with a negotiation is deterministic, i.e., no reach-
able marking enables two distinct transitions with the same label.

Proof. A transition labelled by (n, r) has an input place for each participant of
n. Two equally labelled transitions cannot have identical sets of input places by
construction. Hence, for at least one agent a there is a place [a,X] which is input
place of one of the transitions and a distinct place [a, Y ] which is input place
of the other transition. Since, by Corollary 1, each reachable marking marks at
most one of these two places, each reachable marking enables at most one of the
transitions. ut

The (sequential) behaviour of a labelled Petri net is represented by its reach-
ability graph:
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Definition 5. The reachability graph of a Petri net has all reachable markings
m as vertices, an arc annotated by t leading from m to m′ when m enables
transition t and the occurrence of t leads to m′, and a distinguished initial mark-
ing m0. The label reachability graph of a labelled Petri net is obtained from its
reachability graph by replacing each transition by its label.

In terms of reachability graphs, a labelled Petri net is deterministic if and
only if its label reachability graph has no vertex with two outgoing edges which
carry the same label. An occurrence sequence of a deterministic labelled Petri
net is fully determined by the sequence of transition labels, as shown in the
following proposition, and so is the sequence of markings reached.

For a labelling function λ and an occurrence sequence σ = t1 t2 t3 . . ., we
write λ(σ) for the sequence of labels λ(t1) λ(t2) λ(t3) . . . in the sequel.

Proposition 2. Let σ1 and σ2 be two finite, initially enabled occurrence se-
quences of a deterministic labelled Petri net with labelling function λ. Let m1

be the marking reached by σ1, and let m2 be the marking reached by σ2. If
λ(σ1) = λ(σ2) then m1 = m2. ut

3.3 Behavioural Equivalence between Negotiations and Nets

In this subsection, we will employ the usual notion of isomorphism between
reachability graphs:

Definition 6. Two reachability graphs are isomorphic if there exists a bijective
mapping ϕ between their sets of vertices, mapping the initial vertex of the first
graph to the initial vertex of the second graph, such that there is an edge from
u to v labelled by some t in the first graph if and only if there is an edge from
λ(u) to λ(v) labelled by t in the second graph.

Reachability graph isomorphism is a very strong behavioral equivalence notion
for sequential behaviour. If moreover the concurrent step reachability graphs of
two models are isomorphic, then also the concurrent behaviour of the systems
coincide. We will show the existence of both isomorphisms between negotiations
and associated Petri nets.

Proposition 3. The reachability graph of a negotiation and the label reachability
graph of the associated labelled Petri net are isomorphic.

Proof. (Sketch). We interpret a token on a place [a, {n1, . . . , nk}] on the negoti-
ation side as “agent a is ready to engage in the atoms of the set {n1, . . . , nk}”. It
is immediate to see that this holds initially. By construction of the Petri net, a
small step (n, r) of the negotiation is mimicked by an occurrence of a transition
of the set T (n, r), and hence by a transition labelled by (n, r). By construction,
the marking of the negotiation reached by the occurrence of the outcome corre-
sponds to the marking of the net reached by the occurrence of the transition. ut

For comparing the concurrent behaviour of negotiations and associated la-
belled Petri nets, we have to define concurrent enabledness of transitions. This
is easy in our setting, because the considered nets are 1-safe.
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Definition 7. Two transitions t and t′ of a 1-safe Petri net are concurrently
enabled at a reachable marking m if m enables both t and t′ and if moreover t
and t′ have no common input place.

Concurrent behaviour is captured by the concurrent step reachability graph
and, for labelled Petri nets, by its label version. In the following definition, a set
of transitions is said to be concurrently enabled if any two distinct transitions in
this set are concurrently enabled.

Definition 8. The concurrent step reachability graph of a Petri net has all
reachable markings m as vertices, a distinguished initial marking m0 and an arc
labelled by U leading from m to m′ when m concurrently enables a nonempty set
U of transition and the occurrence of all transitions of U (in any order) leads
from m to m′.

The label concurrent step reachability graph of a labelled Petri net is obtained
from its concurrent step reachability graph by replacing each set of transitions by
the multiset of its labels.

Fortunately, in our setting two equally labelled transitions are never enabled
concurrently, so that the labels of concurrent steps will never be proper multisets,
but just sets.

Lemma 2. If two outcomes (n, r) and (n′, r′) of a negotiation are concurrently
enabled at a marking reached by an initial occurrence sequence σ, then there is an
initially enabled occurrence sequence µ of the associated labelled Petri net such
that λ(µ) = σ and the marking reached by µ concurrently enables two transitions
labelled by (n, r) and (n′, r′) respectively.

Conversely, if a marking of the (λ-)labelled Petri net reached by an occurrence
sequence µ concurrently enables two transitions t and t′, then the marking of the
negotiation reached by λ(µ) concurrently enables the two outcomes λ(t) and λ(t′).

Proof. (Sketch). By construction of the Petri net, a transition t has an input
place [a,X] only if λ(t) = (n, r) for an agent a ∈ Pn. Assume that two enabled
transitions are not concurrent. Then they share an input place [a,X] only if their
labels refer to two outcomes (n, r) and (n′, r′) such that a ∈ Pn and a ∈ Pn′ . So
Pn ∩ Pn′ 6= ∅, and thus the two outcomes are not concurrent.

Conversely, if two outcomes (n, r) and (n′, r′) are enabled but not concurrent,
then some agent a belongs to both Pn and Pn′ . In the Petri net, each transition
labelled by (n, r) or by (n′, r′) has an input place [a,X]. Since each reachable
marking marks only one place [a,X] by Corollary 1, two distinct enabled transi-
tions labelled by (n, r) or by (n′, r′) share this marked input place, whence they
are not concurrent. ut

Corollary 3. The concurrent step reachability graph of a negotiation and the
label concurrent step reachability graph of its associated Petri net are isomorphic.

ut
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Fig. 4. A corrected negotiation for unanimous vote (all agents participate in all atoms)

3.4 Excursion: On the Voting Example

The reader possibly finds unsatisfactory that the negotiation given in Figure 3
can reject even when all parties vote yes. This results in 2k respective transi-
tions of the Petri net. If we want to avoid this possibility in the Petri net, we just
remove the single transition that removes tokens from all accept-places and en-
ables overall rejection. For the negotiation, we found the following work-around:
we replace the atom nreject by k rejecting atoms rejecti, for 1 ≤ i ≤ k. If agent
ai votes yes, then it is ready to engage in accept and in all rejectj such that
j 6= i. Any of the rejecjj-atoms have a single result that leads to final rejection.
When all agents vote yes then none of the rejecti-atoms are enabled, whence
only overall acceptance can take place. Notice that this construction is a bit
clumsy (see Figure 4), but still does not require exponentially many elements,
as the associated Petri net does.

4 Properties of the Net Associated with a Negotiation

4.1 S-components

An S-component of a Petri net is a subnet such that, for each place of the subnet,
all input- and output-transitions belong to the subnet as well, and such that each
transition of the subnet has exactly one input- and exactly one output-place of
the subnet. It is immediate to see that the number of tokens in an S-component
never changes. A net is covered by S-components if each place and each transition
belongs to an S-component. Nets covered by S-components carrying exactly one
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token are necessarily 1-safe. For example, every live and 1-safe free-choice net
enjoys this nice property [3].

Petri nets associated with negotiations are not covered by S-components,
only because the end-transitions have no output places. However, if we add an
arc from each end-transition to each initially marked place, then the resulting
net is covered by S-components:

Proposition 4. The Petri net associated with a negotiation, with additional
arcs from each end-transition to each initially marked place, is covered by S-
components.

Proof. (Sketch). For each agent a, the subnet generated by all places [a,X]
and all transitions labelled by (n, r), where a ∈ Pn, is an S-component (being
generated implies that the arcs of the subnet are all arcs of the original net
connecting nodes of the subnet). An arbitrary place of the net belongs to one
such subnet, because it corresponds to an agent. Each transition has a label
(n, r), and each atom n has a nonempty set of participants. ut

4.2 Soundness

The following notion of sound negotiations was inspired by van der Aalst’s sound-
ness of workflow nets [1].

Definition 9. A negotiation is sound if each outcome occurs in some initial
occurrence sequence and if, moreover, each finite occurrence sequence is a large
step or can be extended to a large step.

All the negotiations shown in the figures of this paper are sound. For an
example of an unsound negotiation, consider again the ping-pong negotiation
shown in Figure 1 on the right hand side. Imagine that Daughter could choose
to start negotiating with Father or with Mother. This could be expressed by
replacing the arc from port D of n0 to port D of nFD by a hyperarc from port D of
n0 to ports D of both nFD and nDM. If the first negotiation is between Daughter and
Mother, and if it is successful, a marking is reached where both Daughter and
Mother can only engage in the final atom nf , whereas father is still only able to
participate in nFD. So the distributed negotiation has reached a marking which
is neither final nor enables any outcome. We call such a marking a deadlock.
Clearly, sound negotiations have no reachable deadlocks.

Since the Petri nets associated with negotiations are not workflow nets, we
cannot immediately compare the soundness notions of workflow nets and of ne-
gotiations. Instead, we first provide a translation of nets associated with negotia-
tions to workflow nets. It turns out that a sound negotiation does not necessarily
lead to a sound workflow net in the general case. However, for the subclass of
deterministic negotiations the two concepts coincide, as will be shown next.

We begin with a very simple equivalence transformation of nets:
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Definition 10. Two Petri nets N and N ′ are in the relation R if

– either N has two distinct places with identical sets of input transitions, iden-
tical sets of output transitions and equal initial markings, and N ′ is obtained
from N by deletion of one of these places (and adjacent arcs),

– or N has a place without output transition, and N ′ is obtained from N by
deletion of this place.

The symmetrical, reflexive and transitive closure of R is called place equivalence.

Obviously, two place-equivalent nets have identical behaviour, i.e., their reacha-
bility graphs are isomorphic and so are their concurrent step reachability graphs.
Notice, however, that place-equivalence does not respect 1-safety. If the only
place that violates 1-safety has no output-transition, then deletion of this place
can make a net 1-safe.

A workflow net is a Petri net with two distinguished places pin and pout such
that pin has no input transition, pout has no output transition and, for each
place or transition x, there are directed paths from pin to x and from x to pout.
The initial marking of a workflow net assigns one token to the place pin and
no token to all other places. Workflow nets also have a final marking, assigning
only one token to pout. A workflow net is sound if it has no dead transitions (i.e.,
each transition is in an initially enabled occurrence sequence) and, moreover,
each initially enabled occurrence sequence is a prefix of an occurrence sequence
leading to the final marking.

Proposition 5. The net associated with a sound negotiation is place-equivalent
to a workflow net.

Proof. (Sketch). We derive a single input place pin by deleting all but one of
the initially marked places. We add a new place pout with all end-transitions
as input transitions. Both transformations apparently lead to place equivalence
nets.

Since, by soundness of the negotiation, every atom (and therefore every out-
come) can be enabled, a token can be moved from the initial atom to any other
atom, and therefore there is a directed path from the initial atom to any other
atom (more precisely, there is a path in the graph of the negotiation). By the
construction of the Petri net, there are according paths from the place pin to
arbitrary places and transitions of the net.

Again by soundness of the negotiation, every occurrence sequence can be
extended to a large step, i.e., the final atom can eventually be enabled and
the final marking reached. So every “token” can be led to the final atom, and
therefore there are paths in the graph of the negotiation from every atom to
the final atom. By construction of the Petri net, there are thus paths from any
element to an end-transition, and finally to the new place pout. ut

Unfortunately, soundness of a negotiation does not necessarily imply sound-
ness of a related workflow net. The reason is that soundness requires that every
atom can occur but not that every branch of a hyperarc is actually used. If,
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for example, there would be an additional hyperarc in Figure 1 from the port
F in n0 to the ports F in nFD and nf instead of the arc from n0 to nFD, then
the resulting negotiation would still be sound (actually, the behaviour does not
change at all). In the associated Petri net, however, there would be an additional
transition end with new input place [F, {nFD, nf}] (and other input places) which
never is enabled. This net is therefore not sound.

4.3 Deterministic Negotiations

In [5], we concentrate on deterministic negotiations which are negotiations with-
out proper hyperarcs.

Definition 11. A negotiation is deterministic if, for each atom n, agent a ∈ Pn
and result r ∈ Rn, X(n, a, r) contains at most one atom (and no atom only if
n = nf ).

The term deterministic is justified because there is no choice for an agent
with respect to the next possible atom.

Since both, the exponential blow-up and the problem of useless arcs (branches
of hyperarcs) stem from proper hyperarcs, we can expect that deterministic
negotiations allow for better results. Actually, the Petri net associated with a
deterministic negotiation is in fact much smaller, because all its places have the
form [a,X], where a is an agent and X is a singleton set of atoms. So the set of
places is linear in agents and in atom.

Before discussing soundness of deterministic negotiations, we make a struc-
tural observation:

Proposition 6. The net associated with a deterministic negotiation is a free-
choice net, i.e., every two places either share no output transitions, or they share
all their output transitions.

Proof. (Sketch). Since, in nets associated with deterministic negotiations, each
place has the form [a,X], whereX is a singleton set {n}, all its output transitions
are labelled by (n, r), r being a possible result of n. By construction, every other
place [b, {n}] has exactly the same output transitions as [a, {n}] whereas all other
places have no common output transition with [a, {n}]. ut

Proposition 7. The net associated with a deterministic negotiation is sound if
and only if it is place equivalent to a sound workflow net.

Proof. (Sketch). Observe that the translation from the negotiation to the associ-
ated Petri net is much easier in this case: for each atom n we add places [a, n] for
each a in Pn and transitions (n, r) for each r ∈ Rn. There are no two transitions
for any outcome (n, r), and so transition labels are not necessary (formally, we
can label each transition by itself). For each such place [a, n] of an atom n and
each such transition (n, r) we add an arc from [a, n] to (n, r). Finally we add arcs
from transitions (n, r) to places [b, n′] whenever X(n, a, r) = {n′} and b ∈ Pn′ .
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It is immediate that to see this net is free-choice and that the behaviour of
the negotiation is precisely mimicked by the net. So the negotiation is sound if
and only if the net has no dead transitions and moreover can always reach the
final (empty) marking.

The result follows since the net can, as above, be translated into a place
equivalent workflow net. ut

5 From Nets to Negotiations

In this section we study the converse direction: Given a labelled Petri net, is there
a negotiation such that the net is associated with the negotiation? Obviously,
for a positive answer the net has to enjoy all the properties derived before. In
particular, it must have disjoint S-components and initially marked input places.
However, in the general case it appears to be difficult to characterise nets that
have corresponding negotiations.

We will provide an answer for the case of sound deterministic negotiations
and sound free-choice workflow nets.

Proposition 8. Every sound free-choice workflow net is place equivalent to a
net which is associated with a sound deterministic negotiation.

Proof. (Sketch). A workflow net is sound if and only if the net with an additional
feedback transition moving the token from pout back to pin is live and 1-safe [1].
Live and 1-safe workflow nets are covered by S-components [3]. Therefore a sound
workflow net is covered by S-components as well. However, these S-components
have not necessarily disjoint sets of places. Consequently, we cannot easily find
candidates for agents involved in the negotiation to be constructed.

Instead we proceed as follows: We choose a minimal set of S-components that
cover the net. Since each S-component of a live net has to carry a token, all these
S-components contain the place pin. Each S-component will be an agent of the
net to be constructed, and each conflict cluster (i.e., each maximal set of places
together with their common output transitions) a negotiation atom.

Each place p of the net is contained in at least one S-component of the cover.
Let Cp be the set of all S-components of the derived minimal cover containing
p. If Cp contains more than one S-component, we duplicate the place p, getting
a new place p′ with input and output transitions like p. Now the new net still
has a cover by S-components, where one of the S-components containing p now
contains p′ instead. Repetition of this procedure eventually leads to a net where
each place p belongs to exactly one S-component Cp of the cover. Finally we
delete the place pout. Both operations, duplication of places and deletion of pout,
lead to place-equivalent nets.

The resulting net is associated with the following negotiation: The set of
agents is the set of S-components of the minimal cover. The atoms are the
conflict clusters of the net. The results of an atom are the transitions of the
corresponding conflict cluster. The X-function can be derived from the arcs of
the Petri net leading from transitions to places. ut
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6 Conclusions

This contribution presented the translation from distributed negotiations to
Petri nets such that a negotiation and its associated Petri nets are behaviourally
equivalent in a strong sense. In the general case, the Petri net is exponentially
larger than the negotiation, wheras for deterministic negotiations its size is only
linear. Petri nets do not inherit many properties from arbitrary negotiations,
but for deterministic negotiations soundness and non-soundness is respected by
the transformation to workflow-like Petri nets, whence in this case the reverse
translation is possible as well.

Analysis results for negotiations might be transferable to Petri nets and vice
versa via the translation. In future work, we will study this question in particular
for the respective sound and complete sets of reduction rules for negotiations [4,
5] and for free-choice Petri nets [3].

Based on the reduction results, a very recent work [6] introduces a global
specification language for negotiations and characterises the negotiations ex-
pressible with this language. Similar results for Petri nets could be derived via
the translation procedure of this paper.
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Abstract. In distributed systems, it is often important that a user is
not able to infer if a given action has been performed by another compo-
nent, while still being able to interact with that component. This kind
of problems has been studied with the help of a notion of “interference”
in formal models of concurrent systems (e.g. CCS, Petri nets). Here, we
propose several new notions of interference for ordinary Petri nets, study
some of their properties, and compare them with notions already pro-
posed in the literature. Our new notions rely on the unfolding of Petri
nets, and on an adaptation of the “reveals” relation for ordinary Petri
nets, previously defined on occurrence nets, and on a new relation, called
“excludes”, here introduced for detecting negative information flow.

Keywords: information flow, non-interference, reveals, excludes, Petri nets, un-
folding.

1 Introduction

In distributed systems, information flows among components. The flow can be
used to rule the behavior of the system, to guarantee the correct synchronization
of tasks, to implement a communication protocol, and so on.

In some cases, a flow of information from one component to another is ac-
tually a leakage: that piece of information should not have passed from here to
there. Such unwanted flows can endanger the working of the system.

In this paper, we study formal notions of unwanted information flow, based
on a general notion of non-interference, within the theory of Petri nets, and
compare our approach with existing approaches.

Non-interference was first defined for deterministic programs [1]. Later, sev-
eral adaptations were proposed for more abstract settings, like transition sys-
tems, usually related to observational semantics [2–6].

Broadly speaking, these approaches assume that the actions performed in a
system belong to two types, conventionally called high (hidden) and low (observ-
able). A system is then said to be free from interference if a user, by interacting
only via low actions, cannot deduce information about which high actions have
been performed.



This approach was formalized in terms of 1-safe Petri nets in [7], relying on
known observational equivalences, including bisimulation. Similarly to Busi and
Gorrieri [7], in this paper we analyze systems that can perform high and low level
actions and we check if an observer, who knows the structure of the system, can
deduce information about the high actions by observing low actions. We rely
on a progress assumption which was ignored in non-interference notions in the
literature.

We propose new notions of non-interference for ordinary Petri nets. They deal
with positive information flow as well as negative information flow, regarding
both past and future occurrences and are based on unfoldings and on reveals
and excludes relations which are formally defined in Section 3. Reveals was
originally defined as a relation between events of an occurrence net in [8] and
applied in fault diagnosis. Here, we adapt this relation to transitions of Petri
nets. Intuitively, a transition t1 reveals another transition t2 if, by observing
the occurrence of t1, it is possible to deduce the occurrence of t2. Excludes is a
new relation between transitions of a Petri net, which is introduced in order to
detect negative information flow. A transition t1 excludes another transition t2
if, by observing the occurrence of t1, it is possible to deduce that t2 has not yet
occurred and will not occur in the future, i.e., they never appear together in the
same run.

The first notion of non-interference we introduce is called Reveals based Non-
Interference (RNI) and it states that a net is secure if no low transition reveals
any high transition. This new notion is introduced in Section 4.1. We also pro-
pose more restrictive notions called k-Extended-Reveals based Non-Interference
(k-ERNI) and n-Repeated-Reveals based Non-Interference (n-ReRNI), they are
based on observation of multiple occurrences of low transitions. These two para-
metric non-interference notions are introduced and discussed in Section 4.2 and
Section 4.3. In Section 4.4, Positive/Negative Non-Interference (PNNI) is intro-
duced on the basis of both the reveals and excludes relations between low and
high transitions capturing both positive and negative information flow. The new
notions are discussed and compared with each other while they are introduced.
In Section 5, we compare, on the basis of examples, the new introduced notions
with the ones already introduced in the literature and mentioned at the begin-
ning of Section 4. Finally, Section 6 concludes the paper and discusses some
possible developments.

2 Basic Definitions

In this section we collect preliminary definitions and set the notation which will
be used in the rest of the paper.

Let R ⊆ I × I be a binary relation, the transitive closure of R is denoted by
R+; the reflexive and transitive closure of R is denoted by R∗.

A net is a triple N = (B,E, F ), where B and E are disjoint sets, and F ⊆
(B×E)∪(E×B) is called the flow relation. The pre-set of an element x ∈ B∪E
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is the set •x = {y ∈ B ∪ E | (y, x) ∈ F}. The post-set of x is the set x• = {y ∈
B ∪ E | (x, y) ∈ F}.

An (ordinary) Petri net N = (P, T, F,m0) is defined by a net (P, T, F ), and
an initial marking m0 : P → N. The elements of P are called places, the elements
of T are called transitions. A net is finite if the sets of places and of transitions
are finite.

A marking is a map m : P → N. A marking m is safe if m(p) ∈ {0, 1} for all
p ∈ P . Markings represent global states of a net.

A transition t is enabled at a marking m if, for each p ∈ •t, m(p) > 0. We
write m[t〉 when t is enabled at m. A transition enabled at a marking can fire,
producing a new marking. Let t be enabled at m; then, the firing of t in m
produces the new marking m′, defined as follows:

m′(p) =





m(p)− 1 for all p ∈ •t \ t•
m(p) + 1 for all p ∈ t• \ •t
m(p) in all other cases

We will write m[t〉m′ to mean that t is enabled at m, and that firing t in m
produces m′.

A marking q is reachable from a marking m if there exist transitions t1 . . . tk+1

and intermediate markings m1 . . .mk such that

m[t1〉m1[t2〉m2 . . .mk[tk+1〉q

The set of markings reachable from m will be denoted by [m〉. If all the markings
reachable from m0 are safe, then N = (P, T, F,m0) is said to be 1-safe (or,
shortly, safe).

Let N = (B,E, F ) be a net, and x, y ∈ B ∪E. If there exist e1, e2 ∈ E, such
that e1 6= e2, e1F

∗x, e2F
∗y, and there is b ∈ •e1 ∩ •e2, then we write x#y.

A net N = (B,E, F ) is an occurrence net if the following restrictions hold:

1. ∀x ∈ B ∪ E : ¬(xF+x)
2. ∀x ∈ B ∪ E : ¬(x#x)
3. ∀e ∈ E : {x ∈ B ∪ E | xF ∗e} is finite
4. ∀b ∈ B : |•b| ≤ 1

The set of minimal elements of an occurrence net N with respect to F ∗ will be
denoted by ◦N . The elements of B are called conditions and the elements of E
are called events. If x#y in an occurrence net, then we say that x and y are in
conflict. Let e ∈ E be an event in an occurrence net; then the past of e is the
set of events preceding e in the partial order given by F ∗: ↑ e = {t ∈ E | tF ∗e}.
An occurrence net represents the alternative histories of a process; therefore its
underlying graph is acyclic, and paths branching from a condition, corresponding
to a choice between alternative behaviors, never converge.

A run of an occurrence net N = (B,E, F ) is a set R of events which is closed
with respect to the past, and free of conflicts: (1) for each e ∈ R, ↑ e ⊆ R; (2)
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for each e1, e2 ∈ R, ¬(e1#e2). A run is maximal if it is maximal with respect to
set inclusion.

Let Ni = (Pi, Ti, Fi) be a net for i = 1, 2. A map π : P1 ∪ T1 → P2 ∪ T2 is a
morphism from N1 to N2 if:

1. π(P1) ⊆ P2; π(T1) ⊆ T2
2. ∀t ∈ T1 the restriction of π to •t is a bijection from •t to •π(t)
3. ∀t ∈ T1 the restriction of π to t• is a bijection from t• to π(t)•

In the rest of the paper, we will consider finite Petri nets, i.e., Petri nets whose
underlying net is finite, except for occurrence nets. Of course, Petri nets may
have infinite behavior. Moreover, we assume that all transitions of a Petri net
have non-empty preset, i.e., all have input places.

A branching process of a Petri net N = (P, T, F,m0) is a pair (O, π), where
O = (B,E,G) is an occurrence net, and π is a morphism from O to N such that:

1. ∀p ∈ P m0(p) = |π−1(p) ∩ ◦O|
2. ∀x, y ∈ E, if •x = •y and π(x) = π(y), then x = y

A branching process Π1 = (O1, π1) is a prefix of Π2 = (O2, π2) if there is an
injective morphism f from O1 to O2 which is a bijection when restricted to ◦O1,
and such that π1 = π2f .

Any finite Petri net N has a unique branching process which is maximal
with respect to the prefix relation. This maximal process, called the unfolding of
N , will be denoted by Unf(N) = ((B,E, F ), λ), where λ is the morphism from
(B,E, F ) to N [9]. In Fig. 1, a Petri net with its infinite unfolding is illustrated.

The following definition will be used in the rest of the paper to denote the set
of events of an unfolding corresponding to a specific transition of a given Petri
net.

Definition 1. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ), λ)
be its unfolding and t ∈ T , the set of events corresponding to t is denoted Et =
{e ∈ E | λ(e) = t}.
The following definitions concern the reveals relation, originally introduced in [8]
and applied to diagnostics problems. This notion has been further studied in [10]
and [11].

Definition 2. Let O = (B,E, F ) be an occurrence net, Ω ⊆ 2E be the set of
its maximal runs, and e1, e2 be two of its events. Event e1 reveals e2, denoted
e1 � e2, iff ∀σ ∈ Ω, e1 ∈ σ =⇒ e2 ∈ σ
Definition 3. [10]Let O = (B,E, F ) be an occurrence net, Ω ⊆ 2E be the set
of its maximal runs, and A,B two sets of events. A extended-reveals B, A _ B,
iff ∀ω ∈ Ω,A ⊆ ω =⇒ B ∩ ω 6= ∅.
In other words, a set of events, A, extended-reveals another set of events, B,
written A _ B, iff every maximal run that contains A also hits B. The reveals
relation can be expressed as extended-reveals relation between singletons: a� b
can be written as {a}_ {b}.
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Fig. 1. A Petri net and its unfolding

Example 1. To give a simple example on the original reveals and extended-
reveals notions, we examine the occurrence net in Fig. 2. In this net, e2� e4 and
e4 � e2. In general reveals relation is not symmetrical. As an example, e6 � e4
but e4 6� e6 since after e4, e7 can occur instead of e6.

In the same occurrence net, the occurrence of e1 does not necessarily mean
that e5 will occur, but e1 together with e2 extended-reveals e5, denoted as
{e1, e2} _ {e5}. The occurrence of e4 reveals neither e6 nor e7. However, it
reveals that either e6 or e7 will occur, denoted as {e4}_ {e6, e7}.

3 Excludes and Reveals Relations on Petri Nets

In this section, we first introduce a new relation between transitions, called
excludes, which will be used to detect negative information flow. Later, we define
a reveals and an extended-reveals relation on the set of transitions of a Petri net,
relying on the corresponding relations on occurrence nets as recalled in Section 2.
Moreover, we introduce a new parametric relation, called repeated-reveals, again
on the set of transitions of a Petri net. Reveals, extended-reveals and repeated-
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Fig. 2. An occurrence net.

reveals relations will be used to detect positive information flow, however they
can also be applied in other areas, e.g. fault diagnosis as explored in [8] by using
original reveals relation on occurrence nets. In the following three definitions
we assume progress in the behavior of the nets, which means that a constantly
enabled transition occurs if it is not disabled by another transition. This means
that we consider only maximal runs in the unfolding.

Definition 4. Let N = (P, T, F,m0) be a Petri net and Unf(N) = ((B,E, F ), λ)
be its unfolding, Ω be the set of all its maximal runs. Let t1, t2 ∈ T be two
transitions, we say t1 excludes t2, denoted t1 ex t2, iff ∀ω ∈ Ω Et1 ∩ω 6= ∅ =⇒
Et2 ∩ ω = ∅, i.e., they never appear in the same run.

It is easy to see that excludes is a symmetric relation and it is not transitive as
well as obviously not reflexive.

In the case of Petri nets whose underlying net is an acyclic graph, if two
transitions are in conflict, i.e., they are both enabled and the firing of one disables
the other one, then one excludes the other. However, in general, transitions which
are in conflict can still appear in the same maximal run and therefore they could
be in not-excludes relation.

Example 2. The transitions t2 and t4 of N1 in Fig. 1 are in conflict whereas
¬(t2 ex t4). In the unfolding in the same figure, it is possible to see a maximal
run including occurrences of both.

t5 ex t4 although they are not in conflict.
t7 ex t5, t5 ex t1 but ¬(t7 ex t1), indeed the relation is not transitive.

Definition 5. Let N = (P, T, F,m0) be a Petri net, and Unf(N) = ((B,E, F ),λ),
be the unfolding of N . Let Ω be the set of all maximal runs of N . Let t1, t2 ∈ T be
two transitions, we say that t1 reveals t2, denoted t1�tr t2, iff ∀ ω ∈ Ω Et1∩ω 6=
∅ =⇒ Et2 ∩ ω 6= ∅.

We say transition t1 reveals transition t2 if and only if each maximal run which
contains an occurrence of t1 also contains at least one occurrence of t2. This
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means that for each observation of t1, t2 has been already observed or will be
observed.

Remark 1. The reveals relation on transitions is reflexive and transitive, i.e., let
N = (P, T, F,m0) be a Petri net, t1, t2, t3 ∈ T , then t1 �tr t1, and (t1 �tr t2 ∧
t2 �tr t3) =⇒ t1 �tr t3.

Example 3. In the net N1, in Fig. 1, t3 reveals both t2 and t1. It is easy to notice
that to be able to fire t3 we must first fire t1 and t2. In fact, in the unfolding,
Unf(N1), given in Fig. 1, for each occurrence of t3 there is at least one occurrence
of t2 and similarly, for each occurrence of t3 there is at least one occurrence of
t1. However, t1 does not reveal t2 or t3, since there is a run in which t1 occurs
and neither t2 nor t3 occurs. If an observer, who knows the structure of N1, can
only observe t1 he cannot have information about t2 or t3, however if he is able
to observe t3, he can deduce that t2 and t1 must have occurred.

Transition t1 also reveals transition t6 because when t1 fires, t5 cannot fire
anymore and, since the net progresses, t6 must fire. Since we do not assume strong
fairness, t1 6� tr t4, after the occurrence of t1, t2 and t3 can loop forever. Reveals
relation is not only about past occurrences but also about future occurrences.
Observing t1 does not tell us when t6 fires. It might have fired already or it will
fire in the future. t1 �tr t6 tells us that when t1 occurs, an occurrence of t6 is
inevitable.

Remark 2. Reveals relation is neither symmetric nor antisymmetric. For exam-
ple, in Fig. 1, t2 �tr t3 and t3 �tr t2 , however t2 �tr t1 and t1 6� trt2.

In some cases, one transition alone does not give much information about the be-
havior of the net whereas a set of transitions together can give some information
about the behavior of the net. This relation is defined as in the following.

Definition 6. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ), λ)
be its unfolding and Ω be the set of all maximal runs. Let W,Z ⊆ T and W
extended-reveals Z, denoted W _tr Z, iff ∀ ω ∈ Ω

∧

t∈W
(ω ∩ Et 6= ∅) =⇒

∨

t∈Z
(ω ∩ Et 6= ∅)

We say that a set of transitions W extended-reveals another set of transitions
Z, if and only if each maximal run, which contains at least an occurrence of each
transition in W , also contains at least an occurrence of a transition in Z.

The reveals relation on transitions, t1 �tr t2, corresponds to the extended-
reveals relation between singletons, {t1}_tr {t2}.

Example 4. In the net shown in Fig. 3, t2 alone does not reveal t5, whereas t2
and t3 together tell us that t5 will fire, denoted as {t2, t3} _tr {t5}. In the
same net, the occurrence of t5 tells us that either t8 or t9 will fire, denoted as
{t5} _tr {t8, t9}. Similarly, {t7, t8} _tr {t10}, i.e., there is no maximal run
which includes occurrences of t7, t8 and not t10.

L. Bernardinello et al: Non-Interference Notions 65



Fig. 3.

In some cases, repeated occurrences of the same transition can give more infor-
mation about the behavior of a net than only one occurrence of that transition.
A relation based on this fact is defined in the following.

Definition 7. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ),λ) be
its unfolding and R be the set of all runs. Let t1, t2 ∈ T be two transitions of N ,
and n be a positive integer. Let Rn

ti = {ω ∈ R : |ω ∩ Eti | = n} and Ωn
ti denotes

the set of maximal runs in Rn
ti with respect to set inclusion (i.e., Ωn

ti ⊆ Rn
ti such

that if u, v ∈ Ωn
ti ∧ u ⊆ v then u = v).

If Ωn
t1 6= ∅ then t1 n-repeated reveals t2, denoted t1 Re

n
�tr

t2, iff ∀ω ∈
Ωn

t1 Et2 ∩ ω 6= ∅.
If Ωn

t1 = ∅ then t1 Re
n
�tr

t2 is not defined.

Notation. t1 Re
n
6�tr

t2 will denote that there is at least one run in Ωn
t1 such that

t1 appears n times and t2 does not appear. ¬(t1 Re
n
�tr

t2) will denote that either
t1 Re

n
�tr

t2 is not defined, or t1 Re
n
6�tr

t2.

Example 5. Let us consider N3 in Fig. 3. Transition t11 does not reveal t12,
however if the occurrence of t11 is observed twice then it is evident that t12
occurred, therefore t11 2-Repeated reveals t12, denoted t11 Re

2
�tr

t12, whereas
t11 Re

1
6�tr

t12 since after the first occurrence of t11, t14 can fire instead of t12.

Note that t11 Re
3
�tr

t12 and t11 Re
3
6�tr

t12 are both not defined since t11 can

fire at most twice, therefore in this case ¬(t11 Re
3
�tr

t12).

Proposition 1. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ),λ)
its unfolding and R be the set of all runs. Let t1, t2 ∈ T be two transitions of N ,

t1 Re
1
�tr

t2 =⇒ t1 �tr t2
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Proof. Let R1
t1 = {ω ∈ R : |ω ∩ Et1 | = 1} and Ω1

t1 be the set of maximal runs
in R1

t1 . If t1 Re
1
�tr

t2, then Ω1
t1 6= ∅ and ∀ω ∈ Ω1

t1 ω ∩ Et2 6= ∅. Let σ be an
arbitrary maximal run of Unf(N). Suppose that σ∩Et1 6= ∅ then we can always
take a run ω ∈ Ω1

t1 such that ω ⊆ σ. Then we know that σ contains at least one
occurrence of t2 and so t1 �tr t2. ut

Fig. 4.

However, the implication of the previous proposition does not hold in the other
direction. In fact, consider the net in Fig. 4, t1 �tr t2, t1 �tr t3, t1Re

1
6�tr

t2 and

t1Re
1
6�tr

t3. The main difference is that we consider only maximal runs for reveals
relation. For this net there is only one maximal run which contains t1 (twice), t2
and t3. However, there is a run in Ω1

t1 in which t1 appears and t2 does not appear,
as well as a run in which t1 appears and t3 does not appear. All runs in Ω2

t1 , i.e.,
including t1 twice, contain both t2 and t3, i.e., t1Re

2
�tr

t2 and t1Re
2
�tr

t3.

Proposition 2. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ),λ)
be its unfolding and R be the set of all runs. Let t1, t2 ∈ T be two transitions, if
t1 Re

n
�tr

t2 and Ωn+1
t1 6= ∅ then t1 Re

n+1
�tr

t2.

Proof. Let Rn
t1 = {ω ∈ R : |ω ∩ Et1 | = n} and Ωn

t1 be the set of maximal runs

in Rn
t1 . If t1 Re

n
�tr

t2, then Ωn
t1 6= ∅ and ∀ω ∈ Ωn

t1 ω ∩ Et2 6= ∅. Let σ ∈ Ωn+1
t1 ,

we can always choose a run ω ∈ Ωn
t1 such that ω ⊆ σ. Then we know that

σ ∩ Et2 6= ∅, so t1 Re
n+1
�tr

t2. ut

4 Non-interference

In this section, before introducing the new notions, we briefly recall the most
used non-interference notions in the literature and discuss our motivation for
introducing new non-interference notions based on reveals and excludes relations.

The notions recalled in the following are based on some notion of low ob-
servability of a system. It is what can be observed of a system from the point of
view of low users.
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There are mainly two kinds of information flows that non-interference notions
deal with. These are positive information flow and negative information flow. A
positive information flow arises when the occurrence of a high level transition
can be deduced from the low level behavior of the system, whereas a negative
information flow is concerned with the non-occurrences of a high transition.

Fig. 5. Relation between some existing interference notions in the literature.
SNNI≡NDC, BSNNI ⊆SNNI, SBNDC ≡ BNDC ≡ PBNI+ ⊆ BSNNI, PBNI⊆PBNI+
(see [7])

In the following, we will use acronyms to denote the set of nets satisfying the
corresponding security notion.

The less restrictive notion, introduced in [6, 3] and also studied on 1-safe
Petri nets in [7], is Strong Nondeterministic Non-Interference (SNNI). It is a
trace-based property (trace as sequence of event occurrences), that intuitively
says that a system is secure if what the low part can see does not depend on
what the high level part does. If a net system N is SNNI secure, then it should
offer, from the low point of view, the same traces as the system where the high
level transitions are prevented. In SNNI secure systems, information can flow
from low to high but not from high to low. A different characterization of the
same notion, called Non-Deducibility on Composition (NDC), is given in [7].

While SNNI is based on trace equivalence, the more restrictive notions Bisim-
ulation based Strong Nondeterministic Non-Interference (BSNNI) and Bisimu-
lation based Non-Deducible on Composition (BNDC) are based on bisimulation.

Strong Bisimulation based Non-Deducible on Composition (SBNDC) is an
alternative characterization of BNDC [6, 3]. In fact, Busi and Gorrieri in [7]
show that BNDC is equivalent to SBNDC, and it is stronger than BSNNI.

Another non-interference notion called Place Based Non-Interference (PBNI)
was introduced in [7]. It is based on the absence of some kinds of specific places
in the net, namely causal and conflict places. A causal place is a place between
a low transition and a high transition such that the low transition consumes the
token from the place which was produced by the high transition. A conflict place
is a place such that at least one low transition and one high transition consume
a token from it. A net is considered to be PBNI secure in the absence of such
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places. In [7], it is shown that if a net is PBNI secure then it is also SBNDC
secure.

In [12], a similar notion, called Positive Place Based Non-Interference (PBNI+),
is proposed by introducing the notions of active causal and active conflict places.
PBNI+ is weaker than PBNI and it coincides with SBNDC.

The overall relationship between these mentioned notions is illustrated in
Fig. 5. In the rest of the paper, we will refer only to the notions which are
illustrated in the figure since the others are equivalent to those.

With respect to the above mentioned different kinds of information flow,
SNNI, BSNNI and PBNI+ deal with positive information flow, whereas PBNI
deals also with negative information flow.

All these notions seem to aim mainly at deducing past occurrences of high
transitions, for example they all consider system N6 in Fig. 7 secure, whereas, by
considering progress, after the occurrence of l, a low user deduces h is inevitable
and therefore N6 is not secure with respect to the ability of deducing information
about the future behavior.

Differently from the previous notions, the ones we are going to propose do
not only capture information flow about past occurrences of high transitions,
but also information flow about inevitable or impossible future occurrences of
high transitions.

Fig. 6. A net modeling paper submission and evaluation.

In some cases, the mere ability to deduce that some high transition has
occurred is not a security threat, provided the low user cannot know which one
occurred.

Let us illustrate this issue with the help of an example. The net in Fig. 6 rep-
resents a system in which a user can repeatedly submit a paper to a committee,
each time receiving a judgment (accept or reject). The black squares represent
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high transitions. The review process can follow either of two paths, and we do
not want the user to know which one was chosen. When the user receives an
answer, he knows that some high transition occurred, however he cannot infer
which one.

For this reason, the new notions we are going to introduce in the following
will consider such a system secure, whereas it is not secure with respect to SNNI,
and the other above recalled notions.

In the sequel, the set of high transitions will be denoted by H and the set of
low transitions will be denoted by L.

4.1 Non-Interference Based on Reveals

Reveals-based Non-Interference accepts a net as secure if no low transition reveals
any high transition.

Definition 8. Let N = (P, T, F,m0) be a Petri net, T = H ∪ L, H ∩ L = ∅,
L,H 6= ∅. N is secure with respect to Reveals-based Non-Interference (RNI) iff
∀l ∈ L ∀h ∈ H: l 6� trh.

Fig. 7.

Example 6. N4 in Fig. 6 is RNI secure. N5 and N6 in Fig. 7 are not secure with
respect to RNI, since in both nets a low transition reveals a high transition,
i.e., l �tr h. An observer who knows the structure of the net can deduce that
h has already fired in N5 by observing l. For N6, again by observing l, he can
deduce that h will fire. N7 in Fig. 7 is also not secure in this context because
the observation of l1 tells the observer that h has already fired or will fire since
l2 cannot fire anymore.

With RNI, we are able to capture positive information flow. Moreover, we not
only capture past occurrences of high transitions but also future occurrences,
and this is because of the progress assumption.
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Although it is useful to capture positive information flow, RNI is not able
to capture the negative information flow. N8 in Fig. 7 is considered to be secure
with respect to RNI since it cannot capture the flow between h and l. However,
an observer could deduce that h has not fired and will not fire in the future by
observing the occurrence of l. In Section 4.4 we will introduce a notion which
deals with this kind of information flow.

4.2 Non-Interference Based on Extended-Reveals

As explained in Section 3, in some cases, a transition does not tell much about the
behavior of the net, whereas a set of transitions together gives some more infor-
mation. Extended-reveals deals with this relation between transitions of a Petri
net. We propose to use this relation in order to define a new non-interference no-
tion in which the occurrences of a set of low transition together give information
about some high transitions.

Definition 9. Let N = (P, T, F,m0) be a Petri net, T = H ∪ L, H ∩ L = ∅,
L,H 6= ∅, |L| ≥ k ≥ 1. N is secure with respect to k-Extended-Reveals based
Non-Interference (k-ERNI) iff ∀{l1, ..., lk} ⊆ L ∀h ∈ H, {l1, ..., lk} 6_ tr{h}.

N is ERNI secure if it satisfies the above condition for k = |L|.

Intuitively, we say that a net is k-ERNI secure, if an attacker is not able to
deduce information about the hidden part of the net by observing occurrences
of k low level transitions. If a net is k-ERNI secure then it is secure with respect
to all n-ERNI where 1 ≤ n ≤ k.

Fig. 8.

Example 7. N9 in Fig. 8 is not secure with respect to 2-ERNI. When l2 and l3
occur, a low level observer can deduce that h will occur, i.e., {l2, l3} _tr {h}.
In this net, the occurrence of only one low transition does not give sufficient
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Fig. 9.

information about any high transitions, whereas the occurrence of two low level
transitions together does. In the net in Fig. 9, no low transition alone reveals a
high transition as well as no pair of low level transitions reveals a high transition.
However, {l2, l4, l6} _tr {h1}, i.e., a low user, observing that all these three
transitions occurred, can deduce that h1 will inevitably occur. Thus, this net is
2-ERNI secure whereas it is not 3-ERNI secure.

Obviously, 1-ERNI coincides with RNI, where no low transition alone reveals
a high transition. Moreover, k-ERNI ⊆ RNI, for k ≥ 1. N9 is RNI secure since
none of the low transitions reveals a high transition alone.

4.3 Non-Interference Based on Repeated-Reveals

Another case can be the one in which an attacker is not able to deduce informa-
tion by observing low transitions and this is because only repeated occurrence
of a low transition gives information about the hidden part of the net. Thus, we
assume that the attacker can count the occurrences of low transitions and so he
can deduce information about the high transitions.

Definition 10. Let N = (P, T, F,m0) be a Petri net, T = H ∪ L, H ∩ L = ∅,
L,H 6= ∅. Let Unf(N) be the unfolding of N , where Unf(N) = ((B,E, F, c0), λ), λ :
B ∪ E → P ∪ T . Let n > 0.

N is secure with respect to n-Repeated-Reveals based Non-Interference (n-
ReRNI) iff ∀l ∈ L ∀h ∈ H ∀m ≤ n ¬(l Rem�tr

h).
N is ReRNI, iff it is n-ReRNI for all n > 0.

Proposition 3. n-ReRNI =⇒ (n− 1)-ReRNI

The proof follows from the definition.

Example 8. N10 in Fig. 8 is not 2-ReRNI secure. Although the first occurrence
of l1 does not reveal a high transition, by observing its second occurrence an
observer can deduce that h2 occurred. However, the net is RNI secure as well
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Fig. 10.

as ERNI secure. In the net in Fig. 10, an observer cannot infer about the high
transitions by observing l1 occurring only once. Also the second occurrence of l1
does not tell the observer which high transition occurred or will occur. However,
the observer can deduce that h2 has already occurred or will occur inevitably if
he observes three occurrences of l1. Therefore, this net is 2-ReRNI secure but
it is not 3-ReRNI secure. Note that if the transition h3 was absent then every
maximal run would include at least one occurrence of h2 and then, even without
observing l1, the occurrence of h2 would be inevitable.

The following proposition is directly derived from Prop. 1.

Proposition 4. If a net is RNI secure then it is 1-ReRNI secure.

However, the previous implication does not hold in the opposite direction.
Consider the net in Fig. 4 and let t1 be a low transition, t2 and t3 be high
transitions. This net is 1-ReRNI secure since the first occurrence of t1 does not
reveal information about t2 and t3, as discussed in Example 5. However the net
is not RNI secure since t1 �tr t2 and t1 �tr t3. Note that this net is not secure
with respect to 2-ReRNI since the second occurrence of t1 reveals both t2 and
t3, i.e. t1 Re

2
�tr

t2 and t1 Re
2
�tr

t3.
Although k-ERNI and n-ReRNI are not comparable since they are para-

metric notions which are based on observing different things (for k-ERNI it is
observation of occurrences of different low transitions together whereas for n-
ReRNI it is observation of multiple occurrences of the same low transition) there
are nets which are secure with respect to both and which are secure with respect
to only one of them.

Both k-ERNI and n-ReRNI catch positive information flow about the past or
future occurrences of high transitions, whereas they allow negative information
flow. In the following we will introduce a notion considering both positive and
negative information flow.
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4.4 Positive/Negative Non-Interference Based on Reveals and
Excludes

Until now we explored positive information flow on Petri nets. In order to catch
negative information flow which is related to non-occurrence of high transitions,
we need to consider the excludes relation between low and high transitions, as
introduced in Def. 4.

Definition 11. Let N = (P, T, F,m0) be a Petri net, T = H ∪ L, H ∩ L = ∅,
L,H 6= ∅. N is secure with respect to Positive/Negative Non-Interference (PNNI)
iff ∀l ∈ L ∀h ∈ H, l 6� trh and ¬(l ex h).

If in a Petri net N , no low transition reveals a high transition and no low
transition excludes a high transition, N is considered to be PNNI secure. PNNI
is stronger than RNI, i.e., PNNI ⊆ RNI, and this follows directly from the
definitions. In order to be PNNI secure, a net has to be RNI secure (no low
transition reveals a high transition) and to satisfy an additional requirement (no
low transition excludes a high transition).

Fig. 11.

Example 9. Both N11 and N12 in Fig. 11 are not PNNI secure since a low
transition l1 excludes a high transition h. Thus, by observing occurrence of l1,
an observer can deduce that h did not occur and will not occur.

N13 in Fig. 12 is not secure with respect to PNNI because of the negative
information flow, i.e., l2 excludes h1 as well as it excludes h2. An observer can
deduce that none of the high transitions occurred and they will not occur in the
future by observing l2 or l3. This net is RNI, ERNI and ReRNI secure.

In the same figure, N14 is a PNNI secure Petri net. No low transition reveals
a high transition as well as no low transition excludes a high transition. However
an observer is able to deduce that h1 will occur inevitably by observing the
occurrences of both l2 and l3, i.e., {l2, l3} _tr {h1}. In other words, this net is
not 2-ERNI while it is RNI and ReRNI secure.
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Fig. 12.

As seen in the previous example, PNNI is strictly stronger than RNI.
PNNI and k-ERNI are intersecting for any k, PNNI ∩ k-ERNI 6= ∅, PNNI

\ k-ERNI 6= ∅, k-ERNI \ PNNI 6= ∅. None of them is stronger than the other
one. The net N15 in Fig. 13 is both ERNI and PNNI secure, whereas N16 in
Fig. 13 is not PNNI secure, however it is ERNI secure. N14 of Fig. 12 is PNNI
secure, whereas it is not secure with respect to 2-ERNI as it is discussed in
example 9.

PNNI and n-ReRNI are also intersecting for any n. A net which is both
PNNI and ReRNI secure is the one in Fig. 6. The net in Fig. 10 is not secure
with respect to 3-ReRNI whereas it is PNNI secure. If we add to the net another
low transition l2 which consumes a token from p5, the net becomes not secure
with respect to PNNI as well as with respect to RNI, since l2 reveals h1.

Fig. 13.
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5 Comparison of Non-interference Notions

We have introduced new notions of non-interference for Petri nets. These no-
tions are based on the reveals and the excludes relations and on the progress
assumption.

One major difference between these notions with the existing ones, recalled
in Section 4, is that the new notions explicitly consider the information flow both
about the past and the future occurrences of high transitions. For example, if
a low user can tell that the occurrence of a high transition is inevitable in the
future, such a system is considered to be not secure according to the notions we
have here introduced, whereas it is considered secure by the old notions such as
SNNI, BSNNI, PBNI+ and PBNI. Similarly, for the negative information flow,
we consider both past and future non-occurrences of high transitions.

Another important difference is shown by N4 in Fig. 6. This net is not secure
according to SNNI even if a low user cannot infer which high transitions actu-
ally occurred. On the other hand, it is secure with respect to all non-interference
notions based on reveals and excludes, since these require the capability of dif-
ferentiating among the high transitions.

Moreover, the notions recalled in Section 4 are defined for 1-safe Petri nets,
whereas RNI, k-ERNI, n-ReRNI and PNNI are defined for general Petri nets.

Fig. 14.

Figure 14 illustrates the relation between our notions and the other notions we
have discussed so far. For the sake of simplicity, we only consider the weakest
(SNNI ) and the strongest (PBNI ) notions from the ones recalled in Section 4.
with the weakest of the new notions, i.e., RNI, and with the intersection set,
denoted R-E in Fig. 14, of the new notions RNI, k-ERNI, n-ReRNI and PNNI.

We will examine three examples to discuss the differences of these classes.
A net which is secure with respect to all notions based on reveals and excludes

and which is not secure with respect to SNNI is denoted by X in Fig. 14 and
it is the one in Fig. 6. We consider this net secure since an observer cannot
differentiate among the high transitions even if he can know some high actions
have been performed (or will be performed). However, this net is not secure with
respect to SNNI.
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The net denoted by Y in Fig. 14 is secure with respect to all non-interference
notions based on reveals and excludes as well as with respect to PBNI. This
net can be N15 in Fig. 13. This net is secure since no low transition reveals
a high transition (alone or together with another transition) as well as no low
transition excludes a high transition. Thus there is neither positive nor negative
information flow. It is also secure with respect to PBNI due to the fact that
there is no active causal or active conflict place.

Two nets which are secure with respect to PBNI but not secure with respect
to any of the non-interference notions based on reveals and excludes, denoted
by Z in Fig. 14, are for example N6 in Fig. 7 and N12 in Fig. 11.

6 Conclusion

In this paper, we have proposed several new notions of non-interference for Petri
nets, and compared them with notions already proposed in the literature. In this
approach, the transitions of a system net are partitioned into two disjoint sets:
the low and the high transitions. A system net is considered secure, or free from
interference, if, from the observation of the occurrence of a low transition, or a
set of low transitions, it is not possible to infer information on the occurrence of
a high transition. Our new non-interference notions rely on net unfolding and on
two relations among transitions. The first one is an adaptation to Petri nets of
the reveals relation, previously defined on occurrence nets and not yet considered
in this context; in particular we have introduced a class of parametrized reveals
relations for Petri nets. The second relation is called excludes and it has been
introduced here with the aim of capturing negative information flow.

The notion of RNI states that a net is secure if no low transition reveals any
high transition. We have shown that this notion captures some situations which
were not captured by the existing notions. We also propose more restrictive
notions: k-ERNI based on observing occurrences of multiple low transitions and
n-ReRNI based on the ability of the low user to count the occurrences of a low
transition.

By adding the excludes relation to the picture, we allow one to infer negative
information, namely the fact that a high transition has not occurred and will
not occur. This is the basis of PNNI. The paper includes a comparison between
the notions introduced here and those found in the literature on the subject.

The notions proposed in this paper, and further variants of them, should now
be tested on more realistic cases. Our aim is to build a collection of different
non-interference properties, so that a system designer, or a system analyzer, can
choose those more appropriate to a specific case. A generalization could be a non-
interference notion based on a parametric reveals relation between multisets of
transitions.

We are currently starting to explore algorithms to check non-interference. In
particular, along a similar line to that followed in [13], we are evaluating the use
of finite prefixes of the unfoldings of nets.
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We are also interested in further investigating the excludes relation and the
possibility to apply it in different contexts.
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Abstract. PetriCode is a tool that supports automated generation of
protocol software from a restricted class of Coloured Petri Nets (CPNs)
called Pragmatics Annotated Coloured Petri Nets (PA-CPNs). Petri-
Code and PA-CPNs have been designed with five main requirements in
mind, which include the same model being used for verification and code
generation. The PetriCode approach has been discussed and evaluated
in earlier papers already. In this paper, we give a formal definition of
PA-CPNs and demonstrate how the specific structure of PA-CPNs can
be exploited for verification purposes.

1 Introduction

Coloured Petri Nets (CPNs) [3] and CPN Tools have been widely used for mod-
elling and verifying protocols. Examples include application layer protocols such
as IOTP, SIP and WAP, transport layer protocols such as TCP, DCCP and
SCTP, and network layer protocols such as DYMO, AODV, and ERDP [2, 8].
Formal modelling and verification have been useful in gaining insight into the
operation of the protocols and have resulted in improved protocol specifications.
However, earlier work has not fully leveraged the investment in modelling by
also taking the step to automated code generation to obtain an implementation
of the protocol under consideration. In particular, rather limited research has
been conducted into approaches that support automatic generation of protocol
implementations from such CPN models. The earlier approaches have either re-
stricted the target platform for code generation to the Standard ML language
used by the CPN Tools simulator or have considered a specific target language
based on platform-specific additions to the CPN models.

This has motivated us to develop an approach and an accompanying tool
called PetriCode to support the automated generation of protocol software from
CPN models. Our code generation approach is designed to satisfy five main
requirements. Firstly, the approach must support platform independence, i.e., it
must enable code generation for multiple languages and platforms from the same
CPN model. Secondly, the approach must support integration of the generated
code with third-party code. In particular, it must support upwards integration,
i.e., the generated code must expose an explicit interface for service invocation,
and it must support downwards integration, i.e., the ability of the generated code



to invoke and rely on underlying libraries. Thirdly, it must support verification in
that the code generation capability should not introduce complexity problems for
verification of the CPN models. Fourthly, the generated code must be readable to
enable code review and performance enhancements. Finally, the approach must
be scalable to industrial-sized protocols.

The foundation of our approach is a slightly restricted subclass of CPNs
called Pragmatic Annotated CPNs (PA-CPNs). The restrictions make explicit
the structure of the protocol system, its principals, channels, and services. A key
feature of this class of CPNs are so-called code generation pragmatics, which are
syntactical annotations to certain elements of the PA-CPNs. These pragmatics
represent concepts from the domain of communication protocols and protocol
software, which are used to indicate the purpose of the respective modelling ele-
ment. The role of the pragmatics is to extend the CPN modelling language with
domain-specific elements and make implicit knowledge of the modeller explicit
in the CPN model such that it can be exploited for code generation.

In earlier work [16], we have introduced PA-CPNs informally, and presented
the PetriCode tool [17]. In [18], we demonstrated platform independence, inte-
grateability, and readability of the generated code. In [19], we applied the ap-
proach for automatically generating an implementation of the industrial-strength
WebSocket protocol. This included demonstrating that the generated code was
interoperable with other implementations of the WebSocket protocol.

The contribution of this paper compared to our earlier work is threefold.
Firstly, motivated by the practical relevance of the net class demonstrated in
earlier work, we give a formal definition of PA-CPNs. Secondly, we discuss the
process of developing protocol software with our approach from a methodol-
ogy perspective. Thirdly, we show that PA-CPNs are amenable to verification.
Specifically, we show how the structural restrictions of PA-CPNs allow us to add
service testers to the model of the protocol, which reduce the state space of the
model. Furthermore, the structural restrictions of PA-CPNs induce a natural
progress measure that can be exploited for verification purposes by the sweep-
line state space exploration method [4].

The rest of this paper is organised as follows: Section 2 provides the back-
ground definitions and notation of CPNs that are used throughout this paper.
Section 3 gives the formal definition of PA-CPNs accompanied by an example
outlining how PA-CPNs can be used to model a transport protocol. Section 4
discusses the modelling process of PA-CPNs from an application perspective.
Section 5 formalises the concepts of tree decomposability of control flow nets
which are central in generating code for the protocol services. Section 6 shows
how to define progress measures for the sweep-line method based on service and
service tester modules of PA-CPNs, and experimentally evaluate their effect on
the verification of the transport protocol example. Finally, in Sect. 7, we sum up
the conclusions and discuss related work. We assume that the reader is familiar
with the basic concepts of Petri nets and high-level Petri nets such as CPNs.
This paper is a condensed version of a technical report [20], which contains more
motivation and detailed explanations of examples and concepts.
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2 Background Definitions on Coloured Petri Nets

The definition of PA-CPNs is based on the standard definition of hierarchical
CPNs [3]. Here, we briefly rephrase the definitions of CPNs. Readers familiar
with these definitions can skip this section. In this paper, we provide the syntac-
tical definitions of CPNs only, which will be restricted when defining PA-CPNs.
Since PA-CPNs are a syntactical restriction of CPNs, we do not need change the
semantics of CPNs at all.

A hierarchical CPN consists of a finite set of CPN modules, which we dis-
cuss first. Figures 1 and 2 show some CPN modules of our example (which
will be used later). The modules of a hierarchical CPNs are related to each other
via substitution transitions (shown with a double border) which can have associ-
ated submodules, and by linking places connected to the substitution transitions
(called socket places) to places (called port places) on the associated submodules.

A CPN module consists of a set of places P and a set of transition T connected
by a set of directed arcs A connecting either a transition and a place or a place
and a transition. A CPN module additionally has a set of colour sets (types) Σ
containing the types that can be used as colour sets of places and for typing a
set of variables V which can be used in arc expressions and transition guards. In
the formal definition, the colour set of each place (by convention written below
a place) is specified by means of a colour set function that maps each place to
a colour set determining the kind of tokens that may reside on the place. Each
directed arc in a CPN module has an associated arc expression used to determine
the tokens added and removed by the occurrence of an enabled transition and
is specified by an arc expression function. The arc expression of each arc may
contain variables from the set of variables V . The arc expressions are required to
have a type such that the evaluation of an arc expression on an arc connected to a
place p results in a multi-set of tokens over the colour set of the place. Transitions
may have an associated guard expression specified by means of a guard function
G which associates a boolean expression with each transition. The initial marking
of each place is specified by means of an initialisation function I which maps
each place into a (possibly empty) multi-set over the colour set of the place.

Definition 1 formally defines a CPN module. In the definition, we use Type[v]
to denote the type of a variable v, and we use EXPRV to denote the set of
expressions with free variables contained in a set of variables V . For an expression
e containing a set of free variables V , we denote by e〈b〉 the result of evaluating
e in a binding b that assigns a value to each variable in V . We use Type[e] for
an expression e (an arc expression, a guard, or an initial marking) to denote the
type of e. For a non-empty set S, we use SMS to denote the type corresponding
to the set of all multi-sets over S.

Definition 1. A Coloured Petri Net Module (Def. 6.1 in [3]) is a tuple
CPNM = (CPN, Tsub, Pport, PT ), such that:

1. CPN = (P, T,A,Σ, V, C,G,E, I) is a Coloured Petri Net (Def. 4.2 in [3])
where:
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(a) P is a finite set of places and T is a finite set of transitions T such
that P ∩ T = ∅.

(b) A ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.
(c) Σ is a finite set of non-empty colour sets and V is a finite set of typed

variables such that Type[v] ∈ Σ for all variables v ∈ V .
(d) C : P → Σ is a colour set function that assigns a colour set to each

place.
(e) E : A → EXPRV is an arc expression function that assigns an arc

expression to each arc a such that Type[E(a)] = C(p)MS, where p is the
place connected to the arc a.

(f) G : T → EXPRV is a guard function that assigns a guard to each
transition t such that Type[G(t)] = Bool .

(g) I : P → EXPR∅ is an initialisation function that assigns an initiali-
sation expression to each place p such that Type[I(p)] = C(p)MS.

2. Tsub ⊆ T is a set of substitution transitions.
3. Pport ⊆ P is a set of port places.
4. PT : Pport → {IN,OUT, I/O} is a port type function that assigns a port

type to each port place.

Socket places are not defined explicitly as part of a module because they
are implicitly given via the arcs connected to the substitution transitions. For a
substitution transition t, we denote by ST (t) a mapping that maps each socket
place p into its type, i.e., ST (t)(p) = IN if p is an input socket, ST (t)(p) = OUT
if p is an output socket, and ST (t)(p) = I/O if p is an input/output socket.

The definition of a hierarchical CPN is provided below. A hierarchical CPN
consists of a set of disjoint CPN modules, a submodule function assigning a
(sub)module to each substitution transition, and a port-socket relation that as-
sociates port places in a submodule to the socket places of its upper layer module.
The set of socket places for a substitution transition t consists of the places con-
nected to the substitution transition and is denoted by Psock(t). The definition
requires that the module hierarchy (to be defined in Def. 3) is acyclic in order
to ensure that there are only a finite number of instances of each module. Fur-
thermore, port and socket places can only be associated with each other, if they
have the same colour set and the same initial marking.

Definition 2. A hierarchical Coloured Petri Net (Def. 6.2 in [3]) is a four-
tuple CPNH = (S,SM ,PS ,FS ) where:

1. S is a finite set of modules. Each module is a Coloured Petri Net Mod-
ule s = ((P s, T s, As, Σs, V s, Cs, Gs, Es, Is), T s

sub, P
s
port, PT

s). It is required
that (P s1 ∪ T s1) ∩ (P s2 ∪ T s2) = ∅ for all s1, s2 ∈ S with s1 6= s2.

2. SM : Tsub → S is a submodule function that assigns a submodule to
each substitution transition. It is required that the module hierarchy (see
Definition 3) is acyclic.

3. PS is a port–socket relation function that assigns a port–socket re-
lation PS (t) ⊆ Psock(t) × P

SM (t)

port to each substitution transition t. It is
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required that ST (t)(p) = PT (p′), C(p) = C(p′), and I(p)〈〉 = I(p′)〈〉 for all
(p, p′) ∈ PS (t) and all t ∈ Tsub.

4. FS ⊆ 2P is a set of non-empty and disjoint fusion sets such that C(p) =
C(p′) and I(p)〈〉 = I(p′)〈〉 for all p, p′ ∈ fs and all fs ∈ FS .

The module hierarchy of a hierarchical CPN model is a directed graph with
a node for each module and an arc leading from one module to another module
if the latter module is a submodule of one of the substitution transitions of
the former module. In the definition, Tsub denotes the union of all substitution
transitions of the hierarchical CPN, and T s

sub denotes all substitution transitions
in a module s.

Definition 3. The module hierarchy for a hierarchical Coloured Petri Net
CPNH = (S,SM ,PS ,FS ) is a directed graph MH = (NMH , AMH ), where

1. NMH = S is the set of nodes.
2. AMH = {(s1, t, s2) ∈ NMH × Tsub ×NMH | t ∈ T s1

sub ∧ s2 = SM (t)} is the set
of arcs.

The roots of MH are called prime modules, and the set of all prime modules
is denoted SPM.

3 Pragmatic Annotated CPNs

PA-CPNs mandate a particular structure of the CPN models and allow the CPN
elements to be annotated with pragmatics used to direct the automated code
generation. In the CPN model, pragmatics are shown by annotations enclosed
in 〈〈 〉〉. Pragmatics can also have some parameters, which we discuss as they
come; but we do not formalize parameters of pragmatics in general here.

A PA-CPN is organised into three levels of modules: the protocol system
level , the principal level , and the service level – reflecting the typical structure
of protocols. In order to better understand the structure of PA-CPNs, Figs. 1 and
2 show selected modules from each level of a PA-CPN model of the protocol that
we use as a running example. The protocol consists of a sender and a receiver
principal, with services for sending and receiving data messages, and for sending
and receiving acknowledgements. The sender sends each data message, one at a
time, with a bounded number of retransmissions awaiting an acknowledgement
for each data packet. In addition to the two principals, the protocol system
contains unreliable channels for transmitting messages. The complete PA-CPN
model of the example protocol is available at [17].

We formally define PA-CPNs as a tuple consisting of a hierarchical CPN: one
protocol system module (PSM), sets of principal level modules (PLMs) and ser-
vice level modules (SLMs) and channel modules (CHMs), and a structural prag-
matics mapping (SP) that maps substitution transitions (indicated by double
borders) to pragmatics representing the annotations of substitution transitions.
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Fig. 1. The top-level CPN system level module (left) and principal level module for
the sender principal (right) of the protocol example.
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Fig. 2. The send service level module of the protocol example.

Definition 4. A Pragmatics Annotated Coloured Petri Net (PA-CPN)
is a tuple CPN PA = (CPNH ,PSM ,PLM ,SLM ,CHM ,SP), where:

1. CPNH = (S, SM,PS, FS) is a hierarchical CPN with PSM ∈ S being a
protocol system module (Def. 5) and the only prime module of CPNH .

2. PLM ⊆ S is a set of principal level modules (Def. 6); SLM ⊆ S is a
set of service level modules (Def. 7) and CHM ⊆ S is a set of channel
modules s.t {{PSM },PLM ,SLM ,CHM } constitute a partitioning of S.

3. SP : Tsub → {principal,service,internal,channel} is a struc-
tural pragmatics mapping such that:
(a) Substitution transitions with 〈〈principal〉〉 have an associated principal

level module: ∀t ∈ Tsub : SP(t) = principal⇒ SM (t) ∈ PLM .
(b) Substitution transitions with 〈〈service〉〉 or 〈〈internal〉〉 are associated with

a service level module:
∀t ∈ Tsub : SP(t) ∈ {service,internal} ⇒ SM (t) ∈ SLM .
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(c) Substitution transitions with 〈〈channel〉〉 are associated with a channel
module: ∀t ∈ Tsub : SP(t) = channel⇒ SM (t) ∈ CHM .

It should be noted that channel modules do not play a role in the code
generation; they constitute a CPN model artifact used to connect the principals
for verification purposes. Therefore, we do not impose any specific requirements
on the internal structure of channel modules.

Protocol system level. The module shown in Fig. 1(left) comprises the pro-
tocol system level of the PA-CPN model of the example. It specifies the two
protocol principals in the system and the channel connecting them. The sub-
stitution transitions representing principals are specified using the principal
pragmatic, and the substitution transitions representing channels are specified
using the channel pragmatic. The PSM module is defined as a tuple consisting
of a CPN module and a pragmatic mapping PM that associates a pragmatic
to each substitution transition. The requirement on a protocol system module
is that all substitution transitions must be substitution transitions that are an-
notated with either a principal or a channel pragmatic. Furthermore, two
substitution transitions representing principals cannot be directly connected via
a place: there must be a substitution transition representing a channel in be-
tween. This reflects the fact that principals can communicate via channels only.

Definition 5. A Protocol System Module of a PA-CPN with a structural
pragmatics mapping SP is a tuple CPNPSM = (CPNPSM ,PM ), where:

1. CPNPSM = ((PPSM , TPSM , APSM , ΣPSM , V PSM , CPSM , GPSM , EPSM , IPSM ),
TPSM
sub , PPSM

port ,PT
PSM ) is a CPN module such that all transitions are substi-

tution transitions: TPSM = TPSM
sub .

2. PM : TPSM
sub → {principal,channel} is a pragmatics mapping s.t.:

(a) All substitution transitions are annotated with either a principal or
channel pragmatic: ∀t ∈ TPSM

sub : PM (t) ∈ {principal,channel}.
(b) The pragmatics mapping PM must coincide with the structural pragmatic

mapping SP of PA-CPN: ∀t ∈ TPSM
sub : PM (t) = SP(t).

(c) All places are connected to at most one substitution transition with 〈〈principal〉〉
and at most one substitution transition with 〈〈channel〉〉:
∀p ∈ PPSM : ∀t1, t2 ∈ X(p) : PM (t1) = PM (t2)⇒ t1 = t2.

Principal level. On the principal level, there is one module for each principal
of the protocol as defined by 〈〈principal〉〉 on the protocol system level. The exam-
ple protocol has two modules at the principal level corresponding to the sender
and the receiver. Figure 1(right) shows the principal level module for the sender.
A principal level module is required to model the services that the principal is
providing, and the internal states and life-cycle of the principal. For the sender,
there are two services as indicated by the service and internal pragmatics
on the substitution transitions send (for sending messages) and receiveAck (for

K. Simonsen et al: Pragmatics Annotated CPNs 85



receiving acknowledgements). Services that can be externally invoked are speci-
fied using the service pragmatic, whereas services that are to be invoked only
internally are specified using the internal pragmatic. The non-port places of
a principal level module (places drawn without a double border) can be anno-
tated with either a state or an LCV pragmatic. Places annotated with a state
pragmatic represent internal states of the principal. In Fig. 1(right), there are
two places with 〈〈state〉〉 used to enforce a stop-and-wait pattern in sending data
messages and receiving acknowledgements. Places annotated with an LCV prag-
matic represent the life-cycle of the principal by putting restrictions on the order
in which services can be invoked. As an example, the place ready in Fig. 1(right)
ensures that only one message at a time is sent using the send service.

Definition 6. A Principal Level Module of a PA-CPN is a tuple CPNPLM =
(CPNPLM , T

PLM
sub , PPLM

port ,PT
PLM ,PLP) where:

1. CPNPLM = ((PPLM , TPLM , APLM , ΣPLM , V PLM , CPLM , GPLM , EPLM ,
IPLM ), TPLM

sub , PPLM
port ,PT

PLM ) is a CPN module with only substitution tran-
sitions: TPLM = TPLM

sub .
2. PLP : TPLM

sub ∪ PPLM \ PPLM
port → {service,internal,state,LCV} is a

principal level pragmatics mapping satisfying:
(a) All non-port places are annotated with either a state or a LCV prag-

matic: ∀p ∈ PPLM \ PPLM
port ⇒ PLP(p) ∈ {state,LCV}

(b) All substitution transitions are annotated with a service or internal
pragmatic: ∀t ∈ TPSM

sub : PLP(t) ∈ {service,internal}.

Service level. The service level modules specify the detailed behaviour of the
individual services and constitute the lowest level modules in a PA-CPN model.
In particular, there are no substitution transitions in modules at this level. The
module in Fig. 2 is an example of a module at the service level. It models the
behaviour of the send service in a control-flow oriented manner. The control-flow
path, which defines the control flow of the service, is made explicit via the use of
the Id pragmatics. The entry point of the service is indicated by annotating a
single transition with 〈〈service〉〉, and the exit (termination) point of the service
is indicated by annotating a single transition with 〈〈return〉〉. In addition, non-
port places can be annotated with a state pragmatic to indicate that this
place models a local state of the service. The driver pragmatic is used by
service tester modules (Sect. 6) to facilitate verification. The places with 〈〈Id〉〉
determine a subnet of the module, which we call the underlying control-flow net :
it is obtained by removing all CPN inscriptions and considering only places with
〈〈Id〉〉 and transitions connected to these places, which in Fig. 2, are indicated by
places, transitions, and arcs with thick border. This control-flow net must follow
a certain structure so that there is a one-to-one correspondence to control-flow
constructs of typical programming languages. This requirement is called tree
decomposability and is formally defined in Sect. 5.

A service level module is defined as consisting of a CPN module without
substitution transitions and with service level pragmatics as described above.
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Note that we use the symbol ∃! to indicate that there “exists exactly on element”
with the respective property.

Definition 7. A Service Level Module of a PA-CPN is a tuple CPN SLM =
(CPN SLM , T

SLM
sub , PSLM

port ,PT
SLM ,SLP) where:

1. CPN SLM = ((PSLM , TSLM , ASLM , ΣSLM , V SLM , CSLM , GSLM , ESLM ,
ISLM ), TSLM

sub , PSLM
port ,PT

SLM ) is a CPN module without substitution transi-
tions: TSLM

sub = ∅.
2. SLP : TSLM ∪PSLM \PSLM

port → {Id,state,service,return,driver}
is a service level pragmatic mapping satisfying:
(a) Each place is either annotated with Id, state, driver or is a port

place : ∀p ∈ PSLM \ PSLM
port : SLP (p) ∈ {Id,state,driver}.

(b) There exits exactly one transition with 〈〈service〉〉 and exactly one tran-
sition with 〈〈return〉〉:
∃!t ∈ TSLM : SLP (t) = service and ∃!t ∈ TSLM : SLP (t) = return.

3. For all t ∈ TSLM and p ∈ PSLM we have:
(a) Transitions consume one token from input places with an Id pragmatic:

(p, t) ∈ ASLM ∧ SLP (p) = Id⇒ |E(p, t)〈b〉| = 1 for all bindings b of t.
(b) Transitions produce one token on output places with an Id pragmatic:

(t, p) ∈ ASLM ∧ SLP (p) = Id⇒ |E(t, p)〈b〉| = 1 for all bindings b of t.
(c) Only transitions with 〈〈service〉〉 can have input places with 〈〈driver〉〉:

(p, t) ∈ ASLM ∧ SLP (p) = driver⇒ SLP (t) = service
(d) Only transitions with 〈〈return〉〉 can have output places with 〈〈driver〉〉

pragmatic: (t, p) ∈ ASLM ∧ SLP (p) = driver⇒ SLP (t) = return

4. The underlying control flow net of CPN SLM is tree decomposable (Defs. 9,11).

4 Protocol Modelling Process

In the previous sections, we have formalised the structural restrictions of CPNs
and the pragmatics extensions that make them Pragmatic Annotated CPNs (PA-
CPNs); some additional restrictions on the control-flow structure and the service
testers will be formalized later in Sect. 5 and 6. Since it is the modellers respon-
sibility to come up with a model meeting these requirements, we briefly discuss
the choices underlying the definition of PACPNs and their structural restrictions
concerning the modelling process and some methodology for developing protocol
software with PA-CPNs here.

The structural requirements of PA-CPNs have been distilled from the expe-
rience with earlier CPN models of protocols. The structure and annotations of
PA-CPNs are designed to help the modeller come up with a clear model and to
give clear guidelines for creating a model that – at the same time – can be used
for code generation as well as for verification. As such, the structure of PA-CPNs
should be driven by the protocol and its purpose rather than by the artifacts
of Petri nets. This is, in particular, reflected by structuring the model in three
layers: protocol system, principal, and service layer.
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The top layer, the protocol system layer, identifies the overall structure of
the protocol, which are the principals of the protocol and how the principals are
connected by channels (see Fig. 1 (left) for an example). Each principal and each
channel is represented by a substitution transition with a respective annotation,
and places connecting the respective principals with channels. The behaviour
of each principal is represented by principal level module, which identifies the
services of the respective principal (see Fig. 1 (right) for an example) along with
the states of the protocol and its life-cycle. The services are represented by sub-
stitution transitions annotated with the service pragmatics, the state and the
life-cycle of the principal are represented by places with state and LCV prag-
matics. The behaviour of each service is then modelled by a service level module,
which is associated with the service substitution transitions on the principal
level module (see Fig. 2 for an example). The service level module has access
to the channels that the principal is connected to as well as to the principal’s
state and life-cycle variables. The most prominent structure (indicated by bold-
faced places, transitions, and arcs) of the service level module is the control-flow
structure, which is identified by the Id pragmatics and which needs to follow
very specific rules so that it can be transformed to control-flow constructs of
typical programming languages and result in human-readable code. The exact
requirements are discussed in Sect. 5.

It should be noted that also the channels (on the protocol system level)
need to be associated with PA-CPN modules, which model the exact behaviour
of the respective channel. The modules for the channels are not used for code
generation, since the generated code will use implementations of channels from
the underlying platform (based on the properties required for these channels).
But for verifying the protocol with standard CPN mechanisms, we need a CPN
module for each channel, which however does not have any further structural
restrictions.

Any model that meets the requirements of PA-CPNs can be used for code
generation as well as for verification – irrespective of the way it was produced.
The typical modelling process of protocols with PA-CPN starts at the top-level
by identifying the principals of the protocol and how they are connected by
channels. Then, the services of each principal are identified on the principal
level, and then each service is modelled. So the general modelling direction is
top-down. Of course, additional services and even additional principals could be
added later, when need should be.

5 Tree Decomposability of Control Flow Nets

As discussed earlier, the control-flow structure of a service level module, called
the underlying control-flow net, must correspond one-to-one to control-flow con-
structs of programming languages. The main purpose of this requirement is to
generate readable code. In this section, we formally define the underlying control
flow net of a service level module and its one-to-one correspondence to control-
flow constructs. This is achieved by inductively decomposing the control-flow net
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into a tree of sub-blocks, each of which corresponds to a control-flow construct:
atomic step, sequence, choice and loop.

Figure 3 shows the underlying control flow net of the service level module
from Fig. 2. All places and transitions in the rounded rectangle (representing the
block border) are part of the block; an arrow from the block border to a place
indicates the entry place; an arrow from a place to the block border indicates
the exit place. The control flow net in Fig. 3 can be decomposed in a loop block,
which in turn consists of an atomic block.

First, we define blocks: these are Petri nets with a fixed entry and exit place.

Definition 8. Let N = (P, T,A) be a Petri net and s, e ∈ P . Then B =
(P, T,A, s, e) is called a block with entry s and exit e. The block is atomic, if
P = {s, e}, s 6= e, |T | = 1 and for t ∈ T , we have •t = {s} and t• = {e}. The
block has a safe entry, if s 6= e and •s = ∅. The block has a safe exit, if s 6= e
and e• = ∅.

Fig. 3. Decomposition of the ser-
vice level module in Fig. 2

For easing the following definitions, we in-
troduce an additional notation: For a block
Bi, we refer to its constituents by Bi =
(Pi, Ti, Ai, si, ei) without explicitly naming
them every time. The block that is under-
lying a service level module is determined by
all the places with 〈〈Id〉〉 pragmatics and the
transitions in their pre- and postsets. The
unique transition with 〈〈service〉〉 defines the
entry place, and the unique transition with
〈〈return〉〉 defines the exit place of this block;
note that for technical reasons, these two
transitions are not part of the block. There-
fore, these transitions are shown by dashed
lines in Fig. 3. Formally, the control flow net
underlying a service level module is defined as follows.

Definition 9. Let CPN SLM be a service level module as defined in Def. 7. Let
P = {p ∈ PSLM \ PSLM

port |SLP (p) = Id}, let T = TSLM ∩ •P ∩ P •, and let
A = ASLM ∩ ((T × P ) ∪ (P × T ))}; moreover, let s ∈ P be the unique place
such that there exists a transition t ∈ T = TSLM with (t, s) ∈ ASLM and
SLP (t) = service, and let e ∈ P be the unique place e such that there exists
a transition t ∈ T = TSLM with (e, t) ∈ ASLM and SLP (t) = return. Then,
N = (P, T,A, s, e) is the underlying control flow net of CPN SLM .

The control flow of the code that is being generated is obtained by decom-
posing the underlying control flow net of a service level module into sub-blocks
representing the control-flow constructs. We define the decomposition in a very
general way at first, which does not yet restrict the possible control-flow con-
structs. The decomposition into blocks, just makes sure that all parts of the
block are covered by sub-blocks and that they overlap on entry and exit places
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only. In a second step, the decomposition is restricted in such a way that the
decomposition captures certain control flow constructs (Def. 11).

Definition 10. Let B = (N, s, e) be a block with net N = (P, T, F ). A set of
blocks B1, . . . , Bn is a decomposition of B if the following conditions hold:

1. The sub-blocks contain only elements from B, i. e. for each i ∈ {1, . . . , n},
we have Pi ⊆ P , Ti ⊆ T , and Fi ⊆ F ∩ ((Pi × Ti) ∪ (Ti × Pi)).

2. The sub-blocks contain all elements of B, i. e. P =
⋃n

i=1 Pi, T =
⋃n

i=1 Ti,
and F =

⋃n
i=1 Fi.

3. The inner structure of all sub-blocks are disjoint, i. e. for each i, j ∈ {1, . . . , n}
with i 6= j, we have Ti ∩ Tj = ∅ and Pi ∩ Pj = {si, ei} ∩ {sj , ej}.
As the final step, we define when a decomposition of a block reflects some

control flow construct. The definition does not only define decomposability into
control flow constructs; it also defines a tree structure which reflects the control-
flow structure of the block; the type of each node reflects the construct. The
definition is illustrated in Fig. 4. The top left part of Fig. 4 shows the inductive
definition of a loop construct: The assumptions are that two blocks B1 and B2
are identified already. B1 is any kind of block (represented by X) with a safe
entry place s and a safe exit place e; B2 is an atomic block with entry place e
and exit place s. Thus, block B1 represents the loop body, and block B2 the
iteration. Then, the union of both blocks and entry place s and exit place e,
form a block B, which is a loop consisting of the loop body B1 and the atomic
block B2 for the iteration. The definitions of choices and sequences are similar.

Fig. 4. Inductive definition of block trees

Definition 11 below formally defines block tree as illustrated in Fig. 4.

Definition 11. The block trees associated with a block are inductively defined:
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Atomic If B is an atomic block, then the tree with the single node B:atomic
is a block tree associated with B.

Loop If B is a block and B1 and B2 is a decomposition of B, and for some X,
B1 : X is a block tree associated with B1, and B2 : atomic is a block tree
associated with B2, and if B1 has a safe entry and a safe exit s.t s1 = s,
e1 = e, s2 = e, e2 = s, then the tree with top node B:loop and the sequence
of sub-trees B1 : X and B2 : atomic is a block tree associated with B.

Choice If B is a block and for some n with n ≥ 2 the set of blocks B1, . . . , Bn

is a decomposition of B, and have a safe entry and a safe exit, and B1 :
X1, . . . , Bn : Xn for some X1, . . . , Xn are block trees associated with B1, . . . , Bn,
and if for all i ∈ {1, . . . , n}: si = s and ei = e, then the tree with top node
B:choice with the sequence of sub-trees Bi : Xi is a block tree associated
with B.

Sequence If B is a block and for some n with n ≥ 2 the set of blocks B1, . . . , Bn

is a decomposition of B, and, for some X1, . . . , Xn, the trees B1 : X1, . . . , Bn :
Xn are block trees associated with B1, . . . , Bn, and if there exist different
places p0, . . . , pn ∈ P such that s = p0, e = pn, and for each i ∈ {0, . . . , n−1}
we have si = pi, ei = pi+1, and Bi has a safe exist or Bi+1 has a safe entry,
then the tree with top node B:sequence and the sequence of sub-trees Bi : Xi

is a block tree associated with B.

A net for which such a tree exists is said to be tree decomposable.

Note that in order to simplify the definition of tree decomposability, the tree
decomposition of a block is not necessarily unique according to our definition.
For example, a longer sequence of atomic blocks could be decomposed in different
ways. In the PetriCode tool, such ambiguities are resolved by making sequences
as large as possible. Note also that for two consecutive constructs in a sequence,
it should not be possible to go back from the second to the first; therefore, the
above definition requires that consecutive blocks have a safe entry or a safe exit.
And there are some similar requirements for loops and choices.

6 Service Testers and Sweep-Line Verification

The service level modules constitute the active part of a PA-CPN model. The
execution of an individual service provided by a principal starts at the transition
with a 〈〈service〉〉 pragmatic. The transitions annotated with a service pragmatic
typically has a number of parameters which need to be bound to values in order
for the transition to occur. An example of this is the Send service transition in
Fig. 2 which has the variable dataList as a parameter. This means that there are
often an infinite number of bindings for a service transition.

To control the execution of a PA-CPN model in verification by means of state
space exploration, we introduce the concept of service tester modules which can
be used to guide the verification process and represent a user of the services
provided by the principal modules. An advantage of service testers is that they
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contribute to reducing the state space during verification and enable progress
measures for the sweep-line method [4] to be automatically computed.

The service tester modules are connected to the rest of the PA-CPN model
through fusion sets, and the service tester modules invoke the service provided
by the principal by putting tokens on fusion places and the service tester receives
any results from the invoked services via tokens on these places.

call Receive
<<driver>>

Fusion 2Fusion 2

d1
<<Id>>

message
<<driver>>

Fusion 1

DataList

d0
<<Id>>

()

d2
<<Id>>

sendFinished
<<driver>>

Fusion 4Fusion 4

d3
<<Id>>

endReceive
<<driver>>

Fusion 3Fusion 3

Call send

call receive

cleanReceiver

1`(1, 0, "Col")++
1`(2, 0, "our")++
1`(3,1,"ed ")

()

()

()

()

()

()

()

()

()

Fusion 1

Fig. 5. Service tester module

Fusion sets and fusion places are standard
constructs of hierarchical CPNs (see Def. 2). A
fusion set consists of a set of fusion places such
that removing (adding) tokens from (to) a fusion
place is reflected on the markings of all members
of the fusion set. In addition to the fusion places,
Id pragmatics are used to make the control flow
of the service tester explicit in a similar manner
as for service level modules.

Figure 5 shows an example of a service tester
module for the PA-CPN model introduced in
Sect. 3. The service tester drives the execution
of a CPN model through fusion places. A ser-
vice tester module can have many places with Id
pragmatics; but only one of them may contain a
token initially (place d0 in Fig. 5). The service
tester first invokes the send service in Fig. 2 by
putting a token in the fusion place message. Next, the service tester invokes the
receive service in the receiver principal. Service tester modules are formalised
below.

Definition 12. A Service Tester Module is a tuple CPN STM = (CPN STM ,
TSTM
sub , PSTM

port ,PTSTM ,TPM ) where:

1. CPN STM = ((PSTM , TSTM , ASTM , ΣSTM , V STM , CSTM , GSTM , ESTM ,
ISTM ), TSTM

sub , PSTM
port ,PT

STM ) is a CPN module with no substitution tran-
sitions: TSTM

sub = ∅.
2. TPM : PSTM → {Id,driver,LCV} is a tester pragmatic mapping.
3. ∃!p ∈ I: |ISTM (p)〈〉| = 1, and for all t ∈ TSTM and p ∈ PSTM we have:

(a) Transitions consume one token from input places with an Id pragmatic:
(p, t) ∈ ASTM ∧TPM(p) = Id⇒ |E(p, t)〈b〉| = 1 for all bindings b of t.

(b) Transitions produce one token on output places with an Id pragmatic:
(t, p) ∈ ASTM ∧TPM(p) = Id⇒ |E(t, p)〈b〉| = 1 for all bindings b of t.

4. Transitions and places with an LCV pragmatic must be connected with a
double arc: ∀p ∈ PSTM , t ∈ TSTM : TPM(p) = LCV ⇒ ((t, p) ∈ ASTM ⇔
(p, t) ∈ ASTM )

5. The underlying control flow block of CPN STM is tree decomposable (Defs. 9,11).

Service tester modules are connected to a PA-CPN by means of fusion places
in order to control the execution of the services. We therefore define a PA-CPN
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equipped with service tester modules as a hierarchical CPN consisting of a set
of modules that constitute a PA-CPN according to Def. 4 and a set of service
tester modules which are all prime modules. We also require that fusion places
are connecting the service level modules and the service tester module so that
they correspond to the invocation of services and collecting of a results from
an executed service. As with PA-CPNs, the modeller must construct the service
tester modules such that they satisfy the formal requirements. Due to space
limitations we omit the formal definition of PA-CPNs with service testers which
can be found as Def. 5.2 in [20].

The set of service tester modules determine the state space of the PA-CPN
model under analysis. The service tester modules may specify a more or less strict
execution order on the services being invoked. It is therefore possible to use the
service tester modules to control the size of the state space of the PA-CPN model
being verified. Below we show that in addition to the use of service testers, the
structural requirements imposed by PA-CPNs can be exploited by the sweep-line
method [4] to further reduce the peak memory usage during verification.

The sweep-line method addresses the state explosion problem by exploiting a
notion of progress exhibited by many systems to store subsets of the state space
in memory during state space exploration. To apply the sweep-line method, a
progress measure must be provided for the model as formalised below where
S denotes the set of all states (markings), →∗ the reachability relation on the
markings of the CPN model, and R(M0) denotes the states reachable from the
initial marking M0.

Definition 13. A progress measure is a tuple P = (O,v, ψ) such that O is a
set of progress values, v is a total order on O, and ψ : S → O is a progress
mapping. P is monotonic if ∀s, s′ ∈ R(M0) : s →∗ s′ ⇒ ψ(s) v ψ(s′).
Otherwise, P is non-monotonic.

The subsets of states that need to be stored at the same time are determined
via a progress value assigned to each state, and the method explores the states in
a least-progress-first order. The sweep-line method explores states with a given
progress value before progressing to the states with a higher progress value.
When the method proceeds to consider states with a higher progress value, it
deletes the states with a lower progress value from memory. If it turns out that
the system regresses (a non-monotonic progress measure), then the method will
mark states at the end of regress edges as persistent (i. e., store them permanently
in memory) in order to ensure termination. In the presence of regression, the
sweep-line method may visit the same state multiple times (for details, see [4]).

The structure imposed on CPNs by PA-CPNs and services testers means that
PA-CPN models have several potential sources of progress. The control-flow in
the service modules is one source of progress as there is a natural progression
from the entry point of the service towards the exit point of the service. The
life-cycle of a principal is another potential source of progress as there will often
be an overall intended order in which the services provided are to be invoked,
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and this will be reflected in the life-cycle variables of the principal. Finally, the
service testers are also a source of progress as a service tester will inherently
progress from the start of the test towards the end of the test. For our example
protocol, the progress mapping can be defined as a vector of place-wise measures
using the number of tokens on some of its places. This is written below where
we omitted the parts of the model that we did not show in this paper and used
s(p) to denote the marking of a place p in the state s:

ψ(s) = (|s(d0)|, |s(d1)|, |s(d2))|, |s(d3)|, |s(startSnd)|+ |s(next)|, |s(end)|) (1)

Two such vectors can be compared lexicographically, meaning the order of
the different entries represents their significance. The first four entries represent
the progress in the service tester (Fig. 5). The next two entries represent the
progress within the send service (Fig.2). Note that since the places startSending
(abbreviated as startSnd in (1) and (2)) and next are on a loop, tokens can
flow back from place next to place startSending. The end place is actually the
respective driver place from the tester, which propagates the progress between
the service and tester. Therefore, the tokens on both places within this loop are
counted the same (added up in the same entry of the vector). An alternative
progress measure is shown below (omitting the parts of the model that we did
not show in this paper):

ψ(s) = (|s(d0)|, |s(d1)|, |s(d2))|, |s(d3)|, |s(startSnd)|, |s(next)|, |s(end)|) (2)

The difference between (1) and (2) is how loops are handled. In the progress
measure (2), the places on loops are appended to the vector as if the loop was not
there. In the present example this is shown by having replaced the + operator
in (1) between startSending and next with a comma in (2).

We generalise the above idea by defining progress measures on top of the tree
decomposition of the blocks underlying the corresponding service tester module
or the service level module. We define a simple progress measure and a complex
one. The simple one is monotonic and adds up the number of all tokens within
a top-level loop; the complex one is not monotonic, but takes progress within
a loop into account. Since both definitions are very similar, we define only the
complex progress measures formally here (the simple one can be found in [20]).

Definition 14. Let BT be a block tree for a CPN module. The sequence of
complex progress measure entries is defined inductively over the block tree
BT of the CPN module:

Atomic If BT is B : atomic, then complex progress sequence consist of |s|, |e|
where s is the entry place of the block B and e is the exit place.

Sequence If BT is B : sequence with subblocks B1, . . . Bn, and e1i , . . . , e
ki
i are

the complex progress sequences for Bi, then e11, . . . , e
k1−1
1 , e12, . . . , e

k2−1
2 , . . . ,

e1n, . . . , e
kn
n is the complex sequence for BT .

Choice If BT is B : choice with subblocks B1, . . . Bn, and e1i , . . . , e
ki
1 are the

complex progress sequence for each block Bi, then the sequence e11, . . . , e
k1−1
1 ,

e22, . . . , e
k2−1
2 , . . . , e2n, . . . , e

kn
n is the complex progress sequence for BT
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Loop If BT is B : loop with places with sub-block B1 and B2 with the complex
progress sequence e1, . . . , en for B1, then e1, . . . , en is the complex progress
sequence for BT .

A progress measure for the complete system can be built from the progress
sequences (either the simple or the complex one) for the tester and service mod-
ules by concatenating the sequences. The concatenation would first choose the
sequences for the service testers and then the sequences for all the service level
modules. Note that if there is a driver place of a service tester attached to the
service, this driver place would also be added to the progress measure sequence
of the service level module at the end (as for the end place for the send service).

Table 1 shows some experimental performance results on the protocol exam-
ple for different configurations (number of transmitted messages) and channel
characteristics (lossy/non-lossy) using the sweep-line method with the simple
and the complex progress measure. In the experiments, we consider exploration
of the complete state space. This is done since the sweep-line method (unless
combined with other reduction techniques) in the worst-case needs to explore
all states in order to model check a property. One example of this is checking
that in all terminal states, the protocol has correctly delivered all packets. Since
the simple progress measure is monotonic, the number of explored states using
that measure is identical to the number reachable states of the respective exam-
ple, which for clarity are indicated in the first column again. Since the complex
progress measure is not monotonic, some states might be visited (explored) mul-
tiple times. Therefore, the number of explored states is higher than the reachable
states of the respective example. The ratio columns give the ratio in percent be-
tween the peak number of states stored (with the respective progress measure)
and the number of reachable states. It can be seen that the runtime as well
the peak memory use are better when using the complex progress measure. The
complex measure provides better performance due to the fact that the send ser-
vice has a loop as the top-level control-flow construct. It can be seen that the
peak memory use with the complex progress measure is reduced to between 40
and 77%.

Table 1. Verification using simple and complex progress measure

Config Simple PM Complex PM
Reachable Explored Peak Ratio Time Explored Peak Ratio Time

1:noloss 156 156 77 49.3 <1 s 165 63 40.3 <1 s
1:lossy 186 186 99 53.2 <1 s 196 78 41.9 <1 s
3:noloss 2,222 2,222 2,014 90.6 <1 s 2790 1,582 71.2 <1 s
3:lossy 2,928 2,928 2,700 92.2 <1 s 4037 2,187 75.7 <1 s
7:noloss 117,584 117,584 115,373 98.1 216 s 143,531 86,636 73.6 32 s
7:lossy 160,620 160,620 158,888 98.1 532 s 263,608 124,661 77.6 80 s
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7 Conclusions and Related Work

In this paper, we focused on the formal definition of PA-CPNs and how the struc-
ture of PA-CPNs can be exploited for more efficient verification. The PA-CPN
net class has been motivated by the objective of developing a code generation
approach to protocol software which allows the same model to be used for both
code generation and verification – and which satisfies five main requirements:
platform independence, code integration, verifiability , readability , and scalability .
The development of PA-CPNs has been driven by practical experiments in order
to empirically validate that the approach satisfied the five requirement in prac-
tice. The experimental results have been reported in earlier papers [16, 17, 19]
using an implementation of the approach in the PetriCode tool.

The requirements of platform independence, code integration, readability , and
scalability are relevant for use in practice: Platform independence ensures that
the approach is not locked to a particular target programming language. Code
integration ensures that the generated code can be integrated with existing other
parts of the software. Readability of the generated code is important for devel-
oping trust in the approach, and for further maintaining the protocol software
in the future. Scalability is important for being able to apply the approach to
industrial strength protocols. Concerning verifiability , it often is the case that
one model is used for verification, and then the protocol is implemented manu-
ally from that or generated from another model. This imposes extra work and
decreases the confidence in that the actual software meets the requirements ver-
ified on the model. Therefore, we required the same model being used for code
generation and for verification.

As stated in the introduction, CPNs have been primarily used for modelling
and verifying protocols in the past. Still, related approaches for CPNs – and
more generally for high-level Petri Nets (HLPNs) – have been developed. Below,
we relate our work to other approaches using HPLNs for code generation by
discussing them in the context of the five requirements that have driven the
development of PA-CPNs.

Kaim [6] contains a generic discussion of aspects related to generating code
from low-level and high-level Petri net models with the purpose of executing
it outside the simulation environment where they are created. Kaim discusses
both centralised and parallel approaches to interpretation of Petri net models.
A main aspect of the parallel approach is a structural analysis of the model
in order to identify subnets that can be mapped to different processes. In the
PetriCode approach, the structural pragmatics provided by the modeller and the
structural restrictions of PA-CPNs provide similar information. Kaim does not
consider the issues of code integration and the readability of the generated code.

The approach presented by Philippi [14] is a hybrid of simulation-based and
structural analysis approaches to code generation for HLPNs. The motivation
for the hybrid approach is to produce more readable code than a pure simulation
approach would because fewer checks are needed in the code. Philippi targets
the Java platform only and is therefore not platform independent in its basic
form. The generated code can be integrated into third party code in that the
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API of the generated code is defined by UML class diagrams. The paper [14]
does not discuss the scaling to large applications. Lassen et al. [11] aim to gen-
erate readable code by creating code with constructs that are similar to what
human programmers would have created. Since the approach of Lassen is based
on Java annotations of CPN models, the approach is tailored to the Java pro-
gramming language and does not provide a generic infrastructure that supports
code generation for different platforms.

Reinke [15] studies, in the context of the functional programming language
Haskell, how to use language embedding for mapping constructs from HLPNs
into Haskell code. The focus of Reinke is on generating code for a HLPN sim-
ulator. The work of Reinke is not aimed at providing a general mechanism for
generating readable code and on integrating the code into a larger application.
Kummer et al. [10] are concerned with the execution of reference nets in the
context of the Renew tool which is based on the Java platform. Reference nets
as supported by Renew are known to be verifiable [12] but the approach is specif-
ically tailored to the Java platform. The work does not focus on integration at
the code level but other means are providing for integrating the code into larger
applications [1].

Mortensen’s approach [13] is a simulation based approach based on extracting
the generated simulation code from CPN Tools. As such the work of Mortensen
is aimed at making an SML implementation of the modelled system and not
on conducting verification of the models or to target multiple platforms. Fur-
thermore, being a simulation based approach, the goal from the outset is not to
generate code that is intended for humans to read. The use of a simulation-based
approach also means that there is a considerable performance overhead due to
the many enabling checks in the code. The approach of Kristensen et al. [7] is
similar to the approach in [13]. PP-CPNs are used in [9] as the basis for code
generation targeting the Erlang language but the approach is not designed to
address readability of the generated code. Furthermore, the approach is tailored
to the Erlang platform and may not be easily adapted to other platforms even
though PP-CPNs and the intermediary representation of control-flow graphs are
independent of the target language. Jørgensen et al. [5] propose an approach for
generating BPEL code. The approach is targeted at BPEL and does not cre-
ate code for other languages or aims to address verifyability, code integration,
readability and scalability.

It follows from the discussion above that PA-CPNs and the PetriCode ap-
proach complement existing related approaches to code generation for high-level
Petri Nets. Furthermore, none of the approach discussed above specifically ad-
dress the domain of protocol software. This paper can be viewed as completing
the development of the PA-CPN net class by giving a formal definition and hence
establishing the formal foundation of our approach.
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Abstract. This paper presents an approach to the development of mod-
eling languages and automated generation of specific modeling tools
based on meta-models. Modeling is one of the main tasks in engineering.
Graphical modeling helps the engineer not only to understand the sys-
tem but also to communicate with engineers and with other stakeholders
that participate in the development (or analytic) process.
In order to be able to provide adequately adapted modeling techniques
for a given domain, it is useful to allow to develop techniques, which
are designed for their special purpose, i.e. domain-specific modeling lan-
guages (DSML). For this cause meta-modeling comes in handy. Meta-
models provide a clear abstract syntax and model-driven design ap-
proaches allow for rapid prototyping of modeling languages. However,
often the transformation and also the original (source model) as well as
the transformed (target) model do not provide a clear semantics.
We present an approach to model-driven development that is based on
Petri nets: high- or low-level Petri nets in various formalisms can be used
as target models. Starting from the conceptual background and under-
lying thinking tool, following up with code templates, transformation
engines, underlying semantics and the way our process support is imple-
mented up to the final target engine Petri nets and Petri net tools can
be used.

Keywords: Renew, Petri nets, model-driven development, meta-modeling

1 Introduction

Meta-modeling enables us to build models in a more abstract way than we are
used to today. For many purposes we prefer languages that solve a specific mod-
eling quest. While there are several well established modeling techniques with
a clear semantics, the purpose of the incorporated languages is more or less
fixed. Annotations like those in UML can in combination with profiles enhance
the expressiveness. However, it is difficult to build lean languages that cover
exactly those domain aspects that are required in a certain context. In addi-
tion, normally there exist no tools that directly support those languages with



specific language constructs. To make a language easy to use, one usually needs
direct tool support. The development of tools for building graphical models was
a challenge some years ago. Nowadays it is relatively easy within environments
like Eclipse and its meta-modeling plugins. 1 Even extensions that allow a simu-
lation of models built with those languages are available. However, usually these
execution environments are relatively restricted and do not scale. This is due to
the fact that the execution engine has to be built separately.

The development of a DSML and a corresponding modeling tool includes
a whole range of tasks. We will address in this contribution: (1) providing the
possibility to define an abstract syntax to allow users to build a special purpose
language, (2) providing a graphical environment to allow users to build special
language constructs for their specific language concepts (based on textual and
graphical representations), (3) providing a tool set that allows to build models
based on the previously defined languages and (4) providing a simulation envi-
ronment (especially based on reference nets [10]) that allows users to execute and
simulate their models. The presented approach to developing modeling languages
and tools (RMT approach) is extensively applied within our approach to devel-
oping agent-oriented software based on Petri nets (P∗aose approach, [3,13,17]),
in which the mutual interplay of modeling languages is omnipresent. It is however
equally applicable to other domains. We provide a prototype, which offers the
possibility to develop modeling languages and to generate corresponding mod-
eling tools. The Renew Meta-Modeling Framework (RMT framework)2 was
applied in several settings. The RMT framework constitutes a further develop-
ment step of the model-driven approach, which has been already envisioned and
partly applied during the development of the Agent Role Modeler (ARM, [4]).
The ARM tool, which was developed without appropriate meta-modeling tool
support, provides the modeling facility for agent organizations and knowledge
bases.

The remainder of this paper is structured as follows: The conceptual back-
ground, which comprises the model-driven tool development, encompassing meta-
modeling, graphical modeling, transformations and semantical issues, is dis-
cussed with respect to the requirements and specification of our solution in
Section 2. The example presented in Section 3 demonstrates the approach and
the applications of Petri nets as well as the application of other techniques during
DSML development. Section 4 elaborates on the wider context of model-driven
development and the approach of providing transformational semantics for mod-
eling languages with Petri nets. In Section 5 we will summarize our results and
will give an outlook of our further research directions opened by these results.

1 Eclipse Modeling Framework, EMF, https://www.eclipse.org/modeling/emf/
2 RMT: Renew Meta-Modeling and Transformation Framework,
tools and examples: http://www.paose.net/wiki/Metamodeling
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2 Conceptual Approach

As our approach to software development is based on the model-driven construc-
tion of software systems our aim is to provide a tool chain using model-driven
techniques. We want to support the agile development of graphical modeling lan-
guages. Therefore, we rely on the concepts of software language engineering [9]
and apply model-driven techniques to generate tools from abstract models. In the
following we elaborate on the techniques required to realize a framework based
on generating modeling tools. Renew provides the basis for our meta-modeling
framework. It serves as a graphical framework for the flexible construction of
graphical models and at the same time provides the execution and simulation
environment of Petri net models, which serve as target languages that provide the
transformational semantics for the designed languages. This approach allows for
the analysis of Petri net models and for the validation of model properties. Our
conceptual approach is based on the idea of bootstrapping the required modeling
tools using model-driven techniques. Following the concepts of software language
engineering the development of modeling languages encompasses three aspects:
abstract syntax, concrete syntax and semantics. Translating these concepts into
the area of generative tool development leads to a set of descriptions defining the
different aspects of software languages [15]: structure, constraints, representation
and behavior. The structure (abstract syntax) and the representation (concrete
syntax) of modeling languages will be addressed in the following section. The
behavior (semantics) is covered in Section 2.2.

2.1 Meta-Modeling and Tool Generation

In this section we elaborate on the first part of the DSML development process.
First we need to define the syntax of the new language (or technique). The
abstract syntax of a language is specified by a meta-model, which defines the
structure of the language. Our tool set, which is based on Renew, supports
the modeling of the abstract syntax directly through the technique of Concept
Diagrams (cf. [3, Chapter 12]). Concept Diagrams are simplified Class Diagrams,
which are usually used to design type hierarchies or agent ontologies (in the
context of P∗aose). In the context of this work the type hierarchies of Concept
Diagrams are utilized to model the meta-models of the designed DSML, i.e. the
abstract syntax.

Additionally, in order to define the representation of the elements we also need
to define the concrete syntax. The concrete syntax, i.e. the representation of the
syntactic elements, is defined through a mapping from the syntactic element to
it’s graphical representation (representational mapping). The representational
mapping includes concrete graphical or textual syntax as well as serialization
representations. Typically, if the language should not be restricted to graphical
standard figures, the layout, concrete form, etc. has to be defined in a form close
to the implementation language. However, we provide also the possibility that
the syntactic elements may be defined directly within the Renew environment
using the graphical user interface. Each provided graphical representation is
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stored as one template drawing and the representational mapping refers not to
an implementation but to a template (graphical component). Alternatively some
standard elements are provided, which can be configured in terms of stylesheets
to define the representation for the language constructs.

In addition to the abstract and the concrete syntax, we need to configure
the user interface of the modeling tool that provides the modeling facility –
in the Renew environment the modeling tool is integrated as a plugin. The
configuration is done defining another mapping for task bar tool buttons and
their design together with some general information about the modeling tool,
such as the file extension or the ordering of tool buttons in the task bar.

The Renew plugins that provide the modeling facility for the stylesheets
and the tool configurations are themselves meta-model based. They have been
generated – in a bootstrapping fashion – using the RMT approach.

Figure 1 shows the defining artifacts of a modeling language’s syntax in the
top. These artifacts are expressed within the scope of the meta-meta-model –
the RMT meta-model – and can thus be used to generate a domain-specific
modeling tool, which then provides the possibility to design a model, using the
technique; e.g. a (domain-specific) modeling language.

Figure 1. An abstract view on the models of a meta-modeling project.

A modeler may use the generated tool to model, store and retrieve graphical
models (diagrams) in the syntax of the newly developed modeling language.3 For
3 In the following we will address these models as domain model or source models.
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operational or analytic models, however, it is not enough to be able to provide
graphical descriptions of the models. In these cases we need to define a clear
semantics. Following the idea of the model-driven architecture (MDA) the se-
mantic interpretation of a source model can be defined through a transformation
into specific target models using a generator as shown in the lowermost part of
Figure 1, which references the schematic view of Petrasch et. al. [18, p. 107].

We elaborate on this in the following section. But before we present the ap-
proach to the definition of the semantics, we stress the flexibility of the given
approach, so far. The meta-modeling approach in itself offers a high degree of
flexibility. By changing (augmenting, modifying or restricting) the meta-model
we are able to quickly produce variations of modeling techniques, which may
subsequently be compared with each other (see for instance Section 3.2). Addi-
tionally, we are able to change the representation of the modeling language by
either changing the representational mapping or by editing the graphical com-
ponents. Especially the latter can be done by someone without knowledge in the
development details and thus create his own representation.

2.2 Transforming Source Models to Target Models

The semantics of a modeling language is defined – as semantic mapping, cf. [6]
– either through formalization, through an operationalization or through the
transformation into other models that already own a formal or an operational
semantics. As we use the Renew environment as basis for our approach, we
transform given source models to Petri net models, i.e. our target languages are
Petri nets formalisms. The RMT approach is not restricted to behavioral model-
ing languages. By choosing the proper target languages, such as Reference Nets,
modeling structural properties can be performed by applying the same approach.
In Figures 1 and 2 we can identify the domain specific model (source model),
which is transformed into a target model (Platform Specific Model, PSM) within
the application domain layer (M1). The Renew environment together with its
provided Petri net formalisms serve as Platform Model (PM, compare with Fig-
ure 1). In the context of model-driven development the source model is often
described as Platform Independent Model (PIM).

The transformation process is depicted in Figure 2 as a schematic Petri net.
Transitions represent actions provided by either the RMT tool set (generation,
transformation, execution or analysis) or by the source model developer (mod-
eling). Necessary artifacts for the development of the modeling language work-
flow are provided by the language developer using the RMT framework. These
artifacts comprise the syntax meta-models, the transformer and the semantic
elements provided as net components [3, Chapter 5]. Net components are Petri
net snippets that are used as patterns to be mapped by a generator and com-
bined to constitute the target models. In this sense the model transformation
process can be characterized as a pattern-oriented transformation following the
categorization of Petrasch et. al. [18, p. 132].

Besides supporting the agile development of graphical languages the RMT
approach also provides a high level of flexibility regarding the semantic trans-
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Figure 2. Artifacts and process within the RMT usage workflow.

formation. First, the semantic targets for the syntactic elements are defined as
net components, which can be modified or exchanged easily. We are even able
to provide several target mapping sets of net components, which can be ex-
pressed using distinct formalisms. Thus we are able to transform one source
model into multiple forms of target models. For instance, we could transform a
workflow description into a PT net for analytic examination and transform the
same source model to a colored Petri net for simulation / execution within a real
world application.

3 Developing a Prototype for BPMN

In the previous section we introduced a conceptual approach to developing mod-
eling languages. We now show the concept in practice and demonstrate the
concrete models, which are utilized in the development process. We have chosen
to present, as example, the well-known modeling technique BPMN (Business
Process Model and Notation [16]), in order to demonstrate the presented tool
set.

In Section 3.1 we develop a (rather simple) modeling language that imple-
ments a subset of BPMN. We show, how model transformations can be used
to generate Petri net models, which provide formal semantics to the abstract
BPMN models. The generated Petri net models can be referred to for analyzing
a BPMN process.
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In a subsequent step a more specific modeling language is developed in Sec-
tion 3.2. This second language – the BPMNAIP formalism – enriches concepts
from BPMN with domain-specific elements from the context of P∗aose (see Sec-
tion 1). The intention is to demonstrate the flexibility of the RMT approach
and the appropriateness for agile, rapid and prototypical model-driven language
development.

3.1 BPMN

We start with a simple subset of BPMN. Since BPMN has been described ex-
tensively in the context of modeling, meta-modeling and also in the context of
Petri nets, we do not need to go into detail about the underlying semantics. A
mapping of syntactic elements of BPMN to PT net components has been pro-
posed by Dijkman et. al. [5]. Using these Petri net mappings we can focus on
the aspects of agile language development instead. We concluded in Section 2.1
that a modeling language is based on the specifications of abstract and concrete
(graphical) syntax.

Figure 3. A meta-model for a subset of BPMN language constructs.

Figure 3 shows a meta-model for the chosen fragment of the BPMN. All
concepts defined in this meta-model are instances of three basic concepts from
the RMT meta-model: model, classifier, relation. Also shown in Figure 3 is that
the three basic concepts are themselves instances of the single core concept
(concept). The developed BPMN language defines a model type, the business-
process-model. Also defined are events, activities and two different gateways, one
for parallel processing and one with exclusive alternatives. These concepts can
be connected through the sequence-flow relation. These concepts alone define
the abstract syntax of the simplified BPMN formalism.

In order to complete the modeling language and generate the respective sup-
porting modeling tool, the RMT approach requires additional information. One
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Figure 4. The tool configuration model for the BPMN modeling tool (with partly
collapsed tool mappings).

is the visual representation of graphical constructs. These are developed us-
ing the built-in graphical constructs of the Renew drawing framework. Each
graphical figure is stored in a separate drawing file (template) and can be used
as syntactic element for modeling later on. Another required information is a
specification of properties for the modeling tool. An example of a tool configura-
tion is shown in Figure 4. This model contains basic properties such as a model
name and a file extension as well as a set of tool mappings. The latter define
mappings from concepts of the meta-model (target-type) to graphical constructs
(net components). Connectors of the constructs are specified as ports, relative to
their position. All elements of the tool configuration are expressed in Semantic
Language (SL), which can be compared to Yaml or JSON and defined using the
SLEditor plugin for Renew, which provides a UML-like representation as well
as editing support for the modeler.

Figure 5 shows the graphical components representing the syntactic elements
of the BPMN language alongside with the Renew UI, which presents the loaded
palette for the BPMN drawing tools. The graphical components are defined in

Figure 5. The Renew UI with the tool palette providing BPMN elements.
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separate template drawings. The templates define the concrete syntax for the
BPMN technique. This concludes the specifications for the modeling language
and enables us to generate the plugin for the modeling tool. During the gener-
ation process the RMT generator (automatically) prepares the images that are
used for the tool buttons on the basis of the graphical templates. The icon im-
ages of parallel and alternative gateways where slightly modified as shown in the
encircled part of Figure 5 to better distinguish the complementary constructs of
split and join figures.

Using the generated BPMN plugin we are now able to model with this new
technique using the Renew editor. Figure 6 shows a ticket workflow described
in BPMN. The process reflects the lifecycle of support tickets in a conventional
issue tracking system. Issues are created and at some point assigned to the
holder of a certain role. They can be either rejected or accepted in which case
the corresponding task will be carried out by the assignee. Later on, the task
may be discontinued (unassigned) or completed (finish).

With the mapping of Dijkman et. al. [5] for the transformation to Petri nets
we are able to transform the given workflow to a PT net model. The generated
Petri net constitutes the transformational semantics of the BPMN process in
the context of the Renew simulation environment. In consequence, the resulting
model can now be executed or analyzed using for instance the Renew simulator.

Figure 6. The lifecycle of tickets in a issue tracking system, modeled as BPMN.

Figure 7. The target model of the lifecycle of tickets as PT net.
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3.2 BPMNAIP

The example presented in the preceding section describes the development of
a modeling language together with a corresponding modeling tool (as Renew
plugin) following the RMT approach. Based on meta-models the approach pro-
vides a high level of flexibility in all stages during the development of modeling
languages. This enables language developers to rapidly prototype specific lan-
guages, evaluate them and adapt them according to their needs. To further
illustrate this flexibility, we now present a domain-specific variation of BPMN,
called BPMNAIP, which is used within the P∗aose approach.

We use BPMNAIP to model agent interaction protocols. In contrast to Agent
Interaction Protocol Diagrams (a variation of Sequence Diagrams [3, Chap-
ter 13]), the BPMNAIP formalism allows to shift the focus to the internal agent
processes. The presented agent-specific extensions have been proposed by Hauster-
mann [7] in order to augment a subset of BPMN for the use within the P∗aose
approach. With the RMT approach it is possible to refine the BPMN language
in an agile process and develop a corresponding modeling language (BPMNAIP),
which satisfies the demands of a given domain-specific context.

BPMNAIP extends the BPMN subset in the previous section by incoming
(drawn as white envelopes) and outgoing (black envelopes) message events and
special tasks for agent-specific operations. The dc-exchange-task represents the
synchronous or asynchronous call of an internal service. The kb-access-task serves
for accessing the agent’s internal knowledge base. To use these constructs in the
modeling tool, they have to be added to the meta-model. Figure 8 shows the
extensions of the meta-model in Figure 3. With these extensions the modeling
tool can already be used with the added constructs. The generated modeling
tool uses a standard representation and standard task bar tool buttons to allow
running early tests if none are provided by the developer. In order to define a
customized concrete syntax, analogously to the previous example, a representa-
tion template drawn with the Renew tool, a button icon generated from the
template image and a tool mapping entry in the tool configuration as shown in
Figure 4 is sufficient.

In addition to the agent-specific constructs, BPMNAIP also has a domain-
specific semantics. The semantics is based on the agent framework that is applied
in the P∗aose approach, which uses Petri nets to implement agents and the
agents’ behavior. Therefore the semantic net components for the target model
are tailored for the fitness within the used framework.

In order to obtain another semantics it is possible to provide a different set
of net components. The RMT framework is able to handle different transforma-
tion engines and multiple net component sets. For the BPMNAIP formalism the
Mulan net components by Cabac are used [3, Chapter 5].

Figure 9 shows an adaptation of the ticket service example using BPMNAIP.
The management of the ticket status is now provided by an agent, the Ticket
Agent, which can delegate tasks to other agents. In this example the task to
export some drawing to an image is assigned to an Export Agent (as described
by Cabac et. al. [1]), which is informed about the assignment with a message.
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Figure 8. BPMNAIP extensions to the BPMN meta-model (Figure 3).

This message results in an instantiation of the process depicted in Figure 9b.
The Export Agent checks his knowledge base if it can export the drawing and
delegates the task to an internal service, if possible. The Ticket Agent changes
the status of the ticket according to the messages he receives as answer from the
Export Agent.

Figure 9a. The Ticket Agent.

Figure 9b. The Export Agent.

With the described semantics the two agent processes in Figure 9 are trans-
formed by the RMT-based BPMNAIP modeling tool into the Petri nets shown in
Figure 10. These nets are protocol net skeletons, which have to be completed by
additional implementation details in order to be runnable with the used frame-
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work. The figure illustrates the structure of the generated nets. A part of the
net is zoomed in to exemplarily show the details of the net components. The
zoomed part refers to the internal delegation of the task and the answer to the
Ticket Agent.

4 Related Work

In this publication we motivate the rapid and prototypical development of domain-
specific modeling languages. There are a number of related publications on pro-
totyping domain-specific languages (DSL), each focussing on different aspects or
application domains. Blunk et. al. [2] see the best gain for prototyping DSL as an
extension of a general purpose programming language. Sadilek et. al. [20] stress
the increasing demand for supporting agile approaches to the development of
DSML. They “argue that for prototyping a DSML on the platform independent
level, its semantics should not only be described in a transformational but also in
an operational fashion” [20, p. 63]. However, they use the Query View Transfor-
mation (QVT) language to implement operational semantics of Petri nets, rather
than exploiting the operational semantics to formalize the semantics of a second
modeling language, as done here. Rouvoy et. al. [19] specialize on the domain of
architecture description languages (ADLs) and develop a modular framework for
prototyping ADLs based on the Scala language. The presented method empha-
sizes the high degree of automation through generative methods, the automated
generation of modeling tools and also the automated transformation of abstract
models to Petri nets.

Nytun et. al. [15] provide a categorization for different approaches to auto-
mated tool generation in the context of meta-modeling and DSML. The authors
examine various meta-modeling approaches according to the four categories:
structure, constraints, representation and behavior. With the RMT approach
we cover most of these aspects by utilizing concept diagrams, representational
mappings and Petri net-based target models. At the current time we do not
provide any means to define constraints, but we plan to introduce constraints in
the future.

With the claim of addressing general problems of defining DSML semantics
our goal consists in developing a Petri net based framework through combining
techniques of meta-modeling with Petri nets engineering. With the Event Coordi-
nation Notation (ECNO) Kindler [8] takes a model-driven approach, which uses
Petri net models to implement local components behavior. The collaboration of
components is defined in abstract coordination diagrams. The implementation
is based on the wide spread Eclipse Modeling Framework (EMF). In combina-
tion with the EMF, the graphical modeling framework (GMF) can be used to
automatically generate specific modeling tools from meta-models. The idea of
generating domain-specific tools from models was adopted for this work, but we
try to take a minimalistic approach instead of overcharging the tool with fea-
tures, thus increasing complexity. The intrinsic complexity is a point of criticism
concerning meta-modeling frameworks [19, p. 14].

110 PNSE’15 – Petri Nets and Software Engineering



Figure 10. Generated protocol net skeletons.
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Dijkman et. al. [5] show a mapping of BPMN constructs to Petri nets and
elaborate on the semantics of such transformations. On the basis of that work
there exists a tool for converting BPMN models to PNML and a tool for convert-
ing BPMN to YAWL. With the flexible tool presented in this work the languages
can be quickly adopted and the concerns about problems in evaluating BPMN
models using Petri net semantics can be empirically investigated. Lohmann et.
al. [12] provide a basis for analyzing different business process modeling lan-
guages with respect to their realizability using Petri nets semantics for BPEL,
BPMN, EPC, YAWL. This can be a good starting point for further research us-
ing the presented tool. The RMT framework has been applied by Möllers [14] for
the development of a modeling tool for the design and execution of Deployment
Diagrams.

5 Conclusion

In this contribution we present the RMT approach, which enables us to develop
modeling languages and modeling tools by applying concepts of model-driven
development. The key aspects of this approach are the use of meta-models for
automatic tool generation and transformation of models, exploiting the formal
semantics of Petri nets. Based on our continuously developed graphical model-
ing tool and Petri net simulation environment Renew (see [11]) we provide the
technical realization of the RMT approach. The RMT framework provides the
means to describe modeling languages building on the concepts of software lan-
guage engineering (cf. Section 2). The abstract syntax, concrete syntax and tool
configurations are provided as model-based specifications of the desired modeling
languages and tool behavior. The semantics is defined as transformation-based
operational semantics using Petri net formalisms as target models. With this en-
vironment we are able to provide the representation directly within our graphical
framework, leading to appropriate language constructs, which can be designed for
special purposes that fit the needs and expectations of its users. With the RMT
approach the users are able to develop and adapt their own languages/́ḿodeling
techniques, define constructs based on graphical representations and finally gen-
erate modeling tools, which empower them to draw models in domain-specific
languages.

Depending on the chosen and intended formalism, we could even go one step
further. We are able to simulate the transformed models directly, if there exists
an operational semantics that can be mapped to the formalisms we already have
implemented within the Renew context. For experimental environments where
users want to define a special purpose language that suits exactly their current
needs we can therefore provide a powerful tool set.

While the prototypical development of languages is already quite fast, we
now have to address the question of sustainable meta-modeling-based tools. We
have already successfully applied the tool several times within our P∗aose ap-
proach. In this context we expect that further new modeling languages can be
developed in a prototyping approach. In the future we wish to provide the means
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to support hierarchical modeling within the RMT framework. With the Nets-
within-Nets paradigm [21] the concepts to support hierarchical target models
already exist. Since the whole P∗aose approach is Petri net-based, the direct
support by simulation of target models within Renew is implicitly given. The
prototyping approach of languages empowers us to evaluate several languages in
order to improve specific frameworks that are already at hand.
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Abstract. This paper investigates the feature negotiation procedure of
the Datagram Congestion Control Protocol (DCCP) in RFC 4340 using
Coloured Petri Nets (CPNs). After obtaining a formal executable CPN
model of DCCP feature negotiation, we analyse it using state space anal-
ysis. The experimental result reveals that simultaneous negotiation could
be broken on even a simple lossless FIFO channel. In the undesired ter-
minal states, the confirmed feature values of Client and Server do not
match.

Keywords: Datagram Congestion Control Protocol, Feature Negotia-
tion, Coloured Petri Nets, State Space Analysis

1 Introduction

In 2006, the Internet Engineering Task Force (IETF) published a set of standards
for a transport protocol, the Datagram Congestion Control Protocol (DCCP)
[15] comprising RFC 4336 [6]; RFC 4340 [16]; RFC 4341 [7] and RFC 4342 [9].
RFC 4336 discusses problems and disadvantage of existing transport protocols
and the motive for designing a new transport protocol for unreliable datagrams.
RFC 4340 specifies reliable connection management procedures; reliable negoti-
ation of options; acknowledgement and optional mechanisms used by congestion
control mechanisms. RFC 4340 also provides the extension for modular conges-
tion control, called Congestion Control Identification (CCID) but the congestion
control mechanisms themselves are specified in other RFCs. Currently there are
three published standards, RFC 4341, CCID2: TCP-like congestion control [7],
RFC 4342, CCID3: TCP-Friendly Rate Control [9] and CCID4: RFC 5622 TCP-
Friendly Rate Control for Small Packets [8].

1.1 Motivation

Unlike TCP, DCCP does not impose flow control on data transfer. But state in-
formation such as the sequence number sent and received is still required in order
to trace packet loss which is crucial for congestion control. From the sequence
number variables, a sequence number validity window is set up [16] to defend



against attacks from hackers. Thus connection management procedures specified
in RFC4340 are used to set up and clear the state information. Apart from
the reliable connection management, both sides must choose congestion control
mechanisms and agree upon the same CCID. This requires a reliable negotiation
procedure called Feature Negotiation which is also specified in RFC4340. If both
sides are not aware of reaching an agreement with different CCIDs, the situation
will be very harmful and currently there is no recovery mechanisms. Hence it
is vital to verify that the DCCP feature negotiation procedure works correctly.
In this paper we use Coloured Petri Nets (CPNs) [12] to formally model and
analyse DCCP feature negotiation procedures.

1.2 Related Work

Formal methods [1] are techniques based on mathematically defined syntax and
semantics for the specification, development and verification of software and
hardware systems. They remove ambiguities and are indispensable for checking
correctness of high-integrity systems. Coloured Petri Net (CPN) [14] is a formal
method which is widely used [2,3,5,13,17] to model and analyse concurrent and
complex system. An important advantage of CPNs is its graphical notation with
the abstract data types providing a high level of user friendliness. CPNs were
used to verify industrial scale protocols such as the Wireless Application Pro-
tocol (WAP) [10], the Internet Open Trading Protocol (IOTP) [18], TCP [11]
and DCCP [21]. [21] studied DCCP connection management operating over re-
ordering channels with no loss using Coloured Petri Nets. [23] extended the work
in [21] by including DCCP simultaneous open procedure (RFC 5596) and Net-
work Address Translators (NAT) in the model. However regarding DCCP feature
negotiation procedure, there are very few articles [19,20] investigating it. As far
as we are aware of, DCCP feature negotiation has not been formally modelled
and analysed before.

1.3 Contribution

The contribution of this paper is three fold. Firstly, as far as we are aware of
this paper presents the first formal executable model of DCCP feature negotia-
tion. Secondly the formal analysis helps us identify an error in the specification.
Thirdly, investigating the state space analysis provides us insight what causes
the error.

This paper is organised as follows. Section 2 provides an overview of the
protocol and packet format. Section 3 briefly describes DCCP feature negotiation
procedure. The description of the CPN model of DCCP feature negotiation is
described in section 4, which starts with modelling assumptions and specification
interpretation. Section 5 discusses analysis result and insight. Section 6 presents
the conclusion of this paper and future work.
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Fig. 1. DCCP packet format.

2 DCCP Overview

The Internet protocol architecture is organized into five layers known as the
TCP/IP reference model. While TCP is a transport protocol that provide the
reliable delivery of a byte stream, DCCP is a transport protocol for the timely but
unreliable delivery of datagrams. DCCP can be viewed as an upgraded version
of UDP equipped with new facilities for connection management; acknowledge-
ment; feature negotiation and congestion control.

2.1 DCCP Packet Format

DCCPs exchange packets over the Internet Protocol between a client and a
server. The protocol uses 11 packets to setup and release connections and transfer
data. RFC 4340 [16] defines a DCCP packet as a sequence of 32 bit words
comprising a DCCP Header and Application Data area as shown in Fig. 1. The
header comprises a generic header (applicable to all packets), followed by an
acknowledgement number (if any) and then the options field. The length of the
Option and Application Data fields can vary.

The DCCP header contains 16 bit source and destination port numbers, and
a 16 bit checksum. An 8 bit data offset indicates the length in 32-bit words from
the beginning of the Header to the beginning of the Application data. CCVal, a
4 bit field, is a value used by the congestion control mechanisms [9]. Checksum
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Coverage (CsCov), also a 4 bit field, specifies the part of the packet being pro-
tected by the 16 bit checksum. The four bit Packet Type field specifies the name
of the packet: Request, Response, Data, DataAck, Ack, CloseReq, Close, Reset,
Sync, SyncAck and Listen. Request and Data packets do not include acknowl-
edgement numbers. The sequence numbers of Data packets and the sequence
numbers and acknowledgement numbers of Ack and DataAck packets can be
reduced to 24-bit short sequence numbers when setting the Extend Sequence
Number (X) field to 0.

The Options field contains state information or commands for applications
to negotiate various features such as the Congestion Control Identifier (CCID)
and the width of the Sequence Number validity window [16].

2.2 Options Fields

The options field is a multiple of 32-bit words which may contain more than
one option. Because each option consists of a multiple of 8 bits, the field may
need to be padded to the word boundary. Options are classified into two groups:
single byte and multi-byte. A single byte option has a value from 0 to 31 which
represents an option type. An Option type is a 8-bit integer which represents the
meaning of the option, such as 1 meaning mandatory, 2 meaning slow receiver
[16]. The format of a multi-byte option is shown in Fig. 1. The first byte is an
option type. The second byte is the length in bytes of each option including
the option type field, the length and data of the option. The data comprises a
number of features, the format of which will be explained in section 3.

3 Feature Negotiation Procedure

DCCP allows both the client and server to change their parameters called fea-
tures using feature negotiation procedures. The negotiation can happen at any
time but typically during connection establishment. Each entity can initiate the
negotiation of two kinds of features: local features (L)-the initiator’s features
and remote features (R)-the other side’s features. Four particular options are
dedicated to feature negotiations; Change L, Confirm L, Change R and Confirm
R. The option types have values of 32 to 35 respectively. The format of Confirm
or Change Options including feature numbers and feature values are shown in

a) Option Length Feature Feature values

Type Number

b) 3 2 6 1 2 3 4

c) (Change L,  6,   CCID,  [2, 3, 4])

Fig. 2. Option format in DCCP header and an example of a Change L option.
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Fig 2 a). Fig 2 b) shows six of 8-bit values representing a Change L option when
negotiating CCID. The meaning of each 8-bit values is shown in Fig 2 c).

The feature number identifies the feature. For instance, 1 refers to CCID and
2 means short sequence numbers are allowed. The complete list of features is
given in [16]. To reach agreement on a feature value, a reconciliation rule known
to both sides is required. Currently RFC 4340 defines two reconciliation rules:
server priority and non-negotiable.

1. The server priority rule: This rule is applied when the feature value is a
fixed-length byte string. During negotiation DCCP entity keeps an ordered pref-
erence list of the feature values. The initiator sends a Change option containing
its preference list. The receiver responds with the Confirm option containing an
agreed value followed by its preference list. Thus the agree value will appear
twice in the Confirm option. The agreed value is defined as the first element in
the server’s list that matches any element in the client’s list. If there is no match,
the agreed value remains the existing feature value.

For example, the client sends 32,6,1,2,3,4 corresponding to Change L(32),
length(6), CCID(1), the client’s preference list(2,3,4). This means the client pro-
poses to change its CCID and the preferred CCIDs are CCID#2, CCID#3 and
CCID#4 respectively. The server responds 35,7,1,3,3,4,2 corresponding to Con-
firm R(35), length(7), CCID (1), agreed value (3) and the server’s preference list
(3,4,2). According to the Client’s and Server’s preference lists in this example,
the client must use CCID#3.

2. Non-negotiable rule: The Change and Confirm options under this rule
contain only one feature value which is a byte string. After receiving the Change
L from the feature local, the feature remote must accept the valid value and reply
with Confirm R containing this value. If the received feature value is invalid, the
feature remote must send an empty Confirm R. This non-negotiable rule must
not be used with Change R and Confirm L options.

For example the client sends 32,9,3,0,0,0,0,4,0 corresponding to Change
L(32), length(9), Sequence number window (3), value of window size(1024). The
server replies with 35,9,3,0,0,0,0,4,0.

3.1 Finite State Machines

The feature negotiation procedures are represented by state diagrams. Figure 3
shows the state diagram for feature local. It comprises three states: STABLE;
CHANGING; and UNSTABLE. The entity in the STABLE state always knows
its feature value and expects the other end agrees with the same value. When
the local receives Change R, it calculates a new agreed value and replies Confirm
L. On the other hand the Confirm R received will be discarded.

After the entity in STABLE sends the first Change L command, it enters
the CHANGING state and goes back to the STABLE state upon receiving a
Confirm R or a empty Confirm R. When the local in CHANGING does not get
reply from the other side, it keeps retransmit the Change L option.
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STABLE 

rcv Confirm R or 

rcv Change R 

rcv Change R 

calculate a new feature value 

snd Confirm L 

1. rcv Confirm R 

    accept the new feature value or 

2. rcv Change R 

    Calculate a new feature value 

    snd Confirm L or 

3. rcv Empty Confirm R 

    use the exisitng feature value 

CHANGING 

UNSTABLE 

snd Change L preference list 

changes 

rcv Confirm R 
application or protocol event 

snd Change L

time out or 

rcv non-ack packet 

retransmit Change L 

Fig. 3. DCCP feature negotiation state diagram - redrawn from [16].

When the preference list is changed by its user while the entity is in the
CHANGING state, it enters the UNSTABLE state. Here it ignores the on-going
negotiation but starts a new negotiation by sending a Change command with
the new preference list before going back to the CHANGING state.

The state diagram for feature remote can be obtained by interchanging Ls
and Rs in Fig. 3. Thus each entity consists of three state machines working
together: connection management, feature local and feature remote. It is possible
that one side initiates Change L while the other side initiates Change R of
the same feature. According to Fig. 3 when the local in CHANGING receives
Change R, it computes a new agree value and replies Confirm L. This situation
is called simultaneous negotiation. The specification also allows the preferences
to be changed at any time.

3.2 Important Rules of Feature Negotiation

Although the feature negotiation procedures explained in the previous section
sound simple, the real situation could be very complex when packets are re-
ordered and lost. Moreover the negotiation for the same feature could be simul-
taneously initiated by both sides and the preference lists can be changed at any
time. To cope with this, the RFC specifies some rules intended to provide reliable
signalling so that both sides reach agreement with the same feature value.
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Non-reordered Change and Confirm Options The RFC specifies that the
Change and Confirm options in packets that do not arrive in strictly increasing
order must be ignored. According to the related pseudo code and algorithms,
the strictly increasing order rule is only enforced for packets that contain the
Change and Confirm options. An ordered packet with the Change and/or Con-
firm options may have a sequence number less than GSR if the later packets do
not contain any Change or Confirm options.

In order to check the order of arrival, the RFC specifies another two variables:
Feature Greatest Sequence Number Received (FGSR) and Feature Greatest Se-
quence Number Sent (FGSS). If the received packet’s sequence number is less
than or equal to FGSR, Change or Confirm options received must be ignored.
If the acknowledgement Number is less than FGSS or the packet contains no
acknowledgement, the Confirm option received must be ignored.

Because DCCP-Data with short sequence numbers is vulnerable to be at-
tacked, any option attached to DCCP-Data that might cause the connection
to be reset shall be ignore. Thus both Change and Confirm options received
in DCCP-Data must be ignored in all circumstances. A sequence number valid
packet received that contains non-reordered Change or Confirm options updates
FGSR while FGSS is updated when the entity sends a Change Option during a
transition from STABLE or UNSTABLE to CHANGING.

Retransmission Because the reordered options are ignored or the packet can
be lost, Change options must be retransmitted when the sender does not receive a
non-reordered Confirm option within a specific period. The Confirm option must
be generated only when a non-reordered Change option is received. Retransmis-
sion of options may be achieved by either generating a new packet (DCCP-Ack
or DCCP-Sync) or by including the appropriate option field in a packet that is
about to be transmitted. Retransmission continues until a non-reordered Con-
firm option is received or the connection is closed down.

4 CPN Model of DCCP Feature Negotiation (DCCP-FN)

4.1 Modelling Assumptions and Specification Interpretation

We make the following assumptions regarding DCCP feature negotiation when
creating our model.

1. This paper assumes the medium to be First-in First-out (FIFO) chan-
nels with no loss. There are three reasons supporting this assumption. Firstly,
according to RFC 4340 the Change and Confirm Options must arrive in strictly
increasing order otherwise it will be ignored. This requirement implies that actu-
ally DCCP feature negotiation protocol operates over FIFO channels. Secondly,
reordered and/or lossy channels can mask out inherent errors such as unspeci-
fied receptions which could appear when protocol operates over FIFO channels
with no loss. Thus protocol validation shall be started from operating over the
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FIFO channels with no loss. Thirdly, the assumption of FIFO channel makes the
model simpler. We can abstract away irrelevant details such as sequence number,
acknowledgement number, state variables FGSS and FGSR.

2. Although we agree with [20] that the feature negotiation is not indepen-
dent of the protocol state machine. To reduce the complexity of our CPN model,
we assume that the feature negotiation is independent of the protocol state ma-
chine. Without loss of generality, instead of modelling three FSMs (connection
management, feature local and feature remote) at each side, only one FSM (Fig.
3) (either the feature local’s or the feature remote’s FSM) is required. In partic-
ular we assign the feature local’s FSM to Client and the feature remote’s FSM to
Server. This assumption makes the CPN model readable and easy to understand.

3. A DCCP packet is modelled by an option type and a list of feature values
(preference list). Other fields such as packet type and sequence-acknowledgement
numbers are omitted because they do not affect the operation of the feature ne-
gotiation.

4. RFC4340 allows many options to be sent in one packet and many fea-
tures to be negotiated at the same time. Following an incremental approach [3],
as a first step we consider the negotiation of Congestion Control Identification
(CCID) that uses the server-priority reconciliation rule because the ability to ne-
gotiate the suitable congestion control mechanism is the main objective of DCCP.

5. Our model does not include the mandatory options, invalid options and
unknown feature numbers.

6. RFC 4340 specifies that the preference list can be changed at any time. It
is unclear what should be happened if the preference list is changed while the
endpoint in STABLE. However according to [19], the endpoint can remain in
STABLE if it changes the preference list without changing the preferred value.
Thus we assume that the endpoint remains in STABLE after it changes the pref-
erence list. However we investigate the scenario when the endpoint changes the
preference list without changing the preferred value.

4.2 Model Structure

Our model structure is inspired by [21, 22] who model and analyse DCCP
connection management. However [21,22] do not include the feature negotiation
procedure. Our DCCP feature negotiation model comprises three hierarchical
levels as shown in Fig. 4. The first level page is Main_FN. This page calls the sec-
ond level pages named FN_Local and FN_Remote. The third level has six pages.
Each one is named by a DCCP feature negotiation state. Figure 5 shows Global
Declaration which defines the data associated with the model. The CPN diagram
in the first level page (Fig 6) comprises two substitution transitions (represented
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Main_FN 

FN_Local 

FN_Remote

Stable_Local

Changing_Local

Unstable_Local

Stable_Remote

Changing_Remote

Unstable_Remote

Fig. 4. The DCCP-FN hierarchy page.

1: (* Feature Negotiations *)
2: colset E = with e;
3: colset CCID = int with 2..255;
4: colset Confirmed_Value = CCID;
5: colset Preference_List = list CCID;
6: colset Option_Type = with ChangeL | ConfirmL
7: | ChangeR | ConfirmR;
8: colset Option_Field = product Option_Type
9: * Preference_List;
10: colset List_Option_Field = list Option_Field;
11: colset FN_State = with STABLE | CHANGING | UNSTABLE;
12: colset FN_CB = product FN_State * Confirmed_Value
13: * Preference_List;

Fig. 5. Global Declaration.

FN_State_Local

FN_CB

1`(STABLE, 2, [8, 7, 6, 5])

FN_State_Remote

FN_CB

1`(STABLE, 2, [3, 4, 8])

Remote2Local

List_Option_Field

1`[]

Local2Remote

List_Option_Field

1`[]

Local

FN_LocalFN_Local

Remote

FN_RemoteFN_Remote

Fig. 6. The Main_FN overview page.
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FN_CB

In/Out FN_CBIn/Out

OutputIn/Out

List_Option_Field

In/Out

Input

In/Out
List_Option_Field

In/Out

STABLE

STABLE_LocalSTABLE_Local

CHANGING

CHANGING_LocalCHANGING_Local

UNSTABLE

UNSTABLE_LocalUNSTABLE_Local

Fig. 7. The FN_Local page.

FN_CB In/Out

FN_CB

In/Out InputIn/Out

List_Option_Field

In/Out

Output In/OutList_Option_Field In/Out

FN_comand

E

1`e

New
Preference

Fusion 1

Preference_List

1`[8,7,6,5,4]
Fusion 1

Rcv_ComfirmR

ApplicationEvent

Rcv_ChangeR

PreferenceChanges

(STABLE, cnf, prefLS)

(STABLE, cnf, prefLS)

(ConfirmR, prefLPkt)::lopt1 lopt1

(STABLE, cnf, prefLS)

(CHANGING, cnf, prefLS)

lopt2^^
[(ChangeL, prefLS)] lopt2

(STABLE, 
hd(match(prefLPkt,
prefLS)), 
prefLS)

(STABLE, cnf, prefLS)

(ChangeR, 
prefLPkt)::lopt1

lopt1

lopt2^^
[(ConfirmL, 
match(prefLPkt,
prefLS)
^^prefLS)]

lopt2

e

newPrefLS

(STABLE, 
cnf, newPrefLS)

(STABLE, 
cnf, prefLS)

Fig. 8. The STABLE_Local page.
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by double-line rectangles), four places (represented by ellipses) and arcs connect-
ing between places and transitions. The substitution transition on the left models
the Client (Local) and another on the right models the Server (Remote). Both
communicate via two places named Remote2Local and Local2Remote in the
middle of Fig. 6. Each place models a unidirectional and First-in First-out chan-
nel typed by List_Option_Field. List_Option_Field is a list of product sets
named Option_Field defined in Fig. 5. Option_Field comprises Option_Type
and Preference_List sets also defined in Fig. 5. Through these places, tokens
(which are values taken from the type of the place) are transferred between
Local and Remote.

Places FN_State_Local and FN_State_Remote, typed by FN_CB, model the
states of the feature negotiation procedure. The FN_CB is defined as a product
comprising colour sets FN_State, Confirmed_Value and Preference_List.

The substitution transitions Local and Remote in Fig. 6 are linked to the
second level pages named FN_Local (Fig. 7) and FN_Remote. Each of the second
level CPN diagrams comprises further three substitute transitions, named by
the feature negotiation states (Fig. 7) and linked to the CPN diagrams in the
third level. Because these CPN diagrams of FN_Remote are very similar to those
of FN_Local, this paper illustrates only the CPN diagrams of FN_Local.

FN_CB
In/Out

FN_CB

In/Out
Input

In/Out

List_Option_Field

In/Out

Output In/Out
List_Option_Field

In/Out

New
Preference

Fusion 1

Preference_List

1`[8,7,6,5,4]Fusion 1

RCNT

INT

0

Rcv_EmptyComfirmR

Rcv_ComfirmR

Rcv_ChangeR

Retrans

[n > 0]

PreferenceChanges

(STABLE, 
ckLocal(prefLS, 
cnf_p::prefLPkt), 
prefLS)

(CHANGING, 
cnf_s, prefLS)

(STABLE, 
cnf, prefLS)

(CHANGING, 
cnf, prefLS)

(ConfirmR, cnf_p
::prefLPkt)::lopt1

lopt1

(ConfirmR, [])
::lopt1

lopt1

(STABLE, 
hd(match(prefLPkt, 
prefLS)), 
prefLS)

(CHANGING, 
cnf, prefLS)

(ChangeR, prefLPkt)
::lopt1

lopt1

lopt2^^
[(ConfirmL, 
match(prefLPkt, prefLS)
^^prefLS)]

lopt2

(CHANGING, 
cnf, prefLS)

(CHANGING, 
cnf, prefLS)

lopt2^^
[(ChangeL, prefLS)]lopt2

newPrefLS
(UNSTABLE, 
cnf, newPrefLS)

(CHANGING, 
cnf, prefLS)

n

n-1

Fig. 9. The CHANGING_Local page.
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FN_CBIn/Out

FN_CB

In/Out

OutputIn/Out

List_Option_Field

In/Out

InputIn/Out

List_Option_Field

In/Out

Rcv_ChangeR

Rcv_ComfirmR

Snd_ChangeL

(UNSTABLE, cnf, prefLS)

(UNSTABLE, cnf, prefLS)

(UNSTABLE, cnf, prefLS)

(UNSTABLE, cnf, prefLS)

(CHANGING, cnf, newPrefLS)

(UNSTABLE, cnf, newPrefLS)

lopt2^^
[(ChangeL, 
newPrefLS)]

lopt2

(ConfirmR, 
prefLPkt)::lopt1

(ChangeR, prefLPkt)
::lopt1

lopt1

lopt1

Fig. 10. The UNSTABLE_Local page.

Figure 8 captures behaviour when Local is in STABLE State. We allow DCCP
entity in STABLE change its preference and remain in the STABLE state. Figure
9 and 10 model the procedures to be followed by Local when it is in CHANGING
and UNSTABLE respectively.

5 Analysis of DCCP-FN CPN Model

5.1 Initial Configurations

Our DCCP feature negotiation model is analysed using CPN Tools [4,14] version
4.0 on an Intel i5-4300U 1.90GHZ with 4 GB RAM. To analyse a particular
scenario, the CPN model needs to be initialised by distributing initial tokens
to places FN_State_Local and FN_State_Remote (Fig. 6); places FN_Command
and NewPreference in Stable_Local (Fig. 8) as well as places FN_Command
and NewPreference in Stable_Remote. The channel places Remote2Local and
Local2Remote initially contain an empty list. The presence of tokens 1‘e in
place FN_Command allows the entity to start the feature negotiation procedure.
The analysis in this paper assumes no retransmission.

We choose to model and analyse the negotiation of the feature CCID. This
feature uses the reconciliation rule: server priority. The default feature value is 2
which represents TCP-like congestion control. Although currently the standard
specifies only CCID2 (RFC4341), CCID3 (RFC4342) and CCID4 (RFC5622),
we make up CCID numbers in each preference list for the purpose of validating
the feature negotiation procedure. Table 1 shows the values in preference lists we
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Table 1. An agreed feature value before and after preference lists have been changed.

Client (Local)
before after
[8,7,6,5] [8,7,6,5,4]

Server (Remote) before [3,4,8] 8 4
after [4,5] 5 4

Table 2. Initial configurations of twelve possible scenarios.

FN_Command Change of Preference List
Case Local Remote Local Remote
1 1’e empty disable disable
2 empty 1’e disable disable
3 1’e 1’e disable disable
4 1’e empty enable disable
5 empty 1’e enable disable
6 1’e 1’e enable disable
7 1’e empty disable enable
8 empty 1’e disable enable
9 1’e 1’e disable enable
10 1’e empty enable enable
11 empty 1’e enable enable
12 1’e 1’e enable enable

used in our experiment before and after the preference has been changed. The
resolved values before and after the preference changed under the server-priority
reconciliation rule are shown in Table 1 as well. According to [19] the endpoint
can remain in the STABLE state if it changes the preference list without changing
the preferred value. Therefore at Client (Local) we keep the old preference list
but adding the new feature value (4) at the end of the list.

Table 2 shows the initial configurations of twelve possible scenarios. They
are classified according to which sides are allowed to initiate the negotiation and
which sides change their preference lists. Our CPN model allows simultaneous
negotiation and both sides can change their preference lists (Case 12).

5.2 Analysis Result

The analysis results of DCCP feature negotiation CPN model using the initial
configurations described in the previous subsection are shown in Table 3. The
total number of states, arcs in each case are shown in the second and third
columns. Column 4, 5 and 6 show the terminal markings of each scenario. All
terminal markings have both sides in STABLE and no packets left in the channels
and hence there is no unspecified reception. The terminal markings are classified
into 3 types. Type-I is the desired terminal state where both Client and Server
reach the same feature value. Type-II is the undesired terminal state where both
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Table 3. Analysis results of the CPN model

Terminal Markings

Case nodes arcs Type Type Type
I II III

(1) (2) (3) (4) (5) (6)
1 4 3 1 0 0
2 4 3 1 0 0
3 20 26 1 0 0
4 19 22 2 1 0
5 10 11 2 0 0
6 106 169 2 1 0
7 10 11 2 0 0
8 19 22 2 1 0
9 106 169 2 1 0
10 50 77 3 1 0
11 52 78 3 2 0
12 553 1043 3 3 1

sides reach the different feature values but an endpoint knows that the agreed
value is wrong. Type-III is also the the undesired terminal state where both
sides reach the different feature values and both endpoints do not know that
their feature values do not match.

5.3 Discussion

Figure 11 shows a scenario leading to a Type-II terminal state. Referring Fig.
11, after sending the first Change L Option, Client changes its preference list in
UNSTABLE and sends the second Change L. When receiving the Confirm R of
the first Change L in the CHANGING state, Client enters the STABLE state
and then ignores the Confirm R of the second Change L. The agreed feature
value in the first Confirm R is outdated and different from the feature value in
Server. However when comparing the preference list in the first Confirm R option
with the preference list in Client’s state information, Client is able to know that
the agreed value is wrong. Obviously in this case the Client should resend the
Change option or reset the connection.

Figure 12 illustrates a scenario leading to an undesired Type-III terminal
state. This is the center of our attention in this paper. This scenario could
happen when both sides initiate the negotiation simultaneously and both sides
change their preference list (Case 12). We notice that all Confirm options in
Fig. 12 are discarded. It becomes one way communication with no acknowledge-
ment. Figure 12 can be viewed as three attempts of negotiation. Two attempts
are initiated simultaneously from both sides. This could be happened during
DCCP simultaneous open procedure. Preference list changed in CHANGING
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(UNSTABLE, 2, [8,7,6,5,4]) 

CLIENT (LOCAL) SERVER (REMOTE) 

(STABLE, 2, [3,4,8]) 

(STABLE, 2, [8,7,6,5]) 
(CHANGING, 2, [8,7,6,5]) 

CHANGING, 2, [8,7,6,5,4]) 

(STABLE,8, [8,7,6,5,4]) 

Preference Change 

(STABLE, 8, [3,4,8]) 

(STABLE, 2, [3,4,8]) 

(STABLE, 4, [3,4,8]) 

Fig. 11. A scenario leading to an undesired terminal marking Type-II.

(STABLE, 8, [8,7,6,5]) (CHANGING, 2, [4,5]) 

CLIENT (LOCAL) SERVER (REMOTE) 
(STABLE, 2, [3,4,8]) (STABLE, 2, [8,7,6,5]) 

(CHANGING, 2, [8,7,6,5]) 

(STABLE, 8, [8,7,6,5,4]) 

(CHANGING, 2, [3,4,8]) 

(STABLE, 5, [4,5]) 

(STABLE, 4, [8,7,6,5,4]) 

Preference Change 

Preference Change 

(UNSTABLE, 2, [4,5]) 

Fig. 12. A scenario leading to an undesired terminal marking Type-III.

state causes the third attempt of negotiation. All three calls do not receive any
reply. The root of the problem is that the new preference list from the other side
cannot pass through.

Type-III terminal state is worse than type-II because both entities are not
aware that their agreed feature values are different. In our opinion the main
objective of the DCCP feature negotiation protocol is to exchange the preference
lists. After the preference list of the other side is known, the agreed feature value
can be correctly computed. We suggest a solution when the preference list is
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changed (either major or minor change), the endpoint shall send Change option
to inform the other side. If the preference list is changed in the STABLE state,
the endpoint shall send Change option and enter CHANGING state. Another
solution could be that the endpoint does not discard Confirm option in STABLE
state.

6 Conclusion and Future Work

This paper presents Coloured Petri Net model and analysis of DCCP feature
negotiation procedure operating over FIFO with no loss channels. The analysis
result shows that the protocol could fail to an undesired state (Type-III) where
the feature values of both sides do not match and both sides are not aware of
the mismatch.

Usually when the protocol operates over reordering and/or lossy channels, it
is possible that the protocol could fail due to the channel imperfection. However
if the protocol operates over the ideal channels (FIFO with no loss), the error
indicates the flaw in the protocol itself.

The terminal state (Type-III) occurs when both sides change their preference
lists during the simultaneous feature negotiation. Although the odds of this
scenario is low, given the large number of potential connection in the Internet,
we consider that this defect could be a serious threat.

The model development begins with a lot of assumptions. In the future we
would like to relax these assumptions and refine the model. In particular we are
interested to include connection management procedures together with Network
Address Translators (NATs) into the model.
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Abstract. This paper focuses on the field of dynamically reconfigurable
distributed embedded control systems construction process and presents
a substantial part of the methodology aimed at this application area
which is based on formal models, namely some variants of Petri Nets.
Initial system specification is represented by a set of Workflow Petri
Nets transformed into decomposed multi-layered Reference Petri Nets
model, that is used during the generation of interpretable target system
components representation. The main objective of presented approach
is the introduction of dynamic reconfigurability features into the target
system implementation reflecting changes in system specification during
its run-time. Reconfigurability is achieved by the system decomposition
into smaller interpretable pieces of computation that are installed on and
performed by the underlying infrastructure. Introduced approach brings
several layers of reconfigurability through a set of specific translation
rules applied in different layers and scenarios for pseudo-code genera-
tion and by the possibility of installing the resultant functional parts on
system nodes using well-defined communication protocol. The heart of
described architecture lies within the specification of hosting platform
called Petri Nets Operating System (PNOS) that includes the Reference
Petri Nets interpreter.

Keywords: Dynamic Reconfigurability, Embedded Systems, Control Sys-
tems, Model-Driven Development, Model Transformation, Model Execu-
tion, Workflow Petri Nets, Reference Petri Nets

1 Introduction and Motivation

Control systems lie on the thin border between physical and information worlds.
The process of control is usually described as a loop switching between read-
ing data from sensors and triggering a number of actuators installed within
the physical environment. Above all, the process should respect all user-defined
rules. Control systems could be constructed as a set of programmable logic con-
trollers with proprietary software installation, communicating with each other,
thus forming distributed embedded control system. Our work considers a target
platform for this type of systems implementation to be a set of minimalistic and



low energy consumption hardware devices, e.g. ATmega, PIC, or ARM micro-
controllers, equipped with wireless transmission modules. Such devices are often
used in the area of Wireless Sensor Networks (WSN) systems.

Usually a hardware part of any system implementation starts with selection
of proper set of devices and their installation within the physical environment,
including sensors and actuators attachment. The software part of system imple-
mentation complements the hardware one with the construction of appropriate
application software, that controls each system unit and represents the whole
system functionality. Dynamic reconfigurability features are necessary for the
ability of the system to adapt itself to changes in environment and also to pro-
vide its maintainer with a possibility to change the system behaviour, while it
is in runtime, i.e. without the necessity of complete destruction and further re-
construction, or even restart. Our main goal is to describe the software part of
the process, that respects our focus on formal specification and dynamic recon-
figurability.

In this paper, we are going to describe some recent results of the research
in the field of dynamically reconfigurable distributed embedded control systems,
and basic ideas of our research that aims to introduce complete methodology
for control systems construction and administration, which uses formal and hu-
man readable notation as a system functionality specification, and provides the
user of resulting system with the possibility to change its behaviour within the
runtime. Introduced solution to the dynamic reconfigurability problem follows
the model transformation and executable model paradigms - Workflow Petri
Nets[1] are used as an abstract system specification modelling language, and
the MULAN-like[5] multi-layered Reference Petri Nets[3] structure for modelling
the resultant system implementation. The system run-time model is constructed
from the work-flow one using graph transformations and then translated into
the executable form, run by our specialized target platform.

2 Related Work

Related work could be divided into the following areas - embedded and operating
systems, software engineering methods applied to the area of embedded systems,
the usage of higher-level or visual languages for embedded systems specification
and implementation, the dynamical reconfigurability within embedded systems,
reconfigurable control systems (e.g. FMSs), multi-agent approach to the recon-
figurable embedded systems development, system partitioning, code generation,
and reconfigurable hardware.

The usage of formal modelling control system with dynamic reconfigurability
features is not a new idea. Research activities in this topic are primarily focused
on direct or indirect approach. The direct approach offers specific functions or
rules, allowing to modify system structure, whereas the indirect approach in-
troduces mechanisms allowing to describe system reconfigurations. The main
difference consists usually in the level of reconfigurability implemented. Direct
methods use formalisms containing intrinsic features allowing to reconfigure the

134 PNSE’15 – Petri Nets and Software Engineering



system. Indirect methods use specific kind of frameworks or architectures, that
make possible to change the system structure.

In our field of research the first group consists of formalisms based usually
on some kind of Petri nets. Reconfigurable Petri Nets [11], presented by Guan
and Lim, introduced a special place describing the reconfiguration behaviour.
Net Rewriting System [12] extends the basic model of Petri Nets and offers
a mechanism of dynamic changes description. This work has been improved
[13] by the possibility to implement net blocks according to their interfaces.
Intelligent Token Petri Nets [14] introduces tokens representing jobs. Each job
reflects knowledge about the system states and changes, so that the dynamic
change could be easily modelled. All the presented formalisms is able to describe
the system reconfiguration behaviour, nevertheless only some of them define the
modularity. Moreover, the study [15] shows, that the level of reconfigurability is
dependent on the level of modularity and also that there are modular structures
that are not reconfigurable.

The second group handles reconfigurations using extra mechanisms. Model-
based control design method, presented by Ohashi and Shin [16], uses state
transition diagrams and general graph representations. Discrete-event controller
based on finite automata has been presented by Liu and Darabi [17]. For re-
configuration, this method uses mega-controller, a mechanism, which responses
to external events. Real-time reconfigurable supervised control architecture has
been presented by Dumitrache [18], allowing to evaluate and improve the con-
trol architecture. All the presented methods are based on an external mechanism
allowing system reconfiguration. Nevertheless, most of them do not deal with va-
lidity and do not present a compact method.

So far, we have investigated formalisms and approaches to the control sys-
tem development. They have one common property, they are missing complex
design and development methods analogous to software engineering concepts.
Of course, the methods and tools that are applied in ordinary software systems
are not as simply applicable to embedded systems. Nevertheless, we can be in-
spired with software engineering approaches and adopt them to the embedded
control systems [19]. To develop embedded control system, the developer has to
consider several areas. We can distinguish five areas [19] as follows—Hardware,
Processes (development processes and techniques), Platform (drivers, hardware
abstraction, operating systems), Middleware (application frameworks, protocols,
message passing), and Application (user interface, architecture, design patterns,
reusing).

Presented approach is based on existing formalisms and architecture that
are together used in the specific platform developed by our team. In relation to
previously defined areas of software engineering for embedded control systems,
we deal with Process, Platform, and Middleware areas in this paper. Process area
focuses on work-flow modelling using Petri Nets, transformation of the work-
flow models into the Reference Nets, and definition of the levels of abstraction.
Middleware area focuses on multi-layered architecture inspired by the MULAN
architecture. Platform area introduces Petri Nets Operating System (PNOS)
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linked with Petri Net Virtual Machine (PNVM) that offer specific means for
system reconfigurability. All mentioned elements will be described in details in
next chapters.

3 Formalisms and Tools

3.1 Workflow Modelling

Work-flow modelling is very popular for its aim to precisely define the func-
tionality requirements using intuitive and human-readable form, while offering
enough precision to be interpretable by machines. For its formal and verifiable
characteristics and large research background we adopted for the purposes of
our research Wil van der Aalst’s specification for system work-flow modelling,
so called Extended Workflow Petri Nets[1]. Aalst’s work is well-defined and re-
sulting work-flow models could be used for the system processes verification and
validation purposes. This way is very similar to the BPMN work-flow models,
so it might be easily used by the business process modelling domain experts.
For that reason we decided to use the Aalst’s YAWL notation[2] and Workflow
Petri Nets formalism[1] in the early beginning of system construction process.
The main advantage of using Workflow Petri Nets is the possibility of system
specification and its adaptation by the non-technically educated domain special-
ists.

3.2 Reference Nets

Second step of the system construction process consists of the transformation of
Workflow Petri Nets model into the multi-layered Reference Nets model comply-
ing with the nets-within-nets concept defined by Rüdiger Valk [3] and formalized
as Reference Nets by Olaf Kummer [4]. In our proposed system development
methodology, Reference Nets are translated into the interpretable form, that
is transferred through the network to the specific nodes, responsible of its ex-
ecution. The problem of generating the code from formal specification to its
runnable form is mainly based on the decomposition of the whole system model
to a set of sub-models, that is usually called the partitioning problem. We use
similar concept to the MULAN architecture defined by Cabac et al.[5]. This ar-
chitecture divides the model into four levels of abstraction - infrastructure, agent
platform, agents, and protocols. Our architecture also uses four layers - infras-
tructure, platform, processes and sub-process. Each of these layers is mapped
from the formal specification to the target platform specification.

4 Reconfigurable Architecture

Reference Nets allows to construct the system hierarchically, in several layers of
abstraction. Each element of layer at any level of abstraction could be changed
by change in nets marking. Nets representing system functionality are migrating
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over nets of other layers changing the system functionality. The multi-layered
nature of the system and responsibilities of particular levels of system decompo-
sition is described in more detail in our previous work[10].

The core characteristics of resulting system, its dynamic reconfigurability,
is based in our solution on the ability of Reference Petri Nets interpretable
representations to migrate among places of the system as tokens, similarly as in
reference Nets. The new or modified Petri Net, that represents the system partial
behaviour change could be sent over other Petri Nets to its destination place to
change the whole system functionality. In our solution, these Petri Nets parts
are maintained by the Petri Nets Operating System (PNOS) and interpreted
by the Petri Nets Virtual Machine (PNVM) engine[8]. System decomposition
is inspired by MULAN architecture [5].The PNOS contains PNVM (Petri Net
Virtual Machine) engine that interprets Petri Nets which are installed within
the system in the form of a interpretable byte-code called Petri Nets ByteCode
(PNBC). PNOS also provides the installed processes with the access to input and
output of the underlying hardware that is connected to sensors and actuators,
and also with the serial communication port that is connected to the wired or
wireless communication module (e.g. ZigBee)[8], or Ethernet interface.

The important net (lying above processes nets) interpreted in PNOS is so
called Platform net. Platform net is responsible for the interpretation of com-
mands which are read from buffered serial line, or Ethernet. These commands
allow to install, instantiate, and uninstall other Petri Nets. The Platform also
allows to pass messages to the other layers, which are responsible for application-
specific functionality. Since we need reconfigurability in all levels, the installation
and uninstallation of functionality is implemented in each level of resulting sys-
tem. Next section describes the Reference nets formalism that is used as an
intermediate language for the target implementation.

5 The Development Process

System development process is described in Fig. 1. It starts with the specifi-
cation of the whole system work-flow, in an hierarchical way. Work-flow model
is transformed to the Reference Nets layered architecture and might be fur-
ther simulated and debugged using the Renew Reference Nets tools [6]. After
this stage, the final set of Reference Nets is then translated into the Petri Nets
ByteCode (PNBC) that is used either for the target prototype simulation us-
ing SmallDEVS tools [7] and also to be transferred to the nodes of the system
infrastructure. More detailed description of the whole PNOS architecture and
functionality could be found in [8].

5.1 Model Transformations

There are two translation phases. The translation of the Workflow Petri Nets
model into the Reference Petri Nets model and translation of the Reference Petri
Nets model into its interpretable form. The first transformation phase takes into
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Fig. 1. System construction process

account the set of work-flow specifications described within the work-flow model
of the system and produces target node representations. Such a representation
should contain the basic PNOS I/O functionality, and the platform functionality,
which means the ability of receiving nets specifications, nets instantiation, re-
moving nets instances, removing nets specifications, etc. Using this functionality
the node main processes should be installed. It usually consists of the descrip-
tion of sub-processes interactions and ordering. Then the main processes of each
node are installed with translated sub-processes. The communication between
resources is represented by transitions, that are not part of any other role and
serve as a data transport part of the system. Particular data types should be de-
scribed in the terms dictionary, that holds all the necessary information needed
for nets translation, that is not included within the diagram. Regarding the
work-flow model, also other specific rules for the communication protocol could
be derived.

5.2 Basic Definitions

Let us introduce some basic definitions of formalisms used during the system
development. As a basement the classical Petri nets definition describes the
main rules of the specification formalism.

Definition 1 (Petri Net). A Petri net is a triple PN = (P, T, F ) where:
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– P and T are disjoint finite sets of places and transitions, respectively and
– F ⊆ (P×T )∪(T×P ) is a binary relation called the flow relation representing

arcs of the net.
– •x = y|yFx is called input set (preset) of the element x and
– x• = y|xFy is called output set (postset) of the element x, where x ∈ P ∪ T .

Van der Aalst’s extensions to Petri Nets add two basic conditions to the
nets construction. Our modelling approach is very similar, so we can use his
definition, but for the further transformation of models we need some more rules
to be added. First let us introduce the simple work-flow net definition.

Definition 2 (Workflow Net). A Petri net PN = (P, T, F ) is a WF-net
(WorkFlow net) if and only if [1]:

– PN has two special places: i ∈ P and o ∈ P . Place i is a source place: •i = ∅.
Place o is a sink place: o• = ∅.

– If we add a transition t∗ to PN which connects place o with i (i.e. •t∗ = {o}
and t∗• = {i}), then the resulting Petri net is strongly connected.

Some other simplification rules added by Aalst and Hofstede extended work-
flow models to provide for better human-readability. Some special types of tran-
sitions representing logical operators and some special operations for manipula-
tion with tokens were added. Transitions and places are considered to be tasks
and conditions. Each EWF-net consists of tasks (either composite or atomic)
and conditions which can be interpreted as places. Tasks in elementary form are
atomic units of work, and in compound form modularize an execution order of
a set of tasks. In contrast to Petri nets, it is possible to connect “transition-like
objects” like composite and atomic tasks directly to each other without using a
“place-like object” (i.e., conditions) in-between[2].

Definition 3 (Extended Workflow Net). An extended work-flow net (EWF-
net) is a tuple EWF = (C, i, o, T , F , S, name, split, join, rem, nofi) such
that [2]:

– C is a set of conditions,
– i ∈ C is the input condition,
– o ∈ C is the output condition,
– T is set of tasks,
– F ⊆ (C \ {o} × T ) ∪ (T × C \ {i}) ∪ (T × T ) is the flow relation,
– every node in net graph (C ∪ T, F ) is on a directed path from i to o,
– split : T → {AND,XOR,OR} specifies the split behaviour of each task,
– join : T → {AND,XOR,OR} specifies the join behaviour of each task,
– rem : T 6→ P(T ∪ C \ {i, o}) specifies the additional tokens to be removed by

emptying a part of the work-flow, and
– nofi : T 6→ N × Ninf × Ninf × {dynamic, static} specifies the multiplic-

ity of each task (minimum, maximum, threshold for continuation, and dy-
namic/static creation of instances).
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Our approach follows the previous definitions and adds some more rules to
enable the extended work-flow models with communication features to satisfy
the developer ability to combine multiple work-flow specifications.

Definition 4 (Extended Communicating Workflow Net). We call Ex-
tended Communicating Workflow net ECWF = (EWF ,I,O,FC) a EWF net
that has following properties:

– EWF is an extended work-flow net,
– I is a set of ECWF input places, where ∀pI ∈ I : •pI = ∅ ∧ pI 6= i,
– O is a set of ECWF output places, where ∀pO ∈ O : p•O = ∅ ∧ pO 6= o,
– FC is a communication flow FC ⊆ (I × T ) ∪ (T ×O),
– I ∪ PEWF = ∅ ∧O ∪ PEWF = ∅.

To specify complete work-flow model a definition of Workflow Specification
was introduced by Aalst and Hofstede. We adopted this definition and added
some slight change to one of the rules.

Definition 5 (Workflow Specification). A Workflow Specification S is a n-
tuple (Q, top, T �,map) such that:

– Q is a set of ECWF-nets,
– top ∈ Q is the top level work-flow[2],
– T � = ∪N∈QTN is the set of all tasks[2],
– ∀N1,N2∈QN1 6= N2 ⇒ (CN1∪TN1)∩(CN2∪TN2) = ∅, i.e., no name clashes[2],
– map : T � 6→ Q \ {top} is a surjective injective (bijective) function which

maps each composite task onto a EWF net[2], and
– the relation {(N1, N2) ∈ Q×Q | ∃t∈dom(mapN1

)mapN1
(t) = N2} is a tree[2].

And also some special types of tasks representing composite and multi-
instance tasks were added by Aalst and Hofstede.

Definition 6. Whenever we introduce a work-flow specification S = (Q, top,
T �, map), we assume TA, TC , TSI , TMI , C� to be defined as follows [2]:

– TA = {t ∈ T �|t 6∈ dom(map)} is the set of atomic tasks,
– TC = {t ∈ T �|t ∈ dom(map)} is the set of composite tasks,
– TSI = {t ∈ T �|∀N∈Qt ∈ dom(nofiN )} is the set of single instance tasks,
– TMI = {t ∈ T �|∃N∈Q t ∈ dom(nofiN )} is the set of (potentially) multiple

instance tasks, and
– C� = ∪N∈QCextN is the extended set of all conditions.

Final definition describes the Workflow System consisting of set of Extended
Communicating Workflow Specifications and communication transitions.

Definition 7 (Workflow System). Let us call Workflow System the tripleWS

= (Ŝ, TWS, FWS), where:

– Ŝ is non-empty finite set of extended communicating work-flow specifications,
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– TWS is a finite set of communication transitions,
– FWS ⊆ (OWS × TWS) × (TWS × IWS) is a system communication flow

relation, where OWS =
⋃
OSii∈<1,...,n> is a set of all extended communicating

work-flow specifications output places and, IWS =
⋃
ISii∈<1,...,n> is a set of

all extended communicating work-flow specifications input places.

Target system representation for the first phase of system model transforma-
tion is constructed as a set of Reference Nets based on Valk’s nets-within-nets
paradigm that is formalized as an Elementary Object System which consists of
elementary net systems (EN System) EN = (B,E,F ,C), which is defined as fi-
nite set of places B, finite set of transitions E, disjoint from B, a flow relation
F ⊆ (B × E) ∪ (E ×B) and an initial marking C ⊆ B [3].

Definition 8 (Elementary Object System). An elementary object system
is a n-tuple EOS = (SN, ÔN,Rho, type, M̂) where [3]:

– SN = (P, T,W ) is a Petri net, called system net of EOS,
– ÔN = {ON1, . . . , ONn}(n ≥ 1) is a finite set of EN systems, called ob-

ject systems of EOS, denoted by ONi = (Bi, Ei, Fi,m0i), which is either
elementary net system or a system net of embedded EOS,

– Rho = (ρ, σ) is the interaction relation, consisting of a system/object inter-
action relation ρ ⊆ T × E where E :=

⋃{Ei|1 ≤ i ≤ n} and symmetric
object/object interaction relation σ ⊆ (E × E) \ idE,

– type :W → 2{1,...,n} ∪ N is the arc type function, and
– M̂ is a marking defined in following definition.

Definition 9 (System Marking). The set Obj := {(ONi,mi)|1 ≤ i ≤ n,mi ∈
R(ONi)} is the set of objects of the elementary object system. An object-marking
(O-marking) is a mapping M̂ : P → 2Obj ∪ N such that M̂(p) ∩ Obj 6= ∅ ⇒
M̂(p) ∩ N = ∅ for all p ∈ P .

Next paragraphs are going to describe both transformation process phases.
The first one is the transformation of the work-flow model into the operational
nets-within-nets model, second one the transformation of the nets-within-nets
model into its interpretable form, reflecting the target PNOS platform.

5.3 From Workflow Nets to Reference Nets

We decided to describe our methods on the sample home automation example.
The whole system functionality is described in the form of work-flow model in
our approach represented by the Workflow System depicted in Fig. 2. There are
following elements within the work-flow models - places, transitions, and logical
transitions[1], sub-process transitions[1], connecting arcs, and system nodes bor-
ders. Places could be named, when there is a name on the place it is further con-
sidered as an variable name. Transitions could be also named. The named transi-
tion represents calling some particular atomic function of the underlying PNOS.
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Fig. 2. Workflow System net

Logical transitions are: AND-split, AND-join, OR-split, OR-join, and AND/OR-
split, they simplify the model to be easily readable for the non-technically edu-
cated domain experts. Sub-process transitions represent condensed parts of the
system, that are described in another diagram, e.g. in Fig. 3.

Generating the Infrastructure layer Work-flow model of the intended sys-
tem is translated into multi-layered Reference Nets model. Each layer of the
Reference Nets model is generated separately using different production rules.
First part of the system, that should be generated from the original model is
the top level Infrastructure layer net, that describes the communication among
all nodes of the system and could be used as a sort of deployment diagram. In-
frastructure layer is a basic layer of the Reference Nets model and serves for the
validation purposes and also as a description of the distribution of target system
structure. Basically the main purpose of Infrastructure layer lies in description
of the system nodes and their communication.

Within the Infrastructure layer, each node is represented as a place in which
the particular Platform layer net is located. If there is any communication be-
tween nodes, this communication is represented as a transition between corre-
sponding nodes. For example model described in Fig. 2 should be translated into
the Infrastructure net described in Fig. 4. This layer is produced by the following
set of rules.
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Fig. 3. Measure subprocess

Let WS = (Ŝ, PWS , TWS , FWS) be a Workflow System which has to be
transformed and SN = (P I , T I ,W I) a system net representing the Infrastruc-
ture layer of the target elementary object system should be generated using
Algorithm 1.

Algorithm 1
(∗ demonstrates infrastructure net construction ∗)
1. P I = T I =W I ← ∅
2. for each work-flow specification produce place in the system net, ∀s ∈ Ŝ :

P I = P I ∪ {pname(s)}
3. for every set of the communication transitions with the same name, place

one transition to the system net, ∀ξ(t) ∈ χ(TWS) = [χ(TWS
i )]i∈<1,...,n> :

T I = T I ∪ {tname(ξ(t))}, where name(ξ(ti)) = name(ξ(tj))(i 6= j)
4. connect all communication transitions to the corresponding places with

double-sided arcs, ∀pI ∈ P I ,∀tI ∈ T I : pIi ∈ •tIi ∧ pIi ∈ tIi
•, where

tWS ∈ TWS : ∀pWS
i inCi : p

WS
i ∈ •tWS ∨ pWS

i ∈ tWS•

5. annotate all arcs with arbitrary names
6. place inscriptions to the transitions that invoke the : output up-link in the

source node and places the result to the : input up-link of all the target
nodes

Each node of the system, placed logically within the Infrastructure net place
is considered to run on some piece of hardware installed with the PNOS. Because
PNOS also consists of the PNVM it is able to interpret Reference Nets translated
into the PNBC pseudo-code. Basic layer of the system, that must be installed
on all nodes of the system is Platform layer, that brings a set of basic meta-
operations that enables the node with other Reference Nets manipulation means
- like loading, unloading nets, passing values, etc. This layer is described in
Fig. 5. After the Platform layer was installed on the basic PNOS and become
interpreted by the PNVM kernel, it is possible to send to it some other nets to
define or modify the node behaviour. Basic types of such nets are Processes and
Sub-processes of the target system.
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Fig. 4. System Infrastructure net

Fig. 5. Platform net
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Generating the Process layer The translation of Processes layer also has
its own set of production rules. When translating the work-flow model, there is
at least one process net generated for each Workflow Specification within the
the system model. Main process net consists of the set of meta-operations, that
enable the main process to receive and run new nets definitions, and to pass the
received values to running subnets. Input place is used for receiving the data
by : input up-link. Output place serves as an buffer for the : output up-link.
Nets place then stores all sub-process nets. During the main process life-cycle,
each sub-process net is taken from the nets place, it is started, or served with
parameters and started. Started net is then put back to nets place, where it
resides, until the result is produced. When the result is ready, the net is taken
from the temporary place again, the output result is taken, and the net is then
stored again back to the nets place, or it could be stopped. The result of the net
is then propagated according to the logic specified in the main process net. The
example of translating the garden node main process net is shown in Fig. 6.

Fig. 6. Garden Main Process net

All the process nets should be produced according to the following rules.
Let Si = (Q, top, T �, map) be a Workflow Specification to be transformed and
ONi = (PPi , T

P
i ,W

P
i ) a net of the Processes layer of the target system. For the

translation following Algorithm 2 should be used.

Algorithm 2
(∗ demonstrates process nets construction ∗)
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1. PPi = TPi =WP
i ← ∅

2. add nets, input and output places, PPi = PPi ∪ {pnets, pin, pout}
3. add the platform meta-operations, TPi = TPi ∪{tname, tpass, tcreate, tremove}
4. for each sub-process in swim-lane construct the first transition that takes the

subnet from the nets place and invokes the : start up-link and a transition
that triggers the : output up-link, ∀tSi ∈ T top : TPi = TPi ∪{tPi(start), ti(out)},
where •ti(start) = pnets = t•i(start) ∧ •ti(out) = pnets = t•i(out)

5. connect both transitions with synchronization place and corresponding arcs,
∀tC ∈ TCi , where ∃p ∈ P, t ∈ Ti ⊂ T \ ⋃{Ti} : p ∈ tC• ∧ p ∈ t• : PPi =
PPi ∪ {pPi }, where tP•i(start) = pPi = •tPi(out)

6. add one more place for each output communication to store the results of
the sub-process, PPi = PPi ∪ {pPi } : tP•i(start) = pPi

7. if the output is to be sent to another node add the transition that constructs
the message and puts the resulting message into the output sink, TPi =
TPi ∪ {tPi } : •tPi = pPi ∧ tP•i = pout

8. translate special transitions according to the rules defined by Aalst [1]
9. omit input places
10. copy left places, ∀c ∈ C : PPi = PPi ∪ cPc
11. copy left transitions, ∀t ∈ T : TPi = TPi ∪ tPt

Generating the Sub-process layer Within the house work-flow model, there
is a measure sub-process used in meteo and house modules. This sub-process
should be translated to the Sub-process layer using Algorithm 3.

Algorithm 3
(∗ demonstrates sub-process nets construction ∗)
1. for all sub-process places produce corresponding places, ∀c ∈ C : PPi =

PPi ∪ cPc
2. for all sub-process transitions produce corresponding transitions, ∀t ∈ T :

TPi = TPi ∪ tPt
3. translate special transitions according to rules defined by Aalst [1]
4. if there’s a loop, switch the do-while-do loop to the while-loop and add

the while condition place to the beginning of loop and add the : stop transi-
tion to enable removing the condition, search for the transitions inscriptions
within the dictionary - transition producing the values and transitions con-
suming the values

Resulting sub-process net is described in Fig. 7.

5.4 From Reference Nets to Petri Nets Byte Code

Following part of the development process comprises of target system code gen-
eration. In our approach, each layer of the system should be compiled to target
code independently. All generated levels communicate with each other using
up-links and down-links.
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Fig. 7. Measure Sub-process net

The only part of the system, which is implemented natively, is the PNOS
kernel, including PNVM [8]. The example of byte-code follows. It represents the
measure net (depicted in Fig. 7). In fact, it is a human-readable version of the
byte-code. In this representation, numbers are represented as text and also some
spaces and line breaks are added. This means that the contents of the code
memory is a bit more condensed. Each byte of the code is either an instruction
for PNVM, or data.

(Nmeasure
(measure/wind)
(cond/wind/cst/value/name)
(Ustart()()(P1(B1)(V1)))
(Ustop()()(O1(B1)(V1)))
(Uoutput(val)()(P4(B1)(V1)))
(Uname(name)()(P5(B1)(V1)))
(I(O5(B1)(S1)))
(Tread(cond/raw)
(P1(B1)(V1))
(A(:(V2)(r(S2))))
(O2(B1)(V2)))

(Tconst(cst)
(A(:(V1)(r(S2))))
(O2(B1)(V1)))

(Tmultiply(raw/cst/val)
(P2(B1)(V1))
(P3(B1)(V2))
(A(:(V2)(/(*(V1)(V2))(I10000))))
(O4(B1)(V2))))

The important feature of the system is its reconfigurability. It is based on
operations of the operating system that are designated for manipulations with
nets (in the form of PNBC) and their instances. Nets could be sent to a node as a
part of the command for its installation. The command is executed by Platform
net. Using other commands, the platform can instantiate a net, pass a command
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to it, destroy a net instance and unload a net template - see Fig. 5. The PNOS
Platform functionality is described in more detail in [8], [9], [10].

6 Installation and Reconfiguration

The main operating principle of resulting system could be described on the tasks
of system construction - installation, and its reconfiguration. The installation of
the system starts with placing proper nodes to the target environment. Each
node should be installed with the PNOS, PNVM and basic platform layer. The
physical communication between nodes using different wired or wireless commu-
nication technologies should be established. In our running example the scenario
should start with installing the processes for each Workflow Specification and
then sending particular sub-processes nets to relevant nodes.

meteo load measure-wind
meteo create mw1 measure-wind
meteo load measure-anemo
meteo create ma1 measure-anemo
...
meteo start
meteo pass mw1 start
meteo pass ma1 start
...

The other important part of system functionality is its reconfiguration. It
should be performed on each defined level of the system architecture. Basically,
the node firmware including the PNOS and PNVM could be reprogrammed and
rebuilt and then sent over the air to the particular node. The Platform net could
be modified and also sent to the particular node, but usually we do not expect
this layer to be modified often. The next level of reconfiguration is the processes
layer. All processes of the node could be changed and then passed to its platform
to change the behaviour of the node. Finally all the sub-processes nets could be
modified and sent to particular nodes processes that reinstall them within the
nets place. The example of the reconfiguration process follows.

meteo pass mw1 stop
meteo destroy mw1
meteo unload measure-wind
meteo load measure-wind
meteo create mw1 measure-wind
meteo pass mw1 start
...

There is a plan in future to add the pause and resume operations to the
platform, to be able to pause any particular net instance, change its template
and resume then. For that it is necessary to invent, how to represent the pausing
and resuming conditions in Petri Nets, that is not part of this material.
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7 Conclusion

We described the basics of model transformation and execution-based method-
ology of distributed embedded control system development. Among the main
methods it uses Petri Nets models transformations and target system prototype
code generation. Development process starts with the work-flow model of the
system specification defined according to the rules of Van der Aalst’s Workflow
Specifications. Work-flow model of the system describes the functionality from
user’s or domain specialist’s point of view. Using our methods, the work-flow
model is further transformed to the multi-layered architecture based set of Ref-
erence Petri Nets. Each layer of the system is then translated to the specific
target representation called Petri Nets ByteCode (PNBC), which is interpreted
by the Petri Nets Virtual Machine (PNVM), that is a part of the Petri Nets Op-
erating System (PNOS), that is installed on all nodes of the system. Targeted
dynamical system reconfigurability is achieved by the possibility of PNBC net
templates and instances replacement with its new versions. After the replace-
ment, PNVM interpretation engine starts to perform a new version of partial
functionality of the system. That makes the dynamic reconfigurability possible.
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Reengineering the Editor of the GreatSPN Framework
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Abstract. This paper describes the technical challenges around the moderniza-
tion process of the GreatSPN framework[15], one of the first Petri net frame-
works started in the eighties, in particular in the reengineering of its Graphical
User Interface and in its general user-friendliness, to account for its large set of
functionalities1.

Keywords: GreatSPN, GUI, Dataflow architecture.

1 Objectives and contributions

It is common opinion that formalisms like Petri nets or Timed Automata are very pow-
erful and yet simple to understand thanks to their graphical representation. A graphic
schema is usually simple to specify and grasp. However, graphical formalisms depends
on the availability of good graphical editors to be able to gain the full advantages.

Back in 1985, the University of Torino developed the (probably) first documented
software package for the analysis of stochastic Petri nets, under the name of Graphical
Editor and Analyzer for Timed and Stochastic Petri nets (GreatSPN) [15]. The frame-
work consisted in a set of tools for the analysis of Generalized Stochastic Petri nets
(GSPN) [1], and it was supported by a graphical editor, described in [16], for inter-
actively design, validate and evaluate GSPN models. The graphical editor, developed
initially on a Sun 3 machine with UNIX BSD 4.2, was based on the X11/Motif toolkit.
The simplicity of graphically designing models boosted the usage of GSPNs in vari-
ous fields, from performance evaluation, telecommunications, biology and more. Other
tools/GUIs have then followed, providing nowadays a large base of Petri net tools.

Today, the GreatSPN framework provides a vast collection of solvers developed in
a time span of 30 years, that includes solvers optimized for low memory consumption
(for the computers of the late ’80s), modern model checkers based on decision diagram
techniques [3], a stochastic model checker, ODE/SDE2 solvers, Markov decision pro-
cess optimizers, DSPN [23] solvers, simulators, and others. While the set of solvers of
GreatSPN is very large, the obsolescence of technologies like Motif hurt the usability
of the GUI over the years. After having evaluated other GUIs, the group arrived to the
decision of renewing the interface of GreatSPN. The modular nature of the framework
itself allows to easily replace solvers, modules and the GUI itself, while maintaining

1 This work has been funded by the Compagnia di San Paolo, as a part of the AMALFI (Ad-
vanced Methodologies for the Analysis and management of the Future Internet) project.

2 Ordinary and Stochastic Differential Equations.



the other modules fully working and unchanged. In the end, the modular framework
structure proved to be easy to maintain and to develop over such a long timeframe.

This paper describes the reengineered GUI of GreatSPN, with its recent enhance-
ments. The GUI is written in Java, and it is therefore portable to multiple platforms. En-
hancements include, among all, support for drawing colored Petri nets and hybrid Petri
nets, token game, batch measure specification and processing, and support for multiple
solvers/model checkers. The paper describes the overall tool workflow, from the mod-
eling and the verification phase, that allows to edit models, simulate their behaviors,
inspect their structural properties, up to the evaluation phase, where performance in-
dexes are computed with numerical solvers and/or simulators, and the computed results
are visualized interactively to the user. A prototype of the GUI was briefly described in
a short paper [5], centered around its use for stochastic model checking.

The GUI supports multiple formalisms: Generalized Stochastic Petri Nets (GSPN),
GSPN with colors (Stochastic Well-Formed net, or SWN), Hybrid Petri nets, and De-
terministic Timed Automata (DTA). In addition, the application presents a number of
unique features, like multipage projects, solution batches, support for template variables
in models, LATEX labels and high quality vector graphics. This new GUI is described
here with a focus on various recent additions: parametric measure specification, the
support for SWN and hybrid Petri nets, and the integration inside the framework.

The modernization process actually required a process of re-engineering of the GUI
around the workflow of GreatSPN. During this process, many limitations of the existing
GUI have been removed, like the absence of a SWN token game, the missing support
for model checkers, no capacity for drawing Timed Automata, and other. The main
contributions provided by the modernized GreatSPN GUI are its improved usability,
while keeping the compatibility with the large framework, and its support to multiple
formalisms and solvers, which expands the tool usability. Other formalisms and other
solvers may be added using the modular tool structure.

Section 2 describes the architecture of the GreatSPN framework. Section 3 and 4
introduce the application interface, and describe briefly the modeling capabilities of
the editor. Section 5 shows how the user can simulate the designed GSPNs with the
token game, and visualize their structural properties like the minimal P/T semi-flows.
Section 6 describes how the designed models can be verified quantitatively with the set
of supported solvers. Section 7 shows a simple use case of the tool that illustrates how
the GUI can help the user in the process of modeling and analysis. The paper concludes
with a comparison of other commonly used GUIs in section 8 and with the section 9
with a brief discussion on the future of GreatSPN.

2 Architecture of GreatSPN

GreatSPN is a large framework made by several interacting components, that has grown
over the time to incorporate various Petri net-related features. The framework itself is
not made by a large, monolithic tool. Instead, many independent tools interact by shar-
ing data through files in standardized formats, resulting in a dataflow architecture ap-
proach. Each tool is responsible for reading its own input, written in one or more files,
performing the computation, and writing the outputs in other files. The framework actu-
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Fig. 1. (Partial) Architecture of the GreatSPN framework, as it is today.

ally contains more than 60 binaries. The advantage of this software architecture is that it
allows to easily modify/replace single components, while keeping the rest of the frame-
work unchanged, as long as the input/output formats are observed. While this software
architecture is not very modern, it has proven to be very solid and maintainable, such
that in the framework many software modules written in its 30 years of development
co-exists, without causing too many troubles.

A simplified schema of the GreatSPN framework is shown in Fig. 1, that reports a
selection of the various features of GreatSPN. Tools are written in bold, and are grouped
in logical modules, according to their function, that span from numerical solutions,
structural analysis, MDP support, conversion between multiple formalism, and so on.
The graphical editor is the center for drawing the models and their properties. It is
responsible for the invocation of various command line tools and for the visualization
of the results. Actually, many but not all the command line tools are available from the
GUI.
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The workflow of GreatSPN was conceived, back in its original design, to be made
in three main phases: first the user (the “modeler”) designs the Petri net in a textual or
graphical way; secondly, structural properties are computed (minimal P/T semi-flows,
place bounds, conflict sets, ...) to understand if the model is designed properly and may
be solved under numerical analysis or simulation; then the user specifies the measures
of interest on the model and calls a command line solvers to do the computation. Several
solvers are provided, for different types of models and with different characteristics.

2.1 Reengineering requirements.

In order to create a new GUI that replaces the old one, it must satisfy a set of re-
quirements and constraints imposed by the framework itself. First of all, the GUI is
responsible of these tasks:

1. Help the user in the process of drawing Petri net models and other graphical models.
2. Allow the user to call the tools provided by the GreatSPN framework for the struc-

tural analysis of Petri net models, to discover potential structural mistakes made in
the drawn models.

3. Simplify the process of specifying and computing performance measures, by call-
ing the command-line solvers and providing an understandable visualization of the
computed results.

The design choices done to satisfy requirement 1 are explained in sections 3 and 4.
Requirements 2 and 3 involve the interaction between the GUI and the command line
tools. Command line tools expect precise file formats in input and produce other files as
output, since these tools are designed to be non-interactive. Therefore, the tool interac-
tion with the solvers require an explicit serialization of the data for the computation and
a deserialization of the results. Many different files are involved in any computation: a
partial list of these files is shown in Table 2.1.

Extension Content of the file
.PNPRO Petri net Project (XML format). Main format of the editor.
.net Input format of Petri net models for command line solves.
.def Input performance indexes.
.ctl Qualitative queries in CTL language.
.dta Deterministic timed automata for CSLTA model checker.
.pin, .tin P/T invariants.
.sta Computed statistics.
.throu Transition throughputs.
.tpd Token distributions in places.
.ecs Extended conflict sets.
.bnd Upper/lower bounds of tokens in places.
.grg Reachability graph.

Table 1. File extensions of the input/output files used by the editor and the solvers).
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The complete solution process of a Petri net may require the invocation from one to
twelve different command line tools, depending on the target measures to be computed.
In addition, the reengineered workflow has been improved to support parametric mod-
els, i.e. models defined to depend on multiple integer/real parameters, whose values are
specified at solution time and not at design time. Parameters are passed as command
line arguments, and all command line tools have been modified to support them.

Another design requirement of the GUI is to support new modeling formalisms and
functionalities that are not present in the current toolchain. To represent and store these
informations, the tool uses a new XML file format for the models. This choice avoids
modifying the input file formats of the toolchain. Any command line tool invocation
serializes the drawn model in appropriate input formats when needed, leaving the main
file format just for the editor. In this way, it is easy to change the editor format without
breaking the compatibility with the command line tools of the GreatSPN framework.

Requirements 2 and 3 involve the reconstruction of the modeler workflow of Great-
SPN inside the GUI. Examples of how this workflow is implemented graphically are
given in sections 5–7.

2.2 Code structure of the new GUI.
The GUI consists of about 55K lines of code written in the JavaTM language, plus an
optional command line LATEX engine that runs in the background to format the text
labels of the models. The application is cross platform and runs on Windows, MacOSX
and Linux. Java package structure is shown in Table 2.2.

Packages Description
gui Core GUI structure, main window cycle.
gui.net Visualization/editing of abstract graphs (Petri nets, automata).
gui.play Interactive token game.
gui.semiflows Visualization of minimal P/T semi-flows.
gui.measures Editing of measures and visualization of computed results.
domain Data structures.
domain.project File management, undo/redo facility.
domain.grammar Unified ANTLRv4 grammar for expressions and measures.
domain.io Serialization/deserialization in net/def, XML and APNN formats.
domain.values Expression evaluation engine.
domain.elements.gspn GSPN elements.
domain.elements.dta DTA elements.
domain.play Token game logic.
domain.semiflows Computation of minimal P/T semi-flows.
domain.measures Measure specification and tool invocations.
domain.unfolding Unfolding of colored Petri nets into uncolored ones.

Table 2. Code structure of the Java application.

The core structure of the design view of the GUI is essentially an editor for abstract
graphs of nodes and edges. The version described in this paper supports two graph
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formalisms: Petri nets and automata. New formalisms can be added by deriving the
corresponding base classes in the Java codebase. Adding a new formalism is done by
deriving the base classes for the model, the node elements and the edge elements, and
by providing the Java panels to edit properties. For instance, the DTA formalism, imple-
mented in the domain.elemens.dta package, involves about 2K lines of code: two Java
classes for the DTA locations and edges (the graph nodes), a class for the DTA model
in a project, and the property panels for the location and edges. Of course, other part of
the application that use DTAs also involve some additional logic. To abstract different
syntax of properties, measures, expressions, provided by various solvers, the GUI has
a uniform C-like language for expressions. When an expression needs to be passed to a
solver, it is converted to the specific syntax expected by the tool. Abstracting expression
languages of different solvers allows to support multiple solvers without having to re-
specify expressions and measures for different tools. Overall, the complete GreatSPN
framework amounts to about 500K lines of code, mostly made by C/C++ programs.

3 Drawing Petri net models

The core feature of the editor is the drawing of Petri net models, centered around the
GSPN, the SWN and the Hybrid Petri net formalisms. Figure 2 shows the main appli-
cation window, taken while editing a colored Petri net model. In the upper-left panel,
there is the list of open projects. The editor is designed around the idea of multi-page
projects. Each project correspond to a file, and is made by several pages. In the current
version of the editor, pages can be of three types: Petri net models, DTA models or table
of measures. In the lower-left panel of the main window there is the property panel, that
shows the editable properties of the selected objects. The central canvas contains the
editor of the selected project page, that is in this case a SWN model.

Petri nets are drawn with the usual graphical notation. Transitions may be immediate
(thin black bars), exponential (white rectangles) or general (black rectangles). Names,
arc multiplicities, transition delays, weights and priorities are drawn as small movable
labels near the corresponding Petri net elements. Arcs may be “broken”, meaning that
only the beginning and the end of the arrows are shown. Color definitions are drawn in
textual form, as in the upper right part of the window where two color classes, a com-
posite color domain and two color variables are declared. The editor also supports fluid
places and fluid transitions (not shown in the example of Fig. 2), and place partitions
for Kronecker-based solutions [11]. The editing process supports all the common oper-
ations of modern interactive editors, like undo/redo of every actions, cut/copy/paste of
objects, drag selection of objects with the mouse, single and multiple editing of selected
objects, etc. Great care has been put to the graphical quality of the resulting Petri net
models, to allow for high quality visualization of the net. The interface is designed to
avoid modal dialog windows as much as possible, to streamline the use of the GUI.

Figure 3 shows some of the extended features of the Petri net editor. Name labels for
elements (places, transitions, constants, etc) may appear in three user-selected modes:

– The label shown is the alphanumeric object identifier, as-is;
– A LATEX string is used, allowing for more readable models that better express their

meanings, like in the simple reaction network of Fig. 3(A) where alphanumeric
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Fig. 2. The old and the new graphical user interfaces of GreatSPN. Screen-capture of the former
is taken during the interactive token-game, while the SVG capture of the latter shows the design
view with a colored Petri net model.
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Fig. 3. Some features of the Petri net editor.

transition names are replaced with the represented chemical reaction, and place
names represent the chemical species.

– The label is the object identifier automatically formatted in LATEX with a function
that tries to convert common patterns (like alpha→ α , or stage1→ stage1).

Arc arrows point to the center of the attached transitions/places. If this behavior
is not satisfactory, the editor provides a set of customizable “magnetic points” drawn
on the element perimeters, where the arrows may attach. This behavior is shown in
Fig. 3(B), figure that has been taken while dragging the arc arrow with the mouse on
the “start” transition that has “3 magnets per side”. All elements in the model are vector
based, which result in high print quality. Printing and PDF exportation of the models
are also possible, using the printing facilities of the operating system.

Figure 4 shows a colored model, drawn using the SWN formalism, as it appears in
the editor window. Support for SWN has been recently added to the GUI. The model has
three objects, located in the upper left part, that represents object declarations. The 〈N〉
objects declares a parametric integer constant, whose value is decided at verification
time. The ‘class’ declaration defines a color class for the places in the Petri net, as
usual in the SWN formalism. Places belonging to this color class are labeled with the
place name followed by a colon and the color class name. The third declaration is a
color variable named x of color class Philo. All expressions are parsed and verified
syntactically and semantically on-the-fly, and appear in red if there is some error.

4 Drawing CSLTA DTAs

The second type of models that can be drawn with the editor are Deterministic Timed
Automata (DTA), a type of timed automata for the CSLTA stochastic logic [19]. CSLTA

works by measuring stochastic GSPN behaviors using a DTA. A DTA is an automaton
that reads the language of GSPN firing sequences (also called paths), and separates
accepted and rejected paths. The formal semantic of the DTA can be found in [19]
(single clock), and in [14] (with multiple clocks). In few words, the logic provides a
stochastic operator: s0 |= P./λ (A) that is satisfied iff the overall probability of the set
of GSPN paths starting in state s0 and accepted by the DTA A, is ./ λ .

Figure 5 shows three CSLTA DTAs, drawn with the notation described in [4]. The
first DTA describes the CSL [7] path property: Φ1 Until[α,β ] Φ2. Locations are drawn
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Eat Philo:

end

hNi

Fig. 4. Model of the N dining philosophers drawn in the SWN formalism.

as rounded rectangles, and the state proposition that the GSPN must satisfy while the
DTA is in a location is written below the location rectangle, in bold. Initial locations are
represented with an entering arrow, and final locations are drawn with a double border.
The editor also allows final rejecting locations, not included in the original definition,
but used in [2]. There are two kinds of edges, boundary, drawn dashed, and inner,
drawn solid. Boundary edges are triggered as soon as the clock condition is satisfied,
and are labeled with a ]. Inner edges specify the set of GSPN actions with which they
are synchronized. Each edge also specify a set of clock constraints, and an optional set
of clock resets.

Act n factg
x < ® factg

x < ®

]
x = ®

x : clock
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©0
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lfail
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   action act happens before time    .↵ (C) Multi-clock DTA.
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Fig. 5. Some example of DTA models drawn with the editor.
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DTAs are parametric, and are not bound a priori to a specific GSPN model. Instead,
all state propositions, real clock boundaries and action names are declared as template
variables (depicted as 〈var〉). When the DTA is used for computating measures of a
GSPN, these parameters are instantiated to boolean conditions, real values and transi-
tion names of the GSPN, as we shall see in section 5.1.

Clocks are declared as part of the DTA. The DTAs (A) and (B) of Fig. 5 have a
single clock, while the DTA (C) has two clocks. Currently, only single-clock DTAs can
be verified numerically. The DTA (B) accepts all the GSPN where a transition act fires
before time α , while remaining in states that satisfy the condition Φ0.

5 Interactive simulation and inspection of structural properties

The behavior of Petri nets can be experimented interactively inside the GUI. This is
known as the “token game” or “interactive simulation”, and works as follows. The editor
shows the initial marking of the GSPN, and highlights the set of enable transitions of
the model. By click on one of the enabled transitions, the editor responds by firing the
tokens from the input to the output places, showing the behavior of the model. The
reached marking is then shown, and the user can continue firing new transitions.
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N = 5

GSPN 1

Minimal support semiflows:

Queue + 2*Wait1 + 2*Finish1

Queue + 2*Wait2 + 2*Finish2

P-‐‑semiflows:

100 %Ok.

(B) Interactive visualization of a P-semiflow of a GSPN.
   P-semiflow multiplicities are written on the places.

(A) Token simulation screenshot taken
 while firing immediate transition t1.

Fig. 6. Interface of the interactive GSPN simulation and semi-flows visualization.

Figure 6(A) shows this interactive simulation on a GSPN model, taken during the
firing of transition t1. Tokens removed from input places and added to output places
are drawn with a short animation. Token game works in untimed and timed mode. In
untimed mode, no age/duration of the events is considered, and no track is kept for the
advance of time. In timed mode instead, a time is present, and the time for the transition
fire is taken into account. For DSPN models with non-exponential transitions, timing
constraints are resolved. The user may also enable a semi-automatic firing mode, where
interaction is required only if there is a choice between multiple concurrently enabled
transitions, or a random firing mode where the editor picks the next transition randomly
(and the next time in timed simulation), thus simulating without the user interaction.
SWN models are supported in interactive mode: instead of black dots, colored tokens
are shown as color names. When firing a colored transitions, a list of enabling bounds
of the color variables is shown to the user, who can pick the one to fire.
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Additionally, the user may visualize the minimal P and T semi-flows that covers a
GSPN model, as shown in Fig. 6(B). The user selects the minimal semi-flow that wants
to visualize from a list, and the editor highlights the involved places and transitions.
Semi-flows are computed with the modified Farkas method of Martinez and Silva [24].
With these tools, the user may inspect the behavior and the structural properties of the
Petri net while modeling, which is useful to verify that the model is drawn correctly.

5.1 Interactive CSLTA simulation

An interactive simulation of the path probability operator of the CSLTA logic is, roughly
speaking, a system where GSPN firings are checked by the DTA. Each GSPN transition
firing has to be matched by a corresponding DTA edge, otherwise the path is rejected.
In addition, boundary edges of the DTA (labeled with a ] and drawn as dashed arrows)
are autonomous and are taken as soon as their timing conditions are met. Before starting
the simulation, the template variables of the models are shown as a list of text boxes,
that must be filled by the user with appropriate values. Values assigned to the parametric
variables of the DTA are shown above the DTA. In the central panel of the window, the
GSPN and the DTA are shown side by side.

Change bindingsStart!Switch to TimedClose.
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Fig. 7. Interface of the interactive CSLTA model checking simulation.

Figure 7 shows the GUI window for the joint simulation of a GSPN model and
a DTA. The list of enabled GSPN transitions and autonomous DTA edges is shown
in the upper-left corner. In the lower left corner there is the state of the path trace
chosen interactively by the user, starting from the initial marking. Values assigned to
the parametric variables are validated while typing, and their correctness is signaled
with a green tick mark on the right of the corresponding text boxes. When all values
are assigned, the user may press the play button and the joint simulation starts in the
initial state of the GSPN and in the initial location of the DTA. Each time the user
selects a GSPN transition to fire, a DTA inner edge has to be chosen afterwards to
match the GSPN firing. Boundary edges of the DTA may also be independently enabled
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(clock condition is evaluated in a timed simulation, and ignored in an untimed one). The
simulation ends when the DTA reaches a final location, or when no DTA edge can match
a GSPN firing.

View log... Compute All
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Compute =  3° E{ #Queue }

Plot of the Reachability Graph with vanishing markings. Compute 2°

All place distributions and transition throughputs. Compute 1°

Measure:Pos:

Solver parameters:
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CSLTA Measure

ALL FJPT

100 %Ok: delete selected.

Fig. 8. The interface for specifying and computing a batch of measures.

6 Computing measures

The GUI integrates an interface for specifying, computing and visualizing measures
on Petri net models. A project may contain multiple measure pages, and each page
specifies:

– The target Petri net model;
– The selected numerical solver, from a list of supported solvers;
– The instantiation of the parameters of model, if any;
– Solver-specific parameters and flags;
– A table of target measures that will be computed.

The GUI is currently integrated with three solvers. The first is the GreatSPN toolchain,
that can evaluate standard performance measures (mean number of tokens in a place,
transition throughputs, etc...) on GSPN/SWN models using an extensively tested imple-
mentation. Index can be computed in steady-state or in transient with a numerical solver,
or by using a simulator. The second solver is the MC4CSLTA stochastic model checker,
that can evaluate standard performance measures for GSPN and DSPN models [6], as
well as CSL and CSLTA queries. The third solver is RGMEDD [3], the symbolic CTL
model checker of GreatSPN [8].
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Figure 8 shows a measure page editor for a GSPN model with one parametric mark-
ing parameter 〈n〉 and with three measures (at the bottom). The GSPN model is evalu-
ated multiple times for different values of n, from 1 to 10 (template parameters section),
with increments of 1. The numerical solution is computed by invoking the command-
line solvers with the specified solver parameters (solution in steady-state, maximum
number of iterations, use the ordinary SWN solution, etc..). The table of measures lists
what will be computed. Entry ALL specifies that all basic GSPN measures will be com-
puted, which are the distributions of tokens in each place, and the transition throughputs.
RG and TRG specify that the (Tangible) Reachability Graph will be generated by the
GreatSPN tools, and a graphical representation will be drawn. Queries in a given lan-
guage (CTL, CSL, CSLTA, Performance measures) can be specified textually. A PERF
query expresses a performance measure on places and transitions, using the syntax of
the measure language of GreatSPN.
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Fig. 9. The interface that shows the ALL results computed on a parametric GSPN in steady-state.

When the user clicks on the “Compute” button, the GUI calls the command-line
numerical solvers, and shows the output to the user. To use the command line tools di-
rectly, the user can export the GSPN/DTA models as separate files. Currently supported
formats are the GreatSPN format and the APNN format [20].

Computed solutions are shown interactively to the user. Figure 9 shows the interface
that is used to show the results of the ALL measure, computed with parameter 〈n〉 that
ranges from 1 to 10. Places and transitions show their expected number of tokens and
throughputs, respectively, for the value selected by the user (in this case n = 6). When
the user selects a place, its token distribution is shown in the bottom-left corner.

E. Amparore: Reengineering the Editor of the GreatSPN Framework 165



Template parameters can be bound to a single value, a list of values or a range of
values. If the performance measures are computed in transient, it is possible to specify
that the transient time t is template variable, thus computing a sequence of solutions
at different time steps. This allows the user to setup a batch of parametric tests with a
certain degree of flexibility.

7 Use case

We now present a simple use case to show how the tool functionalities can be used
to support model analysis with standard performance measures as well as with CSLTA

queries.
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Fig. 10. The GSPN of a Flexible Manufacturing System (FMS).

Figure 10 shows an instance of a Flexible Manufacturing System (FMS) taken
from [9], modeled with the GUI and exported as PDF. The model represents a sys-
tem where N pallets are treated in a sequence of three machines, M1, M2 and M3. Each
machine can treat one pallet at a time. Machine 2 and 3 are subject to breakages, and
a repairman continuously checks the machine for repairs. Machine 2 has a set of spare
parts that can be used to replace the broken parts, without losing work time. Machine 3
instead always requires a stop to do the repair. The model is parametric in the number
N of circulating pallets.

Figure 11 depicts two DTAs drawn with the GUI that express two path properties on
the FMS model. The first accepts the system behaviors where three completion events
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Fig. 11. The Two DTAs used in the analysis of the FMS model.

ew3 are observed before time α , having not seen any failure of the machines M2 and
M3. The second DTA accepts the paths where at least two repairs have been completed
in t time units.

To carry on the analysis from the editor, it is sufficient to create a new set of mea-
sures for the FMS model, that are parametric in the number N of pallets and on the
time t of the DTA. Figure 12 shows the results of the analysis of the FMS model by
computing the steady state solution and the model checking of the two DTAs. Datas are
computed using the GUI, and then exported from the GUI in Excel Open XML format
to plot the diagrams.

t X=1 X=2 X=3 X=4
0 0 0 0 0
1 0,099505043 0,002849348 2,96093E-05 1,20554E-07
2 0,442325637 0,088624305 0,008389993 0,000375258
3 0,724448358 0,333258521 0,090658277 0,01379917
4 0,865090232 0,592700687 0,288640903 0,091623185
5 0,92095403 0,761875241 0,514881636 0,258930038
6 0,940657186 0,846520585 0,683561652 0,457185273
7 0,947159235 0,882796132 0,780634568 0,618465563
8 0,949224125 0,896932765 0,828062726 0,721048281
9 0,949865376 0,902118614 0,848885562 0,776354577

10 0,950061937 0,903947011 0,857393935 0,80297381
11 0,950121735 0,904574597 0,860702223 0,814807587
12 0,950139847 0,904786011 0,861943948 0,819778253
13 0,95014532 0,904856267 0,862398074 0,821781348
14 0,950146971 0,904879377 0,862560913 0,82256384
15 0,950147469 0,904886919 0,862618405 0,822862258
16 0,950147619 0,904889364 0,862638449 0,822973908
17 0,950147664 0,904890152 0,862645365 0,823015032
18 0,950147678 0,904890405 0,86264773 0,82302998
19 0,950147682 0,904890486 0,862648532 0,823035352
20 0,950147683 0,904890512 0,862648803 0,823037264

t N=2 N=4 N=6 N=8
0 0 0 0 0
2 0,110138615 0,108270753 0,106778717 0,10560685
4 0,292400334 0,287854683 0,284223034 0,281370368
6 0,458367802 0,451914828 0,446758757 0,442708322
8 0,591155395 0,58369733 0,577737618 0,573055596

10 0,692913213 0,685149632 0,67894538 0,674071036
12 0,769664884 0,762066572 0,755994085 0,751223105
14 0,827220738 0,820075277 0,814364488 0,809877591
16 0,870302371 0,863765931 0,858541755 0,8544371
18 0,902542605 0,896682224 0,891998295 0,888318061
20 0,926680964 0,921505843 0,917369536 0,914119543
22 0,944767762 0,940251365 0,936641505 0,933805134
24 0,958333311 0,954428618 0,951307659 0,948855408
26 0,968518938 0,965168716 0,962490907 0,960386844
28 0,976175906 0,973319386 0,971036165 0,969242146
30 0,981939398 0,979516525 0,977579913 0,976058224
32 0,986283658 0,984237632 0,98260223 0,981317213
34 0,989563002 0,987841674 0,986465798 0,985384701
36 0,992042372 0,990598854 0,989445029 0,988538408
38 0,99392005 0,99271285 0,991747916 0,990989713
40 0,995344564 0,994337416 0,993532383 0,992899824

X N=2 N=4 N=6 N=8 N=10 N=12
0 1 1 1 1 1 1
1 0,82939964 0,906936078 0,92095403 0,925506197 0,927642723 0,928875518
2 0,399067257 0,694261274 0,761875241 0,783757443 0,793748529 0,799407953
3 0,021956912 0,373742898 0,514881636 0,563577365 0,585144119 0,597035304
4 0,00034334 0,106754682 0,258930038 0,324888334 0,354154987 0,369816869

TwoRepai
rsBeforeT
t N=1 N=2 N=3 N=4 N=6 N=8 N=10

0 0 0 0 0 0 0 0
20 0,001385011 0,005208658 0,010716799 0,017248404 0,031276999 0,044220322 0,054594732
40 0,009810017 0,034374097 0,067282116 0,103983854 0,177241068 0,240091617 0,288162784
60 0,025494054 0,084242397 0,156800628 0,231775394 0,366936154 0,470188259 0,542182445
80 0,047101742 0,146995886 0,260230392 0,368012447 0,541924085 0,658341253 0,731159484

100 0,073382814 0,21652028 0,365065322 0,49491813 0,681752065 0,790462963 0,850973635
120 0,10325798 0,288410608 0,464060078 0,604818931 0,785127999 0,875862498 0,920582205
140 0,135808719 0,359607824 0,553502083 0,695772649 0,857950036 0,928281228 0,958866094
160 0,170258145 0,428067743 0,631915749 0,768758842 0,907595163 0,959345189 0,979147861
180 0,205952674 0,492497866 0,699175687 0,826034326 0,94065018 0,977293428 0,989604924
200 0,242345671 0,552154481 0,755920756 0,870228418 0,962271063 0,987467567 0,9948869
220 0,278983044 0,606687955 0,80317684 0,903881093 0,976218262 0,99314979 0,997512387
240 0,315490597 0,656025717 0,842121094 0,92923587 0,98511594 0,996285799 0,998800715
260 0,351562967 0,700284481 0,87394041 0,948172759 0,990740871 0,997999835 0,999426254
280 0,386953919 0,739704938 0,899751657 0,962213411 0,994269986 0,998929136 0,999727317
300 0,421467883 0,774603774 0,920561509 0,972559493 0,996470017 0,999429555 0,999871137
320 0,454952539 0,805338848 0,937251001 0,980142705 0,997833984 0,99969746 0,999939404
340 0,487292382 0,832284395 0,950574873 0,985675226 0,998675592 0,999840165 0,99997163
360 0,518403112 0,85581376 0,96116924 0,989695293 0,999192729 0,999915847 0,999986769
380 0,548226727 0,876287791 0,969563423 0,992605931 0,999509323 0,999955829 0,99999385
400 0,57672732 0,89404739 0,976193357 0,994706606 0,999702511 0,999976879 0,999997151
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Fig. 12. Results of the FMS model analysis, visualized in Excel.
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The table in the upper-left corner shows the size of the FMS model state space, the
number of transitions, the number of vanishing states visited by the numerical solver,
and the iterations/time needed to compute the steady state solution on a 2.4Ghz Intel
machine with accuracy of 10−7.

Plot 1 represents the result of DTA 1 on the FMS with N=6 pallets for 1,2,3,4 com-
pletions (the DTA of Figure 11 represents the case X=3). The plot shows the probability
of having enough time to do X completions, and for large values of t converges to the
probability of observing a failure. Plot 2 shows the results of DTA 1 by variating the
number of circulating pallets N with a fixed time t = 5. The x-axis plots the number
of completions, while the y-axis shows the overall probability of completing X tasks
before time t. A larger number of pallets increases the throughput of the system, re-
sulting in an increased probability. Finally, Plot 3 shows the results of DTA 2, i.e. the
probability of observing two repairs in t time units. Time is plotted on the x-axis and
probability on the y-axis, for various numbers of circulating pallets. Since the machine
may break when it is under usage, the probability increases for higher values of N.

8 Related work

While the GreatSPN framework with the new interface provides a solid base for edit-
ing, verifying and computing quantitative/qualitative measures of GSPN/SWN models,
there are other tools that provide similar features. Before reimplementing a new GUI,
we have explored various alternatives. An (incomplete) list is given.

Möbius : The aims of the Möbius tool [18], developed at the University of Illinois,
are similar to those of GreatSPN. It supports multiple formalisms, multiple solvers, and
provides a complete analysis workflow, from design to verification to the numerical
solution. It supports analysis of discrete and continuous time Markov chains, Markov
regenerative processes and a powerful simulator. However, the central formalism is the
SAN, not the stochastic Petri net, so it is not directly suitable for GreatSPN (even if
SAN nets can be converted to GSPN). In addition, no SWN and no stochastic model
checking is available.

Snoopy : The tool Snoopy [21] is a proprietary software developed at Cottbus TU. It
provides a unified editor for Petri net models, with support for hierarchical composition
and multiple solvers. Snoopy supports hybrid Petri nets (HPN), colored Petri nets, as
well as other extensions. The main solver is Marcie, based on MTBDD/MTIDD (deci-
sion diagram variants) techniques.

Coloane : Coloane [17] provides support for both Petri net and Timed Automata, but is
currently not focused on stochastic formalisms. It is designed to provide a GUI around
the standard PNML format [12], an XML-based exchange format for Petri net models.

CPNtool : CPN is a powerful toolkit for the design and evaluation of colored Petri
nets [22]. The formalism adopted by CPN includes a color algebra, expressions in ML.
The tool is supported by a flexible simulation engine. The specific mix of ML code
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and Petri net graphics is very compact and powerful, but unfortunately is far from what
GreatSPN solvers expect. In addition, the tool has some portability concerns. There-
fore,a conversion between CPNtool models and GreatSPN models appears difficult.

TimeNet A successor of the DSPN-express tool developed at TU Berlin, TimeNET is a
modern tool for editing stochastic and colored Petri nets. It is still being developed, and
it has been recently updated with heuristic optimization techniques [13].

The specific characteristic of the GreatSPN models, and the vast number of solvers
lead to the decision of designing a specific GUI for it. Additionally, some features like
the DTA specification and the support to the CSLTA stochastic logic are, to the best of
our knowledge, a unique feature of the GreatSPN GUI, and are not found on other tools.
The tool is available at http://www.di.unito.it/~greatspn/index.html, in the “New
Java GUI” section, either as a part of GreatSPN or as a standalone version. A virtual
machine with all the tools installed is also available, at request.

9 Conclusions and Future works

This paper presents an in-depth analysis of a new graphical user interface for the Great-
SPN framework. The GUI is designed around a complete workflow for the model-
ing of Petri nets and DTAs, and includes graphical interactive analysis, specification
of measures, computation and interactive visualization of the results, and an integra-
tion with multiple solvers/simulators/model checkers/optimizer/translators including a
CSLTA stochastic model checker and GreatSPN. A small use case has been also pre-
sented, to show the effectiveness of the GUI modeling capabilities and analysis with
measures from the user point of view.

Since the tool architecture is scalable and customizable, we plan to extend the tool in
various directions. First of all, the Petri net formalism can be augmented to support other
extensions, like compositional formalism. Similarly, DTAs can be extended to cover
more complete statistical control automata, like Linear Hybrid Automata [10]. Solvers
and file formats of other framework can also be considered, like PNML, and there is an
ongoing work to support solvers[11] of the APNN-Toolbox of TU-Dortmund.
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Abstract. In this paper we propose and discuss mechanisms and im-
plementation issues for moving the execution of computation- and time-
consuming workflows into the Cloud. These complex workflows are spec-
ified by Petri nets, more precisely reference nets using the Renew tool.
We believe that Cloud technology is a suitable solution to (i) overcome
the lack of resources on-premises and to (ii) improve the performance of
the whole system based on quality of service (QoS) constraints. As execu-
tion target for simulations, tests have been performed on an OpenStack
Cloud. Furthermore, the integration and interfaces between workflows,
Cloud computing and agent concepts are also addressed.

Keywords: Petri nets; Cloud Computing; Workflows; Multi-agent Sys-
tems; Reference Nets; Paose.

1 Introduction

Several long-running and high-throughput applications can be designed as com-
plex workflows, which describe the order and relationships between the different
activities and related data (input, output). In such scenarios, these tasks often
need to be mapped to distributed resources, possibly due to a lack of on-premise
resources or failures. Recently, Cloud computing has attracted more interest from
both the industry and academic community. Cloud computing is a recent com-
puting paradigm. It has its origin in distributed computing, parallel, utility and
grid computing. The National Institute of Standards and Technology (NIST)
defines Cloud computing as: “A model for enabling convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.” [19].

In fact, Cloud technology provides an environment that allows to dynamically
allocate resources for the execution of workflow tasks following an on-demand
and pay-as-you-go model. In this work, we aim to take advantage of these re-
sources to improve the performance of the applications. These applications are, in
our case, specified as Petri nets using the REference NEts Workshop (Renew)
editor. In order to make this possible, we need to provide mechanisms and strate-
gies that are based on the integration of workflow concepts and Cloud technology



(and later the agent paradigm). There are different ways to address this. On the
one hand, Cloud for workflow uses Cloud resources to execute complex workflows
and especially scientific workflows [12] [13]. Such works are more resource-centric
and focus on the computational tasks. On the other hand, Clouds need struc-
tured and mature workflow concepts and high-level languages to handle issues
like managing complex task and data dependencies. It should be noted that we
only consider moving the execution of entire nets or systems of nets into the
Cloud. Further distribution aspects of the simulation/execution1 are outside of
the scope of this paper.

The research described in this paper focuses more on performance issues,
which can be considerably improved by using Cloud resources. We present our
approach to provide techniques and tools to move the execution of complex
workflows modelled in Petri nets to the Cloud. The migration to the Cloud is
based mainly on user requirements. Thus Quality of Service (QoS) parameters
are specified in advance. We emphasise response time and cost constraints, but
this can be easily extended to other QoS parameters such as service availability.
Modelling and execution of Petri net models is performed exclusively through
the Renew editor. Furthermore, we discuss different realisation possibilities. We
examine three different types of interfaces, which define how input and output
to the Cloud calls are defined. Simple interfaces provide only basic functionality
to initiate Cloud workflows and receive results. Simulation interfaces are used to
run extensive simulations of workflows in a Cloud environment. Lastly, advanced
interfaces feature advanced mechanisms to process input and output data for
the Cloud. The main avenue of thought for the advanced interfaces is to utilise
autonomous software agents and their characteristics.

This paper is structured as follows. In Section 2, we present the conceptual
and technical background as well as related work. Section 3 introduces the ap-
proach and methodology for moving net simulations to the Cloud. Section 4 pro-
poses the different kinds of interfaces. Finally Section 5 discusses the approach
and Section 6 concludes the paper and presents future work.

2 Background and Related Work

In this section we are going to discuss the conceptual and technical background
for this work. For the specification of workflows Petri nets and especially refer-
ence nets are employed. Related work is also presented.

2.1 Reference Nets

Reference nets were introduced in 2002 by Olaf Kummer (see [14]). Reference
nets are modelled and simulated using the Renew editor and simulation tool
[16]. Both are described in the Renew manual2. In reference nets, tokens can be
1 We use the terms simulation and execution interchangeably. If a distinction has to
be made it will be clear from the context.

2 The latest version of Renew, documentation and articles are available on
(http://www.renew.de)
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anonymous, basic data types or references to Java objects or other reference nets.
The referenced objects can be of any class in the Java programming language.

Firing a transition can also create a new instance of a subnet in such a way
that a reference to the new net will be put into a place as a token. This allows for
a specific, hierarchical nesting of networks, which is helpful for building complex
systems in this formalism. The creation of instances is similar to object instances
in object-oriented programming languages and the usage of references allows to
construct reference net systems, whose structures are not fixed at build time.

2.2 Renew

As mentioned above, we use Renew for the modelling of workflows. Renew is
a graphical tool for creating, editing and simulating reference nets. It combines
the ‘nets within nets’ paradigm of reference nets with the implementation power
of Java. The Renew plug-in architecture, which was developed and introduced
in [22], allows the extension of Renew with additional functionality through
the use of interfaces between Renew components without changing the core of
Renew. Additional functionality (e.g. additional net formalisms, simulation and
verification tools, interface extensions) can be added to Renew by providing the
Java classes and nets for the new plug-in. Many such plugins have already been
developed, which makes Renew a versatile and extensive Petri net tool.

2.3 Agents

We also utilise software agents for advanced features regarding the interface to
the Cloud execution (see Section 4.3). We use the Mulan (Multi Agent Nets
[21]) reference architecture and its implementation Capa (Concurrent Agent
Platform Architecture [10]). Both have been created and implemented using
Renew and the majority of the executable code are in fact reference nets.
Agents are executed in a distributed environment and generally communicate
via standardised asynchronous messages. They can feature intelligence, reactive
and proactive behaviour, and autonomy. These kinds of properties are utilised
for the Cloud execution.

2.4 Related Work

Originally, WfMS were not conceived to be used in Cloud-like environments.
With the growth of Cloud computing, several traditional WfMS improved their
kernel and are now able to provide interfaces to communicate with external
Cloud services. The prevalent (scientific) WfMS are: Taverna[18], Pegasus[9],
Triana[23], Askalon[11], Kepler[2] and the General Workflow Execution Service
(GWES)[1]. The originality of these systems is that they run on parallel and dis-
tributed computing systems in order to reach a high level of performance and get
access to wide range of external resources. The Pegasus system allows scientists
to execute workflows in different resources including clusters, Grids and Clouds.
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This has been adapted later to execute scientific workflows in the Cloud (within
an Amazon EC2 Instance) [17]. Compared to our work, the migration to the
Cloud is almost the same, the difference lies at the modelling level, where we use
Reference nets as modelling technique. GEWES is an interesting project that
makes use of high-level Petri Nets (HLPN) for the description of workflows. The
GWES coordinates the composition and execution process of workflows in arbi-
trary distributed systems, such as SOA, Cluster, Grid, or Cloud environments.
In the workflow specifications, transitions represent tasks and tokens represent
data flowing through the workflow.

There have also been many more efforts to infuse Cloud and distribution
aspects into general workflow management. The ADEPT project [8, 20] focuses
on flexible and adaptive workflow management but also deals with distribution
and migration aspects to avoid performance bottlenecks in the network. Another
interesting combination of Clouds and workflows is the OpenTosca project [5].
It utilises management plans implemented as workflows to configure Cloud ap-
plications for organisations. [24] also deals with configuration issues but focuses
explicitly on the configuration of interorganisational business processes in the
Cloud. The issues addressed by these and more publications represent advanced
features of workflows in Clouds. They are outside the scope of this paper. Some
of these issues are, however, considered future work.

3 Renew in the Cloud

Renew in the Cloud designs the process of simulating Petri net models not lo-
cally (i.e. on-premises) but in the Cloud. There are different reasons why we are
moving the simulation to other execution environments but the main reason is
to seek gains in performance. Especially (Petri net) models that contain complex
and time consuming tasks are of interest here. In our approach the design/mod-
elling step is performed at the user’s side since it does not require computing
or storage capabilities. After this, the models are pushed to the Cloud provider.
The Cloud provider should be able to provide instances, that support Petri net
simulations. Therefore, Cloud instances need to be provisioned by external Petri
net editors and simulators. Since our chosen editor is Renew it will be installed
and configured before starting the simulation. The whole process consists of the
following steps:

1. modelling the workflow
2. configuring the Cloud instance
3. starting/connecting to the Cloud instance
4. uploading the required nets
5. executing the simulation and getting the results

Technically, our work is based on the Vagrant tool3, which permits us to
create reproducible development environments. According to the Vagrant home-
page, Vagrant ”is a tool for building complete development environments. With
3 https://www.vagrantup.com/
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an easy-to-use workflow and focus on automation”. There are three ways to use
Vagrant: with a virtual machine, a Cloud provider, or with VMware.

For creating a Vagrant machine the vagrant tool first needs to be installed
as well as the VirtualBox. For both Vagrant and VirtualBox, the installation
is possible on the three famous operating systems: Linux, Windows and Mac.
Next, a configuration file called Vagrantfile is mandatory to configure a Vagrant
machine. It is a Ruby file used to configure Vagrant and to describe virtual
machines required for a project as well as how to configure and provision these
machines. Finally, the guest Vagrant host can be started using the command
vagrant up.

3.1 First Prototype (with VirtualBox)

To run Renew and all required software on the host machine, configuration using
a Vagrantfile is needed. The latter permits to provision the host machine(s) with
additional softwares (in our case Renew). Since Renew requires Java 6 or later,
this portion of code shows instructions that should be added.

Figure. 2 shows the steps to follow for the execution (simulation) of a work-
flow (Petri net). First of all, the workflow is modelled using Renew and gener-
ates .rnw files. It should be noted that, for now, we focus solely on the simple
execution of workflow nets in the Cloud. Workflow management aspects are cur-
rently considered in the background. For example, human interaction with the
workflow, e.g. a user executing a task, is currently only simulated by the sys-
tem. Later on it is possible to incorporate a workflow management system in
the Cloud which would support these kinds of aspects. Workflow management
within Renew implemented as a reference net (agent) system, which would be
executed in the Cloud, is already possible [25]. For now, the vagrant machine is
equipped with a Renew version without a graphical user interface, i.e that we
are obligated to run the simulation with the command line. The correspondent
console command is startsimulation. The syntax of the command is:

startsimulation <net system > <primary net> [-i]

– net system: The compiled net files (.sns files, Shadow Net System).
– primary net : The name of the net, of which a net instance shall be opened

when the simulation starts. Using the regular GUI, this equals the selecting
of a net before starting the simulation.

– -i : This must be set before starting the simulation (only for this prototype).
Concretely, we use -r, which means to run the whole simulation without
steps. More information about this command can be found in [15, p.106].

For testing purposes we created a simple net (primary net) that contains
a single transition that prints a string on the screen. Since the reference net
formalism allows using java code, this is done simply by the instruction Sys-
tem.print.out("message") (see Figure. 3). Once the required files are prepared
(.rnw and .sns), they are sent to the Vagrant machine. The nets are either copied
to the synced directory with the Vagrant machine or with scp. To start the sim-
ulation on the guest machine, there are three possibilities: (i) by a command
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Fig. 1. Run Simulation in a Vagrant Machine

line (using nohup and ssh) (ii) through a web Gui (using NodeJS) (iii) from a
reference net directly (inscribed to transitions). Figure 1, shows the process of
starting a vagrant machine and launching Renew and the simulation. Executing
the command in 2, launches a new terminal and starts Renew and simulate the
net on the Vagrant machine. (1) The Vagrant machine should be up and running
(2) The web server (NodeJS) is started (3) Renew is launched and a simulation
is started with the required nets.

Fig. 2. Remote Simulation with Vagrant

Fig. 3. The Original Net (.rnw)
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3.2 Second Prototype (with OpenStack)

The second version of the implementation is based on a concrete Cloud en-
vironment. The instances are not launched in a virtual machine at the host
machine, but in a Cloud (see Figure. 5). We mentioned before that Vagrant uses
specific providers. The default one is VirtualBox 4. Other built-in providers are
VMWare5, Docker6 and Hyper-V7. When executing vagrant up we will have a
virtual machine created on the local host. If we require only one VM then it is
enough to work locally. Nevertheless, when the number of VMs grows we will face
an overload due to a lack of resources. The natural solution is to look for exter-
nal resources which, in our case, are available in a Cloud. Due to financial and
technical constraints, in our testbed we use an open source Cloud framework
called OpenStack8. OpenStack is an open source software for creating private
and public Clouds. It is installed on a CentOS Linux operating system. Thanks
to the plug-in architecture that Vagrant is based on, we are able to connect
to different Cloud providers and launch our instances. This is performed by a
plug-in called vagrant-openstack-provider9. This plug-in permits to control and
provision machines within an OpenStack Cloud. Other features are for instance:
Create and boot OpenStack instances, SSH into the instances and suspend and
resume instances. The principles for running Renew simulation in the Cloud are
almost the same as presented in the previous section. We still need to upload the
required nets (.rnw and .sns) to the VM. The difference is at the configuration
level, which is realised by the Vagrantfile. A minimal configuration consists of
the following:

r e qu i r e ’ vagrant−openstack−provider ’
Vagrant . c on f i gu r e ( ’ 2 ’ ) do | c on f i g |

c on f i g .vm. box = ’ openstack ’
c on f i g . ssh . username = ’ stack ’
c on f i g .vm. prov ide r : openstack do | os |
os . openstack \_auth\_url = ’ http :// keystone−s e r v e r . net /
v2 .0/ tokens ’
os . username = ’ openstackUser ’
os . password = ’ openstackPassword ’
os . tenant \_name = ’myTenant ’
os . f l a v o r = ’m1. small ’
os . image = ’ ubuntu ’
os . f l o a t i n g \_ip\_pool = ’ publicNetwork ’
end

end

4 www.virtualbox.org
5 www.vmware.com
6 www.docker.com
7 www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
8 www.openstack.org
9 https://github.com/ggiamarchi/vagrant-openstack-provider
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The configuration presented above concerns only the credentials and the im-
age used to boot the instances. The important next step is to configure these in-
stances to be able to handle Renew simulations. The configuration is performed
exactly in the same way as working with virtual machines (VirtualBox). Config-
uring instances plays an important role and directly affects the performance of
the system. Although, for testing purpose, we worked on a private OpenStack
Cloud , our implementation can be integrated within commercial Cloud providers
like Amazon10, Windows Azure11 or HP12. With providers, Cloud consumers can
configure their instances based on a pay-as-you-go model. Resources provided by
commercial Cloud providers are not free, which can negatively affect the choice
of the Cloud consumers. With respect to the application requirements, there
are different types of instances which depend on the Cloud provider. Instance
types describe the compute, memory and storage capacity of the instances that
Cloud consumers use for hosting (computing) their applications. Therefore, the
requirements for the applications should be clearly specified as QoS parameters.
This issue has been already addressed in [3]. QoS parameters can be specified
as inputs to the transitions. For example, with OpenStack these are called by
names such as “m1.large” or “m1.tiny”. Figure. 4 shows the characteristics of T2
instances.

Fig. 4. Amazon T2 Instance Characteristics

10 http://aws.amazon.com/
11 http://azure.microsoft.com
12 http://www.hpcloud.com/
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Fig. 5. Renew Simulation in the OpenStack Cloud

4 Interface

In the previous section we have described how to enable Renew simulations in
a Cloud environment. The basic technical realisation bundles up and simply exe-
cutes a workflow net system and its shadow net representation. In order to practi-
cally utilise this execution we need to define an interface for it. We have examined
possible interfaces that can be grouped into three categories: Simple, Simulation,
Advanced. These categories will be discussed in Sections 4.1 through 4.3.

Prototypes for the simple interfaces already exist. More features for these
interfaces as well as the simulation and advanced interfaces are currently under
development. They will be discussed on a conceptual level here.

Note that how exactly a simulation as a Cloud functionality is called has
already been discussed in the previous section. Generally it can be called either
via the console, a web interface or directly within a (local) running net system.
If an interface restricts these possibilities it will be shortly addressed.

4.1 Simple Interfaces

Simple interfaces offer basic, yet versatile functionality that can later be utilised
in more complex settings. The input for simple interfaces remains the workflow
system and its shadow net representation. The output options vary, but share
that any results obtained are returned as simple data or objects. Simple interfaces
do not support any kind of intelligence or autonomy. They are simply called when
needed and report back the predefined results.

Console Interface This interface uses either the internal Renew con-
sole or the general system console as the output medium. Consequently
it already directly works with reference nets. By simply inscribing a
System.out.println(textVariable) to any transition of the net system being
executed in the Cloud the String representation of the object textVariable is
printed on the console. Figure. 1 already shows a working prototype using such
a console interface.

For very simple use cases (e.g. testing a certain outcome of the net system)
this is already sufficient, but in most cases any obtained result should automati-
cally be made available to the caller in a more utilisable way. This can be realised
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Fig. 6. Synchronous Channels Interface

by reading any output in the console and combining these outputs into a result
object that is passed back when the execution has been completed. This way
more complex use cases and computations can also be supported even with this
very simple interface. One problem with this approach is that it is not standard-
ised or regulated by the modelling approach. This is a general problem that will
be discussed in Section 5.

Synchronous Channel Interface Realising the interface through synchronous
channels is another way of providing a simple interface. Synchronous channels,
in general, are a mechanism to allow data and object transfer between net in-
stances. They were first introduced in [7] and are fundamental to the reference
net formalism. Within the Cloud context synchronous channels allow for data
objects created and modified during the execution of a workflow to be trans-
ferred back to its initiator or even directly into other running (local or remote)
net systems. Consequently, the full potential is realised when the Cloud call is in-
corporated into a net system. There are a number of ways in which synchronous
channels can be incorporated into an interface for Cloud-based workflows. The
simplest way is to explicitly inscribe an output channel to a transition in the
net. When this transition fires the synchronous channel is called and the spec-
ified data object transferred to the Cloud call initiator. By extending this to
multiple transitions we can realise a kind of continuous feedback for the initia-
tor. Whenever a transition inscribed with the synchronous channel would fire a
result would be send to the initiator.

Figure 6 illustrates the approach mentioned above. There are two main nets:
Workflow Initiator and Workflow. The Workflow Initiator manages the workflow
locally and is responsible for the communication with the Cloud provider. On the
other side, the Workflow is executed in the Cloud. After modelling the workflows,
the model is saved in Renew (.rnw) and Shadow net (.sns) files. These files are
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required for the Workflow to be executed. The communication between both
nets is possible through synchronous channels. For instance, T1 and T4 are for
sending data; T2 and T3 are for receiving data. Furthermore, all the parameters
can be put into a place instead of synchronous channels.

There are two main problems when using synchronous channels. First of all,
similar to the console interface, this interface is not structured. Careless mod-
ellers may set output channels to incorrect transitions so that results may not be
valid. Another issue is related to the continuous update mechanism. If (possibly
partial) results are transferred back to the initiator at multiple times, it may be
difficult to work with these results. Depending on the net a modeller would have
to explicitly build against that specific interface in order to aggregate the re-
sults into a valid composition. For this simple interface it would be cumbersome
and inefficient. This is one of the issues addressed by the advanced interfaces
described in Section 4.3.

Up until now, synchronous channels have only been discussed for output
scenarios. Incorporating synchronous channels for the input of the Cloud-based
workflows is also possible. In the simplest option this would only be used to
incorporate initial input data. This would not change the basic functionality all
too much, as initial data can easily be supplied via the console or simply as
the initial marking of the workflows. It would make it easier though to change
the initial marking. If called from a running net system the Cloud workflow
could be initiated with runtime information. A synchronous input channel would
simply pass the data object directly into the workflow in the Cloud. Without
synchronous channels a new net system with the specified initial marking would
have to be created or the console call would have to be tailored to the runtime
information.

It is also possible to transfer data into the running Cloud workflow. This
would require the initiator to be able to maintain a connection with the Cloud
system. This is mostly feasible when the Cloud call is initiated by a running net
system which would continue with its own execution and provide additional data
to the Cloud net system at some later point. Certain transitions in the Cloud net
system could then be inscribed with an input channel over which this additional
data could be received. Ensuring the correct connection and synchronisation
between local and Cloud net systems is the main challenge in this context. This
is currently considered future work and outside of the scope of this paper.

Using synchronous channels in the proposed ways has some disadvantages
though. Without any restrictions to modelling the placement of input and output
in the net would affect any verification of workflow correctness or other Petri
net properties. This is discussed further in Section 5.

4.2 Simulation Interfaces

The simulation interfaces are not so much interfaces, as they are a utilisation
of Renew in a Cloud environment. Instead of executing a net system remotely
once for some direct usage these interfaces execute the net system a large number
of times. The information about these simulation runs is then reported back to
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the initiator. This constitutes the output of these interfaces. The input consists,
beside the net system and shadow net representation, of simulation parameters
(e.g. number of simulation runs). The advantage of running these simulations in
a Cloud environment is that it frees up the modellers local machine.

Result Simulation One possibility is to run a set of simulations and have the sys-
tem report back the results of each run. With the same initial marking different
simulations may still produce different results. This could be due to race con-
ditions, non-deterministic behaviour, etc. With these results the modeller could
validate assumptions about the net system or determine possible error sources.

This kind of simulation could be extended by enabling variable initial mark-
ings. Simulating a net system with differing parameters might influence the re-
sults and help modellers even more.

Timed Simulation Another possibility is to run a set of simulations and compare
the time it takes to complete them. This kind of simulation is more useful for
testing the performance or new features in the runtime environment, in our case
Renew. Running the simulation with new features enabled and comparing the
results obtained without them can yield information about new algorithms.

Focussing more on the performance of the net system it might be of interest
to the modeller to determine the impact of different initial markings. Varying
over the initial marking of the net system could then help modellers deter-
mine performance bottlenecks. When using (reference) Petri nets for processes
in practical software engineering within the Paose (Petri net-based, Agent-
and Organization-oriented Software Engineering [6]) development ap-
proach for example, such simulations and their results become especially useful
and interesting.

4.3 Advanced Interfaces

The advanced interfaces go beyond simple call interfaces like the ones discussed
in Section 4.1. They utilise these simple interfaces but add another layer of
abstraction to them. This leads to additional characteristics like certain degrees
of intelligence and autonomy. They can also feature mechanisms to manage and
store known net systems so that they may even serve as a kind of directory
service. They can also aggregate results, enforce quality of service concerns or
choose the best from a set of results. Consequently, no general statements about
input and output can be made.

Agent Interface Using agents for an advanced interface to the Cloud execution of
Petri net systems has a number of intrinsic advantages. Agents possess autonomy
and a certain degree of intelligence. Reactive and proactive agent behaviour can
also be utilised.

In an advanced interface an agent would serve as a kind of gateway between
the local net systems and the Cloud net systems. For the Mulan and Capa
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Fig. 7. Agent Interface Illustration

agents we utilise this would expand upon the ideas introduced by the WebGate-
way agent [4] towards Cloud calls. The WebGateway agent serves as a kind of
bridge between the net execution of a Renew environment and the web envi-
ronment. Agents in Renew can then offer their functionality as web services
and also access remote web services.

For the Cloud context agents would serve in a similar fashion. The idea is
illustrated in Figure 7. Some agents would be responsible for the net systems.
They would take on the role of the initiator. They could act autonomously or
be controlled by a human user via some kind of user interface.

These agents would control and/or create the workflows which should be ex-
ecuted in the Cloud. They would send requests and data to the gateway agent13.
The gateway agent would then use a simple interface (see above) in its internal
functionality to initiate the workflow in the Cloud on behalf of the other agents.
Any result obtained in the Cloud would be send back to the gateway agent which
would then forward it to the other agents.

13 Alternatively the workflows could be stored in a database known to all agents. In that
case the initiator agents would simply send requests and identifiers of the workflows
to the gateway agent.
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At this point the characteristics and advantages of software agents can be
utilised. In the following we will cover some ideas of how, starting from the
relatively simple approach described above, this can be done.

The gateway agent can aggregate the results of the Cloud calls into more in-
formative composite results. Partial results could be incorporated into the work-
flows with standardised instructions for the gateway agents to combine them
after the execution has been completed. The gateway agent can also instantiate
the workflow multiple times and choose the best (or fastest) result. Of course,
the gateway agent has to be equipped with mechanisms to aggregate or assess
results in these fashions. This is, however, simply a question for the technical
implementation and not a conceptual one. Aggregation of results is especially
interesting for simulation purposes. The gateway agent could automatically cre-
ate composite results for modellers to inspect. It could also automatically vary
over the initial parameters based on the initial results (e.g. to validate results or
test certain outlier data).

The gateway agent can also react to errors or other problems occurring during
the execution in the Cloud. If the Cloud execution returns an error the gateway
agent can retry the instantiation. If the error was caused by the call it can
also adapt the call (e.g. if input parameters had incorrect types like a string
representation of an integer value). This would happen transparently to the
initiator of the call which would only have to be involved if the gateway agent
was unable to find a solution to the problem.

Using proactive behaviour the agent can also support the execution of Cloud
workflows. For example, it could restart workflows if the returned result strongly
deviated from expected results. Or it could prepare or even already initiate
recurring net executions.

The gateway agent can also handle quality of service (QoS) concerns. As
stated in 3, QoS are specified as parameters either in transitions or places. The
second scenario is the more appropriate since it use synchronous channels. In
this situation, in addition to the workflow model (and its related files .rnw and
.sns) modellers also include QoS parameters. In this work, we focus on time
and budget, but modellers can include other constraints. The gateway agent
can consequently play another role, which is Cloud brokering. By brokering we
mean that the agent looks for the suitable Cloud provider to execute the workflow
based on its requirements. This can be useful when working with multiple Clouds.

One disadvantage of using a gateway agent for the Cloud is that it centralises
the communication. This decouples the communication aspects from the indi-
vidual agents, but gives the system a single point of failure. Only one agent in
the system, the gateway agent, possesses the functionality and mechanisms to
invoke Cloud systems. This makes other agents simpler and possibly more effi-
cient to execute, but if the gateway agent fails communication with the Cloud
is lost. This could be remedied by implementing a solution with multiple gate-
way agents and distributing the functionality. If one gateway agent failed others
could take its place.
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Entity Interface The term entity describes a hybrid construct between an agent
and a workflow. Depending on the runtime needs they can act as an agent (e.g. for
communication), a workflow (e.g. for task deployment and execution) or some-
thing between the two (e.g. as a mobile process). Entities and modelling with
them is currently ongoing research. The Cloud context enhances the capabilities
of entities in many regards.

From the interface point of view an entity possesses all the characteristics
of agents and has access to the entire functionality described in the previous
paragraph for an advanced interface provided through an agent. But this inter-
face is extended even more because of the additional possibilities gained through
the workflow properties of an entity. Entities are, in one perspective, a (work-
flow) process. This automatically entails a certain behaviour-centric structure
and purpose to the modelling.

By structuring the calls and instantiations of the Cloud net systems as a
process itself the modeller is directly supported. While anything can be achieved
through regular, less-rigidly structured modelling, restricting the modeller into
such a process perspective is still beneficial. Considering process order, task
subdivisions, processing of partial results and other aspects of a process are
direct requirements in this perspective. Consequently they are obligatory to the
modeller here. But that means that these aspects, which range from helpful to
essential, can also not be ignored or omitted. This is what the entities add on a
conceptual level to the advanced interface of agents.

5 Discussion

One issue that was raised in Section 4 concerned the restrictions on modelling
and the placement of input and output in a net for the interfaces. If that place-
ment is unrestricted it may be error-prone and puts the responsibility solely on
the modeller without any support. An effort could be made to restrict input
and output to the initial and exit places of the workflow. This would ensure
only full results are returned to the caller and make it easier to verify work-
flow net properties. However, there are cases in which partial results (e.g. status
updates) during the execution of a workflow net are desirable. The restriction
would preclude this. A compromise would be to allow simple status reports from
anywhere in the net (e.g. via the console), but only complete results from the
final place or transition of the workflow (e.g. via synchronous channel). Only
these complete results would then be made available for further operations in
the workflow initiator.

Without any restrictions it would also be impossible to make any statements
about the correctness of the executed workflows. For practical purposes allowing
input into already running workflows and arbitrary input/output locations might
be helpful to some use-cases. But from a verification and validation point-of-
view these mechanisms are problematic. Incorporating concepts like workflow
correctness into the Cloud calls and interfaces is currently ongoing work but
outside the scope of this paper.
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The question of restrictions raises another interesting point. This paper is
focused on the execution of workflow nets. Arbitrary workflow net systems can be
executed in the Cloud. That includes scientific and interorganisational workflows.

From a technical standpoint though, it is possible to execute any net system
in the Cloud. The only precondition is that a plugin for the net formalism in
question is provided for the Renew instance running in the Cloud. Renew
plugins for many formalisms already exist (e.g. P/T nets, nets supporting time
annotations) and more can be added.

When allowing arbitrary net systems without restrictions to the interface
or without any structured modelling these arbitrary net systems might pose
challenging to modellers in terms of efficiency and manageability. For this reason
it is advisable to use structured modelling paradigms, like agents or entities, for
the Cloud net systems as well. In the following paragraphs we will examine how
this would affect the advanced interfaces described in the previous section.

By executing the agent interface within the Cloud (as opposed to outside the
Cloud as described in Section 4.3) the communication can be simplified. In this
scenario the net system executed in the Cloud is a Capa agent platform with a
running gateway agent. The gateway agent is accessible for other agents via the
standardised FIPA compliant asynchronous message communication supported
in Capa. This would “move” the interface from the local execution into the
Cloud, since to other agents it does not matter where the gateway is executed.
They communicate with him in the same way as any other local or remote agent.
This would lead to efficiency gains as the gateway agent could access resources in
the Cloud environment directly. The technical capabilities of the gateway agent
would also be improved. Other properties of the interface would largely remain
the same.

The entity interface would benefit in the same way as the agent interface. In
addition it would also affect the modelling abstraction of the entity, as it could
be considered a (workflow) process in the Cloud executing other (workflow) pro-
cesses. This is especially interesting in the interorganisational workflow setting
which we are researching for entities. The entity in the Cloud could be consid-
ered as the overall interorganisational workflow while the workflows it controls
are the subworkflows for each involved organisation.

6 Conclusion

In this paper we presented our approach for moving net executions to the Cloud.
The paper described the technical aspects, implementation and methodology.
From a technical point of view it is possible to execute any net system supported
by Renew in the Cloud. However, for the purpose of this paper we focused on
workflows. For this context the notion of Cloud interfaces was introduced. These
interfaces can be classified as simple, simulation and advanced depending on
how the communication and the transfer of data are performed. Furthermore,
we discussed the integration of agent concepts in order to provide gateways to
the Cloud.
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Direct future work is related to agents and especially the entity concept.
This paper described how agent and the entity concepts can realise advanced
interfaces for the Cloud net systems. The other direction is currently also being
researched. In general, opening up the capabilities of entities to Cloud functions
is already beneficial in of itself. But agents and especially entities can also feature
very complex behaviour. In fact, some processes of entities can be regarded as
fully-fledged subsystems. Relocating these subsystems to the Cloud can improve
the performance of entity systems greatly.

Concerning workflow complexity, we are also currently working on a concrete
scientific workflow application. This application is related to the remote sensing
domain, especially image processing of satellite imagery. Most of the work has
been achieved: we have implemented an image processing tool that allows mod-
elling and execution of remote sensing applications specified by reference nets.
The next natural step is to execute those workflows in the Cloud based on the
results presented in this paper. Furthermore, this work should be evaluated in
terms of performance. This concerns running several simulations in parallel (in
different virtual machines) in the Cloud.

In conclusion, the realisation of Renew in a Cloud opens up a number of
advantages w.r.t. performance, availability, flexibility, etc. Some of these have
already been discussed in this paper. Other will become more noticeable with the
ongoing work. The continued incorporation of the Cloud aspects with complex
workflow and agent systems is just one of the possible avenues of thought, albeit
the most promising one currently.
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Modelling the Behaviour of Management
Operations in Cloud-based Applications?
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Abstract. How to flexibly manage complex applications over hetero-
geneous clouds is one of the emerging problems in the cloud era. The
OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) aims at solving this problem by providing a language to de-
scribe and manage complex cloud applications in a portable, vendor-
agnostic way. TOSCA permits to define an application as an orchestra-
tion of nodes, whose types can specify states, requirements, capabilities
and management operations — but not how they interact each another.

In this paper we first propose how to extend TOSCA to specify the
behaviour of management operations and their relations with states, re-
quirements, and capabilities. We then illustrate how such behaviour can
be naturally modelled, in a compositional way, by means of open Petri
nets. The proposed modelling permits to automate different analyses,
such as determining whether a deployment plan is valid, which are its
effects, or which plans allow to reach certain system configurations.

1 Introduction

Available cloud technologies permit to run on-demand distributed software sys-
tems at a fraction of the cost which was necessary just a few years ago. On the
other hand, how to flexibly deploy and manage such applications over heteroge-
neous clouds is one of the emerging problems in the cloud era.

In this perspective, OASIS recently released the Topology and Orchestration
Specification for Cloud Applications (TOSCA [19,20]), a standard to support
the automation of the deployment and management of complex cloud-based
applications. TOSCA provides a modelling language to specify, in a portable and
vendor-agnostic way, a cloud application and its deployment and management.
An application can be specified in TOSCA by instantiating component types, by
connecting a component’s requirements to the capabilities of other components,
and by orchestrating components’ operations into plans defining the deployment
and management of the whole application.

Unfortunately, the current specification of TOSCA [19] does not permit to
describe the behaviour of the management operations of an application. Namely,
it is not possible to describe the order in which the management operations of
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a component must be invoked, nor how those operations depend on the require-
ments and affect the capabilities of that component. As a consequence, the ver-
ification of whether a plan to deploy an application is valid must be performed
manually, with a time-consuming and error-prone process.

In this paper, we first propose a way to extend TOSCA to specify the be-
haviour of management operations and their relations with states, requirements,
and capabilities. We define how to specify the management protocol of a TOSCA
component by means of finite state machines whose states and transitions are
associated with conditions on (some of) the component’s requirements and ca-
pabilities. Intuitively speaking, those conditions define the consistency of com-
ponent’s states and constrain the executability of component’s operations to the
satisfaction of requirements.

We then illustrate how the management protocols of TOSCA components can
be naturally modelled, in a compositional way, by means of open Petri nets [2,14].
This allows us to obtain the management protocol of an arbitrarily complex cloud
application by combining the management protocols of its components. The
proposed modelling permits to automate different analyses, such as determining
whether a deployment plan is valid, which are its effects, or which plans allow
to reach certain system configurations.

The rest of the paper is organized as follows. Sect. 2 introduces the needed
background (TOSCA and open Petri nets), while Sect. 3 illustrates a scenario
motivating the need for an explicit, machine-readable representation of man-
agement protocols. Sect. 4 describes how TOSCA can be extended to specify
the behaviour of management operations, how such behaviour can be naturally
and compositionally modelled by means of open Petri nets, and how the pro-
posed modelling permits to automate different types of analysis. Related work
is discussed in Sect. 5, while some concluding remarks are drawn in Sect. 6.

2 Background

2.1 TOSCA

TOSCA [19] is an emerging standard whose main goals are to enable (i) the
specification of portable cloud applications and (ii) the automation of their de-
ployment and management. In this perspective, TOSCA provides an XML-based
modelling language which allows to specify the structure of a cloud application
as a typed topology graph, and deployment/management tasks as plans. More
precisely, each cloud application is represented as a ServiceTemplate (Fig. 1),
which consists of a TopologyTemplate and (optionally) of management Plans.

The TopologyTemplate is a typed directed graph that describes the topo-
logical structure of the composite cloud application. Its nodes (NodeTemplates)
model the application components, while its edges (RelationshipTemplates)
model the relations between those application components. NodeTemplates and
RelationshipTemplates are typed by means of NodeTypes and Relationship-
Types, respectively. A NodeType defines (i) the observable properties of an appli-
cation component C, (ii) the possible states of its instances, (iii) the requirements
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Fig. 1. TOSCA ServiceTemplate.

needed by C, (iv) the capabilities offered by C to satisfy other components’
requirements, and (v) the management operations of C. RelationshipTypes
describe the properties of relationships occurring among components. Syntacti-
cally, properties are described by PropertiesDefinitions, states by Instance-
States, requirements by RequirementDefinitions (of certain Requirement-
Types), capabilities by CapabilityDefinitions (of certain CapabilityTypes),
and operations by Interfaces and Operations.

On the other hand, Plans enable the description of application deployment
and/or management aspects. Each Plan is a workflow that orchestrates the op-
erations offered by the application components (i.e., NodeTemplates) to address
(part of) the management of the whole cloud application1.

2.2 (Open) Petri nets

Before providing a formal definition of open Petri nets (Def. 2), we recall the
definition of Petri nets just to introduce the employed notation. We instead omit
to recall other very basic notions about Petri nets (e.g., marking of a net, firing
of transitions, etc.) as they are well-know and easy to find in literature [18].

Definition 1. A Petri net is a tuple P = 〈P, T, •·, ·•〉 where P is a set of places,
T is a set of transitions (with P ∩ T = ∅), and •·, ·• : T → 2P are functions
assigning to each transition its input and output places.

According to [2], an open Petri net is an ordinary Petri net with a distin-
guished set of (open) places that are intended to represent the interface of the
net towards the external environment, meaning that the environment can put or
remove tokens from those places. In this paper, we will employ a subset of open
Petri nets, where transitions consume at most one token from each place, and
where the environment can both add/remove tokens to/from all open places.

Definition 2. An open Petri net is a pair Z = 〈P, I〉, where P = 〈P, T, •·, ·•〉
is an ordinary Petri net, and I ⊆ P is the set of open places. The places in P \I
will be referred to as internal places.
1 A more detailed and self-contained introduction to TOSCA can be found in [7].
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3 Motivating scenario

Consider a developer who wants to deploy and manage the web services Send-
SMS and Forex on a TOSCA-compliant cloud platform. She first describes her
services in TOSCA, and then selects the third-party components (i.e. NodeTypes)
needed to run them. For instance, she indicates that her services will run on a
Tomcat server installed on an Ubuntu operating system, which in turn runs on an
AmazonEC2 virtual machine. Fig. 2 illustrates the resulting TopologyTemplate,

Fig. 2. Motivating scenario.

according to the Winery graphical notation [15]. For the sake of simplicity, and
without loss of generality, in the following we focus only on the lifecycle interface
[7] of each NodeType instantiated in the topology (i.e., the interface containing
the operations to install, configure, start, stop, and uninstall a component).

Suppose that the developer wants to describe the automation of the de-
ployment of the SendSMS and Forex services by writing a TOSCA Plan. Since
TOSCA does not include any representation of the management protocols of
(third-party) NodeTypes, developers may produce invalid Plans. For instance,
while Fig. 3 illustrates three seemingly valid Plans, only the third is a valid

(a) An invalid BPMN plan.

(b) Another invalid BPMN plan.

(c) A valid BPMN plan.

Fig. 3. Deployment Plans.
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plan. The other Plans cannot be considered valid since (a) Tomcat’s Configure
operation cannot be executed before Tomcat is running, and (b) Tomcat cannot
be installed when the Ubuntu operating system is not running.

While the validity of Plans can be manually verified, this is a time-consuming
and error-prone process. In order to enable the automated verification of the
validity of Plans, TOSCA should be extended so as to permit specifying the
behaviour of and the relations among NodeTypes’ management operations.

4 Modelling management protocols

While a TOSCA NodeType can be described by means of its states, requirements,
capabilities, and management operations, there is currently no way to specify
how management operations affect states, how operations or states depend on
requirements, or which capabilities are concretely provided in a certain state.

The objective of the next section is precisely to propose a way to extend
TOSCA to specify the behaviour of management operations and their relations
with states, requirements, and capabilities.

4.1 Cloud-based application management protocols in TOSCA

Let N be a TOSCA NodeType, and let us denote its states, requirements, capa-
bilities, and management operations with SN , RN , CN , and ON , respectively.

We want to permit describing whether and how the management operations
of N depend on other operations of the same node as well as on operations of
the other nodes providing the capabilities that satisfy the requirements of N .

– The first type of dependencies can be easily described by specifying the re-
lationship between states and management operations of N . More precisely,
the order with which the operations of N can be executed can be described
by means of a transition relation T , that specifies whether an operation o
can be executed in a state s, and which state is reached by executing o in s.

– The second type of dependencies can be described by associating transitions
and states with (possibly empty) sets of requirements to indicate that the
corresponding capabilities are assumed to be provided. More precisely, the
requirements associated with a transition t specify which are the capabili-
ties that must be offered by other nodes to allow the execution of t. The
requirements associated with a state of a NodeType N specify which are the
capabilities that must (continue to) be offered by other nodes in order for N
to (continue to) work properly.

To complete the description, each state s of a NodeType N also specifies the
capabilities provided by N in s.

Definition 3. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType, where SN , RN ,
CN , and ON are the sets of its states, requirements, capabilities, and manage-
ment operations.MN = 〈s,R,C, T 〉 is the management protocol of N , where
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– s ∈ SN is the initial state,
– R is a function indicating, for each state s ∈ SN , which conditions on re-

quirements must hold (i.e., R(s) ⊆ RN , with R(s) = ∅)2,
– C is a function indicating which capabilities of N are concretely offered in a

state s ∈ SN (i.e., C(s) ⊆ CN , with C(s) = ∅), and
– T ⊆ SN × 2RN × ON × SN is a set of quadruples modelling the transition

relation (i.e., 〈s,H, o, s′〉 ∈ T means that in state s, and if condition H holds,
o is executable and leads to state s′).

Syntactically, to describe MN we slightly extend the syntax for describing a
TOSCA NodeType. Namely, we enrich the description of an InstanceState by
introducing the nested elements ReliesOn and Offers. ReliesOn defines R (of
Def. 3) by enabling the association between states and assumed requirements,
while Offers defines C by indicating the capabilities offered in a state. Further-
more, we introduce the element ManagementProtocol, which allows to specify
the InitialState s of the protocol, as well as the Transitions defining the
transition relation T .

The management protocols of the NodeTypes in the motivating scenario of
Sect. 3 are shown in Fig. 4, where MWS is the management protocol for Web-
Services,MS for Server,MOS for OperatingSystem, andMVM for Virtual-
Machine. Consider for instance the management protocol MS of NodeType

MWS MOS

MS MVM

Fig. 4. Management protocols of the NodeTypes in our motivating scenario.

Server defining the Tomcat server. Its states SN are Unavailable (initial state),
Stopped, and Working, the only requirement in RN is ServerContainer, the
only capability in CN is WebAppRuntime, and its management operations are
Setup, Uninstall, Run, Stop, and Configure. States Unavailable and Stopped
are not associated with any requirement or capability. State Working instead
2 Without loss of generality, we assume that the initial state of a management protocol
has no requirements and does not provide any capability.
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specifies that the capability corresponding to the ServerContainer requirement
must be provided (by some other node) in order for Server to (continue to) work
properly. State Working also specifies that Server provides the WebAppRuntime
capability when in such state. Finally, all transitions (but those involving opera-
tions Stop and Configure) constrain their firability by requiring the capability
that satisfies ServerContainer to be offered (by some other node).

Note that Def. 3 permits to define operations that have non-deterministic
effects when applied in a state (e.g., a state can have two outgoing transitions
corresponding to the same operation and leading to different states). This form of
non-determinism is not acceptable in the management of a TOSCA application
[7]. We will thus focus on deterministic management protocols, i.e. protocols
ensuring deterministic effects when performing an operation in a state.

Definition 4. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType. The manage-
ment protocolMN = 〈s,R,C, T 〉 is deterministic if and only if

∀〈s1, H1, o1, s
′
1〉, 〈s2, H2, o2, s

′
2〉 ∈ T : s1 = s2 ∧ o1 = o2 ⇒ s′1 = s′2

4.2 Modelling cloud-based application management protocols in
(open) Petri nets

A (deterministic) management protocol MN of a NodeType N can be easily
encoded by an open Petri net. Each state of MN is mapped into an internal
place of the Petri net, and each capability and requirement of N is mapped into
an open place of the same net. Furthermore, each transition 〈s,H, o, s′〉 ofMN

is mapped into a Petri net transition t with the following inputs and outputs:

(i) The input places of t are the places denoting s, the requirements that are
needed but not already available in s (i.e., (R(s′) ∪ H) − R(s)), and the
capabilities that are provided in s but not in s′ (i.e., C(s)− C(s′)).

(ii) The output places of t are the places denoting s′, the requirements that
were needed but are no more assumed to hold in s′ (i.e., (R(s)∪H)−R(s′)),
and the capabilities that are provided in s′ but not in s (i.e., C(s′)−C(s)).

The initial marking of the obtained net prescribes that the only place initially
containing a token is that corresponding to the initial state s ofMN .

Definition 5. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType, with MN =
〈s,R,C, T 〉. The management protocol MN is encoded into an open net ZN =
〈PN , IN 〉, with PN = 〈PN , TN , •·, ·•〉 and IN ⊆ PN , as follows.

– The set PN of places contains a separate place for each state in SN , for each
requirement in RN , and for each capability in CN .

– The set IN ⊂ PN of open places contains the places denoting the requirements
in RN and the capabilities in CN .

– The set TN contains a net transition t for each transition 〈s,H, o, s′〉 ∈ T .
(i) The set •t of input places contains the place s, the places denoting the

requirements in (R(s′) ∪H) − R(s), and those denoting the capabilities
in C(s)− C(s′).
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(ii) The set t• of output places contains the place s′, the places denoting the
requirements in (R(s) ∪H) − R(s′), and those denoting the capabilities
in C(s′)− C(s).

The initial marking of ZN consists of only one token in place s.

The above definition ensures that the Petri net encoding of a management pro-
tocol satisfies the following properties:

– There is a one-to-one correspondence between the marking of the internal
places of the Petri net and the states of a management protocol. Namely,
there is exactly one token in the internal place denoting the current state,
and no tokens in the other internal places.

– Each operation can be performed if and only if all the necessary requirements
are available in the source state, and no capability required by any connected
component is disabled in the target state.

Consider for instance the management protocolMS (Fig. 4), whose correspond-
ing Petri net is shown in Fig. 5. Each state in MS is translated into an in-

Fig. 5. Example of Petri net translation.

ternal place (represented as a circle), while the ServerContainer requirement
and the WebAppRuntime capability are translated into open places (represented
as diamonds). Additionally, protocol transitions are translated into net transi-
tions. For example, the transition 〈Stopped, {ServerContainer}, Run, Working〉
is translated into a Petri net transition, whose inputs places are Stopped and
ServerContainer, and whose outputs places are Working and WebAppRuntime.

4.3 Analysis of cloud-based application management protocols

We now show how the Petri net modelling the management protocol of a TOSCA
TopologyTemplate (specifying a whole cloud-based application) can be obtained,
in a compositional way, from the Petri nets modelling the management protocols
of the NodeTypes in such TopologyTemplate.

We first need to model (by open Petri nets working as a capability con-
trollers) the RelationshipTemplates that define in a TopologyTemplate the
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association between the requirements of a NodeTypes and the capabilities of
other NodeTypes. To do that, we first define an utility binding function that
returns the set of requirements with which a capability is associated.

Definition 6. Let S be a ServiceTemplate, and let c be a capability offered
by a NodeType in S. We define b(c, S) = {r1, . . . , rn}, where r1, . . . , rn are the
requirements connected to c in S by means of RelationshipTemplates.

We now exploit function b to define capability controllers. On the one hand, the
controller must ensure that once a capability c is available, the nodes exposing
the connected requirements r1, . . . , rn are able to simultaneously exploit it. This
is obtained by adding a transition c↑ able to propagate the token from place
c to places r1, . . . , rn (i.e., the input place of c↑ is c, and its output places
are r1, . . . , rn). On the other hand, the controller has also to ensure that the
capability is not removed while at least another node is actively assuming its
availability (with a condition on a connected requirement). Thus, we introduce
a transition c↓ whose input places are r1, . . . , rn and whose output place is c.

Definition 7. Let S be a ServiceTemplate, and let c be a capability offered by
a NodeType instantiated in S. Let r1, . . . , rn be the requirements exposed by the
nodes in S such that b(c, S) = {r1, . . . , rn}. The controller of c is an open Petri
net Zc = 〈Pc, Ic〉, with Pc = 〈Pc, Tc, •·, ·•〉, defined as follows.

– The set Pc of places contains a separate place for the capability c and for
each requirement r1, . . . , rn.

– The set Ic coincides with Pc.
– The set Tc contains only two Petri net transitions c↑ and c↓.
• The input and output places of c↑ are the place c and the places r1, . . . , rn,
respectively (i.e., •c↑ = {c} and c↑• = {r1, . . . , rn}).

• The input and output places of c↓ are the places r1, . . . , rn and the place
c, respectively (i.e., •c↑ = {r1, . . . , rn} and c↑• = {c}).

The initial marking of Zc is empty (i.e., no place contains a token).

An example of controller (for a capability c connected to two requirements r1
and r2) is illustrated in Fig. 6.

Fig. 6. Example of capability controller.

We can now compose the nets modelling the management protocols of the Node-
Types instantiated in a ServiceTemplate’s topology by interconnecting them
with the above introduced controllers. The composition is quite simple: We just
collapse the open places corresponding to the same requirements/capabilities.
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Definition 8. Let S be a ServiceTemplate. We encode S with an open Petri
net ZS = 〈PS , IS〉, where PS = 〈PS , TS , •·, ·•〉, as follows.

– For each node N in the topology of S, we encode its management protocol
with an open Petri net ZN obtained as shown in Def. 5.

– For each capability c exposed by a NodeTemplate in S, we create an open
Petri net Zc (acting as its controller) as shown in Def. 7.

– We then compose the above mentioned nets by taking their disjoint union
and merging the places denoting the same requirement r or capability c.

The initial marking of ZS is the union of the markings of the collapsed nets.

For example, Fig. 7 shows the net obtained for the motivating scenario in Sect. 3.

The Petri net encoding of the management of a ServiceTemplate S, permits
us defining what is a valid plan according to such management. Essentially,
thanks to the encoding of capability controllers and to the way we compose
these controllers with management protocol encodings, the obtained net ensures
that no requirement can be assumed to hold if the corresponding capability
is not provided, and that no capability can be removed if at least one of the
corresponding requirements is assumed to hold. This permits to consider a plan
valid if and only if it corresponds to a firing sequence in the net encoding of S.

Definition 9. Let S be a ServiceTemplate and let ZS = 〈PS , IS〉, with PS =
〈PS , TS , •·, ·•〉, be the Petri net encoding of S. A sequential plan3 o1o2 . . . om is
valid if and only if there is a firing sequence t1t2 . . . tn in ZS from the initial
marking such that o1 · o2 · . . . · om = λ(t1) ·λ(t2) · . . . ·λ(tn), where · indicates the
concatenation operator4 and:

λ(t) =

{
ε if t denotes a c↑ or c↓transition
o if t denotes a management protocol transition 〈s,H, o, s′〉

It is easy to see now that plan (c) of Fig. 3 is valid since, for instance,

AmazonEC2:Start Container↑ Ubuntu:Install Ubuntu:Start SoftwareContainer↑
Tomcat:Setup Tomcat:Run Tomcat:Configure WebAppRuntime↑ SendSMS:Deploy
SendSMS:Start Forex:Deploy Forex:Start

is a corresponding firing sequence for the Petri net in Fig. 7. Conversely, plans
(a) and (b) in Fig. 3 are not valid as there are no corresponding firing sequences.
Intuitively speaking, (a) is not valid since after firing, for instance,

AmazonEC2:Start Container↑ Ubuntu:Install Ubuntu:Start SoftwareContainer↑
Tomcat:Setup

3 In Def. 9 we consider sequential plans. A workflow plan is valid if and only if all its
sequential traces are valid.

4 The empty string ε is the neutral element of ·, hence controllers’ net transitions are
ignored (as λ(t) = ε when t denotes a c↑ or c↓ transition).
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Fig. 7. Petri net encoding for the motivating scenario in Sect. 3.
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transition Tomcat:Configure cannot be fired. It indeed requires a token in the
Working place, but that place is empty and it is not possible to add tokens to it
without firing Tomcat:Run. On the other hand, (b) is not valid since after firing

AmazonEC2:Start Container↑ Ubuntu:Install

transition Tomcat:Setup cannot fire. It requires a token in the place denoting the
ServerContainer requirement, but that place is empty and it is not possible to
add tokens to it without firing SoftwareContainer↑, which in turn cannot fire
as it misses a token in the place denoting the Ubuntu’s SoftwareContainer ca-
pability (and no token can be added to such place without firing Ubuntu:Start).

It is important to observe that the correspondence between firing sequences
and valid plans can be exploited for many other purposes besides checking plans’
validity. The effects of a plan on the states of the components of a TOSCA
ServiceTemplate, as well as on the requirements that are satisfied and the ca-
pabilities that are available, can be directly determined from the marking that
is reached performing the corresponding firing sequence. Additionally, various
classical notions in the Petri net context assume a specific meaning in the con-
text of TOSCA applications. For example the problem of finding whether there
is a plan which achieves a specific goal (e.g., bringing some components of an ap-
plication to specific states or making some capabilities available) can be reduced
in a straightforward way to the coverability problem [18] on the associated Petri
net. Moreover, it is possible to consider as initial marking any other (reachable)
marking so as to analyse maintenance plans (starting from non-initial states)
besides deployment plans. Obviously, the very same properties and techniques
also apply in this case. Finally, the Petri net is reversible [18] if and only if it is
always possible to (softly) reset the application. This is a very convenient prop-
erty, because it guarantees that it is always possible to generate a plan for any
reachable goal from any application state.

5 Related work

Automating application management is a well-known problem in computer sci-
ence. With the advent of cloud computing, it has become even more prominent
because of the complexity of both applications and platforms [8]. This is wit-
nessed by the proliferation of so-called configuration management systems, like
Chef [9] or Puppet [21]. These systems provide a domain-specific language to
model the desired configuration for a machine and employ a client-server model
in which a server holds the model and the client ensures this configuration is met.
However, the lack of a machine readable representation of management protocols
of application components inhibits the possibility of automating verification on
components’ configurations and dependencies.

A large body of research has been devoted to model interacting systems
by means of finite state machines, Petri nets, and other formal models [4,11].
Because of space limitations, we discuss next only the work more closely related
to ours, tailored to to model the behaviour of cloud application management.
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A first attempt to master the complexity of the cloud is given by the Aeo-
lus component model [10]. The Aeolus model is specifically designed to describe
several characteristics of cloud application components (e.g., dependencies, non-
functional requirements, etc.), as well as the fact that component interfaces might
vary depending on the internal component state. However, the model only al-
lows to specify what is offered and required in a state. Our approach instead
allows developers to clearly separate the requirements ensuring the consistency
of a state from those constraining the applicability of a management operation.
This allows developers to easily express transitions where requirements are af-
fecting only the applicability of an operation and not the consistency of a state
(e.g., the transition 〈Unavailable, {ServerContainer}, Setup, Stopped〉 of the
management protocolMS in Fig. 4). Such a kind of transitions cannot be easily
modelled in Aelous. Furthermore, Aelous and other emerging solutions like Juju
[13] and Engage [12], differ from our approach since they are geared towards
the deployment of cloud applications, thus not including also their maintenance.
Additionally, Aelous, Juju, and Engage are currently not integrated with any
cloud interoperability standard, thus limiting their applicability to only some
supported cloud platforms. Our approach, instead, intends to model the entire
lifecycle of a cloud application component, and achieves cloud interoperability
by relying on the TOSCA standard [19].

To this end, TOSCA offers a rich type system permitting to match, adapt and
reuse existing solutions [7]. Since our proposal extends this type system, it can
also be exploited to refine existing reuse techniques, like [5,6,22]. Currently, these
techniques are matchmaking and adapting (fragments of) existing Service-
Templates to implement a desired NodeType by checking whether the features
of the latter are all offered by the former. To overcome syntactic differences,
ontologies may be employed to check whether two different names are denoting
the same concept. However, these techniques are behaviour-unaware: There is no
way to determine whether the behaviour of the identified (fragment of) Service-
Template is coherent with that of the desired NodeType. Since our approach
permits describing the behaviour of management operations, it can be exploited
to extend the aforementioned techniques to become behaviour-aware.

It is also worth highlighting that we could directly compose the finite state
machines specifying management protocols, and model valid plans as the lan-
guage accepted by the composite finite state machine. However, the size of the
latter grows exponentially with the number of application components. This re-
sults in a high computational complexity, even if we exploit composition-oriented
automata (e.g., interface automata [1]). On the other hand, with open Petri nets
[2,14], we have a very simple composition approach, and the exponential growth
only affects the amount of reachable markings (instead of the size of the net). A
simpler composition approach is even more convenient since cloud applications
can change over time. For instance, to add another web service to our motivat-
ing scenario, our approach just requires to add the open Petri net encoding its
management protocol, and to connect the open places denoting its requirement
with the corresponding c↑ and c↓ transitions. On the other hand, with an au-
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tomata based approach, the composition would be much harder, as it requires
to compute the Cartesian product of the automatons’ states.

6 Conclusions

In this paper we have proposed an extension of TOSCA that permits to specify
the behaviour of management operations of cloud-based applications, and their
relations with states, requirements, and capabilities. We have then shown how
the management protocols of TOSCA components can be naturally modelled, in
a compositional way, by means of open Petri nets, and that such modelling per-
mits to automate different analyses, such as determining whether a plan is valid,
which are its effects, or which plans allow to reach certain system configurations.

Please note that, while some of those Petri-net analyses have an exponential
time complexity in the worst case, they still constitute a significant improvement
with respect to the state of the art, where the validity of deployment plans can be
verified only manually, after delving through the documentation of application
components. Please also note that our approach builds on top of, but is not
limited to, TOSCA. It can be easily adapted to other stateful behaviour models
of systems that describe states, requirements, capabilities, and operations.

We see different possible extensions of our work. We are currently working
on a prototype implementation of our approach, which includes a graphical user
interface to support the definition of valid TOSCA specifications that include
management protocols. The graphical user interface will compile the manage-
ment protocols of a TOSCA application into a PNML file [3], hence enabling to
plug-in different PNML processing environments (e.g., LoLa, ProM, or WoPeD,
just to mention some) to implement the analyses described in Sect. 4.3. We also
intend to improve the efficiency of the analyses by reducing the complexity of
the nets that is due to the c↑ and c↓ transitions introduced by the controllers.
Indeed the net encoding of a cloud application can be simplified by “folding"
the controllers’ transitions (by modifying the transitions whose input/output
places contain a place representing capability c so that they are replaced by the
places representing the requirements connected to c by means of Relationship-
Templates). Another interesting direction for future work is to investigate the
applicability of more sophisticated fault diagnosis analyses (like [16,17]) to iden-
tify the reasons why a plan may not be valid (besides just showing the points
in which a plan may get stuck, as we currently do). Finally, we want to extend
the matchmaking and adaptation techniques we previously proposed [5,6,22] by
including the behaviour information coming from management protocols (as il-
lustrated in Sect. 5).
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Abstract. Communication structured occurrence nets (csons) are the
basic variant of structured occurrence nets which have been introduced
to characterise the behaviours of complex evolving systems. A cson has
the capability of portraying different types of interaction between sys-
tems by using special elements to link with multiple (component) occur-
rence nets. Communication structured place transition nets (cspt-nets)
are the system-level counterpart of csons. In this paper, we investigate
cspt-nets unfoldings containing representations of all the single runs of
the original nets captured by csons. We develop several useful notions
related to cspt-net unfoldings, and then present an algorithm for con-
structing the new class of unfolding.

Keywords: structured occurrence nets, place transition nets, cspt-nets,
unfolding, synchronous and asynchronous communication

1 Introduction

A complex evolving system consists of a large number of sub-systems which may
proceed concurrently and interact with each other or with the external environ-
ment while its behaviour is subject to modification by other systems. The com-
munication between sub-systems may either be asynchronous or synchronous.
Structured occurrence nets (sons) [8, 13, 14] are a Petri net based formalism
that can be used to model the behaviours of complex evolving system. The con-
cept extends that of occurrence nets [1] which are directed acyclic graphs that
represent causality and concurrency information concerning a single execution
of a system. In son, multiple related occurrence nets are combined by means
of various formal relationships; in particular, in order to express dependencies
between interacting systems. Communication structure occurrence nets (csons)
are the basic variant of sons. The model has the capability of portraying dif-
ferent types of interaction between systems. A cson involves occurrence nets
that are connected by channel places representing synchronous or asynchronous
communications. [7] introduced a system-level counterpart of csons called com-
munication structured place transition nets (cspt-nets). The nets are built out
of the place/transition nets (pt-nets), which are connected by channel places
allowing both synchronous and asynchronous communication.

The standard Petri nets unfoldings, introduced in [2, 12], are a technique
supporting effective verification of concurrent systems modeled by Petri nets



... ...
a0 am b0 bn

a0b0 a0bn amb0 ambn

... ...

a0 am
... b0

......
b0 bna0 am

(a) (b)

(c) (d)

Fig. 1. Two cspt-nets (a) and (b); together with their respective standard unfoldings
semantics after applying the Petri net encodings (c) and (d).

(throughout this paper, Petri net related concepts, such as configuration, un-
folding, merged process, will be referred to as standard). The method relies on
the concept of net unfolding which can be seen as the partial order behaviour
of a concurrent system. The unfolding (or branching process) of a net is usually
infinite, but for bounded Petri nets one can construct a finite complete prefix of
the unfolding containing enough information to analyse important behavioural
properties. [9] investigated branching processes of cspt-nets (cspt-net unfold-
ings). As in the standard net theory, cspt branching processes act as a ‘bridge’
between cspt-nets and their processes captured by csons (i.e., the branching
processes of a cspt-net contains a representation of all the possible single runs
of the original net). In order to reduce the complexity of branching processes
of cspt-nets, we adapt the notion of occurrence depth which was originally
developed for merged processes [5].

In this paper, we introduce and discuss several key properties of branching
processes of cspt-nets. We also present an algorithm for constructing cspt-net
unfoldings, generalising the unfolding algorithm introduced in [9] which could
only handle channel places with a single input and a single output transition. In
particular, the new algorithm takes into account the occurrence depth of events,
and fuses nodes which have same behaviours during the unfolding. In this way,
the size of the resulting net can be significantly reduced when compared with
the standard unfolding approach.

Consider the cspt-nets shown in Figure 1(a) and (b). In (a), m transitions
asynchronously communicate with b0 via a single channel place. In (b), m tran-
sitions are synchronous with n transitions between two pt-nets via two channel
places. Their unfolding semantics are isomorphic to the original cspt-nets (with
the sizes of m+ 1 events in (a) and m+ n events in (b)). If one was only inter-
ested in marking reachability, then one might attempt to encode a cspt-net by
replacing every asynchronous channel place by a standard place and ‘glue’ tran-
sitions forming a synchronous event into a single one. One would then be able
to apply the standard unfolding to this Petri net based representation. However,
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the efficiency of such an approach would suffer from the introduction of expo-
nentially many new transitions, as well as the loss of the merging on channel
places which is due to the exploitation of occurrence depth. In this case, the
‘replace’ encoding for (a) yields n+m events in the corresponding unfolding (c).
While the ‘glue’ encoding for (b) would yield m× n events as shown in (d).

The paper is organised as follows. Section 2 provides basic notions concern-
ing Petri nets and their unfoldings. Section 3 presents the main concepts of
communication structured net theory, including cson-nets, cspt-nets and cspt
branching processes. In section 4, we discuss finite complete prefixes of cspt
branching processes and related properties. The cspt unfolding algorithm is
provided in Section 5. Section 6 discusses future works and concludes the paper.
The technical report [10] contains proofs of formal results and an example of the
algorithm run.

2 Basic Definitions

We assume that the reader is familiar with the basic notions concerning Petri
nets and their unfoldings, which can be found in, e.g., [1,2,12]. Throughout the
paper, a multiset over a set X is a function µ : X → N, where N = {0, 1, 2, . . .}.
A multiset may be represented by explicitly listing its elements with repetitions.
For example {a, a, b} denotes the multiset such that µ(a) = 2, µ(b) = 1 and
µ(x) = 0 for x ∈ X\{a, b}.

PT-nets. A net is a triple N = (P, T, F ) such that P and T are disjoint
sets of respectively places and transitions (collectively referred to as nodes),
and F ⊆ (P × T ) ∪ (T × P ) is the flow relation. The inputs and outputs of
a node x are defined as •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.
Moreover, •x• = •x∪x•. It is assumed that the inputs and outputs of a transition
are nonempty sets. Two nodes, x and x′, are in conflict if there are distinct
transitions, t and t′, such that •t∩ •t′ 6= ∅ and (t, x) ∈ F ∗ and (t′, x′) ∈ F ∗. We
denote this by x # x′. A node x is in self-conflict if x # x.

A place transition net (pt-net) is a tuple PT = (P, T, F,M0), where (P, T, F )
is a finite net, and M0 : P → N is the initial marking (in general, a marking
is a multiset of places). A step U is a non-empty multiset of transitions of PT .
It is enabled at a marking M if M(p) ≥ ∑t∈p• U(t), for every place p. In such
a case, the execution of U leads to a new marking M ′ given, for every p ∈ P ,
by M ′(p) = M(p) +

∑
t∈•p U(t) −∑t∈p• U(t). We denote this by M [U〉M ′. A

step sequence of PT is a sequence λ = U1 . . . Un (n ≥ 0) of steps such that
there exist markings M1, . . . ,Mn satisfying M0[U1〉M1, . . . ,Mn−1[Un〉Mn. The
reachable markings of PT are defined as the smallest (w.r.t. ⊆) set reach(PT )
containingM0 and such that if there is a markingM ∈ reach(PT ) andM [U〉M ′,
for a step U and a marking M ′, then M ′ ∈ reach(PT ). PT is k-bounded if, for
every reachable marking M and every place p ∈ P , M ≤ k, and safe if it is
1-bounded. The markings of a safe pt-net can be treated as sets of places.

Branching processes of PT-nets. A net ON = (P, T, F ), with places and
transitions called respectively conditions and events, is a branching occurrence
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net if the following hold: (i) F is acyclic and no transition t ∈ T is in self-conflict;
(ii) |•p| ≤ 1, for all p ∈ P ; and (iii)for every node x, there are finitely many y
such that (y, x) ∈ F ∗. The set of all places p with no inputs (i.e., •p = ∅) is the
default initial state of ON , denoted by MON . In general, a state is any set of
places. If |p•| ≤ 1, for all p ∈ P , then ON is a non-branching occurrence net.
Note that in a branching occurrence net, two paths outgoing from a place will
never meet again by coming to the same place (the inputs of places are at most
singleton sets) nor the same transition (transitions cannot be in self-conflict).

A branching process of a pt-net PT = (P, T, F,M0) is a pair Π = (ON , h),
where ON = (P ′, T ′, F ′) is a branching occurrence net and h : P ′ ∪ T ′ → P ∪ T
is a mapping, such that the following hold: (i) h(P ′) ⊆ P and h(T ′) ⊆ T ; (ii) for
every e ∈ T ′, the restriction of h to •e is a bijection between •e and •h(e), and
similarly for e• and h(e)•; (iii) the restriction of h toMON is a bijection between
MON and M0; and (iv) for all e, f ∈ T ′, if •e = •f and h(e) = h(f) then e = f .
There exists a maximal branching process ΠPT , called the unfolding of PT [2].

Configurations and cuts of a branching process. Let Π = (ON , h) be
a branching process of a pt-net PT , and ON = (P ′, T ′, F ′). A configuration
of Π is a set of events C ⊆ T ′ such that ¬(e # e′), for all e, e′ ∈ C, and
(e′, e) ∈ F ′+ =⇒ e′ ∈ C, for every e ∈ C. In particular, the local configuration of
an event e, denoted by [e], is the set of all the events e′ such that (e′, e) ∈ F ′∗. The
notion of a configuration captures the idea of a possible history of a concurrent
system, where all events must be conflict-free, and all the predecessors of a
given event must have occurred. A co-set of Π is a set of conditions B ⊆ P ′

such that, for all distinct b, b′ ∈ B, (b, b′) /∈ F ′+. Moreover, a cut of Π is any
maximal (w.r.t. ⊆) co-set B. Finite configurations and cuts of Π are closely
related (every marking represented in the unfolding ΠPT is reachable in PT ,
and every reachable marking of PT is represented in ΠPT ):

– if C is a finite configuration of Π, then Cut(C) = (MON ∪C•) \ •C is a cut
and Mark(C) = h(Cut(C)) is a reachable marking of PT ; and

– if M is a reachable marking of PT , then there is a finite configuration C of
ΠPT such that Mark(C) =M .

3 Structuring PT-nets

In this section we recall the formal definitions concerning communication struc-
tured nets theory, including cson-nets and cspt-nets. We then introduce the
notion of branching processes of cspt-nets and several related properties.

The new models are able to portray different kinds of communication between
separate systems. One can envisage that if a given pt-net attempts to represent
several interacting systems, it will be beneficial to split the model into a set
of component nets, and create specific devices to represent any communication
between the subsystems. In the model we are interested in communication can
be synchronous or asynchronous. Usually, the former implies that a sender waits
for an acknowledgment of a message before proceeding, while in the latter the
sender proceeds without waiting.
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A communication structured net is composed of a set of component nets rep-
resenting separate subsystems. When it is determined that there is a potential
for an interaction between subsystems, asynchronous or synchronous communi-
cation link can be made between transitions (or events) in the different nets via
a special element called a channel place. Two transitions (events) involved in a
synchronous communication link must be executed simultaneously. On the other
hand, transitions (events) involved in an asynchronous communication may be
executed simultaneously, or one after the other.

Similarly as in the case of pt-nets, non-branching processes cson-nets will
represent single runs of cspt-nets, while branching processes will capture full
execution information of the corresponding cspt-nets.

CSPT-nets. By generalising the definition of [7], we first introduce an exten-
sion of pt-nets which combines several such nets into one model using channel
places.

Definition 1 (CSPT-net). A communication structured place transition net
(or cspt-net) is a tuple CSPT = (PT 1, . . . ,PT k, Q,W,M0) (k ≥ 1) such that
each PTi = (Pi, Ti, Fi,Mi) is a safe (component) pt-net; Q is a finite set of
channel places; M0 : Q → N is the initial marking of the channel places; and
W ⊆ (T × Q) ∪ (Q × T ), where T =

⋃
Ti, is the flow relation for the channel

places. It is assumed that the following are satisfied:

1. The PT i’s and Q are pairwise disjoint.
2. For every channel place q ∈ Q,

– the sets of inputs and outputs of q, •q = {t ∈ T | (t, q) ∈ W} and
q• = {t ∈ T | (q, t) ∈ W} are both nonempty and, for some i 6= j,
•q ⊆ Ti and q• ⊆ Tj; and

– if •q• ∩ Ti 6= ∅ then there is no reachable marking of PT i which enables
a step comprising two distinct transitions in •q•. �

The initial marking MCSPT of CSPT is the multiset sum of the Mi’s (i =
0, 1, . . . , k), and a marking is in general a multiset of places, including the channel
places.

To simplify the presentation, in the rest of this paper we will assume that
the channel places in the initial states of cspt-nets are empty.

The execution semantics of CSPT is defined as for a pt-net except that a
step of transitions U is enabled at a markingM if, for every non-channel place p,
M(p) ≥∑t∈p• U(t) and, for every channel place q,

M(q) +
∑

t∈•q
U(t) ≥

∑

t∈q•
U(t) . (∗)

The condition (∗) for step enabledness caters for synchronous behaviour as step
U can use not only the tokens that are already available in channel places at
marking M , but also can use the tokens deposited there by transitions from U
during the execution of U . In this way, transitions from U can ‘help’ each other
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Fig. 2. A cspt-net with three component pt-nets.

individually and synchronously pass resources (tokens) among themselves. Thus,
in contrast to the step execution of a pt-net where a step consists of a number
of enabled transitions, the execution of a step in a cspt-net (i.e.,M [U〉M ′) may
involve synchronous communications (or interactions), where transitions execute
simultaneously and behave as a transaction. Such a mode of execution is strictly
more expressive than that used in pt-nets.

Figure 2 shows a cspt-net which consists of three component pt-nets con-
nected by a set of channel places (represented by circles with thick edges). To
improve readability, the thick dashed lines indicate the flow relation W . Tran-
sitions n2 and u2 are connected by a pair of empty channel places, q3 and q4,
forming a cycle. This indicates that these two transitions can only be executed
synchronously. They will be filled and emptied synchronously when both n2 and
u2 participate in an enabled step. On the other hand, the execution of transitions
n1 and u0 can be either asynchronous (n1 occurs before u0), or synchronous
(both of them occur simultaneously). A possible step sequence of Figure 2 is
λ = {t0, n1}{u0}{n2, u2}, where n1 and u0 perform an asynchronous communi-
cation. Another step sequence λ′ = {t0}{n1, u0}{n2, u2} shows that n1 and u0
can be also executed synchronously.

Definition 1(2) means that the occurrences of transitions in •q (as well as
those in q•) are totally ordered in any execution of the corresponding component
net PT i. In other words, we assume that both the output access and the input
access to the channel places is sequential. This will allow us to introduce the
notion of depth at which an event which accessed a channel place has occurred.

Given a branching process derived for a component pt-net of a cspt-net,
consider an event e such that its corresponding transition is an input (or output)
of a channel place q in the cspt-net. Then the occurrence depth of such event
w.r.t., the channel place q is the number of events such that they all causally
precede e and their corresponding transitions are also inputs (or outputs) of the
channel place q. Since the tokens flowing through channel places are based on the
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(depthq0=1)

(depthq0=1)

(depthq0=2)

(depthq0=2)

Fig. 3. (a) A cspt-net, and (b) its branching process (event labels are shown alongside
the nodes and the occurrence depths are shown in brackets).

FIFO policy. The occurrence depth intuitively represents the number of tokens
which have entered (or left) the channel place q before the occurrence of e.

Definition 2 (occurrence depth). Let CSPT be as in Definition 1, and q ∈ Q
and PT i be such that •q• ∩ Ti 6= ∅. Moreover, let Π = (ON , h) be a branching
process of PT i, and e be an event of ON = (P ′, T ′, F ′) such that h(e) ∈ •q•.
The depth of e in Π w.r.t. the channel place q is given by:

depthΠq (e) = |{f ∈ T ′ | h(f) ∈ •q• ∧ (f, e) ∈ F ′∗}| .
Moreover, if the process Π is clear from the context, we will write depthq(e)

instead of depthΠq (e). �
Proposition 1. Let Π and q ∈ Q be as in Definition 2. Moreover, let e and
f be two distinct events of Π satisfying ¬(e # f) and h(e), h(f) ∈ •q•. Then
depthq(e) 6= depthq(f).

The nets in the dashed line boxes in Figure 3(b) are two component branching
processes derived from the component pt-nets of the cspt-net in Figure 3(a).
The labels are shown alongside each node, and the occurrence depth of each
event connected to a (unique, in this case) channel place is shown in brackets.
Let us consider event e1. Its corresponding transition t1 is the input of channel
place q0. When searching the directed path starting at the initial state and
terminating at e1, we can find another event (viz. e0) such that its corresponding
transition is also the input of q0. Therefore the occurrence depth of e1, w.r.t.
q0, is depthq0(e1) = 2. It intuitively represents transition t1 passing the second
token to the channel.

Non-branching processes of CSPT-nets. Similarly to the way in which
cspt-nets are extensions of pt-nets, non-branching processes of cspt-nets are
extensions of non-branching occurrence nets.

Definition 3 (non-branching process of CSPT-net). Let CSPT be as in
Definition 1 with M0 being empty. A non-branching process of CSPT is a tu-
ple CSON = (Π1, . . . ,Πk, Q

′,W ′, h′) such that each Πi = (ON i, hi) is a non-
branching process of PT i with ON i = (P ′i , T

′
i , F

′
i ); Q′ is a set of channel places;
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Fig. 4. A cson-net which is a possible single run of the cspt-net of Figure 2.

W ′ ⊆ (T ′ × Q′) ∪ (Q′ × T ′) where T ′ =
⋃
T ′i ; and h′ : Q′ → Q. It is assumed

that the following hold, where h = h′ ∪⋃hi and F ′ =
⋃
F ′i :

1. The ON i’s and Q′ are pairwise disjoint.
2. For every r ∈ Q′,

– |•r| = 1 and |r•| ≤ 1; and
– if e, f ∈ •r•, then depthh(r)(e) = depthh(r)(f).

3. For every e ∈ T ′, the restriction of h to •e∩Q′ is a bijection between •e∩Q′
and •h(e) ∩Q, and similarly for e• ∩Q′ and h(e)• ∩Q.

4. The relation (@ ∪ ≺)∗◦ ≺ ◦(≺ ∪ @)∗ over T ′ is irreflexive, where: e ≺ f
if there is p ∈ ⋃P ′i with p ∈ e• ∩ •f ; and e @ f if there is r ∈ Q′ with
r ∈ e• ∩ •f .

5. h(MCSON ) = MCSPT , where MCSON is the default initial state of CSON
defined as

⋃
MON i

. �

The above definition extends that in [7] by allowing an infinite number of
nodes, and therefore provides a general meaning of a single run of a cspt-net.
To capture the behaviour systems with complex structure, we use the binary
relation @ (weak causality) to represent a/synchronous communication between
two events (see [7]). Intuitively, the original causality relation ≺ represents the
‘earlier than’ relationship on the events, and @ represents the ‘not later than’
relationship. In order to ensure the resulting causal dependencies remain consis-
tent, we require the acylicity of not only each component non-branching process
but also any path involving both @ and ≺. The condition involving the depth
of two events accessing the same channel place means that the tokens flowing
through channel places are based on the FIFO policy, so that the size of the
subsequent full representation of the behaviours of a cspt-net is kept low.
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The cson in Figure 4 shows a non-branching processes with the labels (along-
side the nodes) coming from the cspt-net shown in Figure 2. It corresponds, e.g.,
to the step sequence λ = {t0, n1}{u0}{n2, u2} in the original cspt-net.

Branching processes of CSPT-nets. We have described two classes of
structured nets, i.e., cspt-nets and csons. The former is a system-level class of
nets providing representations of entire systems, whereas the latter is a behaviour-
level class of nets representing single runs of such systems. In this section, we
will introduce a new class of branching nets which can capture the complete
behaviours of cspt-nets.

Definition 4 (branching process of CSPT-net). Let CSPT be as in Defini-
tion 1 with M0 being empty. A branching process of CSPT is a tuple BCSON =
(Π1, . . . ,Πk, Q

′,W ′, h′) such that each Πi = (ON i, hi) is a branching process of
PT i with ON i = (P ′i , T

′
i , F

′
i ); Q′ is a set of channel places; W ′ ⊆ (T ′ × Q′) ∪

(Q′ × T ′) where T ′ =
⋃
T ′i ; and h′ : Q′ → Q. It is assumed that the following

hold, where h = h′ ∪⋃hi and F ′ =
⋃
F ′i :

1. The ON i’s and Q′ are pairwise disjoint.
2. For all r, r′ ∈ Q′ with h(r) = h(r′), as well as for all e ∈ •r• and f ∈ •r′•,

depthh(r)(e) = depthh(r′)(f)⇐⇒ r = r′ .

3. BCSON is covered in the graph-theoretic sense by a set of non-branching
processes CSON of CSPT satisfying MCSON =MBCSON , where the default
initial state MBCSON of BCSON is defined as

⋃
MON i

. �

Using arguments similar to those used in the case of the standard net unfoldings,
one can show that there is a unique maximal branching process BCSONCSPT ,
called the unfolding of CSPT .

A branching process of a cspt-net consists of branching processes obtained
from each component pt-net and a set of channel places. The default initial state
MBCSON consists of the initial states in the component branching processes. In
addition, Definition 4(1) means that the component branching processes are in-
dependent, and all the interactions between them must be via the channel places.
In particular, there is no direct flow of tokens between any pair of the compo-
nent branching processes. Definition 4(2) implies that the occurrence depths of
events inserting tokens to a channel place are the same, and are equal to the
occurrence depths of events removing the tokens. Moreover, channel places at
the same depth correspond to different channel places in the original cspt-net.
Finally, Definition 4(3) specifies that the label of every input and output event
of a channel place in bcson matches a corresponding transition in the original
cspt-net. In general, every node and arc in the branching process belongs to
at least one non-branching process of cspt-net (cson). This ensures that every
event in the bcson is executable from the default initial state MBCSON (i.e., it
belongs to a step enabled in some reachable marking), and every condition and
channel place is reachable (i.e., it belongs to the initial state or to the post-set
of some executable events).
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(a)

(b)

Fig. 5. (a) cspt-net, and (b) its branching process.

Proposition 2 (safeness). Let BCSON be as in Definition 4. Then BCSON
is safe when executed from the default initial state MBCSON .
Note: This means that we treat BCSON as a cspt-net with the initial marking
obtained by inserting a single token in each condition belonging to MBCSON ,
and safety means that no reachable marking contains more than one token in
any condition, including the channel places.

The nets in Figure 3(b) and Figure 5(b) are the branching processes of the
cspt-nets showing in Figure 3(a) and Figure 5(a) respectively. We can observe
that every input and output event of a channel place has the same occurrence
depth which represents the token flow sequence during communication between
different pt-nets. For instance, in Figure 5(b) the occurrence depths of e0, e2
and e8 are depthq0(e0) = depthq0(e2) = depthq0(e8) = 1. This means of that the
transitions t0 and n0 were involved in a first asynchronous communication.
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Remark 1. A bcson cannot, in general, be obtained by simply unfolding every
component pt-net independently and appending the necessary channel places
afterwards. Proceeding in such a way can lead to a net violating Definition 4(3).
This is so because an executable transition in a component pt-net does not have
to be executable within the context of the cspt-net. For example, Figure 6(b)
does not show a valid branching process of the cspt-net of Figure 2. Transition
n0 in the middle pt-net of Figure 2 can never be executed since t0 and t1 are in
conflict, and the system is acyclic. As the result, there is no n0-labelled event in
a corresponding branching process. Note that Figure 6(a) shows a valid bcson
since each event present there is executable. �

4 Completeness of branching processes

In this section, we introduce the concept of a complete prefix of the unfolding of
a cspt-net. The prefix is a truncated part of possibly infinite unfolding which
contains full reachability information about the original cspt-net. The idea is to
consider global configurations of the unfolding taking into account single runs
across different component pt-nets. Then we show that the final states of all
the finite global configurations correspond to the reachable markings of original
cspt-net. Using this result, it is possible to consider a finite truncation which is
sufficient to represent all reachable markings.

Global configurations. A global configuration of a bcson consists of a set
of (standard) configurations, each coming from a different component branching
process, joined together by channel places.

Definition 5 (global configuration). Let BCSON be as in Definition 4. A
global configuration of BCSON is a set of events C = C1 ∪ · · · ∪ Ck such that
each Ci is a configuration of the process Πi, and the following hold:

1. •C ∩Q′ ⊆ C•.
2. The relation (@ ∪ ≺)∗◦ ≺ ◦(≺ ∪ @)∗ over C is irreflexive, where: e ≺ f

if there is p ∈ ⋃P ′i with p ∈ e• ∩ •f ; and e @ f if there is r ∈ Q′ with
r ∈ e• ∩ •f .

Moreover, if the configuration C is finite, then Fin(C) = (MBCSON ∪ C•) \ •C
is the final state of C. The set of all global configurations of BCSON will be
denoted by Conf BCSON . �

Definition 5(1) reflects the nature of a/synchronous communication between
component (standard) configurations. Intuitively, if we start with an event of
the global configuration which is an output event of a channel place, then there
exists an input event of the same channel place that also belongs to the global
configuration. Moreover, Definition 5(2) states that there are no asynchronous
cycles in a global configuration.

Proposition 3 (configuration is non-branching). Let C be a configuration
as in Definition 5. Then, for all distinct e, f ∈ C, •e ∩ •f = e• ∩ f• = ∅.
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Proposition 4 (configuration is causally closed). Let C be a configuration
as in Definition 5. Then, for every e ∈ C, p ∈ ⋃P ′i and p ∈ e•∩•f imply f ∈ C.
Moreover, if r ∈ Q′ ∩ •e then there is f ∈ C such that r ∈ f•.

Since in bcson we use the merging technique in the case of channel places
(i.e., different events with same occurrence depth and label will link with same in-
stance of channel place), it is possible for a channel place to have multiple inputs
or outputs. Propositions 3 and 4 imply that global configuration are guaranteed
to be non-branching and causally closed w.r.t. the flow relations F ′ and W ′. In-
deed, if a channel place has more than one input (or output) events, these events
are in conflict w.r.t. the flow relation F ′. Hence the events belong to different
configurations, and each channel place in global configuration has exactly one
input and no more than one output. As a result, a global configuration retains
key properties of the standard configurations, and it represents a valid execution
of transitions of the original cspt-net.

Consider the branching process in Figure 5. It has a configuration C =
{e0, e1, e2, e4, e7} which consists of two (component) configurations C1 = {e0, e1}
and C2 = {e2, e4, e7}, whereas C ′ = {e0, e1, e2, e4} and C ′′ = {e0, e1, e2, e4, e6, e7}
are not valid configurations (C ′ has non input event for the channel place r1,
while C ′′ includes two standard configurations of a single component pt-net).

Each finite configuration C has a well-defined final state determined by the
outputs of the events in C. Intuitively, such a state comprises the conditions
and channel places on the frontier between the events of C and events out-
side C. Note that a final state may contain channel places which were involved
in asynchronous communications. No channel place involved in a synchronous
communications can appear in Fin(C), as such channel place must provide in-
put for another event. For instance, the final state of the global configuration
example above is Fin(C) = {c2, c9}, whereas the final state of another global
configuration C ′′′ = {e2, e4, e6} is Fin(C ′′′) = {r0, r2, c8} which contains two
asynchronous channel places.

The next result shows that a global configuration together with their outputs
and the initial state form a cson representing a non-branching process of the
original cspt-nets. And, similarly, the events of a non-branching process included
in a branching one form a global configuration.

Proposition 5. Let BCSON be as in Definition 4.

1. Let C be a global configuration as in Definition 5. Then MBCSON ∪ C ∪ C•
are the nodes of a non-branching process of CSPT included in BCSON .

2. The events of any non-branching process CSON included in BCSON and
satisfying MCSON =MBCSON form a global configuration.

Proposition 6. Let C be a global configuration as in Definition 5. Then h(Fin(C))
is a reachable marking in the original cspt-net.

By combining Propositions 5 and 6, we obtain that finite global configurations
provide a faithful representation of all the reachable marking of the original
cspt-net.
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Theorem 1. Let BCSONCSPT be the unfolding of CSPT . Then M is a reach-
able marking of CSPT if and only if M = h(Fin(C)), for some global configu-
ration C of BCSONCSPT .

Complete prefixes of CSPT-nets. A complete prefix of the unfolding of
a cspt-net contains a full reachability information about the original cspt-net.
Such a property is referred to as completeness.

Finite complete prefixes of Petri nets were first introduced in McMillan’s
seminal work in order to avoid the state explosion problem in the verification of
systems modelled with Petri nets. McMillan also provided an algorithm to gen-
erate a complete finite prefix of the unfolding which contains a full reachability
information. Later, [3] refined McMillan’s prefix construction algorithm to avoid
creating prefixes larger than necessary.

The semantical meaning of completeness has been further addressed in [6],
which extended it to more general properties. Basically, [6] associated complete-
ness with some additional information, provided by the cut-off events which were
only considered as an algorithm issue in the previous works. We can adapt the
resulting notion to the current context as follows.

Definition 6 (completeness). Let BCSON be as in Definition 4, and Ecut be
a set of events of BCSON . Then BCSON is complete w.r.t. Ecut if the following
hold:

– for every reachable markingM of CSPT , there is a finite global configuration
C such that C ∩ Ecut = ∅ and Fin(C) =M ; and

– for each global configuration C of BCSONCSPT such that C ∩ Ecut = ∅
and, for each event e /∈ C of BCSONCSPT such that C ∪ {e} is a global
configuration of BCSONCSPT , it is the case that e belongs in BCSON .

Moreover, bcson is marking complete if it satisfies the first condition. �

5 Unfolding algorithm for CSPT-net

We will now describe an algorithm for the construction of the unfolding of a cspt-
net. A key notion used by the algorithm is that of an executable event (i.e., an
event which is able to fire during some execution from the default initial state)
as well as that of a reachable condition or channel place (i.e., one produced by an
executable event). Note that whether an event is executable in a cspt-net is not
only determined by the corresponding pt-net, but also by the behaviours of other
pt-nets. This means that a component branching process in cspt unfolding may
not preserve its own unfolding structure (see Remark 1 and Figure 6(a)). In other
words, there may exist events which are valid extensions in the unfolding process
of a component pt-net, but become invalid when considering communication.

In particular, due to synchronous communication, it may be difficult to make
sure that every extension is executable before appending it to the unfolding.
Unlike the standard unfolding methods, an algorithm for cspt-net cannot sim-
ply unfold the component branching processes adding one event at a time, and
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(a)

(b)

Fig. 6. (a) A valid cspt branching process of Figure 2 (top), and (b) an invalid one
(bottom).

connecting it to already existing channel places. This is because a synchronous
communication in cspt unfolding forms a cycle. It is therefore impossible to add
only one of the synchronised events and guarantee its executability at the same
time. Similarly, adding a synchronous event set together with all related channel
places in one step may also be difficult to achieve since the use of merging may
produce infinitely many events which are connected to the same channel place.

Instead, our idea is to design an algorithm which will sometimes generate non-
executable events requiring tokens from channel places which have not yet been
generated, in the anticipation that later on a suitable (possibly synchronous)
events will provide such tokens. Roughly, the algorithm appends possible ex-
tensions together with their output conditions one by one. A new event is first
marked as non-executable. The algorithm then performs an executability check
for the event after constructing its a/synchronous communications. In this way,
in general we obtain an ‘over-approximating unfolding’. The final stage of the
algorithm can then be used to remove all the non-executable nodes.

Before providing the details of the algorithm, we introduce some auxiliary
notions. In what follows, we assume that CSPT is as in Definition 1.
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Definition 7 (local CSPT configuration). Let e ∈ C, where C is a global
configuration of BCSON as in Definition 5. Then the local CSPT configuration
of e in C, denoted by C[e], is defined as C[e] = {f ∈ C | (f, e) ∈ (≺ ∪ @)∗},
where the relations ≺ and @ are as in Definition 5. Moreover, Conf (e) = {C[e] |
C ∈ Conf BCSON ∧ e ∈ C} is the set of all CSPT local configurations of e. �

The cspt local configuration of an event e in C is the set of events that are
executed before (or together with) e. In general, it consists of a configuration
comprising the standard local configuration of e together with a set of standard
configurations coming from other branching processes. Note that an event may
have different local cspt configurations, e.g., if one of its inputs is a channel
place which has multiple input events. Each such local configuration belongs
to a different non-branching process. For instance, consider a global configura-
tion C = {e0, e1, e2, e4, e7} in Figure 5. The cspt local configuration of event
e0 in C is C[e0] = {e0, e2, e4, e7} which involves two standard local cspt con-
figurations, [e0] and [e7]. Moreover, we can observe that the C[e0] is not the
unique local configuration of e0, as another one is C ′[e0] = {e0, e3, e5, e8}, where
C ′ = {e0, e1, e3, e5, e8}.

An event may even have infinitely many local configurations. Consider again
the net in Figure 5. If we continue to unfold the net, we will construct infinitely
many n0 and n1 labelled events with occurrence depth equal to 1. All of them
are input events for q0 and q1 labelled channel places and belong to different
non-branching processes.

A/sync graphs. In order to improve the efficiency of unfolding procedure,
checking for the existence of a local cspt configuration of an event can be reduced
to the problem of exploring the causal dependencies between channel places.

Below we assume that if Ci is a configuration of the unfolding of the i-th
component pt-net, and e ∈ Ci and q ∈ Q are such that (h(e), q) ∈ W (or
(q, h(e)) ∈ W ), then r = (q, depthq(e)) belongs to the set of implicit channel
places QCi

connected to Ci. Moreover, the label of r is q, and (e, r) ∈WCi
(resp.

(r, e) ∈WCi) is the corresponding implicit arc.

Definition 8 (a/sync graph). Let Ci be a configuration of the unfolding of
the i-th component pt-net. Then the a/sync graph of Ci is defined as G(Ci) =
(QCi , ≺̂Ci , @̂Ci), where ≺̂Ci , @̂Ci are two binary relations over QCi such that,
for every r, r′ ∈ QCi

:

– r ≺̂Ci r
′ if there are two distinct e, f ∈ Ci such that (r, e), (f, r′) ∈WCi , and

e precedes f within C; and
– r @̂Ci

r′ if there is e ∈ Ci with (r, e), (e, r′) ∈WCi
. �

G(Ci) captures relationships between the input and output channel places of
a configuration of the unfolding of an individual component system. Its nodes
are the channel places involved in Ci. Moreover, r ≺̂Ci

r′ if there is a path from
r to r′ involving more than one event of Ci, and r @̂Ci r

′ if r is an input and r′
an output of some event in Ci.

Figure 7(a) shows the unfolding of each component pt-net of Figure 2 to-
gether with their input and output channel places. By exploring the relations
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C1={e0}

C2={e2, e4}

C3={e6, e8}

1 2 3

(a)

(b)

C2'={e3, e5}
C1'={e1}

Fig. 7. (a) unfoldings of three component pt-nets of Figure 2 (together with their
implicit channel places), and (b) a/sync graphs of configurations derived from these
unfoldings.

between those channel places, we are able to generate a/sync graph for any con-
figuration. For example, Figure 7(b) shows five a/sync graphs of the configura-
tions derived from Figure 7(a), where the relations ≺̂Ci and @̂Ci are represented
by solid arcs and thick dashed arcs, respectively. For the left-hand side pt-netΠ1,
we have: G(C1) = ({r0},∅,∅) and G(C ′1) = ({r1},∅,∅). The a/sync graphs of
the configurations inΠ2 are: G(C2) = ({r2, r3, r4, r5}, {(r2, r4), (r3, r4)}, {(r5, r4)})
and G(C ′2) = ({r6, r7, r8},∅, {(r8, r7)} and for the right-hand side pt-net Π3, we
have G(C3) = ({r9, r10, r11}, {(r9, r11)}, {(r10, r11)}).

Given a set of a/sync graphs G(C1), . . . ,G(Ck) extracted for the k component
systems, we call these graphs compatible if all inputs are produced and there is
no cycle involving ≺̂.

Definition 9 (compatibility of a/sync graphs). Let Ci (i = 1, . . . , k) be
a configuration of the unfolding of the i-th component pt-net, and G(Ci) =
(QCi

, ≺̂Ci
, @̂Ci

). Then C1, . . . , Ck are compatible configurations if the following
hold:

1. if (r, e) ∈WCi
then that there is j 6= i such that r ∈ QCj

; and
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2. the relation (@̂ ∪ ≺̂)∗ ◦ ≺̂ ◦ (≺̂ ∪ @̂)∗ is irreflexive, where ≺̂ =
⋃ ≺̂Ci and

@̂ =
⋃

@̂Ci
. �

In Figure 7, configurations C1, C
′
2, C3 are compatible since the q3-labelled

input channel place r8 in G(C ′2) is present in G(C3) (i.e., r11), and the input
channel places r9, r10 (labelled by q2 and q4 respectively) in G(C3) are all present
in G(C ′2). On the other hand, we can observe that there are no compatible config-
urations which involve C2, i.e., neither configurations C1, C2, C3 nor C ′1, C2, C3

are compatible. This is because the producers of r2 and r3 are in conflict in Π1.

Theorem 2. Let C1, . . . , Ck be configurations of the unfoldings of the compo-
nent pt-nets, and C = C1 ∪ · · · ∪ Ck. Then C is a global configuration if and
only if C1, . . . , Ck are compatible.

Therefore, one can obtain the cspt local configurations of an event e by
checking whether there are compatible configurations C1, . . . , Ck such that e
belongs to one of them. Such a task can be made efficient by working with the
graphs G(C1), . . . ,G(Ck). In fact, one can just check those configurations which
have dependencies on e.

Unfolding algorithm. The unfolding algorithm we are going to present sig-
nificantly differs from the existing net unfolding algorithms. The key difference
is that during the unfolding procedure we will be constructing nodes and con-
nections which will not necessarily be the part of the final unfolding. This is due
to the presence of synchronous communication within our model. More precisely,
in the net being constructed there will be executable and non-executable events
and conditions. The former will definitely be included in the resulting unfold-
ing, whereas the latter cannot be yet included due to the absence of event(s)
which are needed for communication. If, at some later stage, the missing events
are generated, then the previously non-executable event and the conditions (and
channel places) it produced become executable.

Although the net Unf generated by the algorithm may not strictly speaking
be a branching process during its creation, we will as far as it is possible treat
it as such. In particular, we will call an event e executable if e has at least one
local configuration, i.e., Conf (e) 6= ∅. This happens if we have generated enough
events to find at least one local cspt configuration of e in Unf .

Intuitively, an executable event is the event belonging to at least one single
run of a bcson. For the example net in Figure 6(b), e6 is an executable event
since there exists a local cspt configuration of e6: C[e6] = {e0, e3, e6}, where
C = {e0, e3, e6}. On the other hand, event e2 is non-executable because it does
not have any local configuration (we have seen the example of Figure 7 that
there are no compatible configurations which involve e2). Therefore, Figure 7(b)
is not a valid cspt branching process since according to Definition 4(3) every
event in BCSON is executable. If we remove e2 together with its successors, then
all events in the new net become executable indicating the net is a valid bcson
(Figure 6 (a)).
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Proposition 7. Let e be an executable event in BCSON . Then each event ap-
pearing in Conf (e) is executable.

Algorithm 1 (unfolding of cspt-net)
input: CSPT — cspt-net
output: Unf — unfolding of BCSON

nonexe ← ∅
Unf ← the empty branching process
add instances of the places in the initial marking of CSPT to Unf
add all possible extensions of Unf to pe

while pe 6= ∅ do
remove e from pe
addConnections(e)
if Conf (e) 6= ∅ then

for all event f in configurations of Conf (e) do
remove f and all its output conditions from nonexe (if present there)

add all possible extensions of Unf to pe

delete the nodes in nonexe together with adjacent arcs from Unf

The procedure for constructing the unfolding of a cspt-net is presented as
Algorithm 1.

The first part of the algorithm adds conditions representing the initial mark-
ing of the cspt-net being unfolded. Notice that the set nonexe of non-executable
events and conditions is set to empty. It also adds possible extensions to the
working set pe. The concept of a non-executable condition greatly improves the
efficiency of the above algorithm since a possible extension of Unf is a pair
e = (t, B) with h(e) = t where t is a transition of CSPT , and B is a set of
conditions of Unf such that:

– B is a co-set in one of the subnets of Unf and B ∩ nonexe = ∅;
– h(B) are all the input non-channel places of t; and
– (t, B) /∈ pe and Unf contains no t-labelled event with the non-channel place

inputs B.

The pair (t, B) is an event used to extend bcson without considering channel
places. We use the standard condition of a possible extension to choose events
that can be added to a component branching process (i.e., h(B) = •t ∩ P ′),
while constructing the related a/synchronous communications in a separate step.
In such a way, the complexity of appending groups of synchronous events is
significantly reduced. Note that a possible extension e has precisely determined
channel place connections since the depth values are fully determined.

Algorithm 2 provides the details of appending a possible extension e to bcson
as well as constructing related channel place structure after removing e from pe.
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Algorithm 2 (adding new event and a/sync connections)
procedure addConnections (input: e = (t, B))
add e to Unf and nonexe
create and add all the standard post-conditions of e to Unf and nonexe
for all channel place q ∈ •t• do

let r = (q, k) where k = depthq(e)
if there is no r = (q, k) in Unf then

add q-labelled channel place r to Unf and nonexe
add a corresponding arc between r and e

Each new extension and its output conditions are immediately marked as non-
executable. The conditions in nonexe set also indicate that they are unable to
be used for deciding any further possible extension. In this way we can avoid
any unnecessary extension and make sure the predecessors of every new event is
executable.

The procedure then creates the a/synchronous communications of the input
event if it is required. Given an event e, for every input or output channel place
q of its corresponding transition h(e) in the original cspt-net, we search in Unf
for the matching channel place (i.e., its label is q and its depth value equals to
the occurrence depth of e). Then we create a direct connection if such a channel
place exists. Otherwise, we add a new instance of the channel place together
with the corresponding arc.

After adding the implicit channel places connected to e (or creating the con-
nection for those which already existed) together with the corresponding arcs,
we are able to obtain the local configuration of e by looking for compatible con-
figurations C1, . . . , Ck of the component nets (which may contain non-executable
events) such that e belongs to one of the Ci’s. If e is executable (Conf (e) 6= ∅),
we make all non-executable events in Conf (e) together with their post-conditions
executable (see Proposition 7). We also generate new potential extensions (each
such extension must use at least one of conditions which have just been made
executable). Then another waiting potential extension (if any) is processed.

The algorithm generally does not terminate when the original cspt-net is not
acyclic, and the non-executable nodes are removed at the end of the algorithm.
An example run of the algorithm is presented in the appendix.

6 Conclusions and Future Work

The unfolding algorithm presented in this paper is based on standard unfold-
ing method, which essentially works by appending possible extension one by
one. A potentially very efficient approach for the construction of the unfolding
could be to use the parallel unfolding technique [4]. One can, for example, un-
fold each component branching process in parallel, by temporarily ignoring any
a/synchronous issues. The procedures of appending channel places as well as
executability checking (removing unnecessary events) would proceed in parallel.
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In future we intend to explore the generation of finite complete prefixes of
cspt-nets. In the case of pt-nets, this relies on the notion of cut-off events, which
are roughly events in the unfolding that produce a marking already produced by
other events with smaller histories. In general, it is impossible to generate a finite
complete prefix of the unfolding of a cspt-net even if the component pt-nets are
safe. The reason is that the channel places linking the component pt-nets can be
unbounded due to asynchronous communication. However, if all communications
are synchronous, this is no longer a problem. Finally, the implementation of the
cspt model and its unfolding to the son-based [11] tool are left for the future
works.
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Abstract. The functional architecture focuses on decomposing func-
tionality into modules that offer certain features. These features require
interactions in order to complete their functionality. However, functional
architectures typically only focus on the static aspects of the system de-
sign. Additional modeling techniques, such as message sequence charts
are often used in the early phases of software design to indicate how the
software should behave.

In this paper we investigate the use of process discovery techniques to
discover from these scenarios the internal behavior of individual compo-
nents. Based on event logs, this paper presents an approach (1) to derive
the information flows between features, (2) identify the internal behav-
ior of features, and (3) to discover the order between features within a
module. The approach results in a sound workflow model for each mod-
ule. We illustrate the approach using a running example of a payment
system.

1 Introduction

One of the principle tasks of a software architect is to design a software sys-
tem [17], i.e., to organize the software elements the system is composed of in
sets of structures, to allow reasoning about the system [4]. Many different Archi-
tectural Description Languages (ADLs) exist to document software architecture.
However, due to the large competitive market in the software product industry,
architecture is often neglected in software product organizations [14]. Hence, not
many ADLs are used in practice. As experienced in [14], in software product or-
ganizations, architects rather use informal architectural models as an instrument
of communication and discussion.

An important aspect of software architecture is the functionality it offers.
To decompose and specify the functionality of software, the authors of [6] in-
troduced the Functional Architecture Model (FAM), which offers the desired
modeling technique used by many software architects in software product orga-
nizations [14]. The FAM separates the functionality into so-called features that
are offered by the different modules the system is decomposed into.



Features interact with other features via information flows to offer their func-
tionality. However, FAM only offers a static view on this interaction, i.e., the
information flow only shows possible interactions, but imposes no order on or
dependencies between these flows. Thus, to show how functionality is offered
by the system, the architect requires additional models. One way is to define
scenarios on top of the models, in which the architect can specify which features
interact in which order. These scenario then result in event logs, that can be
analyzed using process mining techniques [2]. Another source for discovering the
possible interactions between features is the use of system execution data [21],
mapping events to the (partial) execution of features. In this way, execution data
can be used to reconstruct a software architecture.

In software product organizations, time to market is often a more important
priority than having a properly documented software architecture. Consequently,
architecture documentation is often outdated or even missing [9]. Therefore, dis-
covering architectural models help such organizations in maintaining their soft-
ware products. In this paper, we investigate the possibility to use process mining
techniques to discover, the functional architecture of the system from an event
log. We thereby focus on three basic questions on the functional architecture:

1. Which features interact?
2. What is the internal behavior of features?
3. What is the order in which features are executed within a module?

The first question focuses on the discovery of information flows: given an
event log, is it possible to derive which features interact? Next, we investigate
whether it is possible to derive the internal behavior of features based on event
logs. In other words, we focus on the question how does a feature use its in-
formation flows to complete its functionality. The last question deals with the
high-level view of the functional architecture. To execute the system’s function-
ality, the features within a module are called in a certain order. Can process
discovery techniques be used to discover these orders?

The remainder of this paper is structured as follows. To illustrate the ap-
proach, Sec. 2 presents a running example which we will use throughout the
paper. Next, Sec. 3 presents the basic notions used in the paper. Section 4 in-
troduces the functional architecture model in more detail, after which in Sec. 5
we will focus on solving the three questions posed in the introduction. Section 6
concludes the paper.

2 Running Example

As an running example, consider the Payment System as introduced in [10]. The
system consists of three modules, Debtor, Payment and Creditor. The payment
module serves as an intermediate between the Debtor and the Creditor. An
example of such a payment module is the european SEPA standard. The payment
module initiates a transaction, which the debtor needs to accept. If the debtor
accepts, the payment is continued, and the creditor is contacted to start the
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transaction. If for some reason the creditor rejects the transaction, the debtor
is notified, and the transaction is terminated. Similarly, if the creditor accepts,
the payment is passed to the debtor, and finally, the creditor receives the final
payment information.

As the software evolved into the current system, no precise model exists that
specifies the behavior of this system. The system only recorded the order in which
the different features of the modules have been called in an event log, as shown
in Tbl. 1. Each pair in the table represents the feature and the module to which
that feature belongs. For readability, the features and modules are abbreviated
in this event log.

The system is decomposed into three modules: the Debtor module (X), the
Payment (Y) module, and the Creditor (Z). Based on the event log, the software
architect finds the following features:

– Receive transaction request (A);
– Reject transaction (B);
– Accept transaction (C);
– Cancel transaction (D);
– Initiate payment (E);
– Send payment details (F);
– Archive transaction request (G).
– Send transaction request (H);
– Reject transaction request (I);
– Initiate creditor (J);
– Cancel transaction (K);
– Initiate payment (O);
– Handle payment (M);
– Archive transaction (N).
– Start transaction (Q);
– Handle transaction (S).

A

B

C

D

F

E

G

H

I

J

K

O

M

N

Q

S

Debtor

Payment

Creditor

Fig. 1. Initial functional architecture model of the running example
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Case Trace
1 (H, Y), (A, X), (B, X), (G, X), (I, Y), (N, Y)
2 (H, Y), (A, X), (B, X), (I, Y), (G, X), N, Y)
3 (H, Y), (A, X), (B, X), (I, Y), (N, Y), (G, X)
4 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (K, Y), (D, X), (G, X), (N, Y)
5 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (K, Y), (D, X), (N, Y), (G, X)
6 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (K, Y), (N, Y), (D, X), (G, X)
7 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z),( O, Y), (E, X), (F, X), (G, X), (M, Y), (S, Z), (N, Y)
8 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (O, Y), (E, X), (F, X), (G, X), (M, Y), (N, Y), (S, Z)
9 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (O, Y), (E, X), (F, X), (M, Y), (G, X), (S, Z), (N, Y)
10 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (O, Y), (E, X), (F, X), (M, Y), (G, X), (N, Y), (S, Y)
11 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (O, Y), (E, X), (F, X), (M, Y), (S, Z), (G, X), (N, Y)
12 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (O, Y), (E, X), (F, X), (M, Y), (S, Z), (N, Y), (G, X)
13 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (O, Y), (E, X), (F, X), (M, Y), (N, Y), (G, X), (S, Z)
14 (H, Y), (A, X), (C, X), (J, Y), (Q, Z), (S, Z), (O, Y), (E, X), (F, X), (M, Y), (N, Y), (S, Y), (G, X)

Table 1. System execution data of the payment system

Based on this information, the architect can draw the modules with their
features, as shown in Fig. 1. In the remainder of this paper, we investigate a
method to use event logs, such as the one shown in Tbl. 1, to complete the
diagram and derive a behavioral specification of the system.

3 Preliminaries

Let S be a set. The powerset of S is denoted by PpSq “ tS1 | S1 Ď Su. We use |S|
for the number of elements in S. Two sets U and V are disjoint if U X V “ H.
Some set S with relation ď is a partial order, denoted by pS,ďq, iff ď is reflexive,
i.e. a ď a for all a P S, antisymmetric, i.e. a ď b and b ď a imply a “ b for all
a, b P S, and transitive, i.e. a ď b and b ď c imply a ď c for all a, b, c P S. Given
a relation R Ď SˆS for some set S, we denote its transitive closure by R`, and
the transitive and reflexive closure by R˚.

A bag m over S is a function m : S Ñ IN , where IN “ t0, 1, . . .u denotes the
set of natural numbers. We denote e.g. the bag m with an element a occurring
once, b occurring three times and c occurring twice by m “ ra, b3, c2s. The set
of all bags over S is denoted by INS . Sets can be seen as a special kind of bag
where all elements occur only once; we interpret sets in this way whenever we
use them in operations on bags. We use ` and ´ for the sum and difference of
two bags, and “, ă, ą, ď, ě for the comparison of two bags, which are defined
in a standard way.

A sequence over S of length n P IN is a function σ : t1, . . . , nu Ñ S. If
n ą 0 and σpiq “ ai for i P t1, . . . , nu, we write σ “ xa1, . . . , any. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ε. The set of all finite sequences over S is denoted
by S˚. We write a P σ if a 1 ď i ď |σ| exists such that σpiq “ a. Concatenation
of two sequences ν, γ P S˚, denoted by σ “ ν; γ, is a sequence defined by σ :
t1, . . . , |ν|` |γ|u Ñ S, such that σpiq “ νpiq for 1 ď i ď |ν|, and σpiq “ γpi´|ν|q
for |ν| ` 1 ď i ď |ν| ` |γ|. A sequence σ can be projected over some set U ,
denoted by σ|U , and is inductively defined by ε|U “ ε, pxay;σq|U “ xay;σ|U if

a P U , and pxay;σq|U “ σ|U otherwise.
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Petri Nets A Petri net [16] is a tuple N “ xP, T, F y where (1) P and T are two
disjoint sets of places and transitions respectively; and (2) F Ď pPˆT qYpTˆP q
is a flow relation. The elements from the set P Y T are called the nodes of
N . Elements of F are called arcs. Places are depicted as circles, transitions as
squares. For each element pn1, n2q P F , an arc is drawn from n1 to n2.

Let N “ xP, T, F y be a Petri net. Given a node n P pP Y T q, we define
its preset ‚

N n “ tn1 | pn1, nq P F u, and its postset n‚N “ tn1 | pn, n1q P F u.
We lift the notation of preset and postset to sets. Given a set U Ď pP Y T q,
‚

N U “
Ť

nPU ‚
N n and U‚N “

Ť
nPU n‚N . If the context is clear, we omit the N in

the subscript.
A marking of N is a bag m P INP , where mppq denotes the number of tokens

in place p P P . If mppq ą 0, place p is called marked in marking m. A Petri net
N with corresponding marking m is written as pN,mq and is called a marked
Petri net. Given a marked Petri net pN,mq, transition t is enabled, denoted by
pN,mqrty, if ‚t ď m. If transition t is enabled in pN,mq, it can fire, resulting in
a new marking m1, denoted by pN,mqrtypN,m1q, such that m1` ‚t “ m` t‚. We
lift the firing of transitions to the firing of sequences in a standard way, i.e., a
sequence σ P T˚ of length n is enabled in pN,mq if markings m0, . . . ,mn exist,
such that m “ m0 and pN,mi´1qrσpiqypN,miq for all 1 ď i ď n. A marking
m1 is reachable from some marking m in N , denoted by pN,mqr˚ypN,m1q, if a
firing sequence σ P T˚ exists such that pN,mqrσypN,m1q. A marking m1 is a
home marking of pN,mq, if for all markings m2 with pN,mqr˚ypN,m2q, we have
pN,m2qr˚ypN,m1q.

A special class of Petri nets are the workflow nets [1]. A workflow net is a
tuple xP, T, F, i, fy with xP, T, F y a Petri net, (2) i P P is the only place with no
incoming transitions, (3) f P P is the only place with no outgoing transitions,
i.e., ‚i “ f‚ “ H, and (4) all transitions have at least one incoming and one
outgoing arc, i.e., ‚t ‰ H ‰ t‚ for all t P T .

Open Petri Nets Within a network of asynchronously communicating systems,
messages are passed between the elements within the network. The approach we
follow is based on Open Petri nets [5]. Communication in an open Petri net
(OPN) is represented by special places, called the interface places. An interface
place is either an input place, receiving messages from the outside, or an output
place that sends messages to the outside of the OPN. An input place is a place
that has only outgoing arcs, and an output place has no incoming arcs.

Definition 1. An Open Petri net is defined as an 7-tuple xP, I,O, T, F, i, Ωy
where (1) xP Y I YO, T, F y is a Petri net; (2) P is a set of internal places;
(3) I is a set of input places, and ‚I “ H; (4) O is a set of output places,
and O‚ “ H; (5) P , I and O are pairwise disjoint; (6) i P INP is the initial
marking, and (7) Ω Ď INP is the set of final markings. We call the set I Y O
the interface places of the OPN. An OPN is called closed if I “ O “ H.

An important behavioral property for OPNs is termination: an OPN should
always have the possibility to terminate properly. We identify two termination
properties: weak termination and soundness.
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Definition 2. Let xP, I,O, T, F, i, fy be an OPN. It is weakly terminating, if for
every reachable marking of the marked Petri net pxP Y I YO, T, F y, iq a marking
f P Ω can be reached.

It is sound, if for every reachable marking of the marked Petri net pxP, T, F y, iq
a marking f P Ω can be reached.

Communication between OPNs is done via the interface places. Two OPNs
can only communicate if the input places of the one are the output places of the
other, and vice versa.

Definition 3. Two OPNs A and B are composable, denoted by A‘ B, if and
only if pIA XOBq Y pOB X IAq “ pPA Y TA Y IA YOAq X pPB Y TB Y IB YOBq.

If A and B are composable, they can be composed into a new OPN, denoted by
A‘B, with A‘B “ xP, I,O, T, F, i, Ωy where P “ PAYPBYG; I “ pIAYIBqzG;
O “ pOAYOBqzG; T “ TAYTB; F “ FAYFB; i “ iA` iB; and f “ ΩAYΩB

with G “ pIA XOBq Y pOB X IAq.

Event Logs and Behavioral Profiles Although event logs are defined as a
tuple consisting of a set of case identifiers, events, and an attribute mapping [2],
it is in this paper sufficient to consider an event log, denoted by L, as a set of
sequences over some alphabet T , i.e., L Ď T˚. Given an event log L, we define
the successor relation [20] by a ăL b if a sequence σ P L and 1 ď i ď |σ| exist,
such that σpiq “ a and σpi` 1q “ b. Using the successor relation, we define the
behavioral profile pÑc, ‖c,`cqL as three relations: (1) the causality relation Ñc

is defined by aÑc b iff aăL b and b ­ăL a, (2) the concurrency relation ‖c, which
is defined by a ‖c b iff both aăL b and băL a, and (3) the exclusive relation `c

is defined by a `c b iff both a ­ăL b and b ­ăL a [20]. If the context is clear, we
omit the subscript.

Given a marked Petri net pN,mq with N “ xP, T, F y, an event log L Ď T˚
is called complete with respect to pN,mq iff traces σ1, σ2 P T˚ exist such that
pN,mqrσ1; xa, by;σ2ypN,) implies a ăL b for all a, b P T .

4 Functional Architectures

To model the overview of a system, the modules it consists of, and the features
these modules offer, we propose the use of the functional architecture model
(FAM). The functional architecture of a system is “an architectural model which
represents at a high level the software products major functions from a usage
perspective, and specifies the interactions of functions, internally between each
other and externally with other products” [6]. It offers modules containing fea-
tures. Features of different modules interact via so-called information flows.

An example is shown in Fig. 2(a). The FAM contains 1 context module, E,
7 modules, A, B, C, D, X, Y and Z. Modules have features, depicted by the
rounded rectangles. For example, module C contains two features, K and L. Be-
tween features of different modules, information flows exist, e.g., the information
flow pF, q, Lq between modules A and C.
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Fig. 2. Example Functional Architecture Model and corresponding scenario as overlay

Definition 4. A Functional Architecture Model (FAM) is defined as a 6-tuple
xM, C,F, h,m,Ñy where

– M is a finite set of modules;
– C is a finite set of context modules;
– F is a finite set of features;
– h :M ÑM is the hierarchy function, such that the transitive closure h˚ is

irreflexive;
– m : F Ñ M Y C is a feature map that maps each feature to a module,

possibly in the context, and this module does not have any children, i.e.
h´1pmpF qq “ H for all F P F;

– Ñ Ď F ˆ Λ ˆ F is the information flow, with Λ the label universe, such
that for pA, l, Bq PÑ we have mpAq ‰ mpBq. The labels for the information
flows are unique per feature, i.e., pA, l, Bq and pA, l, Cq imply B “ C for all
labels l P Λ and pA, l, Bq, pA, l, Cq P Ñ.

Although the information flows define the possible interactions between mod-
ules, it remains a static overview of the system. Therefore, one can use scenarios
on top of the functional architecture, e.g. by creating an overlay, highlighting the
information flows that are executed and the order in which they should occur.
Formally, we represent a scenario as a partial order.

Definition 5. Let F “ xM, C,F, h,m,Ñy be a FAM. A scenario of F is a pair
pS,ăq with S ĎÑ, such that pS,ďq with ď“ă˚ is a partial order.

An example is shown in Fig. 2(b). The scenario implied by the overlay can
be represented by a partial order induced by pO, p, F q ă pF, q, Lq, pF, q, Lq ă
pK, s,Hq, pF, q, Lq ă pK, r,Nq, pK, r,Nq ă pN, u,Hq, pK, s,Hq ă pH, t,Gq,
pN, u,Hq ă pH, t,Gq, pK, r,Nq ă pM, v,Hq, and pM,v,Hq ă pH, t,Gq.
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However, such scenarios are typically not specified. Another important draw-
back of such scenarios is their analyzability. Although each scenario can be
checked, the consistency between the different scenarios remains a difficult task.
Therefore, in the remainder of this paper, we search for a method to derive the
behavioral specification as a network of asynchronously communicating systems,
given the system execution data produced by the actual system in the form of
event logs.

5 Discovery of a Functional Architecture

In this section, we study the possibilities process mining [2] offers to generate
Petri nets for each of the different modules a system consists of. Event logs
describe the order in which features of a system have been executed. Such event
logs are system wide. Instead of each module having its own event log, only
global sequences exist, i.e., sequences concatenate the executed features over all
modules. As FAM only allows features to be contained in a single module, we
assume that each feature belongs to exactly one module. Also, FAM prescribes
communication to be one-directional, i.e., given two communicating features A
and B, we assume that either A sends a message to B, or vice versa, that B
sends a message to A, but not both.

The behavioral specification of a system is three-fold: (1) communication
between modules via their features, (2) the internal behavior within each feature,
and (3) the order in which features are called within a module. In this section,
we explore all three types of behavioral specification to come to a composed
system of asynchronously communicating systems.

In the remainder, let L be an event log over a set of features T , and let
R : T Ñ M , with M the set of modules, be a function that maps each feature
onto the module that contains that feature.

5.1 Communication between Features

Communication between modules within a system is asynchronous of nature:
messages are sent between features in order to complete their functionality.
Within an event log, we need to consider the order in which events or fea-
tures occur. For example, given some trace σ, if the resource is different for two
subsequent events, i.e., Rpσpiqq ‰ Rpσpi` 1qq, then this might indicate that the
former sends a message to the latter. This is expressed by the communication
successor.

Definition 6 (Communication successor). Let L Ď T˚ be an event log.
We define the communication successor relation ÎL Ď T ˆ T by AÎLB iff
RpAq ‰ RpBq, σpiq “ A, and σpi` 1q “ B for some σ P L and 1 ď i ă |σ|.

Although at first sight the communication successors seem to work, we need
to remember the concurrent nature of asynchronous communication. Consider for
example the communication between modulesM andN as depicted in Fig. 3, and
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Fig. 3. Modules M and N

Case Trace

1 A, E, F, G, B, C
2 A, E, F, B, G, C
3 A, E, B, F, G, C
4 A, E, B, F, C, G
5 A, E, F, B, C, G
6 A, B, E, F, G, C
7 A, B, E, F, C, G

Table 2. Corresponding event log

E F G

A Ñ ` `
B ‖ ‖ ‖
C ` Ð ‖

Table 3. Communication behavioral profile

the corresponding allowed sequences in Tbl. 4. We have AÎE, which is indeed
the communication as modeled in the composition M ‘ N . However, we also
find GÎB, indicating a possible communication between G and B. Listing all
communication successors, we get AÎE, GÎB, F ÎB, BÎG, GÎC, EÎB,
BÎF , F ÎC, C ÎG, and BÎE. Observe that because of the asynchronous
nature of the communication, features B and E are concurrently enabled in
Fig. 3. Assuming the event log to be complete, this should become visible in the
communication successor relation, as for the normal successor relation on event
logs.

Definition 7 (Communication behavioral profile). Let L Ď T˚ be an event
log, and ÎL Ď T ˆ T the corresponding communication successor relation.

The communication behavioral profile is the 3-tuple pÑc, ‖c,`cqCom
L defined

by:

– AÑc B iff A ÎL B and B ­ÎL A;
– A ‖c B iff both A ÎL B and B ÎL A; and
– A`c B iff both A ­ÎL B and A ­ÎL B.

Calculating the behavioral profile of the communicating transitions using
the communication successor relation, results in the communication behavioral
profile as shown in Tbl. 3. It shows that B and E are concurrently enabled.
Following the behavioral profile, we see that the causal relation of the behavioral
profile correctly identifies the feature communication.

Using the communication behavioral profile, we can construct the informa-
tion flows from an event log as follows. If AÑB in the communication behavioral
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Debtor Payment Creditor
A B C D E F G H I J K O M N Q S

A Ð ` ` ` ` ` ` ` `
B ` Ñ ` ` ` ` ` ` `
C ` ` Ñ ` ` ` ` ` `
D ` ` ` Ð ` ` ‖ ` `
E ` ` ` ` Ð ` ` ` `
F ` ` ` ` ` Ñ ` ` `
G ` ‖ ` ` ` ‖ ‖ ` ‖
H Ñ ` ` ` ` ` ` ` `
I ` Ð ` ` ` ` ‖ ` `
J ` ` Ð ` ` ` ` Ñ `
K ` ` ` Ñ ` ` ` ` Ð
O ` ` ` ` Ñ ` ` ` Ð
M ` ` ` ` ` Ð ‖ ` Ñ
N ` ` ` ‖ ` ` ‖ ` ‖
Q ` ` ` ` ` ` ` ` ` Ð ` ` ` `
S ` ` ` ` ` ` ‖ ` ` ` Ñ Ñ Ð ‖

Table 4. Communication behavioral profile for the running example

profile of the event log, then an information flow pA, x,Bq exists, with x a fresh
label. This results in the following translation:

Definition 8 (Generated FAM). Let L be an event log, and pÑc, ‖c,`cqCom
L

be its communication behavioral profile. Its corresponding functional architecture
model xM, C,F, h,m,Ñy is defined by:

– M “ RpLq;
– C “ H;
– F “ T ;
– h “ H;
– m “ R; and
– Ñ“ tpA, x,Bq | AÑcB, and x P Λ a fresh labelu.

After constructing the communication behavioral profile for the running ex-
ample, shown in Tbl. 4, we can complete the functional architecture model.
Based on the given system execution data, we see for example that feature H
communicates with feature A, and feature S sends messages to features K and
O, and receives messages from feature M . The complete functional architecture
of the running example is shown in Fig. 4.

5.2 Internal Behavior of Features

As can be seen in the running example, features can send and receive multiple
messages. For example, feature S sometimes sends a message to feature K and
sometimes to feature O. Therefore, the next step in discovering the functional
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Fig. 4. Functional architecture model of the running example

architecture is to reconstruct the internal behavior of each of the features. For
this, we create for each of the features an event log, containing the features that
it communicates with. We call this the feature log.

Definition 9 (Feature log). Let L Ď T˚ be an event log, and let F P T be
some feature. Let pÑc, ‖c,`cqCom

L be the corresponding communication behav-
ioral profile. The feature log LF is defined by LF “ tσ|CpF q | σ P L, F P σu
where CpF q “ tA | AÑc F _ F ÑcAu.

Consider for example feature S in the running example. This feature com-
municates with features K, O and M , i.e., CpSq “ tK,O,Mu. Its feature log is
the projection of the log on these features, i.e., LS “ txKy, xO,Myu.

On these feature logs, we apply the inductive miner [13], that always returns
a sound workflow net. Next, we transform the discovered workflow net into an
open Petri net, to visualize the messages sent and received by the feature. This
results in a feature net for each of the features present in the event log.

Definition 10 (Feature Net). Let L Ď T˚ be an event log, and let F P T
be some feature. Let pÑc, ‖c,`cqCom

L be the corresponding communication behav-
ioral profile. The Feature net NF is the OPN xP, I,O, T, F, i, Ωy defined by

– P “ P̄ , T “ T̄ , i “ r ī s, Ω “ t r f̄ s u;
– I “ tpA´F | AÑc F u;
– O “ tpF´A | F ÑcAu;
– F “ F̄ Ytpt, pF´Aq | t P T, λptq “ A,F ÑcAu

YtppA´F , tq | t P T, λptq “ A,AÑc F qu.
where xP̄ , T̄ , F̄ , ī, f̄y is the discovered workflow net.

In our running example, each of the 16 features are transformed into a feature
net. Most of the features are simple, like for feature H and A, consisting of
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pS-O

pS-K

pM-S

pH-A pH-A

pJ-C

pJ-Q

pS-K

pK-D

Fig. 5. Some of the feature nets for the running example

a single transition sending a message to A, and receiving a message from H,
respectively. A more complex feature net is the net for feature S, which internally
decides whether it sends a message to K or to O. Figure 5 depicts some of the
feature nets generated using the inductive miner [13].

5.3 Feature Interaction within Modules

Now that each feature has its internal behavior defined by means of a feature
net, the next step is to determine the order in which features are executed within
each of the modules. As for the features, we first create event logs for each of
the modules, by filtering each trace on the features it contains. This results in a
module log for each of the modules.

Definition 11 (Module Log). Let L Ď T˚ be an event log. Let M P RngpRq
be a module. Let pÑc, ‖c,`cq be the corresponding communication behavioral
profile. The Module log LM is defined by LM “ tσ|tF |RpF q“Mu | σ P Lu.

Within the running example, we obtain three module logs, one for each of
the modules. For example, module Debtor, has module log LDebtor “ txA,B,Gy,
xA,C,D,Gy, xA,C,E, F,Gyu, and for Creditor we have LCreditor “ txQ,Sy,

Fig. 6. Refinement of a transition by a workflow net
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Fig. 7. Module nets for the running example

xQ,S, Syu. Again applying the inductive miner results in the three workflow
nets as depicted in Fig. 7. Notice that, although feature S occurs twice in one
of the sequences, the algorithm only adds a single feature S in the resulting
workflow model.

5.4 Composition of Feature Nets and Module Nets

Last step in the process is to combine the feature nets generated for each of the
features with the generated module nets. This results in an open Petri net for
each of the modules, defining the interaction between the different modules.

In the module net, each feature is represented by a single transition. Next
step is to refine each feature by its feature net. For this, we first define the
refinement of a transition by a workflow model on open Petri nets, as shown in
Fig. 6. This refinement connect each input place of the refined transition with
each of the transitions in the postset of the initial place of the workflow, and
similarly each output place of the refined transition with each of the transitions
in the preset of the final place of the refining workflow. It is straight-forward
to prove that if (1) the initial net is sound, (2) each input place of the refined
transition is 1-bounded, i.e., it can contain at most one token, and (3) workflow
net W is sound, then the refinement yields a sound result.
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Fig. 8. Composed nets generated for the running example

The result of refining each feature by its feature net is shown in Fig. 8. As
features G and N have no feature net defining communication, these transitions
are not refined.

To verify whether the resulting open Petri nets are a true representation of
the system, one can compose the nets into a single Petri net, and execute each
of the sequences of the event log of Tbl. 1 on the resulting model, which in
this example is possible. Further analyzing the resulting model shows that its
only deadlocks are desirable markings: either all modules reach their final place,
without any pending tokens, or the Creditor module remains untouched, while
the Debtor and Payment module reach their final place.

6 Conclusions

Within this paper, we discussed a method to automatically generate a functional
architecture model from an event log together with a mapping of each feature to
the module that offers that functionality. We showed how the information flows
can be derived from the communication behavioral profile. This profile not only
identifies the information flow for the static structure of the functional archi-
tecture, but additionally offers sufficient information to construct the internal
behavior for each of the features, and between the features within a module.
Lastly, we showed how to compose feature and module nets into an open Petri
net.
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Discovering the interaction between different modules is not new. Tchniques
like service mining [3], apply process mining on event logs to discover a process
model of how the services are orchestrated. In the approach presented in this
paper, we focus on the discovery of the behavior of each of the modules, rather
than a complete orchestration.

In [15], the authors discover the internal behavior of services based on the
interaction between two services, guaranteeing deadlock freedom of the discov-
ered service. In the setting of this paper, the exact interaction between modules
is unknown, and needs to be discovered first.

The core idea of this paper is twofold: firstly to derive the information flows
for a Functional Architecture Model, and secondly to derive the internal behavior
for each of the modules within the architecture. Within software architecture,
this is called Software Architecture Reconstruction [12]. Although some tech-
niques take the dynamic aspects of the software operation into account, most
techniques only focus on the static aspects of software architecture models, us-
ing solely the available source code [8]. For example, system execution data is
used to enrich architectures with performance data [11] or to visualize traces on
how the software is used [19]. In this paper, we propose a method to not only
visualize software usage, but to discover module communication and to generate
the internal behavior of modules within a software architecture.

Although the approach presented in this paper shows an application of the
behavioral profile to discover feature interaction, additional research is required.
First, the current approach requires the event log to be complete, i.e., if the log
grows, the successor relation should not change. Further, for the generation of
the internal feature behavior, we assume that if the sending feature is present
in the event log, it enables all possible events, which is possibly a too strict
assumption that deserves further investigation.

The approach in this paper is very flexible, as we derive individual models
for the features and modules. For this, we apply standard process discovery algo-
rithms returning sound workflow models. However, their composition in general
does not result in a sound system of asynchronously communicating systems.
Further research is required to study the conditions under which this can be
guaranteed. For this, we want to identify conditions which on the one hand re-
sult in correct models, and on the other hand have a positive effect on model
quality as described by [7].

Not only does this approach provide useful insights for the software architect,
we expect the approach applicable to business process management as well, as
for the discovery of separate business processes, the Business Process Modelling
and Notation offers the swimlane notion. Therefore, we plan to implement the
approach in the Process Mining toolkit ProM [18] to experiment and apply the
approach on real-life examples.
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Abstract. In this paper we consider Interval-Timed Petri nets (ITPN),
an extension of Timed Petri nets in which the discrete time delays of
transitions are allowed to vary within fixed intervals including possible
zero durations. These nets will be analyzed for the first time under some
maximal step semantics with auto-concurrency. This matches well with
the reality of time critical systems which could be modeled and analyzed
with our model. We introduce in particular the notion of global firing
step which regroups all what happens inbetween two time ticks. Full
algebraic representations of the semantics are proposed. We introduce
time-dependent state equations for a sequence of global firing steps of
ITPNs which are analogous to the state equation for a firing sequence
in standard Petri nets and we prove its correctness using linear algebra.
Our result delivers a necessary condition for reachability which is also
a sufficient condition for non-reachability of an arbitrary marking in an
ITPN.

1 Introduction
Petri nets (PN) as proposed initially by Carl Adam Petri [4] are applied to design
models of systems considering only causal relations in it and not temporal ones.
Of course there is a huge field of applications in which time does not really
matter. In real systems, however, the time is mostly indispensable and therefore
it cannot be ignored. Thus a certain number of time-dependent Petri net classes
had been proposed in the meanwhile, cf.([3], [9], [5], [2], [11], [1], [6]). Moreover,
it is well known that the majority of these classes are more expressive then the
classic model: Almost all time-dependent Petri net classes are Turing-powerful,
while the power of classic Petri nets is less than that of Turing-machines.

In this paper we are dealing with Interval-Timed Petri nets (ITPN), which are
an extension of Timed Petri nets (TPN), introduced by Ramhandani in [9] and
extensively studied by Sifakis [10]. TPNs are classic PNs where each transition
is associated with a natural number which describes its firing duration. TPNs,
as well as their extensions like ITPNs, are Turing-powerful (cf. Popova [6]).

In ITPNs the firing duration of a transition is also given by a natural number
but this duration is not fixed. It may vary within an interval which is associated
with the transition. The apparition of a transition is thus divided in two events,
the startfire and the endfire event. Inbetween them tick events may happen,



corresponding to the passing (or elapsing) of one time unit of some global clock
[1].

When transitions are enabled they must start firing. This is the reason why
we consider as firing modus for ITPNs the firing in maximal steps. Two different
step semantics are possible: with or without auto-concurrency. In this article,
we consider ITPNs with auto-concurrency. This means that when a transition
becomes enabled, irrespective of whether or not an instance of it is firing already,
a new instance must immediately start firing. The firing duration of each new in-
stance is choosen in a non-deterministic way and is a natural number, describing
how many tick events may occur before the endfiring event. This number belongs
to the interval associated with the transition. Contrary to previous work, zero
firing durations are allowed in this article.

A configuration in a PN is described by a marking. Because of the explicit
presence of time a marking alone cannot completely represent the configuration
of a time-dependent Petri net however. For this reason we use the notion of
“state" which includes both the marking and the corresponding temporal infor-
mations. The first aim of the paper is to introduce the maximal step semantics
for the ITPNs formally: a firing step sequence in an ITPN consists of alternating
so called Globalsteps (multisets of startfire and endfire events) and tick events.
And we will prove some semantical properties.

The second aim of this paper is to provide a sufficient condition for non-
reachability of states in ITPNs similar to the sufficient condition for non-reachability
of markings for classic Petri nets. To illustrate this purpose, let us consider first
the problem in a classic Petri net N , starting with a firing sequence σ of N .
After the firing of such a sequence a certain marking M of N is reached. We can
compute this marking using the following well known equation:

M =M0 + C · ψσ (1)

where C is the incidence matrix of the Petri netN and ψσ is the Parikh vector
of σ( whose i-th component gives the number of appearance of transition ti in σ).
This equation is also called the state equation of the sequence σ. Actually, it can
be used in many more ways. We can consider each marking suitable for a net as
reached after the firing of an unknown sequence. Now, we can consider the state
equation of the unknown sequence, where the elements of the Parikh vector are
variables. If this equality has no non-negative integer solution then there does
not exist a sequence making the considered marking reachable. Therefore, this
is a sufficient condition for the non-reachability of the marking. The following
simple example illustrates this approach:

p1

p2

t1 t2

Fig. 1: PN N1.

Let us consider the PN N1 with M0 = (1, 1)T and show
that the empty marking M = (0, 0)T is not reachable in
this net. The incidence matrix of N1 is CN1 =

(
1 −1
−1 1

)
.

Let us assume that there is a transition sequence σ
such that after its firing in N1 the empty marking is
reached. When the transition t1 appears x1 times in σ
and t2 appears x2 times then the Parikh vector of σ is
ψσ = (x1, x2)

T . Subsequently, the equality (1) for this
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transition sequence leads to the system of equations
{
−1 = x1 − x2
−1 = −x1 + x2

. This equa-

tion system is obviously not solvable and therefore there is no such firing tran-
sition sequence σ in N1 leading to the empty marking M .
Furthermore, it is evident that the marking M ′ = (2, 0)T is reachable in N1 .

Let us now consider the Interval-Timed Petri net D1 arising from the PN N1

by adding time durations to each transition – the firing of each transition should
take exactly one time unit, thus [1, 1] is the duration interval associated to t1
and t2. As both transitions are firable from the initial state, after startfiring both
transitions in one step, the empty marking M is reached. After one tick event,
both transitions need to endfire in one step, and the initial state is reached again.
Thus it is easy to see that in this ITPN D1 the marking M ′ is not reachable.
This simple example shows that reachability and non-reachability in an Interval-
Timed Petri net are essentially unrelated to reachability and non-reachability in
its untimed skeleton. Our aim is to prove with the help of a time-dependent state
equation that for instance, it is impossible to reach M ′ in D1.

Of course, the time-dependent state equations we are establishling in this
paper are much more complex than (1) or our previous results in [8], [7] and
[2] because of the possibility of zero durations and the auto concurrent maximal
step semantics. Nevertheless, our equations of a firing step sequence in an ITPN
are consistent extensions of (1).

The paper is organized as follows: First formal definitions of ITPNs and their
maximal step semantics are given in Section 2, and some semantical equivalence
is proved. Then original algebraic representations and calculus of these semantics
are proposed in Section 3. Some of them are adaptations of definitions known for
the algebraic presentation of a firing step sequence for TPN [8], or ITPN without
zero duration and without auto-concurrency [7], and others are entirely new
here. Within this frame intermediate algebraic properties are first established
in Section 4, leading then to the state equations. Full proofs of all results are
included in the paper.

2 Interval-Timed Petri Nets and their semantics
This section will define the objects treated in this article.

As usual, N denotes the set of all natural numbers including zero, N+ is that
without zero. A matrix A is a (m × n) - matrix when A has m rows and n

columns. The denotation A =
(
aij

)
i=1···m
j=1···n

for a matrix A means that A is a

(m× n) - matrix and aij is the element of A in the (i)−th row and in the j−th
column. Furthermore, A.j = (a.j) denotes the j-th column of the matrix A and
Ai. = (ai.) denotes the i-th row. The (d × d) - matrix Od denotes the (d × d)
zero-matrix (all its elements are zero), the (d × d) - matrix Ed is the (d × d)
identity matrix.

2.1 Net definitions

A (marked) Petri net (PN) is a quadruple N = (P, T, v,M0), where P (the
set of places) and T (the set of transitions) are finite and disjoint sets and
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v : (P × T ) ∪ (T × P ) −→ N defines the arcs with their weights and M0 : P −→
N fixes the initial p-marking. In general, a p-marking M : P −→ N is presented
by a vector of dimension |P |. As usual, t is called enabled in a p-marking M if
for all p ∈ P, v(p, t) ≤M(p).
Let N be a PN and D : T −→ N × N be a function. Then, a pair Z = (N , D)
is called an Interval-Timed Petri net (ITPN) where N is its skeleton and D its
duration function including zero duration. Thus, D defines an interval for each
transition. within which its firing duration can vary.
The bounds sfd(t) and lfd(t) with D(t) =

(
sfd(t), lfd(t)

)
are called the shortest

firing duration for t and the longest firing duration for t, respectively. Further-
more, each δi ∈

(
D(ti)∩N

)
can be the actual duration of transition ti firing. The

bounds are allowed to be zero, i.e. the firing can be considered to take no time.
An ITPN behaves similarly to a PN with regards to maximal step semantics.
In this article auto-concurrency is not only allowed, but forced. Thus a maximal
step will be a multiset of events which appears at the same moment.
Formally, a multiset U of events E is a total function U : E −→ N, where U(ei)
defines the number of occurrences of the event ei in the multiset U . We can
write U in the extended set notation U = {eU(e) | e ∈ E and U(e) 6= 0} and we
denote by ] the operator of multisets union.
Let t be a transitions sequence of length n, t = t1t2 · · · tn. The transitions se-
quence t is called an undesired cycle if, for all i 6 n, sfd(ti) = 0 and for all
p,

∑
16i6n

(
v(ti, p)− v(p, ti)

)
> 0. Thus undesired cycles have firing duration zero

and could be infinitely repeated without time elapsing.
An ITPN is well formed if it has no undesired cycles. In order to avoid infinite
steps only well formed nets are considered in this paper.
Note that a token will reach the post-set of a transition ti only after the time
corresponding to the actual duration of this transition has elapsed. The exact
value of the actual duration δi is unknown at the beginning of the firing of ti.
The transition may stop firing after an arbitrary number δi ∈ D(ti) of time ticks
has elapsed.
As usual in time-dependent PNs, states in ITPNs are pairs S = (M,h) of map-
pings, M being the p -marking and h codes the clocks of the transitions. In [7]
h was defined as clock-vector, whereas now, in the context of auto-concurrency,
h needs to be a matrix of dimension (|T | × d). Thus the clock-matrix h has |T |
rows (i.e. the number of transitions in the skeleton Z) and d = max

ti∈T
(lfd(ti))+ 1

columns. The value hi,j+1 represents the number of active transitions ti with
age j (i.e. fired since j time ticks), where j ∈ D(ti). Please, note that we need
to use ‘j+1" because the first column of the matrix has number 1 and not num-
ber 0. The initial state S(0) = (M (0), h(0)) of Z is given by the initial marking
M (0) = M0 of Z and the zero-clock-matrix h(0) where h(0)i,j = 0 for all i, j. The
ITPN Zo which is used as a running example is shown in Fig.2.
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p1

p2

t2 t3t1 t4

2

2 2

3

[0,2] [1,3] [0,1] [1,2]

8

Fig. 2: ITPN Z0.

2.2 Semantics of Interval-Timed Petri Nets

Now, the behavior of ITPNs will be defined. For the transition rule of an ITPN
we distinguish three types of events, namely

– Startfire events: A startfire event, denoted as [ti, must occur immediately
(even n times) if ti becomes enabled in the skeleton (resp. if n transitions
ti become enabled at the same time). For each occurrence of [ti the input
tokens of ti are removed from their preplaces, the clock associated with ti
will count this occurrence by incrementing the number hi,1 and ti will be
called active.

– Endfire events: An endfire event, denoted as ti〉, must occur (even n times)
if the clock associated with ti is expiring, i.e. hi,j+1 = n 6= 0 and j = lfd(ti).
The event ti〉 may occur (at most qi times) if

∑
sfd(ti)6j<lfd(ti)

hi,j+1 = qi > 1.

For each of the endfire events ti〉 which occurs the corresponding hi,j+1 is
decremented and the output tokens are delivered at the postplaces of ti.
There is not only some choice, if some active transitions which need not
to endfire may endfire. But once the number of these may endfire events is
fixed (for instance q ≤ qi times transition ti), there is a choice to take these q
events totally nondeterministically or to take deterministically those q which
are the oldest among the qi active ones.

– Tick events: A tick event, denoted as X, is enabled iff there is no firing event
which must either start firing or stop firing. Upon occurring, a tick event
increments the clocks for all active transitions. Hence the tick events are
global. More precisely the incrementation is realised with a right shift of the
clock-matrix and by setting the first column to zero.

The initial state is considered to be the first after-tick state. The whole set of
such states is defined by induction in the sequel. An ITPN can change from one
after-tick state into another one by the occurrence of the so-called Globalstep,
which due to zero duration and auto concurrency extends the definition of firing
triple known from [7]. A Globalstep consists of several parts, first a multiset of
endfire events (called Endstep), then an iterative union of two multisetsMaxstep
and EndstepZero, (called Iteratedstep). A Maxstep is a maximal step of startfire
events and an EndstepZero is a multiset of endfire events of transitions with zero
firing duration. The iteration stops when no further Maxstep is possible. Note
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that it always stops as only wellformed ITPNs are considered. The Globalstep is
followed by one tick event for time elapsing.

During the execution of the ITPN Globalsteps and single tick events alternate
in the following way. Let S(1) = (M (1), h(1)) be an arbitrary after-tick state of
Z.

1) An Endstep (for end-firing-step), denoted by G
(1)
〉 , represents the union

of two multisets: That of all active transitions T1 which must end their firing
in this state, and a multiset T ′2 that contains several transitions which may end
their firing in this state s.
Thus Endstep G

(1)
〉 = T1 ] T ′2 where T ′2 ⊆ T2 ,

T1 = {tnii 〉 | i ∈ [1, |T |], h
(1)
i,j+1 = ni 6= 0, j = lfd(ti)} and

T2 = {tqii 〉 | i ∈ [1, |T |], qi =
∑

sfd(ti)6j<lfd(ti)
h
(1)
i,j+1 }.

Without loss of generality, we can choose for each i to put in T ′2 the oldest
active transitions ti ∈ T2, as shown later in Theorem 3.

Its occurrence S(1)
G

(1)

〉−→ S̃(1) leads to S̃(1) = (M̃ (1), h̃(1))
such that

∀p ∈ P M̃ (1)(p) =M (1)(p) +
∑

ti∈G(1)

〉

G
(1)
〉 (ti〉) · v(ti, p) (2)

and h̃(1)i,j :=





0 if G(1)
〉 (ti〉)−

∑
j′>j

h
(1)
i,j′ > 0

h
(1)
i,j − q if G(1)

〉 (ti〉)−
∑

j′>j+1

h
(1)
i,j′ = q and 0 < q < h

(1)
i,j

h
(1)
i,j otherwise.

(3)

The state S̃(1) is called an intermediate state.
2) An Iteratedstep is the iterative union of two multisets, the first one being

a Maxstep. The second one contains only Endfiring events of transitions with
zero duration, we denote that as EndstepZero.
We start by setting k := 0 and

M̃ (1,k) = M̃ (1,0) := M̃ (1) and h̃(1,k) = h̃(1,0) := h̃(1). (4)
a) A Maxstep (for maximal start firing step) represents a maximal multiset

of concurrently enabled transitions which must start to fire after an Endstep
or an EndstepZero. The multiset of startfire events is denoted by Gm(1,k+1) =

{[tnii |i ∈ [1, |T |] and M̃ (1,k) >
|T |∑
i=1

ni · v(ti, p)}.
If there are several enabled Maxsteps, the choice will be arbitrary solved.
The iterative union is stopped if the calculated k + 1-th Maxstep is empty
(Gm(1,k+1) = ∅,i.e. a fixpoint is reached). This implies that no further tran-
sitions can fire in this step, which always arrives because of the wellformedness
of the net. The value of k is stocked in kmax (kmax := k).

b) An EndstepZero, denoted by Gz(1,k+1), is a multiset of endfire events
of just activated transitions, which must or may end their firing immediately.

250 PNSE’15 – Petri Nets and Software Engineering



Precisely, EndstepZero contains only transitions started in the same step of it-
eration and whose shortest firing duration is equal to zero; all of them whose
longest firing duration is equal to zero too must end their firing; among the oth-
ers an arbitrary number of transitions may end their firing. Thus EndstepZero
is defined as

Gz(1,k+1) =





i ∈ [1, |T |] and sfd(ti) = 0 and
[(
lfd(ti) = 0 and

tnii 〉 ni = Gm(1,k+1)([ti)
)
or
(
lfd(ti) 6= 0 and

ni 6 Gm(1,k+1)([ti)
)]




.

A state S̃(1,k+1) is calculated after the k-th iteration such that for each p ∈ P
it holds that: M̃ (1,k+1)(p) = M̃ (1,k)(p)−∑

ti∈T
Gm(1,k+1)([ti) · v(p, ti) +

∑

ti∈T
Gz(1,k+1)(ti〉) · v(ti, p) and (5)

h̃
(1,k+1)
i,j :=

{(
h̃
(1,k)
i,j +Gm(1,k+1)([ti)−Gz(1,k+1)(ti〉)

)
if j = 1

h̃
(1,k)
i,j otherwise

. (6)

All newly fired and not ended events obtain age zero, i.e. are counted in
column j = 1 of the clock-matrix.

The Iteratedstep is now defined by
G

(1)
I =

⊎

16k6kmax
(Gm(1,k)

⊎
Gz(1,k)). (7)

The occurrence of an Iteratedstep (GI) S̃(1)
G

(1)
I−→ S′(1) leads to S′(1) =

(M ′(1), h′(1)) with
M ′(1) := M̃ (1,kmax) and h′(1) := h̃(1,kmax). (8)

S′(1) is called an intermediate state.
3) After the Globalstep (G

(l)
〉 , GI

(l)), one tick event has to occur now in state

S′, as no further firing event must happen. Its occurrence S′(1) X−→ S(2) leads to
S(2) = (M (2), h(2)). The state S(2) is a new after-tick state, with

M (2) :=M ′(1) and h
(2)
i,j :=

{
h
′(1)
i,j−1 if 1 < j 6 d

0 if j = 1
(9)

4) A firing step sequence σ in an ITPN Z is an alternating sequence of
Globalsteps and ticks, starting with the initial time state S(0) = (M (0), h(0))

σ = S(0)
G

(0)

〉 =∅
−→ S̃(0) G

(0)
I−→ S′

(0) X−→ S(1)
G

(1)

〉−→ S̃(1) G
(1)
I−→ S′

(1) X−→ S(2)
G

(2)

〉−→

S̃(2) . . . S(n−1) G
(n−1)

〉−→ S̃(n−1) G
(n−1)
I−→ S′

(n−1) X−→ S(n). (10)

where for all l > 0, the Endstep G
(l)
〉 , Iteratedstep G

(l)
I and states S(l) =

(M (l), h(l)), S′(l) = (M ′(l), h′(l)) and S̃(l) = (M̃ (l), h̃(l)) verify the above con-
ditions. In particular each S(l) has the same marking, i.e. the same first column
in the time marking as S′(l−1).
The following lemma states that the definition of S′(1) is well founded
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Lemma 1 Let us consider state S′(l) = (M ′(l), h′(l)) as defined in (8). Then this
state fulfils

M ′(l) = M̃ (l) −
|T |∑
i=1

G
(l)
I ([ti) · v(p, ti) +

|T |∑
i=1

G
(l)
I (ti〉) · v(ti, p) and

h
′(l)
i,j =

{
h̃
(l)
i,j + [G

(l)
I ([ti)−G

(l)
I (ti〉)] if j = 1

h̃
(l)
i,j otherwise.

2

Proof. We start with

M ′(l) =
(8)

M̃ (l,kmax)

=
(5)

M̃ (l,kmax−1) −
|T |∑

i=1

Gm(l,kmax)([ti) · v(p, ti) +
|T |∑

i=1

Gz(l,kmax)(ti〉) · v(ti, p)

and after kmax iterations we obtain

M ′(l) =
(5)

M̃ (l,0) −
kmax∑

k=1

|T |∑

i=1

Gm(l,k)([ti) · v(p, ti) +
kmax∑

k=1

|T |∑

i=1

Gz(l,k)(ti〉) · v(ti, p)

=
(4)+(7)

M̃ (l) −
|T |∑

i=1

G
(l)
I ([ti) · v(p, ti) +

|T |∑

i=1

G
(l)
I (ti〉) · v(ti, p).

Further, we start with the definition of h′(l).

h′(l) =
(8)

h̃(l,kmax)

=
(6)





h̃
(l,kmax−1)
i,j + [G

(l,kmax)
m ([ti)−G

(l,kmax)
z (ti〉)] if j = 1

h̃
(l,kmax−1)
i,j otherwise.

and after kmax iterations we obtain

h′(l) =
(6)





h̃
(l,0)
i,j + [

kmax∑
k=1

G
(l,k)
m ([ti)−

kmax∑
k=1

G
(l,k)
z (ti〉)] if j = 1

h̃
(l,0)
i,j otherwise.

=
(4)+(7)





h̃
(l)
i,j + [G

(l)
I ([ti)−G

(l)
I (ti〉)] if j = 1

h̃
(l)
i,j otherwise.

.

�

The set of all after-tick states and intermediate states forms the set of reach-
able states of Z. The reachability graph start with the initial state s0 and has all
these states as nodes and the concerned Endsteps, Iteratedsteps or ticks X as arc
inscriptions. Each after-tick state has as many successor nodes as the number of
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subsets of the set of endfiring events which may occur in the state. Each of these
nodes has as many successor nodes as Iteratedsteps. Thus the reachability graph
grows very quickly. To avoid the construction of such an enormous reachability
graph the consideration of the state equation to decide unreachability will be a
good alternative.

2.3 Semantic equivalences

We could have defined firing step sequences of an ITPN as in (10) where for all
l > 0, the Endstep G

(l)
〉 may contain transitions to be endfired independently

of their age. We would like to define the notion of similar firing step sequences
which only differ in the choice of the age of transitions which may and will
endfire.

Two firing step sequences σ and σ0 are called similar, denoted by σ0 ∼ σ if
both start at the same state and in all states S(l) and S0

(l) the marking (i.e.
their first column) is the same, and the Globalsteps are the same.
Thus, in similar firing step sequences only the clock matrices may differ, which
signifies that transitions of different ages could have endfired.

The following sentence establishes that w.l.o.g., we can always use as may
endfire events the oldest active transitions (as chosen in Definition 1 of Subsec-
tion 2.2. above).
Note that in both cases, transitions whose actual durations are the upper bound
of their respective time interval (δi = lfd(ti)) must endfire. For the others active
transitions (i.e. those which may endfire) we have the choice to choose which
transitions do so. Choosing to endfire the oldest active transitions make the
choice deterministic.

Example 2 Let be S(3) = (M (3), h(3)) the state reached from the initial state
of our running example in Fig.2. by the firing steps sequence σ =(
∅, {[t82},X

)
,
(
{t22〉}, {[t1, [t4, t1〉, [t2},X

)
,
(
{t4〉, t22〉}, {[t21, [t2, t21〉, [t22},X

)
with

M (3) = ( 00 ) and h
(3) =

(
0 0 0 0
0 3 1 4
0 0 0 0
0 0 0 0

)
.

Note that in this state, there are eight active transitions t2 whose time interval
is [1, 3].
From the clock matrix h(3) we can see that there are four transitions t2 of age
3, one transition of age 2 and three transitions of age 1. Imagine that seven
transitions will be endfired.
(a) If only the oldest active transitions are chosen

The intermediate state S̃ with M̃ (3) = ( 0
14 ) and h̃

(3) =

(
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)
will be reached.

(b) If transitions of any age may be chosen, then that of age two can be ignored

and the following state S̃ with M̃ (3) = ( 0
14 ) and h̃(3) =

(
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

)
could be

reached, too. �

Theorem 3 Let Z be an ITPN and n ∈ N+. For each firing step sequence σ of
n Globalsteps where we choose to may endfire active transitions of any ages, we
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can find a sequence σ0 where always the oldest active transitions are endfired,
and σo ∼ σ. �
Proof. Let σ be a sequence of n > 1 global steps where may endfire events are
chosen arbitrarily among the active transitions independently of their ages. As
defined in (10) it holds that

σ = S(0)
G

(0)

〉−→ S̃(0)
G

(0)
I−→ S′(0)

X−→ S(1)
G

(1)

〉−→ S̃(1)
G

(1)
I−→ S′(1)

X−→ S(2)
G

(2)

〉−→ S̃(2) . . .

. . . S(n−1) G
(n−1)

〉−→ S̃(n−1) G
(n−1)
I−→ S′(n−1)

X−→ S(n)

and ∀i 6 n, S(i) = (M (i), h(i)) , whereM (i) is a marking and h(i) its associated
clock matrix. We want to prove, by induction on n, that we can obtain another
sequence σ0 which has the same global steps as σ but different states, by endfiring
the oldest active transitions first.

Base : n = 1. For the first global step σ = S(0)
G

(0)

〉−→ S̃(0)
G

(0)
I−→ S′(0)

X−→ S(1)

we want to construct σo similar to σ. The initial state is the same in both cases
because we begin from the initial marking and no transition is active. Thus
So

(0) = (M (0), h(0)) = S(0).
The first endfiring multi-set is empty and the age does not play any role. Thus
S̃o

(0)
= S̃(0).

The iterated step contains only endfiring events of zero ages, thus we can use the
same multiset of firing S′o

(0)
= S′(0). After the tick event So(1) = S(1) holds.

We conclude that σo = So
(0)

G
(0)

〉−→ S̃o
(0) G

(0)
I−→ S′o

(0) X−→ So
(1) is a valid firing step

sequence and σo ∼ σ.
The base of induction is proved.

Induction hypothesis : For all firing step sequences σ of length i 6 n, with
arbitrarily aged endfiring events, there exists σo of length i such that σo ∼ σ is
supposed to be true and σo endfires only the oldest active transitions.

Induction step: Let σ be a firing step sequence of size (n+ 1) with arbitrary
aged endfiring events.
Thus, the prefix of σ of size n is the following firing step sequence

σ′ = S(0)
G

(0)

〉−→ S̃(0)
G

(0)
I−→ S′(0)

X−→ S(1)
G

(1)

〉−→ S̃(1)
G

(1)
I−→ S′(1)

X−→ S(2)
G

(2)

〉−→

S̃(2) . . . S(n−1) G
(n−1)

〉−→ S̃(n−1) G
(n−1)
I−→ S′(n−1)

X−→ S(n)

and its (n+1)-th global step is S(n) = (M (n), h(n))
G

(n)

〉−→ S̃(n) = (M̃ (n), h̃(n))
G

(n)
I−→

S′(n) = (M ′(n), h′(n))
X−→ S(n+1) = (M (n+1), h(n+1)). As the ages of transitions

in G
(n)
〉 are arbitrary, we only know the following about h̃(n), h(n) :
(a) For all i, xi := hi,lfd(ti)+1 transitions ti must endfire in this step. Thus,

for each i, txii is in G
(n)
〉 and h̃(n)i,lfd(ti)+1 = 0 follows.

(b) For all i, yi :=
∑

16j6lfd(ti)
h
(n)
i,j −

∑
16j6lfd(ti)

h̃
(n)
i,j is the number of may

endfire transitions in G
(n)
〉 .
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(c) It follows that for all i, zi := xi + yi = G
(n)
〉 (ti).

Now let us prove that there exist σo of size (n + 1) with σo ∼ σ, such that
the oldest active transitions endfire.
By hypothesis, we have σ′o, such σ′o ∼ σ′ and σ′o ends with state So(n), such that
the states S(n) and So(n) have the same markings but may have different clock
matrices. In σ′o only the oldest active transitions have endfired.

We need to prolongate σ′o by the same (n+1)-th global step (G〉
(n),GI

(n),X).
Thus, we have to show the existence of fitting h̃o

(n)
, h′o

(n) and h0(n+1) such that

So
(n) = (M (n), ho

(n))
G

(n)

〉−→ S̃o
(n)

= (M̃ (n), h̃o
(n)

)
G

(n)
I−→ S′o

(n)
= (M ′(n), h′o

(n)
)

X−→ So
(n+1) = (M (n+1), ho

(n+1)).
We have first to show that we can endfire zi active transitions by choosing

the oldest ones. Clearly, as the same global steps appeared in σ′ and σ′o, the
same number of active transitions appears in the two states S(n) and So(n), i.e.,
for all i, it holds that∑

i>1d+1

h
(n)
i,j =

d+1∑

i>1

ho i,j
(n) and zi 6

d+1∑

i>1

h
(n)
i,j .

Because all preceding global steps are the same for the two sequences, we
have precisely the same number of transitions too young to be endfired, i.e., for
all i,∑
j6sfd(ti)

h
(n)
i,j =

∑
j6sfd(ti)

h
(n)
o i,j . Thus, there are also the same number of active

transitions which must or may endfire in S(n) and So(n).
By consequence, we can take exactly the same endfiring multiset G

(n)
〉 as in σ,

by choosing the oldest active instance of transitions.
The state S̃o

(n)
= (M̃ (n), h̃o

(n)
), as defined in (2) and (3), and S̃(n) have

clearly the same markings.
Now the same iterated step GI

(n) can appear in both states leading to S′o
(n)

=

(M ′(n), h′o
(n)

), as defined in (5), (6) and (8), and to S′(n).
Finally, by the tick event we obtain So(n+1) = (M (n+1), ho

(n+1)), as defined in
(9).
Thus, the firing step sequence σo is successfully completed. We can conclude
that σo ∼ σ. �

3 Algebraic representations

As already quoted, the relationship between a firing step sequence σ and a
reachable p-marking M in an ordinary PN with initial p-marking M0 and a
incidence matrix C can be described formally by the following linear equation,
where ψσ is the Parikh vector of σ: M = M0 + C · ψσ. A Parikh vector of a
word α defined over the finite set, here of transitions T = {t1 · · · tn} is a vector
of dimension n and the i-th component is the number of appearance of ti in the
word α. Our goal is to obtain a similar result for ITPNs, i.e. to give an algebraic
description, precisely, a linear equation, for each firing step sequence, now of
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Globalsteps as defined above, in an arbitrary ITPN which takes into account the
time, too. Meanwhile state equations had been introduced for TPN with fixed
duration [8] and for ITPN without auto-concurrency and without zero duration
[7], where the semantics had been formulated in a more algebraic way. We will
present in the following the formal definitions of the notions we need later for
the different proofs. Some of them are adaptations of definitions known for the
algebraic presentation of a firing step sequence for TPN, or ITPN without zero
duration and without auto-concurrency [8,7] and others are entirely new here.

3.1 Semantics with time markings

In this subsection we introduce a more detailed view of the p-markings in an
arbitrary ITPN with respect to the time. This view makes it possible to obtain
a time-dependent state equation for a firing step sequence and it delivers a
sufficient condition for the non-reachability of p-markings (timeless) as well as
of time markings in such a net.

First, to calculate the effect of Endstep G〉 we introduce a new (|T |×d)matrix,
denoted by G〉 which is the matrix representation of the Endstep multiset, fixing
which events have to endfire, by taking the oldest ones.

Let S(1) = (M (1), h(1))
G

(1)

〉−→ S̃(1) = (M̃ (1), h̃(1))

G
(1)
〉i,j :=





h
(1)
i,j if G(1)

〉 (ti〉)−
∑
j′>j

h
(1)
i,j′ > 0

q if G(1)
〉 (ti〉)−

∑
j′>j

h
(1)
i,j′ = q > 0 and q < h

(1)
i,j

0 otherwise.

(11)

The element G(1)
〉i,j fixes the number of ti whose age is (j − 1) and which is

chosen to endfire.
Lemma 4 Let an Endstep G

(1)
〉 appear in state S(1), i.e., S(1) =

(M (1), h(1))
G

(1)

〉−→ S̃(1) = (M̃ (1), h̃(1)) and let G(1)
〉 be its associated matrix as

defined in (11). Then for all i, j it holds that h̃(1)i,j = h
(1)
i,j −G

(1)
〉i,j. 2

The proof is an immediate consequence of the above definition (11).
Second, in order to describe the relation between tokens and time alge-

braically, we use a generalization of the p-marking, called time marking, cf. [8].
A time marking is a (|P | × (d+1))- matrix. The number of rows is equal to the
number of places and the number of columns, d+ 1, equals the maximum of all
longest durations in the considered ITPN, plus 2. They are numbered from 1
to d + 1. Each column can be considered to be a p-marking. The first column
represents the number of visible tokens in each place, i.e. the actual p-marking
M . The other columns represent tokens which are on their way to the places: col-
umn number two for those arriving immediately, column number three for those
arriving in one time unit (one tick later), the column number four for those ar-
riving in two time units (after two ticks), and so on. We may observe, that only
a finite number of time markings can be associated with a given p-marking M.

256 PNSE’15 – Petri Nets and Software Engineering



This number depends on the time-dimension d of the net and is exponential in
|T |.

A time state s is now defined as a pair (m,h), where m is a time marking
and h is a clock-matrix. The initial time marking m(0) is defined as

m
(0)
.1 =M (0) and m(0)

i,j = 0 for i = 1 . . . |P | and j = 2 . . . d+ 1. (12)

The initial time state s(0) is the pair (m(0), h(0)) considered now to be the first
after-tick time state.

Example 5 Consider the ITPN Zo with d = 4 and m(0) = ( 8 0 0 0 0
0 0 0 0 0 ) . This

initial time marking allows many possible Globalsteps such as, e.g.,

1. (G
(0)
〉 = ∅, G

(0)
I = {[t82});

2. (G
(0)
〉 = ∅, G

(0)
I = {[t62, [t3}

⊎{t3〉}
⊎{[t4}= {[t62, [t3, [t4, t3〉});

3. (G
(0)
〉 = ∅, G

(0)
I = {[t22, [t33}

⊎{t3〉3}
⊎{[t1}

⊎{t1〉}
⊎{[t2}

= {[t32, [t33, [t1, t3〉3, t1〉}).

The choice of one Globalsteps among those above is arbitrary. We will consider
later the third one appearing. �

Let s(1) = (m(1), h(1)) be an after-tick time state in some ITPN Z, and
(G(1)
〉 , G

(1)
I ) a Globalstep which may appear from state S(1) = (M (1), h(1)) as

defined in Subsection 2.1. above. We will adapt the definitions now to show how
the execution of this Globalstep changes the time state s(1), by using matrix G(1)

〉
for the calculations.
a) By firing the Endstep we obtain s(1)

G
(1)

〉−→ s̃(1) = ( m̃(1), h̃(1)), with

m̃
(1)
i,j :=





m
(1)
i,j +

|T |∑
k>1

(
d∑
r>1

G
(1)
〉k,r) · v(tk, pi) if j = 1

m
(1)
i,j −

|T |∑
k>1

G
(1)
〉k,j′ · v(tk, pi) if j > 1 and

j′ = lfd(tk)− j + 3

. (13)

and h̃
(1)
i,j := h

(1)
i,j −G

(1)
〉i,j (by Lemma 4). It is clear that m̃(1)

i,2 = 0.

b) By firing the Iteratedstep we obtain s̃(1)
G

(1)
I−→ s′(1) = (m′(1), h′(1)). The

Iteratedstep change the first column of the time marking,m′(1)i,1 =M ′(1), as shown
in Lemma 1. For each transition tk ∈ G

(1)
I the j-th column can be modified if

j = lfd(tk) + 2, but tk does not influence the others columns. Hence, it holds
that m

′(1)
i,j :=





m̃
(1)
i,j −

|T |∑
k>1

G
(1)
I ([tk) · v(pi, tk) +

|T |∑
k>1

G
(1)
I (tk〉) · v(tk, pi) if j = 1

m̃
(1)
i,j +

∑
16k6|T |

j=lfd(tk)+2

[
G

(1)
I ([tk)−G

(1)
I (tk〉)

]
· v(tk, pi) if j > 1

. (14)
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The clock matrix h′(1) does not need to be recalculated: the definitions of (6)
and (8) apply.

c) Now one tick has to occur s′(1) X−→s(2) = (m(2), h(2)) with

m
(2)
i,j :=





m
′(1)
i,j if j = 1

m
′(1)
i,j+1 if 2 6 j 6 d

0 if j = d+ 1

. (15)

The clock matrix h(2) is already defined in (9). The time state s(2) is a new
after-tick time state. We can observe, that in the defined time markings the first
column is in fact always the usual p-marking of the corresponding state.
Example 6 Let us reconsider the running example Zo and the selected Global-
step appearing from the initial state s(0): (G(0)

〉 = ∅, G(0)
I = {[t32, [t33, [t1, t3〉3, t1〉}).

Then the time states reached during its firing and the subsequent tick s(0)
G

(0)

〉−→
s̃(0)

G
(0)
I−→ s′(0)

X−→ s(1) have the following time markings

m̃(0) = m(0) = ( 8 0 0 0 0
0 0 0 0 0 ) ,m

′(0) =( 0 0 0 0 0
0 0 0 0 6 ) ,m

(1) = ( 0 0 0 0 0
0 0 0 6 0 ).

As G(0)
〉 = O, it holds that h̃(0) = h(0) = O. As GI (0)([t3)−GI

(0)(t3〉) = 3 it
follows that

h′(0)2,1 = 3 and h̃(0) = h(0) = O, h′(0) =
(

0 0 0 0
3 0 0 0
0 0 0 0
0 0 0 0

)
and h(1) =

(
0 0 0 0
0 3 0 0
0 0 0 0
0 0 0 0

)
after a

right shift. �
Analogously to states, we call reachable time states all after-tick and interme-

diate time states reached during the execution of arbitrary firing step sequences.

3.2 Algebraic calculus of the semantics

In the following we introduce all matrices which are necessary to obtain a state
equation for some ITPN, starting with the so called time incidence matrix.

Let Z be an ITPN. The (|P |×(d+1)·|T |)-matrix C is called the time incidence
matrix of Z, if C := (C(1), C(2), . . . , C(|T |)) with C(k) being a (|P | × d)-matrix

for each k ∈ {1, . . . , |T |}, such that C(k) =
(
c
(k)
i,r

)
i=1···|P |
r=1···d

and

c
(k)
i,r :=




−v(pi, tk) if r = 1
v(tk, pi) if r − 2 = lfd(tk)
0 otherwise.

.

The matrix C consists of submatrices C(k) representing the transitions tk of
the net. Each c(k)i,1 is the number of tokens that will be changed (decremented)
at place pi immediately when the startfire event [tk appears, and c(k)i,r shows the
number of tokens that will arrive at place pi when the endfire event tk〉 appears
after at most (r − 2) time units.

Example 7 The time incidence matrix of Zo from Fig.2 is as follows:

C =
(

0 0 0 0 0 −1 0 0 0 0 −2 0 0 0 0 0 0 0 1 0
−3 0 0 1 0 0 0 0 0 2 0 0 1 0 0 −1 0 0 2 0

)
. �
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Obviously the time incidence matrix takes into account the longest firing dura-
tion lfd(ti) for each transition ti.
The appearance of t〉ni in some G

(l)
〉 at a certain state s(l) = (m(l), h(l)) tells us

that there are at least n active transitions. The matrix G(l)
〉 associated to the

end-step tells us which ones are going to endfire.
For subsequent computation we need to update the matrix C with respect to

G
(l)
〉 . This is achieved by matrix C(l) obtained from C where for each submatrix

C
(l)
(i) the first column represents the tokens consumed by the transitions to endfire

and the j-th column represents the tokens arriving to the corresponding places
after j − 2 ticks at least.

Therefore, concerning G(l)
〉 in the state s(l) = (m(l), h(l)), we define the matrix

C(l) :=
(
C

(l)
(1), C

(l)
(2), . . . , C

(l)
(|T |)

)
as follows. Each C(l)

(k) =
(
c
(l,k)
i,r

)
i=1···|P |
r=1···d

is a (|P |×
(d+ 1))-matrix with

c
(l,k)
i,r :=

{
−v(pi, tk) ·G〉(tk) if r = 1
v(tk, pi) ·G〉k,r′ f r > 1 and r′ = lfd(tk)− r + 3

. (16)

Example 8 In the ITPN Zo let us consider the endfiring step s(l) =

(m(l), h(l))
G

(l)

〉−→ s̃(l) = (m̃(l), h̃(l)) with m(l) = ( 0 0 4 0 0
0 0 10 8 0 ), h(l) =

(
0 0 0 0
0 4 1 0
0 0 0 0
0 0 4 0

)
and

G
(l)
〉 = {t2〉4, t4〉3}. Then its associated matrix is G(l)

〉 =

(
0 0 0 0
0 3 1 0
0 0 0 0
0 0 3 0

)
.

The time incidence matrix C(l) arises from the matrix C as follows:

C(l) = ( 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 2 6 0 0 0 0 0 0 −3 0 6 0 0 ). �

Our goal now is to introduce a sparse matrix U which allows us to calculate
C(l) from C, such that C(l) = C · U (l) for its submatrix U (l). Let us consider
tk〉 6∈ G

(l)
〉 and ti〉 ∈ G

(l)
〉 .

We define the square matrix U (l) with (d+1) · |T | rows and (d+1) · |T | columns
O stands for a block of zeros, A(l)

i is a
(d+1×d+1)matrix obtained from Ed+1

by:
(1) Multiplying the first column of Ed+1

by G
(l)
〉 (ti〉) which is the number of oc-

currences of endfiring event ti〉 in the
end-step G

(l)
〉 .

(2) Superseding the (lfd(ti)− j + 3)-th
column of Ed+1 by the (lfd(ti) + 2)-th
column multiplied by G(l)

〉i,j for each j ∈
[0, d] as follows:

t1 tk ti tn

t1

tk

ti

tn




A
(l)
1 O Od+1 O Od+1 O Od+1

...
...

...
...

...
...

...

O
. . . O O O O O

...
...

...
...

...
...

...
Od+1 O A

(l)
k

=Od+1 O Od+1 O Od+1

... O
... O

... O
. . .

... O O
... O

Od+1 O Od+1 O A
(l)
i O Od+1

... O
... O

... O
... O

... O
. . .

... O
Od+1 O Od+1 O Od+1 O A

(l)
n




.

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 259



Example 9 In Zo from Fig. 2 we consider the same end-step G
(l)
〉 = {t2〉4, t4〉3} with

G
(l)
〉 =

(
0 0 0 0
0 3 1 0
0 0 0 0
0 0 3 0

)
. We obtain the corresponding matrices A(l)

2 , A(l)
4 and U (l):

A
(l)
2 =

(
4 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 3 0

)
, A

(l)
4 =

(
3 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 3 0 0
0 0 0 0 0

)
, U (l) =




O5 O5 O5 O5

O5 A
(l)
2 O5 O5

O5 O5 O5 O5

O5 O5 O5 A
(l)
4


 . �

It is evident that matrix U (l) makes it possible to calculate C(l) because the
values of each submatrix C(l)

(k) of C(l) verify with respect to the endfire events
tk〉

C
(l)
(k) =

{
C(k) ·A(l)

(k) if tk〉 ∈ G
(l)
〉

C(k) · Od+1 otherwise.
.

The
(
|P |× (d+1) · |T |

)
-matrix C(l) = C ·U (l) is called time incidence matrix

with actual durations for the end-step G
(l)
〉 .

In the following calculi (just below and later) we need some matrices, all
of them are sparse square (d + 1 × d + 1) matrices: Besides the already intro-
duced identity matrix Ed+1 and zero-matrix Od+1, we define here the matrices
Ld+1 = (lij), Wd+1 = (wij) and the progress matrix Rd+1 = (rij) by setting

lij :=





1if i ≥ 2
and i = j

0otherwise
, wij :=





1 if i ≥ 2
and j = 1

0 otherwise.
, ri,j :=





1if (i = j = 1)
or (i = j + 1)

0otherwise
.

For simplicity we write R instead of Rd+1 if d+ 1 is clear from the context.

Example 10 For the running example Zo from Fig.1 with d + 1 = 5 these
square matrices are

L5=

(
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,W5=

(
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

)
, R5=

(
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)
. �

Now, let us observe the utility of these matrices. If we multiply an arbitrary
(l×d+1)- matrix A by Ld+1 we obtain a (l×(d+1))- matrix B = A ·Ld+1 whose
first column is the l - dimensional zero-vector and the rest of its columns are the
same as in the matrix A. If we multiply A by Wd+1 we obtain a (l × (d + 1))-
matrix B′ = A ·W whose first column is the sum of all but the first columns of
A and all the other columns are zero-vectors. Finally, if we multiply A by Rd+1

we obtain a (l× (d+1))- matrix B′′ = A ·W whose i-th column is the (i+1)-th
column of A, except the first one and the last one. Thus the multiplication by R
insures a shift. The first column of B′′ is the sum of the first and second columns
of A and the last one is a zero-vector.

Now, for each Endstep G
(l)
〉 = {tni1i1

〉, . . . , tniρiρ 〉} and Iteratedstep

G
(l)
I = {[tni1i1

, t
qi1
i1
〉, . . . , [tniρiκ , t

qiρ
iρ
〉}, with qs 6 ns forall s ∈ [1 · · · ρ]. we define a

matrix B(l)
〉 , called the bag matrix of G(l)

〉 as well as the matrices B(l)
m and B(l)

z
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called the bag matrices of G(l)
I , all being (d + 1 · |T | × (d + 1)) matrices, by

setting

B
(l)
〉 =




B
(l)
〉(1)

B
(l)
〉(2)
...

B
(l)
〉(|T |)



, B

(l)
m =




B
(l)
m(1)

B
(l)
m(2)

...
B

(l)
m(|T |)


 and B(l)

z =




B
(l)
z(1)

B
(l)
z(2)

...
B

(l)
z(|T |)


 where

B
(l)
〉(s)

:=

{
Ld+1 if s ∈ {i1, . . . , iρ}
0 · Ed+1 otherwise. , (17)

B
(l)
m(s)

:=

{
G

(l)
I ([ts) · Ed+1 if s ∈ {i1, . . . , iκ}

0 · Ed+1 otherwise.
,

B
(l)
z(s) :=

{
G

(l)
I (ts〉) · Ld+1 if s ∈ {i1, . . . , iκ}

0 · Ed+1 otherwise.
(18)

Remark 1 In the bag matrices for Endsteps B(l)
〉 and B(l)

z , the first column is
obviously a zero vector.

Example 11 The Iteratedstep G
(l)
I = {[t62, [t3, [t1, t3〉} of the net Z0 from Fig.1

yields B(l)
m =

( 1·E5
6·E5
1·E5
0·E5

)
and B(l)

z =

( 0·L5
0·L5
1·L5
0·L5

)
. 2

Finally, we consider two ((d+1) · |T | × (d+1))-matrices K(l)
〉 and B(l)

I which
help us to describe algebraically the effect of respectively an Endstep and an
Iteratedstep.
We will prove that the following terms describe exactly this change.

− C(l) ·B(l)
〉 + C(l) ·B(l)

〉 ·Rd = − C · U (l)
︸ ︷︷ ︸
C(l)

B
(l)
〉 + C · U (l)

︸ ︷︷ ︸
C(l)

·B(l)
〉 ·Rd

= C
(
− U (l)B

(l)
〉 + U (l) ·B(l)

〉 ·Rd︸ ︷︷ ︸
:=K

(l)

〉

)
= C ·K(l)

〉 . (19)

and C ·B(l)
m − C ·B(l)

z + C ·B(l)
z ·Rd =

C ( B
(l)
m −B(l)

z +B
(l)
z ·Rd︸ ︷︷ ︸

:=B
(l)
I

) = C ·B(l)
I . (20)

4 State equation
In this section we derive a state equation for an arbitrary ITPN that is analogous
to the state equation (1) of time-less nets and which is consistent with the state
equation for ITPNs without auto concurrency and zero durations [8].

We consider in the firing step sequence given in (10) the effects of the Glob-
alstep appearing at the after-tick time state s(l), for some natural number l ≤ n,
as well as of its subsequent tick event :

s(l)
G

(l)

〉
−−−→ s̃(l)

G
(l)
I−−−→ s′

(l) X
−−−→ s(l+1). (21)

The following two remarks are easy to prove.
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Remark 2 For all k ≥ d it holds that Rk =: (fi,j) i=1···d
j=1···d

with

fi,j =

{
1 if i= 1
0 otherwise .

Remark 3 Let be W (l) := B
(l)
〉 ·Rd. Then the matrix W (l) has the following

structure: W (l) =




W
(l)
(1)

W
(l)
(2)

...
W

(l)
(|T |)


 and W

(l)
(s) :=

{
Wd if ts ∈ G〉l
Od otherwise. .

Lemma 12 Let us consider the (|P | × d+ 1) - matrix Q(l) := C(l) ·B(l)
〉 . Then

its elements qi,j have the following values:

q
(l)
i,j =





0 if j = 1
|T |∑
k=1

G〉k,j′ · v(tk, pi) if 1 < j 6 d+ 1 and j′ = lfd(tk)− j + 3
.

Proof. We compute the elements q(l)i,j .

Case 1: j = 1. Then q
(l)
i,1 =

(
C(l) · B(l)

〉

)
i,1

=
( |T |∑
k=1

C
(l)
(k) · B

(l)
〉(k)

)
i,1

=

|T |∑
r=1

(d+1)∑
k=1

c
(l,r)
i,k · b

(l,r)
k,1︸︷︷︸
=0

= 0.

Case 2: 1 < j 6 d+ 1. Then

q
(l)
i,j =

(
C(l) ·B(l)

〉

)
i,j

=
( |T |∑
k=1

C
(l)
(k) ·B

(l)
〉(k)

)
i,j

=
|T |∑
r=1

d+1∑
k=1

(
c
(l,r)
i,k · b

(l,r)
k,j

)

=
|T |∑
r=1

(
c
(l,r)
i,j · 1

)
=
(16)

|T |∑
k=1

G〉k,
(
lfd(tk)−j+3

) · v(tk, pi). �

We will first establish linear equations for the time markings around a firing
step.

Theorem 13 Let Z be an ITPN, and let the time states s(l) = (m(l), h(l)),
s̃(l) = (m̃(l)h̃(l)), s′(l) = (m′(l), h′(l)) and s(l+1) = (m(l+1), h(l+1)) be defined as
in (21). Then the time markings fulfil

m̃(l) = m(l) + C ·K(l)
〉 (22)

m′(l) = m̃(l) + C ·B(l)
I (23)

m(l+1) = m′(l) ·R (24)

Proof of equation (22) :
In order to derive (22) we have to show that

(
m̃(l)

)
i,j

=
(
m(l)

)
i,j

+
(
C ·K(l)

〉

)
i,j

for each i ∈ {1, · · · , |P |} and j ∈ {1, · · · , d+ 1}.
Case 1: j = 1. According to the definition of time markings (13) it

holds that
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(
m̃(l)

)
i,1
−
(
m(l)

)
i,1

=
( |T |∑

k=1

( d∑

r=1

G
(l)
〉k,r

)
· v(tk, pi)

)
.

Thus we have to prove that
( |T |∑
k=1

( d∑
r=1

G
(l)
〉k,r

)
·v(tk, pi)

)
=
(
C ·K(l)

〉

)
i,1
. It holds

(
C ·K(l)

〉

)
i,1

=
(19)

(
− C · U (l) ·B(l)

〉

)
i,1

+
(
C · U (l) ·B(l)

〉 ·Rd
)
i,1
. (25)

Now we first consider the term
(
− C · U (l) ·B(l)

〉

)
i,1
. As the first column of the

matrix B(l)
〉 consists only of zeros, it holds that

(
− C · U (l) ·B(l)

〉

)
i,1

=

(
− C(l) ·B(l)

〉

)
i,1

= −
(
Q(l)

)
i,1

= 0. (cf. lemma 12) (26)

Subsequently, we consider the second term
(
C · U (l) ·B(l)

〉 ·Rd
)
i,1
. By remark 3

we know that
(
C · U (l) ·B(l)

〉 ·Rd−1
)
i,1

=
(
C(l) ·W

)
i,1

=
(d+1)·|T |∑
k=1

c
(l)
i,k · w

(l)
k,1 =

|T |∑
r=1

d+1∑
k=1

c
(l,r)
i,k · w

(l,r)
k,1 =

(16)

|T |∑
k=1

( d∑
r=1

G
(l)
〉k,r

)
· v(tk, pi).

(27)

Considering (25),(26) and (27) leads to the equation
(
m̃(l)

)
i,1

=
(
m(l)

)
i,1

+
(
C ·K(l)

〉

)
i,1
, as desired.

Case 2: j > 1.
According to the definition of time markings in (13) it holds that

m̃
(l)
i,j −m

(l)
i,j = −

|T |∑

k=1

G〉
(l)

k,
(
lfd(tk)−j+3

) · v(tk, pi). (28)

Thus, we have to prove that
(
C ·K(l)

〉

)
i,j

= −
|T |∑
k=1

G〉
(l)

k,
(
lfd(tk)−j+3

) · v(tk, pi).
It holds that

(
C ·K(l)

〉

)
i,j

=
(19)

(
− C · U (l) ·B(l)

〉 + C · U (l) ·B(l)
〉 ·Rd

)
i,j

=
(
− C(l) ·B(l)

〉 + C(l) ·B(l)
〉 ·Rd

)
i,j

=
(
−Q(l) + C(l) ·W (l)

)
i,j

(cf. Rem. 3 and Lemma 12)

= −
(
Q(l)

)
i,j

+
(
C(l) ·W (l)

)
i,j

= −
(
Q(l)

)
i,j

+ 0 = q
(l)
i,j (cf. Rem. 3)

= −
|T |∑

k=1

G〉
(l)

k,
(
lfd(tk)−j+3

) · v(tk, pi). (cf. Lemma 12)

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 263



The profs of equations (23) and (24) can be done similarly. 2

Now we can deduce the main result, i.e., the equation for the sequence (10):

Theorem 14 Let Z be an ITPN, n ≥ 1 and σ a firing step sequence con-
sisting of n Globalsteps, alternating with ticks, leading to the time state s(n) =
(m(n), h(n)) as defined in (10). Then the time marking m(n) fulfils m(n) =

m(0) ·Rn + C · Ψσ where Ψσ =
n∑

l=1

(
K

(l−1)
〉 +B

(l−1)
I

)
·Rn+1−l. (29)

The proof can be done by induction on n. 2

We call Ψσ, which is a ((d + 1) · |T | × |P |) - matrix, the Parikh matrix and
equation (29) the state equation of the firing step sequence (10). Analogously
to the Parikh vector, the Parikh matrix counts the number of appearances of
startfire and endfire events in (10).

It is evident, that due to Theorems 13 and 14, we can analogously establish
state equations for the other (intermediate) time markings, such as m′(n) and
m̃(n), that appear in the firing step sequences.

The last Theorem 14 provides a sufficient condition for the non-reachability
of a given time marking. Let us explain what it means to show that there does not
exist a sequence, nevertheless which length, such that after firing of the sequence
from the initial time state, the net is in a time state whose time marking is the
given one. For this reason, similar to the case for classic Petri nets, we have to
solve an system of equalities defined by the equation (29). Of course, this system
of equalities is much more difficult than that for the equation (1) for classic PNs.

The number of variables in the state equation is around n · |T | ·
(
(d +

1)2/2 + 3
)
, in total. Additionally, there are some more additional "local" equal-

ities/inequalities.
Finally, we have to prove that for no n the obtained system of equalities of the

state equation has an integer solution. In that case the given time marking is not
reachable. In the other case - if there is an integer solution for some particular
n - then no assertion can be done about the reachability of the time marking.
It could be possible that the solution represents only non realizable sequences
with, for instance, intermediate states which would have negative values.

5 Conclusion

In this article we have studied the class of Interval-Timed Petri nets with discrete
delays in their most complex version. Firstly, zero duration is allowed (i.e. zero
is possible as a lower bound of the duration interval of a transition), which has
as consequence that in between two time ticks a certain number of transitions
may start and end and provoke the start and perhaps ending of others, and so
on. We consider only well formed nets where this number is always finite, i.e.
where there is no undesired cycle of transitions of zero duration.

Then we allow auto-concurrency in the firing of transitions. This means that
in maximal steps several instances of the same transition may start at the same
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moment and could have independent durations. Our notion of Globalstep, which
consists of all startfire and endfire events in between two time ticks, is original.

When in a state a subbag of concurrently active instances of the same transi-
tion should end we could choose to end the oldest ones between them or arbitrary
ones. We prove that both ways are equivalent, leading to sequences composed of
the same Globalsteps. This result allows us to choose once for all in this article
to end always the oldest active transitions.

To obtain adequate formalizations, original algebraic structures have been
proposed for all defined concepts.

In this complex algebraic context, our goal was to construct state equations
for the considered net class. We proposed a series of results which lead to the
main theorem, which establishes that each reachable time state fulfils a certain
nontrivial state equation. The paper contains all proofs.

By contraposition we may conclude, that a time state is unreachable in the
considered Interval-Timed Petri net when the system of equalities associated to
its state equation has no solution.
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Abstract. Dynamic migration of workflows requires the notion of con-
sistency for safe migration. The literature primarily covers consistency
models based on the history of the workflow to be migrated. However,
for several situations, the history based models are not enough to de-
cide migratability of a state. The paper introduces lookahead models of
consistency, which are based on the question of how the remaining part
of the workflow is treated in the new process. Three lookahead models
are described and are illustrated with the help of example cases of re-
alistic migration scenarios. Moreover, in certain situations, even if there
is a consistent lookahead migration possible, the tokens can not be di-
rectly migrated into the new net due to contradictory traces available in
the new net. The paper also proposes an algorithm called Accept-Reject
Branching to compute the contradictory segment of the new net. A de-
tail case study of a library resource acquisition workflow is presented to
highlight the contributions.

Keywords: Workflow Migration, Consistency, Lookahead.

1 Introduction

In an ever-changing business environment the business processes do not remain
static. Instances of one workflow often need to follow the evolved business logic
of a different, or a refined schema. When an instance migrates from the old
process into the new process the issue of consistency has to be addressed. The
notion of consistency ensures that a migrated instance finishes execution without
encountering a runtime error or inconsistencies in application semantics.

One of the initial works discussing consistency in dynamic evolution of work-
flows is by Ellis et al. [1]. They describe consistency criterion as the possibility of
reproducing the execution history in the new schema. Moreover, mapping the old
history in the new schema obtains the runtime state of the workflow from where
it can resume to follow the new business logic. In this approach the consistency
is based only on the past execution of the old instance. Contemporary works by
Casati et al. [2], and Sadiq et al. [3] also adopt the same notion of consistency
under the terminology of compliance. In the context of instance-specific ad-hoc
dynamic changes, Reichert et al. [4] present the notion of consistency as a cri-
teria that preserves the validity of the instance-specific workflow schema after



modification and suits the old execution history. Later researchers have adopted
this same notion of history equivalence consistency under different terminologies
and with subtle differences in the interpretation of history. The notions of valid
mapping in the work of Weske [5], migration conditions by Dias et al. [6], sev-
eral classes of compliances by Rinderle et al., [7], [8], by Sun and Jiang [9], and
the consistency criteria in our previous work [10] are examples of history-based
consistency.

Notable works using Petri net models of workflows, on the other hand, adopt
the notion of consistency defined on the basis of marking. In Petri net models
various process states are explicitly modeled by places. In this model a marking
represents the current state of the process. Consistent markings in the old and
the new workflow are decided based on the equivalence of states. This approach
is taken in the works by Van der Aalst [11] and later by Circirelli et al. [12].

History based consistency model derives its motivation in the need to con-
sider as done what is already accomplished and proceed exactly thereafter by
resuming the workflow as per the new logic. Therefore, a primary goal of inter-
est in history based migration is to ascertain the preconditions before migration
takes place. However, apart from the models of history and state based consis-
tency, dynamic workflow migration in the context of other business goals such
as resource optimization, incidental migration, and handling eventualities often
require a lookahead consistency criterion. Motivating examples of such dynamic
migration scenarios are presented in this paper, on the basis of which, we de-
velop the notion of lookahead consistency. A Petri net based modeling notation
called WF-net [13] is used for representing workflows. The consistency models are
defined using the WF-net notation, which can also be adopted in generic work-
flow terminology in a model independent manner. Three variants of lookahead
consistency called strong, accommodative and weak lookahead are introduced.

An algorithm for generating weak lookahead consistent migrations for work-
flow instances is presented. It is possible that newer paths may be available in the
new net for a migrating instance. In order to enforce a stricter lookahead, these
paths need to be blocked, which can be done by blocking the head-transitions
of the contradictory segments. These blocking transitions are identified using an
algorithm called accept/reject branching.

The paper is organized as follows. Section 2 briefly outlines the preliminaries
of Petri net based workflow model. Section 3 discusses the related work and
the contributions of the paper. Sections 4, 5 and 6 discuss the three lookahead
consistency models with the help of realistic application scenarios. Section 7
lastly discusses the algorithms for lookahead consistency along with a case study.

2 Notations

In this section a brief background is provided for WF-net notation of Van der
Aalst [13], which is used in this paper as a reference formal notation for defining
consistency and for developing the case studies.
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(a) Workflow Schema (b) Instance Trace: ε

(c) Instance Trace: a (d) Instance Trace: a,b

Fig. 1. WF-net Model of Workflow and Workflow Instances

Fig. 1a depicts an example WF-net schema of a sequence workflow involv-
ing two tasks a and b. Tasks are represented as transitions (rectangles), and
conditions are represented as places (circles). A place models the precondition
and postcondition of its immediate successor and predecessor tasks respectively.
The source place captures the initial condition i.e. the start condition that trig-
gers the start of the corresponding workflow. Similarly, the sink place models
the terminal condition. A token (a dot in a place) makes up a marked place. If
all pre-conditions of a transition are true, the transition is enabled. An enabled
transition eventually fires by consuming one token from each of its pre-places
(all pre-conditions), and produces one token in each of its post-places (post-
conditions). A postcondition can be satisfied by firing of any one of its preceding
transitions.

A placement of tokens in a net is called a marking. A marking represents the
runtime state of an instance of a business process modeled by the net. A firing
of a transition changes the marking. A firing sequence is a sequence of transition
firings from one marking to another. The firing sequence from initial marking to
the marking shown in Fig. 1b is empty. Fig. 1c shows the marking after firing of
transition a, i.e. after completion of activity a, where the state of the workflow
is y. Similarly, Fig. 1d shows the final marking of the workflow after firing of b.

The following notations are used to represent the dynamics of the net: A
unit transition of marking m1

tÝÑ m2 means that firing of transition t changes
the marking (state) of the net from m1 to m2. In general a transition m1

σÝÑ
m2, where σ is a firing sequence t1t2...tn represents that the particular firing
sequence σ changes the state of the workflow from m1 to m2 through some other
states. Multiple firing sequences between two markings may be possible in nets
with choice and concurrency. In the figure, x aÝÑ y is an example unit transition,
and x abÝÝÑ z is a transition from x to z through a longer firing sequence.

3 Related Work and Contributions of the Paper

The literature includes a variety of consistency criteria in the context of run-
time migration of workflows [14], [7]. They are primarily history and state based
approaches. For instance, the state based approach of behavioral consistency in
the work of Casati et al. [2] looks into validity of the mapped state to ensure
proper termination. Consequently their approach does not need to take the ac-
tual content and its variations in possible future execution traces into account.
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An example of history based consistency is the approach of Ellis et al. [1], in
which, the migrated instance state is required to have, starting from the initial
marking, the same trace that was before migration.

The only work in this context, where the possible lookahead parameters were
taken into account is the notion of inheritance of workflows by Van der Aalst
and Basten [15]. In their approach, consistency is defined based on branching
bisimilarity between the states of the old and the new workflows. As per the
notion of bisimulation [16], equivalence is established between two states based
on their future transitions and the states visited by those transitions. Branching
bisimilarity considers inclusion of silent transitions in addition. Therefore, the
adopted model of consistency in this work falls into the class of lookahead based
model. However, adopting the notion of bisimulation defined on LTS (labeled
transition system) states leads to much stronger criteria than intended in the
context of process migration. The addressed domain of process migration does
not consider a process to be interactive. In particular, the problem of dynamic
instance migration addressed in this paper does not consider conversation or col-
laboration issues. Therefore, observational behavior of a process is its trace, and
hence, equality relations based on the traces are sufficient to define consistency.
Our work takes up this point to develop a range of consistency models that are
based on lookahead traces.

Consulting lookahead parameters in the context of dynamic web-service pro-
tocol evolution has been identified as a necessary feature in the work of Ryu et
al. [17]. They describe the notion of forward compatibility that is a property to be
considered in the context of migrating web-service conversations. The forward
compatibility captures the ability for the clients to interact with the dynami-
cally evolved service after migration without confronting an error. Therefore, in
order to save the ongoing conversations from failing, the lookahead parameters
are vital. However, in contrast with the web-service conversation situation, as
pointed out in the previous paragraph, the dynamic migration in the context of
workflows are rather the changes in orchestration itself. Consequently, the need
for consideration of lookahead parameters requires a solution with focus moving
from interaction error to consistency in application semantics.

A benefit of these newly introduced models is that they can be used indepen-
dently or in commune with the history based or state based consistency models
as per the need of a particular workflow migration scenario. A lookahead based
migration approach can then be applied considering the traces starting from the
current state in the old workflow in the migration pair, and finding them in the
new workflow to compute consistent migration.

The proposed lookahead models are demonstrated with the help of motivating
cases. In the subsequent sections we define and illustrate three lookahead consis-
tency models, which are strong lookahead consistency, accommodative lookahead
consistency and weak lookahead consistency models respectively. The accom-
modative and the strong lookahead consistency models are specializations of
the weak model, and the strong model is a specialization of the accommodative
model.
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4 Strong Lookahead Consistency

In this model, consistent states in the old and the new workflows are mapped
by equivalence between possible futures in both the workflows. States of the
old and the new workflows are consistent if the schedules that are yet to be
completed from the old workflow state are the only schedules that are possible
in the new workflow after migration. The strong lookahead model does permit
changes to the net as long as the set of possible future traces is the same. This
model can be applied to handle migration situations in process re-engineering
cases, in which, from the point of view of the current state of the migrating
instance, a change should not be perceived as far as the traces, i.e. the choices
and the sequences thereby are concerned. In practice, such a situation may arise
due to maintenance and compatibility issues. One such situation is illustrated
later through a case study of a food packaging workflow example.

The WF-net based definition of the strong lookahead consistency model is
given below. We use relational operator ˛ between two markings to represent
strong lookahead consistency between them. Subsequently relational operators :̨
and ˛ are used to represent the accommodative and the weak lookahead models.

Definition 1 Let the old and the new workflows be modeled as WF-nets W and
W 1 respectively, mf and m1

f be the final markings in W and W 1 respectively, m
be a marking in W , and m1 be a marking in W 1. Let Fm = tσ|m σÝÑ mfu, i.e.
be the set of all firing sequences starting from marking m and reaching the final
marking mf in the old net. Similarly, F 1

m = tσ1|m1 σ1ÝÑ m1
fu, i.e. be the set of all

firing sequences starting from marking m1 and reaching the final marking m1
f in

the new net. Strong Lookahead consistency m ˛ m1 is defined by the following
trace equivalence condition: (i) @σ P Fm, σ P F 1

m, and (ii) @σ1 P F 1
m, σ1 P Fm.

In other words, m ˛m1 is defined by the equality Fm “ F 1
m.

Old Workflow Instance

New Workflow Instance in Optimized Schema

Fig. 2. Strongly Consistent Markings
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It can be noted that to satisfy the above criteria, the structure of the down-
stream nets of the old and new workflows need not be the same. Intentionally
different designs resulting into the same behavior may also fit to the definition.
For example, a new net may be an alteration of its corresponding old net for
achieving an optimization in the design as shown in Fig 2. In this example, the
set of traces is tt2t3, t3t2u, which is same in both the nets. As the firings of tran-
sitions in Petri net semantics (reachability graphs[18]) are atomic and therefore
instantaneous, a realization of parallel transitions t2 and t3 in the net results in
two possible firing sequences t2t3 and t3t2. Therefore, since the sets of all possi-
ble traces from the shown markings are the same, they satisfy strong lookahead
consistency.

However, real-life workflows may have long duration tasks, in which, the
semantics of non-overlapping atomic executions may not be possible. In such
cases, the trace-based model can still be applied considering discrete events such
as commencements or completions. For example, in an academic setup, if per-
forming two courses in two consecutive semesters and performing them together
in parallel in one semester needs to be considered as equivalent, it can be done so
by considering the events marking the first lectures of the two courses. So, though
there is physical interleaving of the task actions, if an academic process believes
that the interleaving is acceptable as long as strong lookahead consistency is
maintained w.r.t. the courses, a migration of a student from one system to an-
other is possible. This assumption is useful in applying the lookahead models in
non-Petri net workflow models such as ADEPT2 [19].

Fig. 3 shows packaging workflows for milk-products, chocolate and dry-fruits
respectively. The packaging company imports the food items in bulk from various
food processing companies and delivers them to distributors after packaging.
The activities of devanning, storing items in the warehouse, quality inspection,
and transport for delivery are manual activities. The fourth task in the dry-
fruit packaging workflow is a manual task of inserting fruits by weight. Cutting
of cheese and butter, food packaging in polythene or cardboard boxes, packet
sealing and labeling are user assisted automated activities. As shown in the
figure, in the case of dry-fruit, two kinds of packets are produced by the workflow
using polythene packets or cardboard boxes. The workflow process is organized
such that the packaging choice automatically alternates after regular intervals.

The packaging unit uses three different assembly-lines for the three food
items. However, we can observe that polythene-based packaging of milk-products
can use part of the assembly-line for the chocolate packaging once they reach the
equivalent state (i.e. marking) p. Such an equivalent state is not available in the
assembly-line of the dry-fruit packaging workflow due to the strictly alternating
packaging designed feature. As the possible future execution sequences of the
workflows for milk-products and chocolate packaging are exactly the same from
the shown markings, a single assembly-line can take care of both of the packaging
processes downstream the equivalent markings. The migration decision can be
helpful when one assembly-line needs to be shut down for maintenance. Such
a migration does not require any modification to the new process when strong
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Workflow for Butter and Cheese Packaging

Workflow for Chocolate Packaging

Workflow for Dry-fruit Packaging

Fig. 3. Food Packaging Workflows

lookahead is established. As the alternating path of cardboard packaging in the
dry-fruit assembly-line is not used for milk-products, the assembly-line is not
suitable in this migration situation, in spite of the existence of the polythene
packaging option inside the proposed new assembly.

The above example of dynamic workflow migration situation occurs in the
context of resource maintenance, which is an assembly line in this case. It can
be observed that the necessity of comparing the future of the running cases with
the available assembly line is vital to finish the cases by dynamically migrating
them. Clearly, history based consistency models do not serve a useful purpose,
whereas a lookahead model captures the consistency requirement.

5 Accommodative Lookahead Consistency

This class of lookahead consistency notion is a weaker one as compared to the
earlier class. The accommodative lookahead consistency can be defined to permit
new alternatives which are not found in the old net, in addition to the existing
traces. In this model, if a trace is possible in the old workflow, it is also possible
in the new workflow. However, the converse is not required.

Definition 2 Following the terms m, m1, mf , m1
f , Fm, F

1
m as used in Definition

1, Accommodative Lookahead Consistency m :̨ m1 is defined by the following
trace equivalence condition: @σ P Fm, σ P F 1

m. In other words, Fm Ď F 1
m.
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From the definition we can note that the accommodative lookahead consis-
tency between m and m1, i.e. m :̨ m1, satisfies the trace equivalence condition (i)
of Definition 1. Therefore, strong lookahead consistency between two markings
implies accommodative lookahead consistency between them as well, i.e. m ˛ m1
ùñ m :̨ m1. Now we present a dynamic process migration scenario based on
accommodative lookahead model.

Old and New Workflows for Two-year Masters Program

Old Subprocess for Each Semester

Foreign University Process

Fig. 4. Student Exchange Program

In an academic curriculum process depicted in Fig. 4, the old process in
the migration situation represents a 4-semester masters program. Semesters are
sequences of tasks involving orientation, registration, course work and grade
reports. Course work comprises of credit courses in the first three semester, and
a project in the last semester. The backlog credits are carried over into the next
semester. In the process shown in the figure, the semester activities are firstly
shown as single transitions of higher level, and they are expanded as a generic
subprocess.

A migration situation arises when a student applies for an academic exchange
program and joins a foreign university to replace a portion of her academics in
the host institute. The student comes back and joins into the old process after
completing the exchange credits.
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The rules for the exchange program are outlined as follows:

– One student can join an exchange program to study in the foreign university
in her second or/and third semester.

– The minimum cut-off CPI for availing the exchange program to join course
work in a foreign university is 8.0.

– During the study in the foreign university, a student must complete the
courses equivalent to the core credit courses in the home university.

– A student with CPI above 9.0 can join additional honors credit courses as
electives.

The foreign subprocess that can replace sem-2 and/or sem-3 activities in the
in the old 2-year program to avail the exchange program is highlighted in Fig. 4.
It is only a part of a bigger process in the foreign university. A student is allowed
to migrate if equivalent core credit courses are available in that semester. The list
of courses offered at the foreign university website is to be consulted externally.
Therefore, an application for migration are processed at states (markings) sem-1
completed or sem-2 completed. As the foreign university course work also offers
the option of performing elective courses in addition to the core courses, the host
institute permits the additional paths.

The above example brings us to the application of accommodative looka-
head consistency at the point of migration. This migration scenario shows that
a combination of past and lookahead parameters can also be used for deciding
migratability. The set of new traces possible for a migrating student is a su-
perset of the old. In this case, several historic or present parameters such as
CPI, position in the academic calender are also used to determine the points of
migration.

6 Weak Lookahead Consistency

The third kind of lookahead consistency model is the weak model. A state of
the old workflow is consistent with a state in the new workflow by the weak
lookahead model if at least one of the possible future traces is retained in the
future of the new net. However, the future of the new net may have additional
alternative traces.

Definition 3 Following the terms m, m1, mf , m1
f , Fm, F

1
m as used in Defini-

tion 1, Weak Lookahead Consistency m ˛ m1 is defined by the following trace
equivalence condition: For non-empty Fm, Dσ P Fm such that σ P F 1

m. For empty
Fm, Fm “ F 1

m.

It can be observed that, quantifier @σ P Fm in Definition 2 is enough to find
one such case required in Definition 3. Therefore,m :̨m1 ùñ m ˛m1. Moreover,
we can obtain m ˛ m1 ùñ m ˛m1 from the already established relation m ˛
m1 ùñ m :̨ m1.
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Old Curriculum

New Curriculum

Fig. 5. Academic Curriculum Revision

Fig. 5 depicts an example case of academic curriculum revision of a 4-semester
masters program. In the old curriculum, credits for three groups of courses are
to be completed in the first three semesters. Alternate branches with backlog
credits are available. The allocation of a project-supervisor is arranged before
the final semester project work. The program ends with project reporting. The
revised curriculum emphasizes on the depth in course work rather than the
extent of the covered syllabus, by reducing the number of compulsory credits
for the under-performing students. After completing group-1 courses in the first
semester, the students have to perform two groups of courses. They can take up
group-2 and group-3 courses as per the old curriculum, or they have the option
of a seminar and a mini-project course. The students having backlogs can not
register for group-3 courses.

A student in the old curriculum can migrate from current state into a state
in the new curriculum, the design makes available at least one path in the new
which is exactly a path in the old. However, new alternatives are also open to the
migrating student. One set of equivalent markings by this criteria is shown in
the figure. It can be noted that for the single token in the old workflow, two to-
kens are generated in the new workflow, which together constitute the consistent
mapping. The new workflow preserves the traces group2, group3, supervisor allo-
cation, project, report and group2, group3, supervisor allocation, project+backlog,
report from the old workflow and not the others. Some traces of the old workflow
are suppressed in the new workflow. In this way, the weak lookahead model can
be applied to define flexible but at least minimally compatible workflows.
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7 Instance Adaptations through Lookahead Consistency

In the previous sections, we have developed the lookahead consistency models
and illustrated their applicability in several dynamic workflow migration situa-
tions. In this section, we first discuss the computation of weak lookahead con-
sistent markings in the new net. Further, we discuss the approach of enforcing
lookahead consistent execution on migrating instances in situations in which a
weaker model is available in the new net. The accept/reject branching algorithm
is then presented to support the lookahead consistency enforcement approach.
The workflow nets considered in the following algorithms are considered to be
acyclic. Moreover, all transition labels in the nets are assumed to be unique.

7.1 Algorithms for Lookahead Consistency

Algorithm 1 computes the weak lookahead consistent markings in the new net
by replaying the lookahead traces possible in the old net. As only acyclic nets
are considered, the set Traces of lookahead traces is finite. For a set of computed
traces in the old net, all of them may not replay in the new net. The algorithm
finds out the markings in the new net each of which can replay at least one of
the traces. The outputs of the algorithm are set S of weak lookahead markings
and set L containing the preserved lookahead traces in the new net.

Algorithm 1: Computation of Weak Lookahead Consistent Marking
Input: Old WF-net N “ pP, T, F q, Marking M in N , New WF-net

N 1 “ pP 1, T 1, F 1q
Result: Set of Markings S in N 1, Set of Preserved Lookahead Traces L

1 Let Mf and M 1
f are the terminal markings in N and N 1 respectively

2 TracesÐ tσ | M σÝÑMfu
3 if Traces “ tu then
4 S ÐM 1

f

5 LÐ tu
6 return

7 Tracesr Ð tσr | σr is reverse of σ, σ P Tracesu
8 F 1

edit Ð tpx, yq | py, xq P F 1u
9 N 1

edit Ð pP 1, T 1, F 1
editq

10 S Ð tu, Lr Ð tu
11 while Tracesr ‰ tu do
12 Let σr be a member of Tracesr

13 if M 1
f
σrÝÝÑM 1

e in N 1
edit then

14 S Ð S YM 1
e

15 Lr Ð Lr Y σr
16 Tracesr Ð Tracesr ´ tσru
17 LÐ tσ | σ is reverse of σr, σr P Lru
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First it computes Traces, the set of lookahead traces in the old net. If set
Traces is empty, it indicates that the old net is already terminally marked.
Therefore, the only lookahead consistent marking in the new net is the terminal
marking M 1

f . Also, since there is no lookahead trace in the old instance, the
set of preserved lookahead traces in the new net is also empty. Therefore, the
algorithm terminates here after computing these boundary outputs. Lines 3-6
handle this boundary case.

For non-empty Traces, it flips the member traces and stores them into set
Tracesr. Lines 8-9 reverse the arcs directions in the new net N 1 and stores the
reversed net as N 1

edit. For each of the traces in Tracesr, the algorithm looks for
its occurrence in N 1

edit. Finally, set L contains those original lookahead traces
that can be replayed in N 1, and set S contains the weak lookahead consistent
markings in N 1.

The algorithm thus looks for all traces starting from the current marking in
the old net, collecting all new markings corresponding to these traces in set S.
Since, this collection is a set, a marking appears only once even though it can
trigger more than one lookahead traces due to fork-join patterns. The set S can
however have multiple markings in certain configurations as given in Fig. 6. For
the example given in this figure, the algorithm starts with Traces “ tt1t3, t2t3u
and ends with computing S “ ttp1

1u, tp1
2uu, L “ tt1t3, t2t3u.

Fig. 6. An Example Case for Algorithm 1

7.2 Support vs. Enforcement of Lookahead Consistency

The motivation behind enforcing lookahead consistency is as follows. Given a
marked old net and a new net schema, even though the lookahead consistent
marking is supported in the new net, due to the generality of the new net, the
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tokens can not be guaranteed to follow the execution path as prescribed by the
old model. For example, consider two consistent markings are shown in the milk-
product packaging and dry-fruit packaging workflows of Fig. 3 as per the weak
or accommodative consistency model. As noted out earlier, since they do not
satisfy the strong model, the assembly line of dry-fruit packaging can not take
over the task of milk-product packaging. However, if we disable the traces in
the new workflow which violate strong lookahead, the same can still be ensured
for conforming to the desired post-migration paths. As a result, this approach
achieves stricter consistency as intended for the migrating instance, which is not
otherwise enforced by the new schema.

Fig. 7. Output of Accept/Reject Branching Algorithm

For the marking given in the milk-product packaging workflow in Fig. 3, Fig.
7 depicts the consistent marking and transition to be blocked to enforce strong
lookahead consistency for the instance migrating into the dry-fruit packaging
workflow. The only transition to be blocked in this case is shown as a box with
thick border.

Next, the accept/reject branching algorithm given in Algorithm 2 identifies
such transitions that need to be blocked to enforce the consistency preserving
lookahead executions. It is assumed that a suitable implementation mechanism
for disabling the transitions is available in the workflow management system.

Algorithm 2: Accept/Reject Branching
Input: WF-Net N “ pP, T, F q, Marking M in N , Set of lookahead traces Σ
Result: Set of transitions Tblock

1 let pathpe0, e0q = TRUE
2 let pathpei, ejq be a boolean function indicating the existence of directed path

from net element (place or transition) ei to net element ej
3 Pexchoice Ð t p | pp, tiq, pp, tjq P F , i ‰ j, Dp0 such that Mpp0q “ 1, pp0, pq =

TRUE u
4 Tpotential Ð t t | t P T, p P Pexchoice, pp, tq P F u
5 Tlookahead Ð t t | σ P Σ, t P Tpotential, t P σ u
6 Tblock Ð Tpotential ´ Tlookahead
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The inputs to the algorithm is a marking in the new net and the set of desired
lookahead traces Σ which is set to L, the output of Algorithm 1. As output it
produces the set of transitions Tblock which can be blocked to disable all the
lookahead traces that are not in Σ.

First the algorithm identifies the choice gateways which are not yet traversed
by the tokens in the new net. In a sequence, disabling the head-task prevents
the whole sequence. Paths following exclusive-choice gateways are sequences with
head-tasks as the first tasks after the choice. The algorithm finds out the set of
tasks Tpotential which holds all the head-tasks following the choice gateways in
the new net. Discarding those tasks from Tpotential which are not in the lookahead
traces gives the remainder portion of the net which should be left as active. In
this way, the algorithm finds out the tasks to be blocked as the set Tblock, which
is Tpotential ´ Tlookahead.

Fig. 8. Blocked transitions in the new workflow shown in Fig. 5

It can be noted that blocking of lookahead transitions for the migrated in-
stances may not be an appropriate solution in a given application. For instance,
consider the case of migrated instance in Fig. 8 of the academic workflow process
shown in Fig. 5. The blocked transitions are shown as boxes with thick border.
As a result of blocking these transitions, the migrating student can proceed only
through group2 and group3 courses. However, due to the additional constraint of
the university that a student having backlogs can not register for group3 courses,
such students can not be migrated since there is no path left for them in the
new net. Also, migrating students can not take seminar and mini-project courses
available in the changed curriculum. Therefore, with reason of retaining flexi-
bility, blocking of transitions is not suitable for this situation. On the contrary,
the approach of blocking transitions is suitable for those cases where migration
is inevitable, and yet sticking to the old execution paths is necessary for appli-
cation semantics. A case study of a library resource acquisition workflow given
in Section 7.3 describes one such suitable migration scenario for accept/reject
branching.
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The following conditions summarize the inferences regarding the class of
lookahead consistency that can be drawn from the outputs of the two algorithms.

1. L ‰ tu confirms weak lookahead consistency. (Algo. 1)
2. In addition, |S| “ 1 and L “ Traces confirms accommodative lookahead

consistency. If S contains more than one markings, no single marking can
fire all lookahead traces since there are no duplicate transitions. Hence, the
condition |S| “ 1. (Algo. 1)

3. In addition, Tblock “ tu confirms strong lookahead consistency. (Algos. 1, 2)
4. S “ tu implies absence of lookahead consistency.
5. If Tblock ‰ tu, blocking of the transitions in set Tblock is a mechanism to en-

force the desired lookahead traces. This converts accommodative lookahead
to strong lookahead. In the case of weak lookahead, the lookahead traces
found can indeed be enforced by blocking these transitions.

7.3 Case Study of a Library Resource Acquisition Workflow

A library resource acquisition workflow case is considered for this case study.
Processes in this system are orders of the kind firm orders. (There are other types
of library acquisitions such as serial subscriptions, standing orders and blanket
orders which are not considered in the case study.) In the old system, the institute
has separate processes of resource acquisition for the academic departments and
for the central library as shown in Fig. 9a and Fig. 9b respectively. It is proposed
to merge these processes into a single one. We first describe the old processes
after which the new process is outlined. After this, a consistent lookahead based
migration solution is worked out.

The Old Departmental Process The departmental process can be followed
only for acquisition of hard-copies. First the bibliographer has to prepare the list
of books to be purchased. The overall expense is then estimated and an appli-
cation is sent next to the department office for approval of the budget. Arrival
of the funding approval initiates the negotiation procedure with the vendors. In
the case of rejection of the funding application from the department office, the
workflow can proceed in one of the two ways. If the applicant can arrange money
from her/his project funds, the workflow can proceed to join the flow of usual
acquisition process by initiating the price negotiation. Otherwise, in the case
of unavailability of funding, the acquisition case is dropped. Next, the payment
is carried out for the agreed price as a confirmation of the purchase order to
the vendor. Delivery of the books along with the invoice completes the resource
acquisition. The workflow finishes after recording the acquisition details in the
department resource database and with cataloging of the acquired resources.

The Old Central Library Process The central library workflow follows simi-
lar logic for hard-copy resource purchase, though the funding agencies are differ-
ent. All acquisition requests are sent to the academic office for funding approval.
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(a) Departmental Workflow (b) Workflow of Central Library

Fig. 9. Library Workflows for Resource Acquisition

In the case of rejection, either the Industrial Research and Consultancy Center
(IRCC) supports the funding issues, or the case has to be dropped. In addition
to the above, the central library workflow supports purchases of e-resource. In
the case of e-resource acquisition, additional activities for license negotiation
and agreement are incorporated in the workflow. Once the license is signed, its
copy is received by the library which is recorded in the central library database.
After payment, the e-resource is activated. According to the license agreement,
this step can involve storing a local copy of the resource or enabling password
protected access of the document residing on its remote host. Cataloging of the
resource is performed on the central library database, which wraps up the pro-
cess.

Process Re-engineering A process re-engineering team decides to merge all
the departmental workflows with the central library workflow due to the following
reasons.
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– A consolidated storage of the library resources across all the academic de-
partments can achieve better resource sharing among several departments,
to the benefit of multi-disciplinary studies and projects.

– E-resource acquisition can be performed using the departmental or individual
project funds introducing a level of flexibility.

– Individual departments can leave the responsibilities of library-staff recruit-
ment and related activities to the central library authority reducing the
redundant efforts in the old system.

As a result, the department resource databases has to be merged with the
central library database. Secondly, the running instances need to be migrated in
a consistent way by applying appropriate models as per the needs of individual
old cases. It is observed that the task record acquisition details & catalog in the
old process updates department resource database, whereas, in the new merged
process it updates the central library database. This requires migration of all
old incomplete instances into the new schema.

Lookahead Based Consistent Dynamic Instance Migration Fig. 10a
shows such an on-going workflow instance that is in state funds available. The
migration scenario requires weak lookahead consistency criterion for the safe mi-
gration of the running instances in order to complete the hard-copy acquisition
process from the department. The merged workflow schema and the migrated
marking is shown in Fig. 10b.

In addition to the migration, the situation requires that the same path be
enforced for the migrating instance without giving the additional flexibility of
the alternative of e-resource purchase. Therefore, the execution of these running
cases must be prevented from traversing the path for e-resource purchase, which
is achieved by blocking the transitions which are output of the accept/reject
branching algorithm. The traces of both the algorithms are given below.

– Traces “ t negotiate price, payment, recv. delivery & invoice, record acqui-
sition details & catalog u.

– L “ t negotiate price, payment, recv. delivery & invoice, record acquisition
details & catalog u.

– S = t funds available u.
– Pexchoice “ t funds available, payment complete u.
– Tpotential “ t negotiate price, negotiate price and license, recv. delivery &

invoice, activate e-resource u.
– Tlookahead “ L.
– As a result, Tblock “ t negotiate price and license, activate e-resource u.
– It can be noted that, L ‰ tu ensures weak lookahead consistency. Further,
|S| “ 1 and L “ Traces ensures accommodative lookahead consistency.
However, Tblock ‰ tu implies that strong consistency is not supported by the
modified workflow schema.

The transitions in set Tblock are shown as boxes with thick border in Fig. 10b.
These transitions can be blocked in the new workflow execution environment
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(a) Old Instance in-progress (b) Migrated Instance in Merged Workflow

Fig. 10. Instance Migration into the Re-engineered Workflow

only for this migrating instance to enforce its required lookahead consistency as
discussed above.

8 Discussion and Conclusion

In the literature, execution history based consistency notions are widely adopted
wherever dynamic evolution and adaptation of workflows are considered. The
proposed new model of lookahead consistency uses the remainder of the work-
flow instead of the completed history in defining consistency between states in
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a migration scenario. Three broad classes of the lookahead consistency were
brought out with illustrative examples. The weak lookahead model looks for
preservation of at least one lookahead trace of the old instance across the new
net. For accommodative lookahead model, preservation of all lookahead traces
of the old instance is necessary. The strong model requires the lookahead traces
of the old instance and its migrated marking in the new net to be same. Strong
lookahead implies accommodative lookahead, which in turn implies weak looka-
head consistency.

Besides their usefulness and the inter-relationships among the models, two re-
lated algorithms were also presented for deciding lookahead consistency, comput-
ing token transfer, and for lookahead trace enforcement. The new set of lookahead
models provide future-centric approaches of varying flexibility for token transfer
in dynamic migration scenarios with applications to process re-engineering and
maintenance. A case study of library resource acquisition workflow demonstrated
the relevance of the approach.

As the past execution traces are not taken into account in the context of
lookahead based consistency models, these can not be used stand-alone in sit-
uations requiring history equivalence. However, the lookahead models can also
be applied in combination with history equivalence as per the needs of business
goals. The algorithms for acyclic nets were implemented in GNU Octave [20].
We are working on an integration of this implementation with the facility of
blocking the unintended transitions in a workflow engine [21] environment, and
an extension of the ideas to work with cyclic nets.
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Catalog-based Token Transportation in Acyclic
Block-Structured WF-nets
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Abstract. The problem of workflow instance migration occurs during
dynamic evolutionary changes in processes. The paper presents a catalog-
based algorithm called the Yo-Yo Algorithm for consistent instance mi-
gration in Petri net workflow models. It uses a technique of folding
and unfolding of nets. The algorithm is formulated in terms of Colored
Derivation Trees, a novel representation of the runtime states of work-
flow nets. The approach solves the problem for certain types of changes
on acyclic block-structured workflow nets built in terms of primitive pat-
terns moving much of the computation to schema level on account of the
use of two critical ideas, a catalog and the folding order. The approach
is illustrated with the help of examples and comments on its correctness.

Keywords: Block structured Workflows, Dynamic Evolution, Structural
Compatibility, Token Transportation, Workflow Specification

1 Introduction

Organizational goals are realized by executing business processes that involve
people, resources, schedules and technology. In order to cope up with changing
environments, changing requirements or new internal challenges, business pro-
cesses need to be changed. Traditional workflow management systems (WFMS)
are well-suited for rigid processes. However, the volatile nature of business pro-
cesses requires intricate facilities for changing the workflows at runtime in WFMS
in a valid and consistent manner. In absence of this support the information sys-
tem susceptible to changes needs to be tackled by slower porting processes, it
not being immediately usable due to the not easily bridgeable gap between the
pre-planned and the evolved actuality.

An evolutionary change includes process change at schema level and also
instance migration for all running cases. This paper describes the Yo-Yo algo-
rithm for Petri net models of acyclic block-structured workflows to carry out
consistent runtime instance migration in this context. At the schema level a
Yo-Yo compatibility property is specified to define the scope of the proposed
instance migration algorithm. A specialty of the algorithm is that it gives the
consistent token transportation based on pre-computed catalog solutions. Sec-
ondly, from the two workflow net schemas, we are able to separate immediately
migratable and immediately not migratable markings. This work uses the Petri



net based workflow model called WF-net, which was introduced by Van der
Aalst [1]. We follow a block-structured formulation of WF-nets, in terms of
blocks, which are primitive workflow patterns namely the Sequence, the Parallel
Block and the Exclusive-choice Block. The algorithm is presented for carrying
out runtime token transportation under a set of change operations, which are
the inter-convertibilities among the primitive pattern blocks. The intuition of
this algorithm is presented in our earlier work [2]. The paper provides the full
formulation of the algorithm and its proof of correctness. The formulation is
developed in terms of a new runtime workflow state representation called the
Colored Derivation Tree.

The paper is organized as follows. After discussing the related work, we first
present our pattern based block structured workflow specification approach in
Section 3. Following this, the novel representation called Derivation Tree and its
colored form are developed in Section 4. In Section 5, the intuition behind the
algorithm is first outlined. The ingredients of the algorithm are then discussed
developing the notions of the Yo-Yo compatibility property between two nets,
instance level correctness of migration in the form of a valid and consistent
catalog of token transportation and folding, unfolding operations on WF-net.
Lastly, the algorithm, its working and its applicability are explained with the
help of a practical example scenario. A proof of correctness of Yo-Yo algorithm is
given in Section 6. The algorithm works on colored derivation tree representing
the old net and produces colors in the derivation tree of the new net, i.e. colors
corresponding to the marking in the new net. The catalog is used for color
transfer at each iterative step in the algorithm.

2 Related Work & Contributions of the Paper

In this section, we present a brief account of existing research on dynamic evolu-
tionary changes in Petri net models of workflows to highlight the achievements so
far and respective limitations. The literature in this field can be categorized into
two kinds. Firstly, the change region based approaches are designed to work with
arbitrary structural changes. The second category is of state based approaches.

2.1 Change Region Based Approaches

An earlier among the change region based approaches is the approach of Ellis
et al. [3], representing dynamic change as replacement of a part of the old net
and preserving the same history of execution by an altered making after the
replacement. In their approach called token transfert, the old part referred to as
the old change region is replaced by a new change region. However, some cases
are unsafe to migrate when the old change region is marked, and hence, the
transfers are delayed until the tokens in the old net reach a safe state. This de-
layed execution of changeover requires migration to be withheld till a consistent
point of execution is reached when tokens come out of the change region. This
early work in the field does not suggest a method for identification of unsafe
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change regions or an algorithm for consistent migration. Ellis and Keddara [4]
demonstrate realization of token transfert with the help of transitions called flow
jumpers connecting places in the old and the new nets. However, no algorithm
to compute the flow jumpers has been suggested in this work.

Aalst [5] presents an algorithm for computing change regions in old and new
nets, the notion of which was introduced earlier [3]. Outside the change regions,
the marking in the old net can be carried forward into the new net one on
one without violating validity. However, the adopted consistency criterion uses a
notion of validity based on marking equality in terms of place labels, ignoring the
notion of consistency in terms of history equivalence. Therefore, for several types
of changes, the computed change region does not ensure consistent migration.

Sun and Jiang [6] present a variation of the algorithm given by Aalst [5] for
generating the change region. Their work handles dynamic changes for upward
compatibility, where the behavior of the old net in terms of execution traces is
preserved in the new net. For consistent instance migration, a weaker version
of history equivalence criteria is specified. Unlike usual notion of state in Petri
net formalism, in addition to marking, this work represents the runtime state by
considering execution trace. The work also formulates a property for migratabil-
ity at the level of instance, including those inside change regions. However, this
approach does not provide an algorithm for consistent instance migration.

The work of Cicirelli et al. [7] describes an implementation and a case study
of dynamic evolution based on the theory founded in the works of Ellis et al. [3]
and Van der Aalst [5]. Their work uses the change region generation algorithm
given by Van der Aalst to compute the unsafe regions for instance migration.
The migration strategy is termed as decentralized migration, since the executions
in different parallel branches are independently inspected and set for migration.
The tokens in the old instance are then tagged according to their presence inside
or outside the change region. In a particular state set for migration, some to-
kens may be inside the change region, whereas some are outside. Tokens outside
change region are migrated immediately. Tokens inside change region continue
till they come out of it and enter in a safe state suitable for migration. That
point of execution creates a valid marking in the new schema.

2.2 State Based Approaches

The difference between this category and the earlier one is that the state based
approaches do not pre-compute the change regions. Instead, they directly provide
state based mappings in the new net. If consistent mapping does not exist in
a particular state, this approach can not make use of any possibility of delayed
migration as in change region based approaches.

It has been noted [6] that the change region based approach is a pessimistic
approach since inside a change region, there may be migratable markings. In
the state based approach, this drawback is removed with the additional cost of
instance based solutions. Another shortfall of the existing change region com-
putation algorithms is that they overlook the history equivalence criteria. For
example, a change region computation focuses on finding a mapping for state
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(p1, p2, p3) to state (p′1, p
′
2, p

′
3) ignoring one-to-many or many-to-one mappings

of other kinds such as mappings to states (p′1, q), (p′1, p′2) or (p′1, p′2, p′3, p′4) in this
case which have the same history of transition firings. The class of state based
approaches solve this problem by keeping the observable behavior of the nets in
focus, thereby exploring richer markings which need not be identical.

The approach of Agostini and Michelis [8] implement the feature of dynamic
change in their MILANO workflow system. This work allows a set of change
operations, which are parallelization, sequentialization and swapping. The map-
pings of runtime states between the old and the new workflows are precomputed
over the entire state space modeled as reachability graph. Instead of identifying
regions, state to state mappings are generated for valid migration points.

Van der Aalst and Basten [9] have looked into the problem of dynamic change
in light of inheritance relations between the nets in a migration pair. If the new
workflow specializes the observable behavior of the old workflow by hiding or
blocking some of the additional tasks, then the new workflow is considered as a
subclass of the old one. They show that if two nets are related by inheritance,
it is always possible to have a correct instance migration from the old to the
new workflow. The work also shows that addition or deletion of cycle, sequence,
parallel or choice branches preserve inheritance relation. The mapping between
the runtime states of the two processes is given by transfer rules guarantee-
ing soundness. However, the problem of consistency in terms of history is not
formally addressed, though the authors point out a supporting example.

2.3 Contributions of Our Work

The paper presents an algorithm for token transportation to ensure the con-
sistency criterion of history equivalence by applying catalog solutions without
replaying the history, unlike most of the existing approaches. For a practical sce-
nario of evolution, where thousands of instances need to be migrated, replaying
history for each of them or solving the state equation [10] along with the solution
for legal firing sequence problem [11] may be computation intensive. The Yo-Yo
algorithm improves the runtime by pre-computing migrations among primitive
patterns, and by generating what is called Yo-Yo compatible derivation trees at
the schema level. Moreover, for the chosen types of nets and change patterns,
the Yo-Yo algorithm successfully carries out consistent migration even for those
cases many of which are not suitable for migration as per the change region
based approaches due to their pessimistic prediction of non-migratability. Yo-
Yo approach does not compute change region, but in turn, it looks for catalog
based transportation which succeeds if the case is migratable by the consistency
criteria of history equivalence.

3 The Pattern Based Approach of Workflow Modeling

The Yo-Yo token transportation approach offloads some of the complexities in-
curred by traditional change region based or state based approaches by means of
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its block structured workflow specification. Confining the scope to block struc-
tured workflows is in line with the philosophy of block structured executable
process models in BPEL [12] and pattern based models such as [13].

The permissible change operations on workflow schemas have been referred
to as change patterns in the literature [14]. The change patterns in the Yo-Yo
approach are inter-convertibilities among the primitive patterns shown in Fig. 1.
The following six kinds of pattern changes are considered: SEQ to AND, AND
to SEQ, SEQ to XOR, XOR to SEQ, AND to XOR, and XOR to AND.

Fig. 1. Primitive Gateways and Patterns

3.1 Workflow Primitives

Patterns are commonly occurring configurations in architecture. Control flow
behavior of patterns in workflow processes were described by Aalst et al. [15].
In our work, we formulate and use a grammar for workflow nets in terms of
the primitive workflow patterns. Fig. 1 shows the Petri-net models of primitive
fork-join gateways and pattern blocks. It can be noted that the transitions in the
gateways are kept unlabeled, since these are used only to model the control-flows
and not the workflow tasks. Consequently they are omitted from the specifica-
tions in the string based language of WF-nets which is introduced below. The
string based language captures the control flow dependencies through delimiters.

3.2 CWS: A Compact Block Structured Workflow Specification

Block-structured workflows are composed by nesting the primitive patterns. This
approach simplifies complex processes in terms of blocks. The block structures
are directly folded in or out in the Yo-Yo algorithm. For the purpose of our work
we assume that there is no repetition of transition-labels in a net.

Now, a compact string-based specification language called CWS is introduced
for specifying block structured acyclic WF-nets. Unlike graphical and tuple based
existing description methods for Petri net based workflows, in CWS, the places
are dropped and only the labeled transitions are included. The reason for exclud-
ing the places is that the consistency criterion based on task execution traces
does not require any role from the places. However, places shown in the pictorial
models can be regenerated by parsing CWS specifications. The execution control
transitions used in fork-join patterns are implicitly encoded into the delimiters,
and only the application transitions are included in the specification.
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Start → SEQ;
SEQ → SEQ t SEQ t SEQ | SEQ AND SEQ | SEQ XOR SEQ | ε ;
AND → ( SEQ t SEQ ) ( SEQ t SEQ ) ;
XOR → [ SEQ t SEQ ] [ SEQ t SEQ ] ;
Workflow Net CWS Specification
SEQ block in Fig. 1 txty
AND block in Fig. 1 (tx)(ty), (ty)(tx)
XOR block in Fig. 1 [tx][ty], [ty][tx]
The net in Fig. 8(a) t1(t2(t3)(t4))((t5)(t6)t7)t8
The net in Fig. 8(b) t1t2t3t4(t5)(t6)t7t8

Fig. 2. CWS Grammar, Example Nets, and their Specifications

The CWS grammar is shown in Fig. 2. A terminal symbol t represents a
transition corresponding to a task in the workflow. Round and square bracket
pairs are used to mark AND and XOR fork-join patterns respectively. The top
level pattern is always a Sequence that can generate either an empty string or a
nesting of blocks. Example nets specified in CWS are given in Fig. 2. It can be
seen that parallel or choice branches can be specified in any order, which creates
multiple equivalent specifications.

4 Derivation Tree of a Workflow Net

Parsing of workflow models into hierarchical blocks has been implemented ear-
lier in the approach of Refined Process Structure Tree (RPST) [16]. It provides
unique parsing of a WF-graph in terms of canonical single-entry-single-exit re-
gions which can be of arbitrary length. However, this approach results in an
infinite-sized catalog, which counters the advantage of our approach.

For Yo-Yo algorithm, the nets are required to be parsed in a hierarchy of fixed-
size ingredient blocks. This parsing obtains the Derivation Tree representation of
a WF-net. The derivation tree is obtained after cleaning up the delimiters from
the CWS parse tree. For the primitive nets shown in Fig. 1, their respective parse
trees and derivation trees are shown in Fig. 3. Table 1 shows the correspondence
between symbols in the derivation tree and WF-net.

The terminals in the parse tree are application transitions, delimiters and
empty sequences; and the non-terminals represent block-structured configura-
tions in the net. The derivation tree excludes delimiters and empty sequences
resulting in leaf non-terminals (e.g. ni and n′′′x in Fig. 3f).

The child nodes of AND and XOR non-terminals are organized into two
triplets representing the two fork-join branches. Each triplet contains two places
and a transition. The arcs in a triplet are ordered left to right, showing a tran-
sition sandwiched between pre- and post-places respectively.

A derivation tree can be viewed as a hierarchical composition of the deriva-
tion tree patterns, which are the derivation trees of the primitive patterns (Figs.
3b,d,f). An Example of derivation tree patterns in a bigger non-primitive net ap-
pears in Fig. 5, where the derivation tree patterns are marked as dotted ellipses.
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In a derivation tree pattern, the arcs coming out of a SEQ node are ordered
from left to right. A SEQ node representing only a sequence of two transitions
has five arcs, two for the transitions and three for the places. A SEQ node repre-
senting the grammatical reduction of an AND or an XOR branching has three
arcs to connect to the branching and the places before and after it.

Table 1. Mapping of Derivation Tree Symbols

Derivation Tree Symbol Used Correspondence with
Element/CWS Element WF-net
Leaf non-terminal/empty SEQ Unfilled circle Unfolded Place
Non-leaf non-terminal/SEQ Unfilled circle Abstraction (Folded place)
Non-leaf non-terminal/AND Circle marked ∧ Two parallel branches
Non-leaf non-terminal/XOR Circle marked × Two exclusive-choice branches
Terminal/t Symbol tlabel Labeled transition tlabel

(a) Parse tree of AND (c) Parse tree of SEQ (e) Parse tree of XOR

(b) Derivation tree of AND (d) Derivation tree (f) Derivation tree of XOR
of SEQ

Fig. 3. CWS Parse Trees and Derivation Trees of Primitive Patterns

4.1 Yield of a Non-terminal

Yield of a non-terminal is a sequence obtained by depth-first traversal on the
terminals in the entire subtree rooted at the non-terminal of a derivation tree,
where elements of the sequence are terminals or sets of terminals which can
be further nested. During the traversal, swapping the traversal order of triplets
under an AND orXOR node does not alter the yield. Hence, yield of an AND or
XOR node is formulated as a set of yields of the two triplets. Operator yield(n)
generates this traversal for a non-terminal n. For example, yield(ns) = {tx, ty}
in Fig. 3b, yield(ns) = txty and yield(n′s) = ε in Fig. 3d, yield of the root in Fig.
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5a is a sequence with one element {t1t2t3, t4t5t6}, and the root of the derivation
tree for the net given in Fig. 8a has yield t1{t2{t3, t4}, {t5, t6}t7}t8.

4.2 Local Terminal Coverage of a Pattern

To recall, a pattern is any of the tree structures shown in Figs. 3(b,d,f). The no-
tion of local terminal coverage (LTC) defined on patterns establishes pattern to
pattern correspondence called peers in two nets. LTC of a pattern p, i.e. LTC(p),
is a cross-product s× o of set s of terminals in the pattern and boolean value o
indicating whether the set is ordered (i.e. SEQ block). The individual elements
can be accessed through a dot operator as p.s and p.o.

Peer Patterns: Two LTCs can be compared by comparing their terminal sets
and the ordering. The comparison operator (equality) called peer is defined as
follows. Let =s be the set equality operator and =o be the ordered set equality
operator. We can define the comparison operator peer(p, q) for two patterns p, q
in terms of their respective LTCs, as an operator returning a boolean value:
peer(p, q) = ((p.o∧ q.o)∧ (p.s =o q.s))∨ (¬(p.o∧ q.o)∧ (p.s =s q.s)). If both sets
are ordered (first part of the disjunction), then the comparison operator checks
for element ordering. This condition defines peer relation between sequences.
For example, Sequence txty and tytx are not peers, their LTCs being ({tx, ty}, 1)
and ({ty, tx}, 1). If one of the sets is unordered (second part of the disjunction),
the comparison operator checks for set equality not considering the ordering of
elements. This condition defines peer relation between two patterns when one of
them is not a sequence. For example, Sequence txty and AND (ty)(tx) are peers,
their LTCs being ({tx, ty}, 1) and ({ty, tx}, 0).

The peer operator is thus used to identify pattern to pattern correspondence
between two nets, which contributes to the formulation of hand-in-hand folding
and unfolding of the nets. For formulation of Yo-Yo compatible derivation trees
of a given pair of nets, identification of peer pattern pairs is the very first re-
quirement. The Yo-Yo algorithm carries out token transportation by transferring
colors between the peer patterns. Examples of peer patterns can be seen in Fig.
4, where any two derivation trees satisfy the peer relation.

4.3 Colored Derivation Trees

Coloring of a derivation tree represents a marking of the corresponding net. Non-
terminals can be colored following Definitions 1 and 2. Fig. 4 shows examples of
colorings of derivation trees and the corresponding net markings .

Definition 1 Black Non-terminal: (i) A leaf non-terminal corresponds to a
marked place in the net, and (ii) a non-leaf non-terminal abstracts a marked
subnet in which no labeled-transition has been fired yet.

Definition 2 Red Non-terminal: It is a non-leaf non-terminal that abstracts
a marked subnet where at least one labeled-transition is fired.
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Fig. 4. Examples of Derivation Tree Coloring

5 The Yo-Yo Algorithm for Token Transportation

This section first develops an intuition to the Yo-Yo algorithm, and then discusses
the ingredients of the algorithm, which are the consistency and validity notions,
token transportation catalog, pattern hierarchy and folding order. The algorithm
is discussed at the end of this section.

As discussed previously, a net is considered as a composition of primitive
patterns, and the derivation tree of the net is a hierarchy of derivation trees
of the component patterns. Due to the hierarchical structuring of patterns, the
patterns in the upper level have places that are abstractions of patterns in the
lower level. In other words, a pattern is folded into a place of a pattern which
is at a higher level in the hierarchy. The Yo-Yo algorithm transports tokens
from old net to new net by transporting tokens between peer patterns of two
derivation trees starting from the top level. The tokens move into their places
in the new net as they trickle down when the folded places unfold. Resemblance
between the stretching and squeezing of the string of the Yo-Yo toy, and the
nets being folded and unfolded caused the nomenclature of the algorithm. A
token transportation catalog is constructed for the purpose of peer to peer token
transportation. Transportation in a larger net is thus carried out by applying the
cataloged solutions repetitively through the process of folding and unfolding of
the patterns organized in the hierarchy. Given two pattern hierarchies the Folding
Order is formulated, using which both of the nets are folded hand-in-hand.

5.1 Yo-Yo Compatibility at Schema Level

Yo-Yo compatibility at schema level is a structural property, which is necessary
for instance migration by the Yo-Yo algorithm. It ensures that the old and the
new nets can be folded and unfolded hand-in-hand. During a workflow life-cycle,
at the time of building the new net from the old net, if the changes are confined to
only the allowed pattern alterations, the schema compatibility can be achieved.

A pattern in a derivation tree can be from any of AND, XOR and SEQ
blocks. A pattern occurring at any level in the derivation tree can be replaced
by another pattern without changing the tasks involved in the pattern. Conse-
quently, the tree of the old net is modified by replacing a derivation tree pattern
by another. Two such replacements can be observed in the tree pair shown in Fig.
7. Syntactically, when a Sequence is changed into an AND and XOR, triplets
are formed by including additional nodes according to the grammar. The reverse
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happens in the case of a change from AND orXOR to Sequence. These syntactic
alterations among the primitive patterns can be observed in Figs. 3b,d,f.

The operator compatible(n1, n2) defines the Yo-Yo schema compatibility be-
tween two nets whose derivation trees are rooted at nodes n1 and n2 respectively:
compatible(n1, n2)= (yield(n1) =y yield(n2)), where the yield equality operator
=y compares two yields considering that swaps of triplets in a fork-join pattern
are permissible. An example pair of compatible yields is t1{t2{t3, t4}, {t5, t6}t7}t8
and t1t2t3t4{t5, t6}t7t8 for the trees shown in Fig 8a,b.

5.2 Correctness of Token Transportation

In order to ensure the correctness of the applied dynamic change, validity and
consistency of the resultant marking in the new net must be ensured. For Yo-Yo
migratability, the following models of consistency and validity are adopted.

Axiom 1 Consistency: The tasks which are already completed in the old net
are also completed in the new net, and vice-versa.

Axiom 2 Validity: Resulting marking in the new net is reachable from its ini-
tial marking.

5.3 Pattern Hierarchy and Folding Order

The process of abstracting a single primitive pattern into a place in a net is called
folding. The reverse, i.e. expansion of a folded place into a pattern is referred
to as unfolding. Folding operation simplifies the structure of a net consisting
of multiple patterns converging into a single pattern at the top level. Folding
operation can be applied multiple times, each one simplifying the net further
until the whole net is folded into a single pattern at the top. The original net
can be obtained by the reverse process of unfolding abstract places into patterns.

(a) A Derivation Tree of Fig. 5b

(b) A WF-net

(c) After folding of patterns P1 and P2

Fig. 5. Derivation Tree and Folding Operation

Pattern hierarchy of a derivation tree is a partial order capturing the nest-
ing hierarchy of derivation tree patterns. In the corresponding net, it gives the
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hierarchy of folding of primitive patterns into places. For example, the deriva-
tion tree shown in Fig. 5a for the net in Fig. 5b shows the patterns in dotted
ellipses for which the pattern hierarchy is given by bottom-up partial order
({P3 ← P2, P3 ← P1}). Each folding expression P ← C in the tree gives a pair
of parent-child patterns, where child C is folded into a place in parent P . Ex-
pressions in round brackets represent sequences, and sets represent no ordering
constraint among its folding expression elements.

Given two pattern hierarchies, a folding order is formulated for applying the
Yo-Yo algorithm which is the order to fold the peer patterns hand-in-hand. All
parent-child relations among the patterns for each of the two trees are covered
(directly or transitively) in the folding order. The top-down folding order expres-
sion for the two bottom-up pattern hierarchy expressions ({P3 ← P2, P3 ← P1})
and (P ′

1 ← P ′
2, P

′
3 ← P ′

1) is a sequence (< P3-P ′
3 >,< P1-P ′

1 >,< P2-P ′
2 >)

consisting of folding expressions < Pi-P ′
i >, i ∈ {1, 2, 3}, where Pi, P ′

i are peer
patterns. An expression in angular brackets is pair of peer patterns.

5.4 Enumeration of the Token Transportation Catalog

The catalog handles token transportation between two different patterns. Trans-
fer between the same patterns are handled by the algorithm through a simpler
generic step. Consistent migrations between valid markings of different peer pat-
terns create the cases of the token transportation catalog given in Fig. 6. The
counts of valid markings for the three patterns SEQ, AND and XOR blocks
are 3, 6 and 6 respectively. Each marking further generates variants based on
(1) whether the influential places are folded and (2) if a marked place is folded,
whether a token in it represents none, partial or full completion of the subnet
abstracted in it. Some of the resultant markings that are not migratable due
to the consistency criterion are omitted from the catalog. The catalog shown
in Fig. 6 contains 37 entries all in all, and the transportation mappings among
them. The entries are enlisted as colored derivation trees. A bidirectional arrow
between migratable colorings of different patterns means that if one is the old
pattern coloring the other can be the new coloring. For example, consider the
mapping between case 28 and 26. Case 28 is a sequence, where the token is after
tx and before ty. Case 26 is an AND pattern which has consistent mapping from
case 28. It can be seen that there are two tokens in the two parallel branches of
case 26, one after tx and another before ty. Thus, both the cases have completed
task tx and hence they are defined to be consistent with each other.

In some cases, a SEQ coloring can be mapped to more than one AND or
XOR colorings. These ties are broken based on the conditions on non-empty
yields noted in Table 2. A tag symbol is associated with each condition for use
in Fig. 6. Also, if a node in the catalog is identified as a leaf or non-leaf or
as a just completed folded place (i.e. holding a token just before the exit), the
constraint has to be matched. In the table, node o is in the old SEQ pattern
tree, and n1, n2 are in the new fork-join pattern tree. When o is the leftmost
child, n1 is the leftmost child, and n2 is the node to the left of tx. When o is the
middle child, n1 is the node to the right of tx, and n2 is the node to the left of
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Fig. 6. Consistent and Valid Token Transportation Catalog

ty. When o is the rightmost child, n1 is the node to the right of ty, and n2 is the
rightmost child. Node n is in the subtree rooted at o s.t. yield(n) =y yield(n2).
It can be noted that, since swapping of two tasks in a sequence is not included
in the present catalog, the sequence tx, ty never becomes sequence ty, tx.

Table 2. Tags and Conditions for Catalog Cases

Tag Condition to be evaluated
� yield(o) =y yield(n1) or yield(o) =y yield(n1).yield(n2)∧uncolored n
� yield(o) =y yield(n2), or, yield(o) =y yield(n1).yield(n2) ∧ Red n
� yield(o) =y yield(n1).yield(n2) ∧ Black n

5.5 Token Transportation Algorithm

The Yo-Yo algorithm formulates a consistent marking in the new net given the
marked old net and a Yo-Yo compatible derivation tree pair of the two nets. The
folding order for the derivation tree pair and the token transportation catalog
are required for the computation. The algorithm is given in Algorithm 1.

At first, the marking of the old net is translated into a coloring in the deriva-
tion tree of the net. Then, the algorithm colors the new derivation tree pattern
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by pattern in top-down fashion given by the folding order. When all the color
ripples reach the leaves, the algorithm successfully terminates.

Algorithm 1: Yo-Yo Algorithm
Input: Old Marked Net N , Unmarked New Net N ′, Uncolored Old Derivation

Tree D, Uncolored New Derivation Tree D′, Folding Order F , Token
Transportation Catalog

Result: Marking in N ′

1 colorTree(D,N)
2 Let < p-q > be the first folding expression ‘fetched’ from F , where p and q are

peer patterns
3 if modularTransport(p,q) 6= true then return false
4 for every folding expression < p-q > ‘fetched’ from the remainder of F , not

violating the partial order specified in F , where q has colored root do
5 if p is colored then
6 if modularTransport(p,q) 6= true then return false

7 else localPropagation(q)

8 Mark the places in N ′ corresponding to Black leaves in D′

9 return true

Procedure colorTree(Uncolored Derivation Tree D, Marked Net N)
Result: Coloring in D

1 for each leaf non-terminal n in D corresponding to a marked place in N do
2 color n Black

3 S ← set of colored nodes in D having uncolored parent
4 while S is not φ do
5 n ← any element from S
6 p ← colorParent(n)
7 S ← S \ {n}
8 if p is not NULL then S ← S ∪ {p}

Fig. 7 shows the color propagation traces in the old and then in the new trees.
Old Tree: Steps 1-4 depict the bottom-up coloring of the old tree performed by
procedure colorTree. It starts by coloring the leaf nodes black corresponding to
the marked places in the net of Fig. 8a. Then for each colored node, its parent
is colored either red or black by procedure colorTree until the root is colored.

After transferring color between the top peers, the algorithm goes through the
peer patterns < pi, qi > from the folding order confronting the following cases:
(i) root of qi is uncolored, (ii) pi is colored, root of qi is colored, and (iii) pi is
uncolored, root of qi is colored. In case (i) there is no color transfer. In case (ii),
procedure modularTransport colors qi. When pi and qi are the same patterns,
after replicating the color of pi to qi, a red color transferred to a leaf is turned
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black to preserve the validity of coloring. If pi and qi are different, cataloged
transportations are applied. In case (iii), proc. localPropagation colors qi.

Procedure localPropagation(Uncolored Pattern q)
Result: Coloring in q

1 r ← root node of q
2 if r is Red then
3 nr ← rightmost child of r
4 if nr is leaf then color nr Black else color nr Red

5 else color the leftmost child of r Black

Old Tree: Uncolored Old Tree: Step 1 Old Tree: Step 2

Old Tree: Step 3 Old Tree: Step 4 New Tree: Uncolored

New Tree: Step 1 New Tree: Step 2 New Tree: Step 3

Fig. 7. Derivation Trees Traces in Yo-Yo Transportation
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Function modularTransport(Colored Pattern p, Uncolored Pattern q)
Data: Token Transportation Catalog
Result: Coloring in q

1 if p and q are same patterns then
2 color q as p // same color transfer
3 change the Red leaves of q to Black // no leaf is left Red
4 return true

5 search catalog for colored p and its mapping to q
6 if no mapping found then
7 print instance not consistently migratable, return false

8 color q as per the search result, return true

Function colorParent(non-terminal n)
1 if n is root node in D then return NULL
2 p ← parent node of n
3 if n is Red then color p Red, return p
4 if n is of type SEQ then
5 if p is of type SEQ then
6 if n is leftmost child of p then color p Black else color p Red
7 else if p is of type AND then
8 if n is left child in any triplet from p and left child in the
9 other triplet is Black then color p Black else color p Red

10 else
11 if n is left child in any triplet from p then color p Black
12 else color p Red
13 else
14 if non-terminal left to n is leaf then color p Black else color p Red
15 return p

5.6 An Example Application Scenario

A realistic scenario of dynamic evolution in the reimbursement process in an
academic institute is now illustrated where the Yo-Yo algorithm is used for token
transportation. The old process schema is modeled by the net depicted in Fig.
8(a). The actual tasks corresponding to each labeled-transition are given in Table
3. As per this design, a student has to first fill the reimbursement form and
submit it to initiate a reimbursement request. Next, two concurrent subprocesses
begin, one of which is submission of the bills and then approval by guide and
head of the department. In parallel, the verification of the funding history for the
applicant and funding availability is performed by the awards’ committee, after
a favorable result is confirmed by the committee approval. The reimbursement
amount granted by these three approvals are lastly credited to the student’s
scholarship account thereby completing the workflow.

This design is evolved into the new schema, depicted in Fig. 8(b) due to
the following reasons: every time an application is approved by the head of the
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(a) An Instance of the Old Workflow

(b) The New Workflow Schema

Fig. 8. Reimbursement Workflow

Table 3. Tasks in the reimbursement process in an academic institute

Task Label Actual Task
t1 fill form & submit
t2 submit documents
t3 Guide’s approval
t4 HOD’s approval

Task Label Actual Task
t5 Funding history verification
t6 Funding availability verification
t7 Awards’ committee’s approval
t8 credit transaction

department only after its approval by the student’s guide. In the new design, this
dependency is reflected explicitly to prevent an applicant from making approval
request to the HOD prior to his/her guide. Also, for some cases, though the
funding background is verified by the awards’ committee, reimbursement is not
granted due to rejection either from respective guide or the head. Therefore,
to alleviate the unusable funding verification by the awards’ committee, the
designed concurrency is now made sequential by moving the funding related
activities in the later part of the process.

Dynamic migration of the reimbursement applications already in progress
relieves the applicants from having to start fresh. Also, the process is too simple
to maintain different versions. Therefore, consistent dynamic instance migration
in response to the evolutionary changes are desired. The Yo-Yo algorithm carries
out the consistent token transportation as shown in Fig. 8.

The visualization of the transportation in the given net pair is depicted in Fig.
9. The bottom-up coloring of the old derivation tree is equivalent to successive
folding operations of the marked old net. Again, pattern by pattern top-down
coloring of the new derivation tree is equivalent to unfolding a folded pattern in
the new net and marking it each time. Movement of the color ripple into a leaf
node is equivalent to reaching of a token into an actual place. In this case, the
algorithm terminates when all the transported tokens are placed. Fig. 9 shows
the nets being squeezed and released as they undergo token transportation.

6 Correctness of the Algorithm

This section provides a sketch of the proof of correctness and comments on the
runtime complexity of the Yo-Yo algorithm. A top-down proof is given based on
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Old Net: Input Marking New Net: Unfolding Step 1

Old Net: Folding Step 1 New Net: Unfolding Step 2

Old Net: Folding Step 2 New Net: Unfolding Step 3

Old Net: Folding Step 3 New Net: Transported Final Marking

Fig. 9. Token Transportation Through Yo-Yo Steps

a precondition, which is first outlined below.

Completeness of the Catalog A derivation tree of a arbitrary-sized net is
composed of derivation trees of the primitive patterns. The folding operation
enables us to abstract a bigger net into a single primitive pattern configuration.
Given this folding, derivation trees of primitive patterns which are located at a
lower level of a bigger derivation tree are abstracted as folded leaf non-terminals
in the derivation tree of a pattern located at a higher level. Therefore, a derivation
tree of a primitive pattern can have one or more of the following two types of
leaf non-terminals based on where the pattern is located in the entire tree: (1)
leaves which represent folded lower level patterns. These are tagged as non-leaf
in the catalog, and (2) leaves which are actual places in the entire net. These
are unfolded leaves which are tagged as leaf in the catalog.

Coloring of derivation trees is an encoding scheme under which all places fall
into either of the three color based classes shown in the Table 4.

Table 4. Coloring Scheme for Catalog Patterns

Type of node Marking Status Execution Status Color
Folded (non-leaf) Unmarked Not applicable Uncolored
Unfolded (leaf) Unmarked Not applicable Uncolored
Folded (non-leaf) Marked null-executed (just started) Black
Unfolded (leaf) Marked Not applicable Black
Folded (non-leaf) marked full-executed (just completed) Red
Folded (non-leaf) marked partially-executed Red

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 303



Every place in a pattern can belong to one of the three classes provided that
the resultant marking is a valid marking. Every marked place in a valid pattern
marking can be colored black or red. This leads to 6 possible colorings of SEQ
pattern given that there are 3 valid markings of the primitive SEQ pattern. There
are 6 valid markings of the primitive AND pattern which leads to 20 colorings.
Similarly, for 6 valid marking of primitive XOR, there are 12 colorings. Out of
these 38 cases, three cases of AND, and two cases of XOR are not migratable to
any other consistent and valid making in any other pattern as per the correctness
criteria. This gives a total of 33 unique migratable colorings of derivation trees
of all primitive patterns. However, 4 more cases need to be considered as follows.

It can be seen that the six rows of the table have been colored using three
colors. Using six different colors results in a much bigger catalog. It was found
that clubbing the cases reduces the size of the catalog considerably, leaving out
4 extra cases that need to be handled separately. The clubbing is done based on
whether the nodes are marked, and if marked, whether at least one task in the
folded section is done. In the catalog these 4 extra cases are due to pairs 18 and
37, 4 and 36, 5 and 34, 6 and 35. One case in each pair is covered in the above
33 cases. In this way we obtain 37 valid and exhaustive entries in the catalog.

Mappings among this group are given as per the consistency criteria. For
some cases among these 37 cases, there are multiple mappings possible. These
are resolved by yield-based tie-breaker rules as explained previously.

The Correctness Argument First, the algorithm colors the old derivation tree
as per the old net marking, preserving the semantics of derivation tree coloring
as given in Section 4.3. Next, it transports the color from the old top pattern to
the new top pattern. If this step is not possible without violating consistency, the
algorithm terminates. After the transfer, the colors are propagated further down
through the descendant patterns in the new tree following the folding order. The
color transfer iteratively continues until either no pattern can be colored thus,
or till the algorithm terminates on finding the case not migratable. If a case is
migratable, Lemma 1 proves that given the yield compatibility at the roots of
a peer patterns guaranties that consistent color transfer between them leads to
consistent color transfer in the immediate child patterns. To prove that this can
be done repetitively for the entire tree Lemma 2 is used. Lemma 3 proves validity
of each color transfer. As a result, the algorithm is guaranteed to terminate and
produces correct token transportation.

Lemma 1 For a given pattern P ′ in the new tree having yield compatible root
with peer pattern P in the old tree, consistent color transfer to P ′ guaranties to
find consistent coloring of the immediate child patterns of P ′.

Proof: Coloring P ′ either by modularTransport or localPropagation leads to
coloring of the roots of the child patterns visible to P ′. Given the yield compat-
ibility between the roots of P and P ′, this color passing either by catalog cases
or localTransport can result in the following variants coloring of a child root
against the root of its peer in the old tree. Let Q′ be a direct child pattern of
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P ′. Let Q′ have peer Q in the old tree. (i) Roots of Q and Q′ have the same
color (ii) Both have no color, and (iii) One of them is colored and the other is
uncolored. (Note that, if P ′ and P are the same patterns, color transfer to P ′

follows either case (i) or case (ii)).
In case (i), either one of the catalog mappings or the same color replication

mapping between Q and Q′ is guaranteed to be applicable. Since both of them
are preserve consistency by construction, the lemma applies for this case. In case
(ii), a pattern remains uncolored if either token has moved past it or has not
reached in it yet. In case (iii), the colored root can be either black or red, which
gives us four possibilities. If Q is uncolored and the root of Q′ is black, the token
has not reached in Q, whereas in Q′ black color means that is in the source
place indicating that no labeled-transition is fired yet. If the root of Q′ is red,
the token is past Q, whereas in Q′ it is in the sink place just after firing the last
transition in it. The other two possibilities in this case are reverse of the first
two possibilities. Given the yield compatibility between the parent roots, i.e. the
roots of P and P ′, it ensures the same relative positioning of Q and Q′ with
their respective parent patterns, i.e. they are both either left, right or middle
children. Therefore, when P and P ′ are consistently colored, a token before Q
and after Q′ is a contradiction, which proves case (ii). Similar argument follows
for case (iii) also. In this way consistent transportation for the direct children
can be achieved. Case (i) is handled by modularTransport, case (ii) and the last
two possibilities of case (iii) do not require any coloring action, and the first two
possibilities of case (iii) are handled by localPropagation.

Lemma 2 Let two Yo-Yo compatible derivation trees have patterns P,Q in the
old tree and their respective peer patterns P ′, Q′ in the new tree. Let Q be child
of P and Q′ is child of P ′. Let the roots of P and P ′ satisfy yield compatibility.
If P ′ and Q′ satisfy Lemma 1, then so do Q′ and all of its immediate children.

Proof: The lemma is about a structural property achieved due to Yo-Yo compat-
ibility and folding order that ensures yield compatibility between the roots of
peer patterns extracted from the folding order for coloring at each step of itera-
tion. We use notation SX to represent the yield sequence of the root of derivation
sub-tree X. Let the transition terminals of peer patterns P and P ′ be denoted by
tx (left) and ty (right). P and P ′ can be either of Sequence or fork-join patterns.
We analysis the case where P is a Sequence and P ′ is a fork-join. The other
three cases can be proved similarly. When P is a Sequence and P ′ is a fork-join,
P ′ has at most six immediate child patterns rooted at its six leaf non-terminals.
These are shown in Fig. 10a as Q′

11, Q′
12, Q′

21, Q′
22, Q′

31, and Q′
32. The term Q′

in the lemma refers to each one of them. Similarly, P being a Sequence has three
child patterns Q1, Q2 and Q3 as shown in Fig. 10b. Since the roots of P and
P ′ are yield compatible, SQ1

txSQ2
tySQ3

=y {SQ′
11
SQ′

12
txSQ′

21
, SQ′

22
tySQ′

31
SQ′

32
}.

From this, at subtree level we can observe that SQi
=y SQ′

i1
SQ′

i2
, i ∈ {1, 2, 3}.

As each pattern has two transitions, to accommodate four transitions, each of
Q1, Q2 and Q3 is a hierarchy of two patterns as shown in Fig. 10c or 10d.

Now there are two cases: Q′ can be either Q′
i1 or Q′

i2. For the first case, P has
subtree as Fig. 10c, and for the second P has subtree as Fig. 10d. In the folding
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Fig. 10. Visualization of the subtrees of P ′ and P in Lemma 2

order corresponding to the first case, element < Qi1-Q′
i1 > precedes element

< Qi2-Q′
i2 >, and for the second case they are swapped. As the coloring follows

the folding order, after every step the visible parts of the nets are composed of
the patterns from the already traversed. In this regard, for the extracted element
< Qij-Q′

ij >, the roots of Qij and Q′
ij are yield compatible and hence, consistent

color transfer to Q′
ij guaranties consistent color transfer to the next level, thereby

proving Lemma 1 for this case. The justification for other combinations of P and
P ′ mentioned at the beginning of this argument is skipped due to lack of space.

Lemma 3 Peer to peer color transfer preserves validity pattern of coloring.

Proof: For catalog transfer cases validity is preserved by construction. For same
color replication, validity of the newly produced color is preserved by the correct-
ness of the old pattern coloring and the validity preserving step of the algorithm
(line 3 of modularTransport). For local transportation, validity is preserved by
following the definitions. Therefore, the lemma is proved.

Time Complexity and Brief Comparison As it can be observed from the
algorithm, the asymptotic time complexity of the runtime token transportation
in terms of number of patterns n is linear. This computation does not include
parsing of the workflow specifications, finding out the compatible derivation tree
pairs and the folding order. Therefore, the Yo-Yo approach improves the runtime
migration cost by pushing much of the complexity into one-time schema level
computations and design time catalog construction depending on the grammar.
As compared to history-replay approach, Yo-Yo transportation does not compute
or reproduce history. Transportation via pre-computed mappings among marked
patterns achieves the desired migration.

7 Conclusions and Future Work

The paper developed a novel catalog based dynamic token transportation tech-
nique called Yo-Yo algorithm with the help of contributory concepts such as CWS
specification grammar for block structured WF-nets, derivation trees and their
colorings, peer patterns, Yo-Yo compatibility, catalog based transportation, and
folding and unfolding of hierarchically organized patterns. The algorithm uses
the ready-made consistent and valid migration solutions from the token trans-
portation catalog repetitively to achieve correct transportation for non-primitive
bigger nets. Also, immediately non-migratable markings are automatically iden-
tified by the algorithm due to the non-existence of the corresponding entries in
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the catalog. We supplemented the discussion on the algorithm with an example
realistic situation and also provided the sketch of the proof of correctness. We
plan to integrate an implementation of this algorithm in the workflow engine
described in [17]. We aim to generalize the approach to handle replacement,
removal, addition and swapping of tasks.

References

1. van der Aalst, W.M.: The application of petri nets to workflow management.
Journal of circuits, systems, and computers 8(01) (1998)

2. Pradhan, A., Joshi, R.K.: Token transportation in petri net models of workflow
patterns. In: 7th India Software Engineering Conference, India, 2014. (2014)

3. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proceedings of conference on Organizational computing systems, ACM (1995)

4. Ellis, C.A., Keddara, K.: A workflow change is a workflow. In: Business Process
Management, Models, Techniques, and Empirical Studies, Springer-Verlag (2000)

5. van der Aalst, W.M.: Exterminating the dynamic change bug: A concrete approach
to support workflow change. Information Systems Frontiers 3(3) (2001)

6. Sun, P., Jiang, C.: Analysis of workflow dynamic changes based on petri net.
Information and Software Technology 51(2) (2009)

7. Cicirelli, F., Furfaro, A., Nigro, L.: A service-based architecture for dynamically
reconfigurable workflows. Journal of Systems and Software 83(7) (2010)

8. Agostini, A., Michelis, G.D.: Improving flexibility of workflow management sys-
tems. In: Business Process Management: Models, Techniques, and Empirical Stud-
ies. LNCS 1806, Springer (2000)

9. van der Aalst, W.M., Basten, T.: Inheritance of workflows: an approach to tackling
problems related to change. Theoretical Computer Science 270(1) (2002)

10. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

11. Morita, K., Watanabe, T.: The legal firing sequence problem of petri nets with
state machine structure. In: Circuits and Systems, 1996. ISCAS’96., Connecting
the World., 1996 IEEE International Symposium on. Volume 3., IEEE (1996) 64–67

12. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution
language version 2.0. OASIS standard 11 (2007)

13. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process
modeling. In: Business process management. Springer (2008)

14. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3) (2008)

15. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1) (2003)

16. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data &
Knowledge Engineering 68(9) (2009) 793–818

17. Pradhan, A., Joshi, R.K.: Architecture of a light-weight non-threaded event ori-
ented workflow engine. In: The 8th ACM International Conference on Distributed
Event-Based Systems, DEBS ’14, India, 2014. (2014) 342–345

A. Pradhan, R. Joshi: Catalog-based Token Transportation in WF-nets 307





Part IV

Poster Abstracts





De-Materializing Local Public Administration
Processes

Giancarlo Ballauco1, Paolo Ceravolo2, Ernesto Damiani3, Fulvio Frati2, and
Francesco Zavatarelli2

1 I-Conn, Trento, Italy
giancarlo.ballauco@nitidaimmagine.it

2 Computer Science Department, Università degli Studi di Milano, Italy
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Abstract. We describe a framework for the de-materialization of local
public administration processes that provides remote assistance by hu-
man operators when needed. Our framework is in an advanced state of
development and will be tested in several municipalities of the province
of Trento (Italy).

Like many European countries, Italy is merging little municipalities into districts
in order to streamline local services, re-organize staff, and reduce indirect costs
[4]. As local services get relocated to municipalities chosen as district leaders,
citizens face longer trips and increased inconvenience in accessing services. This
situation has triggered research [1, 2] on technologies able to de-materialize Local
Public Administration (LPA) processes, providing remote access to them via
smartphones or special-purpose access points located in schools, shopping malls,
and shops. Experience has shown that citizens used to face-to-face interactions
find hard to access LPA processes via Web sites. Whenever processes involve
choices that may generate a penalty (for instance, paying a local tax) users
require the assistance of a human [3, 4].

Our solution relies on a platform that executes all LPA process steps re-
motely, calling in a human operator when necessary. The level of assistance is
context-dependent, i.e. takes into account the task at hand, the logistics of the
point of access, the age, hearing and eyesight capabilities of the user as well
as the current state of the Internet connection and access devices. If the user
looks uncertain or confused, the remote assistance gets activated automatically
without waiting for the specific request.

In our system, LPA processes are described using BPMN. The standard
BPMN palette has been extended with specific elements associate to proprietary
scripts capable to detect and activate the right assistance level and send direct
commands to I/O devices (printer, scanner, . . . ). We defined a set of heuris-
tic rules [5] that evaluate the context (for instance ConnectionQualityLevel



> 3) and decide the action to deal with it, e.g. StartAudioCall. Our rules are
written as annotations to the BPMN diagram. Fig. 1 shows an extended BPMN
diagram, where icons in the upper left corner of each activity determine the type
of rule implemented in the activity.

Fig. 1. Example of enriched BPMN diagram.

Conclusions and Future Work

Our solution for de-materializing LPA processes preserves human assistance to
users. Our BPMN extension expresses the interaction types that can be activated
for each activity.
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Renew is a continuously developed extensible Petri net tool, which enables
modeling and simulating of various Petri net formalisms. One unique charac-
teristic of the tool is the full support for Java reference nets [2], which com-
bine the concepts of nets-within-nets and synchronous channels with a reference
semantics using a pattern/instance mechanism analogously to object oriented
programming languages. Furthermore Java can be used as inscription language
whereby the formalism is well-suited for the implementation of concurrent soft-
ware systems. Since Renew is written in Java it is available for multiple plat-
forms (including Windows, Linux and Mac). The current version 2.4.2 is available
for download1 free of charge including the source code [3].

Renew provides an easy to use graphical editor for Petri net models and
other types of models and a simulation engine, which is seamlessly integrated into
this editor. It has a plug-in architecture, which makes it easily extensible. The
core plug-ins are provided as part of the Renew distribution. Many advanced
features are supplied by optional plug-ins.

The editor has been improved over the last years and received many small
usability enhancements and has evolved into an integrated development envir-
onment (IDE) for net based software development. It contains a syntax check
during editing and debugging tools, such as breakpoints or manual transitions.
Furthermore the editor features desktop integration, a file navigator and image
export to various formats.

The simulator is capable of handling different formalisms. The main formal-
ism is the Java reference net formalism, for which different extensions exist, such
as inhibitor, reset and timed arcs. The workflow net formalism, provided by an
optional plug-in, adds a task transition, which can be canceled during execution,
so that its effect on the net can be reverted. Other formalisms provide simula-
tion of P/T nets, feature structure nets and bool nets. Simulation is available
in different modes. In the interactive simulation mode the user may control the
simulation by choosing the transitions to fire and inspect each single step. The
automatic simulation mode is usable for system execution and can be run with
and without graphical feedback. Renew features dynamic loading of nets on
demand and configurable logging of simulation events. The monitoring plugins
facilitate the inspection of remote simulations. With an integration of the LoLA
verification tool [1] Renew is also suited for verification tasks during modeling.

The first official version of Renew was released in 1999 and has since then
been continuously developed as a Petri net editing and simulation environment.
The plugin system, introduced with the major release 2.0 in 2004 [4], enabled

1 Renew web page: http://www.renew.de/.



the extension of Renew into various directions. Many of the newly developed
plug-ins are related to agent-oriented software engineering. Additionally, Renew
was utilized to provide a workflow management engine and clients. Besides using
Renew primarily for modeling Petri nets, plugins provide support for different
modeling techniques, i.e. diagrams from UML or BPMN.

In the future we like to further improve Renew as an IDE for modeling and
implementation with Petri nets. Anyhow, our plans in using Renew’s graph-
ical framework as a modeling environment are not restricted to Petri nets. One
of our current research projects aims at advancing Renew to a framework for
meta-modeling domain specific modeling languages [5]. Further research top-
ics are concerned with providing the facilities to enable distributed simulations
across multiple instances of Renew and in distributed networks [6]. To fur-
thermore qualify Renew as an IDE for model based software engineering in
a distributed software development environment, we are currently developing a
plugin to integrate project management features. Another research project is
concerned with utilizing Renew as a library or service to other applications.
Additional enhancements aim at improving the editor capabilities of Renew.
Drag and drop support for the navigator will support the usability by providing
easy to use facilities to managing files. Our release plan includes improving the
quick fix feature to provide better proposals for automated code completion.
A re-designed console plugin enables interactive command line processing with
history and command completion.
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A New Fully Distributed Resource Management System In this paper,
we present a formal approach for the specification and the verification of a fully
distributed resource reservation system. Our system is made of two parts: the
launcher, which is executed by the user who wants to run a job on a set of
computing nodes, and the agent, which is a daemon running on all the resources
that exist in the system.

Clients must have an exclusive access to the resources that are allocated for
them. Under the requirement that clients have reasonable requirements, all the
clients’ requests are answered positively in a finite time and all the jobs are exe-
cuted completely. In order to ensure the correctness of our system regarding such
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terminate
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launch job

dead
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Fig. 1. Model for handling re-
source volatility with a failure
detector

properties, we describe it using a Petri net
model, we express formally the desired prop-
erties and we perform their formal verification
successfully.

Our algorithm relies on the service discovery
tools provided by the Zeroconf protocol. Com-
puting nodes declare themselves on the Zero-
conf bus. However, this simple discovery service
is not sufficient to ensure that the computing
resources will not be used by several jobs at the
same time.

Modelling The Petri net model of a machine is
presented on Fig. 1. A machine can be reserved
when it is available. It answers the client and
switches into reserved mode. When the local
process is done, the machine switches to state
finished, signals to the client that its part of the
job is done, and then returns back to state available. There is only one avail-
able place on each resource, and this place contains only one token in the initial
marking. Hence, a machine can answer positively to one client only.

A model where 2 clients issue concurrent resource allocation requests on
the same set of resources is represented on Figure 2. Each client has its own
reservation system. We represented 2 clients, one requesting n resources and the
other m resources.
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Fig. 2. Reservation system of 2
clients

The cancel transition is very important
here to release some resources in case of a
deadlock caused by a conflict between applica-
tions occurring for instance when all the avail-
able machines are reserved but no application
is able to start. Therefore, after a certain time,
if no additional resources appear on the Zero-
conf bus, the machines reserved for at least one
application will be freed and become available
for the other one.

Analysis We analyzed both generic and spe-
cific properties. As generic properties, we were
interested in deadlock freeness, boundedness
and soundness. The deadlock freeness ensures
that no dead state (a state from which no tran-
sition is fireable), except the final state (all
the jobs are done), is reachable. The boundless
property ensures that the number of reachable
states is finite. This has been ensured by find-
ing out that the state space of the system has been fully and successfully built
in a finite time. Finally the soundness property implies three requirements: (1)
option to complete, (2) proper completion, and (3) no dead transitions.

The table right below gives the execution time (in seconds) of Helena and
statistical data on their state space : the number of reachable states, the number
of terminal reachable states, and the number of arcs in the state space. We
selected a set of 6 configurations according to their state space size. A first
analysis of the state space report revealed that our model is bounded and that
all transitions are executable.

Regarding specific properties, we were interested in checking the following:
(1) It is never possible for a machine to be running two different applications, and
(2) it is always possible to answer possibly any request (as long as the number
of required resources is less than the number of the machines available in the
system).

As a conclusion, the properties expected are all verified provided a few rea-
sonable assumptions are made on the environment. First, if we assume that an

Configurations Analysis results
J M P F Time States Term. Arcs
4 6 4 no 3.92 1,369,236 1 2,849,412
6 4 2 yes 5.90 2,865,804 1,999 5,740,698
5 6 4 no 13.10 8,407,677 1 17,557,805
4 6 4 yes 20.08 12,111,398 559 27,376,192
6 6 4 no 85.25 43,094,470 1 90,124,518
5 6 4 yes 164.36 65,633,194 1,743 151,096,440

infinite number of cancellations can
not infinitely postpone the begin-
ning of a scheduled job then we
can ensure that any submitted job
will be scheduled and executed if
enough machines are available. Sec-
ond, in the presence of machine fail-
ures, a scheduled job can always terminate if we assume that the pool of available
machines allows it.
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1 Extended Abstract

Many modern integrated development environments (IDEs) such as Eclipse [2]
support developers by providing a quick fix feature. If the application detects
syntax errors in the source code, it can propose fixes addressing the error by
providing context-sensitive alternatives the developer can choose from interac-
tively.

Considering Petri net modeling tools, similar functionality can be useful
for inscriptions for high-level nets. We want to transfer the functionality to
Renew [1], where the Java-based inscriptions may be treated analogously to
source code in IDEs. This includes a mechanism for detecting and highlight-
ing errors for developer on the one hand and algorithms for suggesting possible
fixes to these errors on the other hand. Furthermore, the feature shall apply
these fixes automatically, so that the developer has to adjust as little as possible
source code manually.

The first category of suggestions consists of Java fields: The choices consist
of the declared and accessible fields for a denoted class in the source code. If an
entered field is unknown, the quick fix can provide a list of fields using the Java
Reflect API. However, this can lead to a lot of choices being presented to the
developer, when the class defines a great amount of fields. In order to address
excessive lists of suggestions, lists may be filtered to fields having the same prefix
as entered by the developer.

Similar to the fields, methods can also be searched by using the Java Re-
flect API. Filtering the list of methods declared by a class may also be done
by comparing prefixes. In addition to that, the entered parameters need to be
considered when providing suggestions to the user. A method giving the wrong
parameter types, the feature can suggest possible method overloads.

Variables, that are used in the Petri net can be declared in Renew’s dec-
laration node. If the net contains a declaration node with at least one declared
variable, all used variables have to be declared. An undeclared variable causes the
quick fix to suggest possible types for that variable and adding the corresponding
statement in the declaration node.

When assigning a value to a variable, the value can either be a literal, a
newly constructed object or the returned value from a method call. Determining



the type in the first case is trivial, because the corresponding literal’s primitive
type can be evaluated by the compiler immediately. To determine the type of
a newly constructed object, the constructor’s class name has to be well-known,
which means the class name is either fully qualified or an already imported
class. Giving the case of a well-known class name, the corresponding declaration
statement can also be generated easily. Moreover, the information of a fully-
qualified class name can be used to construct an import statement for that class
or its whole package right away. The last case is also rather trivial, because the
return type of a method and its corresponding class object can be determined
using the Java Reflect API.

With the quick fix feature, we achieved a further integration of modeling
support, which helps the developer reaching his goals. Errors in the source code
are explicitly highlighted and possible fixes can be applied interactively. In addi-
tion to the management of development errors, the feature can be used similar
to an autocomplete feature. The developer does not have to look up every class
member he wants to use in the API documentation but can choose from any
alternatives the quick fix provides. We streamlined the development process by
enabling a much faster development in an integrated environment, which is easily
extensible.

When suggesting fields or methods for a class, the quick fix can provide all
known members. If the amount of class members is high, the filtering only applies
to suggestions with the same prefix as the entered text. It is possible to extend
this feature to filter for matching types and parameters, which also enables a
prioritization of suggestions. The suggestions for variables are reliable when it
comes to assignments, where the right part of the expression is parseable and the
type is known. However, when it comes to arc inscriptions and variable types,
which have not been imported, the current algorithm does not give sufficient
results. The former case may require an analyzation of other in- and outgoing
arcs regarding the particular place or transition and its inscriptions. Supporting
unimported types depends highly on the ability to automatically import classes
found in the classpath. In addition to that, the class hierarchies are not part of
the suggestion mechanism at all.

Furthermore, the quick fix feature not only is applicable to Java source code
within inscriptions but also affects modeling errors. Common Petri net properties
are yet verifiable through algorithms. These may be used to address unwanted
discrepancies between wanted and actual net properties using the quick fix.
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Extended Abstract

Teaching students how to develop a single software application in a large team
(e.g. with 25 people) is a challenging task. Especially if the software development
process is distributed and concurrent, the participants have heterogeneous basic
knowledge of software development and are not acquainted with the basics of
the used software development approach.

We are teaching the Petri net-based, agent- and organisation-oriented soft-
ware development approach (Paose) [2,3] in a period of one semester in the
form of a project. The first six weeks cover the introduction phase. In this work
we concentrate on this first phase only. The students are learning the basics of
the Paose approach and how to apply it to develop multi-agent systems. In this
context they get to know the corresponding methods, techniques and tools and
have the opportunity to become familiar with these. The rest of the project the
tutors and students cooperatively develop a multi-agent application.

From the previous projects, improvements to this approach emerged and the
technical complexity of the environment increased. One example is the WebG-
ateway [1], which enables the development and integration of web-based services
for multi-agent systems. Due to the increased technical complexity, we experi-
enced that the teaching complexity increased, too. Also, the large amount of new
information can be confusing and frustrating for the students. We have observed,
that in order to minimize this confusion and frustration it is important, to bring
the information into a sensible order. This means, to provide the students with
all necessary information in the adequate context. If the information is presen-
ted to early, the students could forget it until they need it. If the information is
presented to late, the difficulty of the exercise unintentionally increases and this
could lead to frustrated students.

In order to improve the structure of the existing worksheets, we analyzed
these in regard of the inherent processes, which are necessary to solve the exer-
cises [4]. As modeling technique we used workflow Petri nets [5]. We call these
workflows learnflows. Based on these learnflow models, we restructured and aug-
mented the worksheets. During this restructuring process it occurs, that we also
extended the learnflow models. An interdependency of the refined texts and the



learnflow models emerged. This procedure leads to refined worksheets containing
logically ordered and detailed instructions, which the students can follow step
by step. The use of the workflow Petri nets helps the tutors, to rearrange the
worksheet text in a better order. It shows them, which information appears in
the wrong place (e.g. the information is necessary for an exercise on the cur-
rent page, but appears only on the subsequent page). Also, it shows the tutors
which information is missing and helpful for the students during processing the
exercises.

In the latest teaching project we have already applied these worksheets and
the workflow Petri net models as visual support along with the texts. We have
noticed less frustration and confusion among the students. They are now able to
process the worksheets faster and more independently. Therefore, the tutors are
able to concentrate on teaching the actual objectives. Also the process-oriented
worksheets support the communication between the tutors and the students. If
a student needs some help, it is easy to identify which steps he has accomplished
and to find out where precisely the challenge occurs.

On the poster we will present the old non-process-oriented and the new
process-oriented version of an exercise of a worksheet of our teaching project.
In the previous exercises the students already implemented a one-to-one mes-
sage communication between agents. The objective of this exercise is, to extend
this functionality to a one-to-all (broadcast) message communication between
agents. For illustration we present the text and the corresponding visualized
process model of both versions of the exercise. The visualization of the pro-
cess of the non-process-oriented exercise did not exist before this work. We use
it, to enable a visual comparison to make the differences obvious. These men-
tioned resources and also an extract of this text can be accessed on the Paose
homepage [3] via http://www.paose.net/wiki/ProcessOrientedWorksheets.

The new worksheets represent the first stage of a process-oriented learning
environment, which we are designing for teaching projects. The environment will
provide a web-based support for the process-oriented creation and processing of
worksheets, based on an agent-oriented workflow management system.
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Extended Abstract

The management of local software projects is challenging, due to its complexity.
In case of distributed development projects, the complexity in project manage-
ment increases even more [1]. In this publication we introduce and adapt the
well-proven network technique1 into Paose, a distributed agent-oriented soft-
ware development approach, by directly integrating a modeling tool for network
technique into the development environment of Paose. We support the project
participants in modeling their interdependent project activities and reason about
them more easily, using an illustrative, graphical syntax. By providing the map-
ping of network technique diagrams onto Petri nets, we utilize formal semantics
and improve integration into our development approach, which is based on Petri
nets.

The participants of distributed software development projects have to tackle
several challenges: Project members, which are organized in sub-teams, perform
activities at spacial and temporal distance from one another. These distances
have an impact on communication, coordination and control [1]. If, in order to
counter these challenges, concepts from agile project management that value
self-responsibility are applied, the sub-teams are required to self-organize and
self-manage their own activities. Therefore, the sub-teams require support.

Naturally, a sub-team has to plan and perform a large number of activities.
These activities may depend logically and temporally. Furthermore, not only
may dependencies exist between the activities of one single sub-team, but also
between activities of multiple sub-teams. Quantities and interdependencies of ac-
tivities complicate the sub-teams capabilities of planning and scheduling: State-
ments regarding the duration of the overall project or about efficiently scheduling
activities are not made easily by participants of the sub-teams. In order to ease

1 The terms network technique or network scheduling (German: Netzplantechnik) sub-
sume - amongst other concepts - the more known methods CPM (critical path
method), MPM (metra potential method), PERT (program evaluation and review
technique) or PDM (precedence diagramming method). For a short overview about
network technique, see [6, pp. 101 - 108].



the sub-teams’ project management, participants of sub-teams require support
in modeling the complex system of linked activities.

Distributed software development projects can be executed by following the
Petri-net and agent-oriented software engineering (Paose) approach [2,4]. In
prior works, an issue tracking system and continuous integration support were
integrated into Paose in order to support the participants in performing project
management activities [3]. To allow scheduling of activities and reasoning about
time properties further work is required. The current research of Röder [5] is
concerned with the integration of time planning techniques into Paose.

The discipline of project management provides - among other things - the
well-proven network technique. Using network technique, project managers are
able to graphically model projects. Thereby, project activities and relationships
are explicated as net schedules and elements of project flows. In addition, project
managers can make use of the critical path method to obtain prioritization guid-
ance by identifying activities that are critical in regard to the project duration.

In this poster we present a prototypical tool for applying concepts of a net-
work technique to model sets of project activities as net schedules, enabling the
identification of sequences of time-critical activities. The modeler can map net
schedules to Petri nets, whereby the semantics can be altered in principle. This
mapping has three benefits. Petri net analysis can be applied indirectly on net
schedules. Project participants obtain explicit semantics about the net sched-
ules they created. Furthermore, net schedules can indirectly be incorporated as
executable Petri nets into the Petri net-based implementations of Paose.

In the future, the modeling tool can be enhanced in different ways: More
concepts of the network technique can be implemented into the tool, to enrich
the usable syntax. More complex semantics for the mapping of net schedules
to Petri nets can be provided, to generate Petri net-based implementations for
various purposes.
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3. Matthias Güttler. Integration einer agilen Projektmanagementumgebung in ein
verteiltes Team. Diploma thesis, University of Hamburg, Department of Informatics,
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Abstract. SIFT (Scale Invariant Feature Transform) is a complex im-
age processing procedure for matching objects or patterns in images.
Involving the computation of Euclidean distances in high dimensional
space of many pairs of points and matching them against a threshold,
this work proposes a speedup for the procedure utilizing colored Petri
nets. Being sped up more pairs can be evaluated within reasonable time
leading to better overall results.

Keywords: SIFT, object recognition, image processing, Euclidean distance, per-
formance evaluation, binary squaring, complexity reduction, colored Petri nets

1 Introduction

Looking at the recent development of society towards omnipresence of computers co-
ming in form of smart phones, handhelds, embedded systems and more the necessity
of semi and fully automated processing of images to handle the amount of data and
related requests produced by people becomes more and more severe. Efficient algo-
rithms – in both running time as well as quality regard – cut down time spent by users
to achieve their goals. SIFT [1](short for Scale Invariant Feature Transform) is a very
powerful process for recognition of real world objects in an – from the queries point of
view – unknown, heterogeneous image environment. At one critical point within the
procedure it is necessary to compute the Euclidean distance between several pairs of
high dimensional vectors and compare it against a certain threshold. Since this task
is rather demanding in regards to computation time when done in the traditional way
by just computing the distance, this work presents a method using Petri nets to lower
the computation time for each distance calculation and comparison.

Object recognition as well as image processing in general is an extensive field of
research with a lot of applications. Examples of applications benefiting from improved
running times are panorama photos which a lot of modern mobile devices (smart
phones) are able to take, Optical character recognition (OCR) in which an ap-
plication for a live translator that automatically translates text seen in the real world
is imaginable, automated counting of cars, people, coins, . . . using images and/or
video streams and also assignment of photos in a sense where objects depicted on
a photo known to an online database, but unknown to the user, are matched.



As several other image processing algorithms, the procedure of SIFT involves cal-
culating the Euclidean distance in high dimensional spaces of a significant amount of
points.

Binary Squaring
One of the basic ideas in this work is the bit-wise squaring bsq(n) of binary numbers
which will be called "binary squaring". Assume n = [42]10 = [0000101010]2 = 21+23+
25. The binary square would be: bsq(n) = [1092]10 = [0100100100]2 = 22 + 26 + 210.
Obviously this value does not coincide with the correct squared value of 42 (1792).

There will follow some propositions related to binary squaring, which (analytical)
proofs are omitted due to space constraints. For the factor Rf (n) between binary square
and conventional square of an integer n it holds: 1 ≤ Rf (n) < 3. The average sum
of binary squares of uniform distributed random integers between two powers of two
differs from the sum of conventional squares by factor 1.944 with high probability. This
also holds for values between 0 and a power of two. The computation of the Euclidean
distance can be approximated using the sum of binary squares times 1.944. The major
advantage of the binary square version of this computation is, that summands (on
the binary level) can be interchanged before computing the squared value. Thus the
computation of the Euclidean distance using binary squares can be rearranged to handle
most significant bits first being able to recognize distances above the threshold very
fast.

The Petri Net Model
The general idea is to model the computation of the binary square based Euclidean
distance with a colored Petri net. By doing so some of the computations can be done
by the net design itself, for example using edge weights / (computations) and also
the distance calculation can be split up and parallelized utilizing Petri nets’ inherent
concurrency by using the concept of binary squaring. The net consists of three major
parts: The bit-splitting component, the bit analyzer component and a decision com-
ponent (which decides whether the points are below or above the threshold). The bit
splitter utilizes the results above and splits the differences in each dimension of two
points into its bits, subsequently placing all bits of same significance i over all dimen-
sions into the same place of the net ki. The analyzer component contains a place which
again contains the (classic) squared value divided by 1.944 of the desired threshold. The
analyzer component continuously removes marks from the pool for each mark removed
from a pool ki. As soon as the pool runs out of marks, but there are still marks in one
of the ki to be processed the decision component decides "false" otherwise it decides
"true".

As there are only a very few pairs below the threshold and the majority above
(depends on the algorithm, that requires to calculate the Euclidean distance, but in
most cases this holds), most of the computations will end in only a few firings instead
of d squares and additions when looking at a d-dimensional space.
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Abstract. This paper presents an environment to automatically gener-
ate coordination rules from coloured Petri nets models.

1 Introduction

Today’s systems such as building automation or industrial control processes are
composed of many heterogenous and interacting components. These interac-
tions raise problems such as data sharing and concurrent accesses. Coordination
models and languages [4] are essential to provide a simple way to handle these
interactions. LINC [3] is a rule based coordination environment. It is used to
develop and deploy distributed applications. A LINC application is a set of rules
enacted in distributed rule engines. LINC relies on powerful mechanisms such
as transactions to ensure the normal execution of a rule. However, this does not
prevent from writing conflicting rules. Currently, these conflicts are detected at
execution time, when bugs are observed.

2 Contribution

The proposed approach consists in generating LINC rules from coloured Petri
Net (CPN) models [2]. An application is first modelled using CPNs. This helps
exchanges among all team members. Then the refined CPNs are verified to avoid
undesired behaviours. Finally, the corresponding LINC rules are automatically
generated and directly executed by LINC.

An application developed using LINC is a set of rules manipulating resources
in several bags (bags are a distributed associative memory [1]). A resource is a
tuple of strings and is manipulated using three operations: rd, get, and put
to respectively verify the presence of resources, consume and insert resources. A
rule consists of a precondition (i.e. verification of conditions) and a performance
(i.e. actions to perform, atomically when the conditions are verified). To enable
the automatic generation of LINC rules, we limit the colours. Colours defining
states of the system are enumeration. Other tokens are tuples of strings.

To generate the rules, we define a transformation to move from CPN to LINC
rules (Table 1a). Tokens in places are mapped to resources in bags. A transition
is mapped to a performance. Indeed they both verify conditions and atomically



perform actions. An arc is mapped to an operation: both direction to rd, place
to transition to get and transition to place to put. In LINC rule, the precon-
dition explicitly specifies that the performance is triggerable when the specified
resources are present. This is implicit in a CPN (i.e. a transition is enabled as
soon as the specified tokens are present). Thus precondition is generated using
the incoming arcs of a transition. To enable the graphical representation and the
verification of LINC applications which were manually developed, we define the
reverse transformation to move from LINC rules to CPN (Table 1b).

Coloured Petri net LINC rule
Token Resource
Place Bag
Transition Performance
Arc Operation
orientation type
Arcs incoming in a transition Precondition

(a) CPN model to LINC model

LINC Coloured Petri net
Resource Token
Bag Place
Operation Arc
type orientation
Performance Transition
Precondition Implicit in CPN

(b) LINC model to CPN model

Table 1: Defined transformations

Verification of CPN is limited in existing tools. Thus a CPN is first trans-
formed to a PN by unrolling the colours with enumeration. Other places are
left as is. Then, the generated PN is verified using existing model checkers. This
enables to verify undesired behaviours such as deadclok and livelock.

3 Conclusion

This paper has presented a method to automatically generate rules from vali-
dated Coloured Petri Nets. CPNs verification ensures the global behaviour and
LINC ensures that each step is actually executed according to the CPN. Hence
distributed applications can safely be executed in actual distributed and em-
bedded systems. This has been validated in a smart parking solution including
several off-the-shelves hardware and software components.
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