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Preface

This volume contains the peer-reviewed papers presented at BioPPN 2015 – the
6th International Workshop on Biological Processes & Petri Nets held on June
22, 2015 in Brussels as satellite event of PETRI NETS 2015 and ACSD 2015.

The workshop had been organised to provide a platform for researchers aim-
ing at fundamental research and real life applications of Petri nets and other
concurrency models in Systems and Synthetic Biology. Systems and Synthetic
Biology are full of challenges and open issues, with adequate modelling and anal-
ysis techniques being one of them. The need for appropriate mathematical and
computational modelling tools is widely acknowledged.

Petri nets offer a family of related models, which can be used as a kind
of umbrella formalism – models may share the network structure, but vary in
their kinetic details (quantitative information). This undoubtedly contributes
to bridging the gap between different formalisms, and helps to unify diversity.
Thus, Petri nets have proved their usefulness for the modelling, analysis, and
simulation of a diversity of biological networks, covering qualitative, stochastic,
continuous and hybrid models. The deployment of Petri nets to study biological
applications has not only generated original models, but has also motivated
research of formal foundations.

In this context, the invited talk on A compact modeling approach for de-
terministic biological systems given by Luis M. Torres from Centro de Mod-
elización Matemática (ModeMat)/Escuela Politécnica Nacional Quito, Ecuador,
addressed the problem of extending Petri nets in such a way to obtain a compact
model for the dynamics of certain discrete deterministic systems.

In addition, there is a position paper presented by Hugues Bersini on State-
transition diagrams for biological modelling: A few cases to initiate a discussion
on advantages and drawbacks of different modeling frameworks (Petri nets versus
state-transition diagrams) for biological modelling.

Each submission was reviewed by five to six program committee members
assisted by one external reviewer. The list of reviewers comprises 18 professionals
of the field coming from 11 different countries and writing in total 28 reviews,
most of them of substantial length. The programme committees decided finally
to accept five papers, involving 14 authors coming from four different countries.

In summary, the workshop proceedings enclose theoretical contributions and
biological applications, demonstrating the interdisciplinary nature of the topic.

For more details see the workshop’s website
http://www-dssz.informatik.tu- cottbus.de/BME/BioPPN2015.

We acknowledge substantial support by the EasyChair management system,
see http://www.easychair.org, during the reviewing process and the production
of these proceedings.

June 16, 2015
Cottbus

Monika Heiner
Annegret K. Wagler
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The dynamics of deterministic systems –
A survey

Luis M. Torres1, Annegret K. Wagler2

luis.torres@epn.edu.ec, wagler@isima.fr

1 Centro de Modelizatión Matemática (ModeMat)
Escuela Politécnica Nacional, Quito, Ecuador

2 LIMOS (UMR 6158 CNRS)
University Blaise Pascal, Clermont-Ferrand, France

Abstract. We present a model for the dynamics of discrete determin-
istic systems, based on an extension of the Petri net framework. Our
model relies on the definition of a priority relation between conflicting
transitions, which is encoded in a compact manner by orienting the edges
of a transition conflict graph. The benefit is that this allows the use of a
successor oracle for the study of dynamic processes from a global point
of view, independent from a particular initial state and the (complete)
construction of the reachability graph. We provide a characterization,
in terms of a local consistency condition, of those deterministic systems
whose dynamic behavior can be encoded using our approach and con-
sider the problem of recognizing when an orientation of the transition
conflict graph is valid for this purpose . Finally, we address the prob-
lem of gaining the information that allows to provide an appropriate
priority relation gouverning the dynamic behavior of the studied system
and dicuss some further implications and generalizations of the studied
approach.

1 Introduction

Petri nets constitute a well-established framework for modeling complex dynamic
systems. Their broad application range includes the design of asynchronous hard-
ware circuits [31], the analysis of production and workflow systems [2], the anal-
ysis and control of batch processes [9], the design of distributed algorithms for
networks of agents [26], and the modeling and simulation of biological networks
[10,11,21], to cite only some prominent examples.

Petri nets also turned out to be a flexible modeling framework that has been
extended in various ways for dealing with different applications. For instance,
colored and high-level Petri nets have been widely used for protocol specification
in communication networks [5,14]. Stochastic Petri nets are used in cases where
uncertainty is attached to input data, to describe external noise generated by the
environment, as well as noise that might be intrinsic to a system [16,3]. Hybrid
Petri nets allow to model systems were both continuous and discrete processes

M Heiner, AK Wagler (Eds.): BioPPN 2015, a satellite event of PETRI NETS 2015, 
CEUR Workshop Proceedings Vol. 1373, 2015.



2 LM Torres, AK Wagler

coexist [6], and the inclusion of additional features required for modeling certain
biological networks has led to the definition of Hybrid Functional Petri nets [22].
In this paper we consider another possible extension that aims at representing
systems whose dynamic behavior exhibits deterministic features.

More formally, a network G = (P, T,A,w) reflects the involved components
(like network elements, technical components, biological entities etc.) by places
p ∈ P and their interactions (like transformations, causal dependencies, chemical
reactions etc.) by transitions t ∈ T , linked by weighted directed arcs. Each place
p ∈ P can be marked with an integral number of tokens defining a system state
x ∈ ZP

+, and dynamic processes are represented by sequences of state changes,
starting from an initial state x0 and performed by consecutively switching or
firing enabled transitions (see Section 2 for more details).

Usually, the dynamic behavior is the result of several conflicting as well as
concurrent ongoing dynamic processes. A Petri net is a pair (G, x0) consisting
of a network G together with an initial state x0, and its state space X (x0) is
understood as the set of all further system states which can be reached from x0

by switching or firing sequences of transitions, see e.g. [25] for more information.
In this framework, describing the dynamics of a system might be done by model
animation, i.e., by simulating the flow of tokens inside the network as transitions
are switched [12]. Given a network G and an initial state x0 ∈ X , some central
problems that are usually studied in this context are:

– Reachability : Determine whether the system may eventually reach one of a
set of target states after a finite sequence of transition switches.

– Boundedness: Determine if there are sequences of transition switches that
lead to the accumulation of an unlimited number of tokens at some place of
the network.

– Existence of deadlocks: Determine whether the system can reach a state at
which no transitions are enabled.

– Liveness: Determine whether no sequence of transition switches can put the
system into a state where some transition is permanently disabled.

The problems mentioned above are in general hard from a computational com-
plexity point of view. For instance, reachability was proven to require exponential
space [15] and decidability of this problem could only be established some years
later [23,24].

Partial versus global point of view on a system. Dynamic processes can be en-
coded as directed paths in a state digraph G where nodes represent states and
there is a directed arc between two states x, x′ if x′ can be obtained from x by
switching a single transition. It is common practice to use the term reachability
or marking graph to refer to the subgraph G(x0) of G induced by the set X (x0)
of nodes corresponding to those states that can be reached from the initial state
x0 of the network.

Considering G(x0) allows only a partial view on the studied system which is,
e.g., suitable for a technical system performing exactly one process. However,
already a failure of one or several components of such a system can change the

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



The dynamics of deterministic systems – A survey 3

initial state, and a more global view is required to coherently model both the
normal and the mal function of the system, and to detect the faulty element(s)
by an according failure analysis.

Similarly, the study of biological systems by performing experiments can
be seen as putting the system in a particular initial state and observing the
evolution of the system in terms of resulting sequences of state changes. Due
to the intrinsic complexity of biological systems, the dynamic behavior of such
systems can rarely be understood by performing a single experiment. In general,
several experiments starting from different initial states are required and need
to be coherently interpreted in a single model.

To study dynamic systems and processes therein from a more global point
of view (independent from a particular initial state), we therefore suggest to
consider the state digraph G on the potential state space X of the system, i.e.,
on the set of all theoretically possible states.

Non-deterministic versus deterministic systems. While studying dynamic pro-
cesses, a particular situation occurs when so-called dynamic conflicts are present
at states, in which two transitions are enabled, but switching one disables the
other. In this case, model animation does not allow definite conclusions about
any system properties, as mentioned in [11]. The reason is that the occurrence
of dynamic conflicts is understood as alternative (branching) system behavior,
where a decision between these alternatives is taken non-deterministically.

However, there are examples of systems that show a deterministic behavior
despite the existence of dynamic conflicts. We call a dynamic system determinis-
tic if any state x ∈ X has a unique successor state succ(x). For technical systems,
a deterministic behavior is often crucial in order to guarantee the reliability of
the performed processes. In addition, also some biological systems are determin-
istic, as stimulating them in a certain way triggers always the same response (see
e.g. the light-induced sporulation of Physarum polycephalum plasmodia or the
phototaxis of halobacterial cells described in [18,17,19]). Petri nets, as originally
defined, can be used to model such systems only in some trivial cases.

A compact encoding for deterministic systems. Our aim is to overcome the
above mentioned difficulties by presenting a way to model deterministic sys-
tems from a global point of view (independent from a particular initial state),
and to predict the systems behavior for all possible system states (whithout gen-
erating explicitely the state digraph). For that, we define a successor function
succ : X → X which returns succ(x) for every x ∈ X . An explicit encoding of
succ, for instance pointwise, is about of the same size as the state digraph G, and
hence at least exponential in the size of G. Here we propose a more compact way
of representing the dynamics of a deterministic system, by encoding the global
dynamic behavior of the system through a local selection criterion that chooses
among all currently enabled transitions the one which switches to the successor
state succ(x).

In the next section, we formally provide all definitions and concepts needed
for Petri nets as models for deterministic systems. Our model relies on the defi-

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



4 LM Torres, AK Wagler

nition of a priority relation between conflicting transitions, which is encoded in a
compact manner by orienting the edges of a transition conflict graph. This is sub-
ject of Section 3, where the transition conflict graph is introduced together with
suitable orientations of its edges in order to impose priorities among transitions
as a selection criterion. This leads to a compact encoding of both a successor
and a predecessor oracle. We also provide a characterization of the deterministic
systems that can be encoded by our model. The issue of recognizing and charac-
terizing such suitable orientations of the transition conflict graph is addressed in
Section 4, while Section 5 is devoted to the problem of finding such orientations.
We finally summarize all proposed concepts and their benefits and discuss some
further implications and generalizations of the studied approach.

2 Petri nets with a deterministic behavior

In this section, we will formally provide all definitions and concepts needed for
Petri nets as models for systems with a deterministic behavior.

Recall that a network G = (P, T,A,w) is used to encode the structure of the
underlying system, where the set P of places represents the system’s components,
the set T of transitions stands for their interactions, and the weighted directed
arcs (p, t) or (t, p) ∈ A exclusively connect places and transitions. A network G =
(P, T,A,w) can also be represented by its incidence matrix M := (mpt) ∈ ZP×T

where each row corresponds to a place p ∈ P and each column to a transition
t ∈ T . We have

mpt :=





−wpt if p ∈ P−(t),
+wtp if p ∈ P+(t),

0 otherwise,

where P−(t) := {p ∈ P : (p, t) ∈ A} , denotes the set of pre-places of t ∈ T and
P+(t) := {p ∈ P : (t, p) ∈ A} the set of its post-places.

Some places B ⊆ P may have bounded capacities, which are given by the
positive integral vector u ∈ ZB

+. Each place p ∈ P can be marked with an integral
number xp of (at most up) tokens, and any marking defines a state of the system
that can be represented as an integral nonnegative vector x ∈ ZP

+. The potential
state space of a capacitated network (G, u) is the set of all theoretically possible
states X :=

{
x ∈ ZP

+ : xp ≤ up, ∀p ∈ B
}
. It is at least exponential in |P | and is

finite if B = P holds.
Dynamic processes are described as sequences x1, . . . , xk of consecutive sys-

tem states3, where state xi+1 is obtained from xi by switching or firing a (single)
transition t ∈ T . Thereby, t consumes wpt tokens from each pre-place p ∈ P−(t)
and produces wtp new tokens on each post-place p ∈ P+(t). A transition t ∈ T is
enabled at a state x ∈ X if switching t yields a valid successor state x+M·t ∈ X ,
where M·t is the column of M associated with t, and disabled otherwise. Thus,
t ∈ T is enabled in x ∈ X if

3 Throughout this paper, we will use superindices to reference different states and
subindices to specify places. Thus, xi

p is the number of tokens assigned to place p at
state xi.

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



The dynamics of deterministic systems – A survey 5

E1 xp − wpt ≥ 0 for all p ∈ P−(t) and
E2 xp + wtp ≤ up for all p ∈ P+(t) ∩B.

Remark 1. An extended Petri net (P, T, (A ∪ AR ∪ AI), w) is a Petri net which
has, besides the (standard) arcs in A, two additional sets of so-called control-
arcs: the set of read-arcs AR ⊂ P×T and the set of inhibitor-arcs AI ⊂ P×T . In
such a Petri net, switching of transitions is also controlled by read- and inhibitor-
arcs: a transition t ∈ T is enabled at x ∈ X if E1 and E2 are satisfied and it
additionally holds that

E3 xp ≥ wpt for all p with (p, t) ∈ AR, and
E4 xp < wtp for all p with (p, t) ∈ AI .

Note that also in an extended Petri net, switching of an enabled transition t at
x yields x+M·t as succesor state since control-arcs do not affect the marking.

In general, it is possible that more than one transition is enabled in a state
x ∈ X ; we denote by T (x) the set of all such transitions. Conversely,

X(t) :=
{
x ∈ X : xp ≥ wpt, ∀p ∈ P−(t); xp ≤ up − wtp, ∀p ∈ P+(t) ∩B

}

denotes the set of states at which transition t is enabled.
Recall that the state digraph of a system is defined by G := (X ,A) where

nodes represent potential states and a node x has an outgoing arc (x, x′) ∈ A
if and only if x′ = x+M·t for some t ∈ T (x), i.e., if x′ can be obtained from x
by switching a single transition. We call x ∈ X a branching state if there are at
least two transitions in T (x). The existence of a branching state implies either
an alternative or a concurrent behavior of the system.

An alternative behavior occurs when at least two transitions t, t′ ∈ T (x) are
in dynamic conflict, i.e., if they cannot switch simultaneously as for some place
p ∈ P , we have

xp − wpt − wpt′ < 0, or xp + wtp + wt′p > up,

thus, if x+M·t+M·t′ /∈ X holds. While animating the model, either t or t′ has to
be selected at x. In the case of concurrency, on the contrary, no two transitions
from T (x) are in a dynamic conflict. All transitions in T (x) could be switched
simultaneously, resulting in the valid state

x′ = x+
∑

t∈T (x)

M·t ∈ X .

In this case, G contains paths for all possible interleaving sequences between x
and x′, corresponding to all possible permutations of the transitions in T (x).

Petri nets are an adequate model for simulating the dynamic behavior of
deterministic systems, only if no branching states are present. Otherwise, a
mechanism has to be specified that allows to decide “which is the right path
to choose” in the state digraph. This includes in particular a way of resolving
dynamic conflicts.

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



6 LM Torres, AK Wagler

We call a Petri net deterministic if each state x ∈ X has a unique successor
succ(x) ∈ X . The dynamic behavior of a deterministic system can be specified
in the form of a successor-oracle which returns, for every state x ∈ X , the value
of succ(x). Our goal is to propose a compact implementation for this oracle.
Hereby, we restrict our attention to systems where the successor-oracle can be
expressed via a transition selection function trans : X → T , which assigns to
every state x ∈ X a unique transition trans(x) ∈ T (x) that must be switched
in order to reach state succ(x). Not all deterministic systems can be modeled in
this way, see the discussion in Section 6, and even if it is possible, an explicit
(i.e., pointwise) encoding of trans is extensive as it requires an amount of space
proportional to the size of the state digraph G, which, as pointed out in the
previous section, is at least exponential in the number of places of the network.

In [20], it was proposed to use priorities between the transitions of the net-
work as additional activation rules to determine which transition from T (x) has
to be selected as trans(x) in order to reach succ(x). Our contribution consists in
providing a compact scheme for encoding trans based on such priorities.

Remark 2. The priority relations proposed in [20] shall reflect the relative re-
action rates of the (chemical) reactions represented by the transitions of the
network with the idea that faster reactions have higher priorities and are taken.
On the model side, priorities can be seen as a discrete extreme case of firing rates
of transitions defined by probability distributions, where exactly one transition
in T (x) (namely, the highest-priority transition trans(x)) has probability 1, and
all other transitions in T (x) have probability 0.

As we show in the next section, if a deterministic system S = (G, u, succ)
satisfies a quite natural consistency condition, then there exists a digraph D :=
(T,A) on the set of transitions with the following properties:

– for every x ∈ X , the set T (x) induces a subgraph having a unique sink t(x)
– and t(x) = trans(x) is the required transition to switch from x to succ(x).

Observe that this graph has a size of O(|T |2), which is polynomial in the size of
G. Indeed, the arcs of D can be interpreted as priority relations between pairs
of transitions, with trans(x) being the transition with highest priority among all
transitions in T (x).

3 Encoding valid priority relations

As observed in the previous section, one key issue for modeling the dynamic
behavior of a deterministic system is the specification of a mechanism for the
(unambiguous) resolution of dynamic conflicts between enabled transitions.

Definition 1. Given a capacitated network G = (P, T,A,w) with u ∈ ZB
+, its

transition conflict graph is an undirected graph K(G,u) = (T,E) having as nodes
the transitions from G, where two transitions t, t′ are joined by an edge if and
only if there exists at least one state where both are enabled, i.e.,

tt′ ∈ E ⇔ X(t) ∩X(t′) 6= ∅.

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



The dynamics of deterministic systems – A survey 7

As long as there is no risk of confusion, we will simply write K instead of
K(G,u). It follows straightforwardly from this definition that, for every state
x ∈ X , the set T (x) of enabled transitions induces a clique in K, i.e., a set of
mutually adjacent nodes.

Remark 3. The converse is not necessarily true, as it is shown in [29]. How-
ever, as the sets X(t) are boxes, it is straightforward to prove that at least the
inclusionwise maximal cliques in K are associated with states of the system.

The transition conflict graph K can be constructed in O(|P | |T |2) time using
a straightforward algorithm to check for box intersections X(t)∩X(t′). The next
lemma from [29] provides a more efficient way of its computation.

Lemma 1. Consider a capacitated network (G, u), with G = (P, T,A,w), u ∈
ZB
+ and X(t) 6= ∅ ∀t ∈ T . Then t, t′ ∈ T are in conflict if and only if

wpt ≤ up − wt′p ∀p ∈ P−(t) ∩ P+(t′) ∩B and
wpt′ ≤ up − wtp ∀p ∈ P−(t′) ∩ P+(t) ∩B holds.

Observe that, in the particular case where we have capacities u = 1l, it follows
as a corollary from the last lemma that two transitions t, t′ ∈ T are in conflict if
and only if

P−(t) ∩ P+(t′) ∩B = ∅ and P−(t′) ∩ P+(t) ∩B = ∅. (1)

The following example illustrates the previous results.

Example 1. Consider the capacitated network (G, 1l), with G = (P ∪ T,A, 1l),
from Figure 1(a). Checking the pre- and post-places for all transitions in T
yields:

ti P
−(ti) P+(ti)

t1 {2} {1}
t2 {2} {3}
t3 {2} {5}
t4 {5} {1, 4}
t5 {2, 5} {3}

According to (1), all pairs of transitions are in conflict, except (t3, t4) and (t3, t5),
and we obtain the transition conflict graph shown in Figure 1(b).

As stated in the introduction, our main purpose is to encode the dynamics of
a given deterministic system S = (G, u, trans) in a compact way, by introducing
enough priority relations among transitions, as to be able to determine trans(x)
for every x ∈ X . We have observed that the set of enabled transitions at each
state corresponds to a clique in the transition conflict graph K, and hence K is a
plausible candidate for a framework where these priorities could be embedded.
This idea motivates the following definition.

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015
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Fig. 1. (a) A capacitated network of a dynamic system, and (b) its transition conflict
graph. All place capacities and arc weights are assumed to be equal to one.

Definition 2. Let D(G,u) = (T,A) be a directed graph obtained by orienting the
edges of K(G,u). D(G,u) is valid for the system S = (G, u, trans) if, for every state
x ∈ X with T (x) 6= ∅, the subgraph induced by the nodes from T (x) has a unique
sink, and this sink coincides with trans(x).

As for the unoriented transition conflict graph, we will write in the following
D instead of D(G,u) whenever there is no risk of confusion. Observe that the
existence of a valid orientation implicitly imposes a further requirement on the
nature of a dynamic system. Namely, if two states x, x∗ ∈ X have the same set
T (x) = T (x∗) of enabled transitions, then both induce the same subgraph of
D and, therefore, trans(x) = trans(x∗) must hold. Moreover, if a transition t is
enabled at two states x, x′ ∈ X and t is the highest-priority transition at x, then
either t is also the highest-priority transition at x′ or trans(x′) 6∈ T (x). The next
result from [29] shows that this condition is also sufficient for the existence of a
valid orientation.

Theorem 1. A system S = (G, u, trans) has a valid orientation if and only if the
following consistency condition holds for any pair of states x and x′: if trans(x)
∈ T (x) ∩ T (x′) then either trans(x′) = trans(x) or trans(x′) ∈ T (x′) \ T (x).

As illustrated in Algorithm 1, a valid orientation completely encodes the
dynamic behavior of a deterministic system, since it can be used to obtain an
implicit implementation of the successor-oracle. Given a state x ∈ X , all we
need to do in order to find its successor is to determine the highest-priority
transition trans(x) at x. This can be accomplished by searching for the unique
sink in the subgraph of D induced by the set T (x) of enabled transitions. (If no
transitions are enabled at x, the algorithm just returns the same current state
x as successor.)

A predecessor of x is a state y ∈ X with succ(y) = x. For that, we must
have x = y+M·trans(y). Since there are at most |T | candidates for the transition
trans(y), it follows that the set pred(x) of all possible predecessors of x has
cardinality not larger than |T | and can be constructed calling the successor
oracle at most |T | times, as shown in Algorithm 2. Here, first a set cand(x) of

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



The dynamics of deterministic systems – A survey 9

Input: (G, u,D), x ∈ X
Output: succ(x)

3: Construct the set T (x) of enabled transitions
if T (x) = ∅ then

return x
6: end if

{Compute out-degree of transitions in the subgraph of D induced by T (x)}
for t ∈ T (x) do

9: δ−(t) := |{tt′ ∈ A : t′ ∈ T (x)}|
end for
{Return successor state}

12: t∗ ← t ∈ T (x) with δ−(t) = 0
return x+M·t∗

Algorithm 1: Implementing a successor-oracle by a valid orientation.

all candidate transitions t ∈ T fulfilling y := x−M·t ∈ X is computed, then the
condition t = trans(y) tested for each candidate by calling the successor oracle.

Input: (G, u,D), x ∈ X
Output: pred(x)

3: {Construct set of transition candidates}
cand(x) ←

˘

t ∈ T : xp + wpt ≤ up, ∀p ∈ P−(t) ∩B; xp − wtp ≥ 0, ∀p ∈ P+(t)
¯

{Call successor-oracle to construct sets of predecessors}
6: pred(x) ← ∅

for t ∈ cand(x) do
y ← x−M·t

9: if trans(y) = t then
pred(x) ← pred(x) ∪ {y}

end if
12: end for

{Return set of possible predecessors}
return pred(x)

Algorithm 2: An implementation for a predecessor-oracle.

Computing successors and sets of predecessors is a key operation within sim-
ulation algorithms to study the dynamic behavior of a system and in particular
to address the different questions described in the previous section. To the best
of our knowledge, currently no solution algorithm for these problems is known,
which does not rely on storing explicit descriptions of the state digraph or some
equivalent structure to compute succ(x) at every state x, which strongly limits
the size of the networks that can be considered, due to the high memory re-
quirements. Moreover, in certain application areas such as systems biology, the
explicit values of succ(x) can only be determined by carrying out expensive and
time-consuming wet lab experiments. Having, however, a valid orientation it is
possible to determine or predict succ(x) for each state x ∈ X .
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4 Recognizing and characterizing valid orientations

Another issue of interest concerns the recognition of valid orientations: Given a
capacitated network (G, u), and an orientation D of the edges in the transition
conflict graph, determine whether D induces a valid dynamic behavior on G,
in the sense that for every state x ∈ X , the corresponding clique in D has a
unique sink. Observe that a clique cannot have more than one sink, and that
every clique without a sink contains a directed cycle. Hence, if D is acyclic then
every clique of the graph has a unique sink, and we immediately obtain:

Observation 1 Every acyclic orientation of K is valid.

On the other hand, the next example shows that there are deterministic
systems for which the valid orientation encoding the dynamic behavior contains
directed cycles.

Example 2. Figure 2 depicts a network (G, 1l) with w = 1l together with a valid
orientation D of the transition conflict graph that contains a directed cycle C =
(t1, t2, t3). Table 1 lists all branching states of the system and the corresponding
sets of enabled transitions. It is straightforward to check that each of these sets
induces a clique in D with a unique sink t(x).

1 2

3

4

t1 t2

t3

t4

t1 t2

t3

t4

Fig. 2. A capacitated network and a valid orientation for its transition conflict graph
which contains a directed cycle C = (t1, t2, t3). All arc weights and capacities of the
places are assumed to be equal to one.

Table 1. All branching states of the system from Figure 2.

x1 x2 x3 x4 T (x) t(x)

1 1 0 0 {t1, t2} t2
0 1 1 0 {t2, t3} t3
1 0 1 0 {t1, t3} t1
1 1 1 0 {t1, t2, t3, t4} t4
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The fact that one has to check, for each clique Q in K, if there is a corre-
sponding state x ∈ X with T (x) = Q makes the recognition of valid orientations
hard in general, as there might be up to 2|T | cliques. In the following we describe
a special class of orientations for which this recognition problem can be solved
efficiently.

In [29], it is shown that two different dynamic systems might share the same
transition conflict graph. This motivated the definition of the following equiva-
lence relation between capacitated networks

(G, u) ∼K (G′, u′) ⇔ K(G,u)
∼= K(G′,u′),

where ∼= stands for graph isomorphism. An orientation is strongly valid if it is
valid for all networks of some equivalence class of ∼K. Acyclic orientations are
one specific example of strongly valid orientations. In general, any orientation
where every clique has a unique sink is (trivially) strongly valid. Moreover, the
converse is also true, as it follows from a result in [29] that each equivalence class
contains a network with the property that every clique in K is associated to a
state. This fact makes strongly valid orientations easy to recognize.

Theorem 2. An orientation D of the transition conflict graph of a capacitated
network (G, u) is strongly valid if and only if it does not contain any directed
cycle of length 3.

In this context, one is tempted to wonder whether it is possible to gain more
insights on (strongly) valid orientations by exploring structural properties of K.
In [29], it is shown that for any undirected graph H, there is a network G having
H as its transition conflict graph. Thus, in general, neither K nor D can admit
particular graph-theoretical properties. Studying the problem however from a
hypergraph-theoretical point of view as done in [30], opens the possibility of
characterizing valid orientations further.

A hypergraph is a generalization of a graph in which it is possible to connect
any number of nodes. Formally, a hypergraph is a pair H = (V, E) where V is a
set of elements, called nodes or vertices, and E is a family of non-empty subsets of
V , called hyperedges. We further use two other combinatorial structures related
to hypergraphs. The dual H∗ of H is a hypergraph whose nodes and hyperedges
are interchanged, so that the nodes are given by all Ei ∈ E and there is one
hyperedge Vv = {Ej |v ∈ Ej} for each v ∈ V . The intersection graph G(H) of H
is a graph whose nodes represent the hyperedges of H, and two nodes are joined
by an edge if and only if the corresponding hyperedges intersect.

Recall that, by definition, for every state x ∈ X , the set T (x) of enabled
transitions induces a clique in K, whereas the converse is not necessarily true
(but at least the inclusion-wise maximal cliques in K are associated with states
of the system), see Remark 2.

The equivalence relation on X , where x ∼ x′ iff T (x) = T (x′), partitions
the state space into r ≤ 2|T | equivalence classes X1, . . . ,Xr of states that share
the same sets of enabled transitions. Let x̃i ∈ Xi with 1 ≤ i ≤ r be (arbitrarily
chosen) representative elements for each of these classes, and define the transition
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12 LM Torres, AK Wagler

hypergraph HT = (T, ET ) of G to be the hypergraph on the set T of transitions,
whose family ET of hyperedges is given by ET =

{
T (x̃i) : 1 ≤ i ≤ r

}
. Thus, the

size of HT is exponential in the number of transitions of the network, but it is
always finite, as there are at most 2|T | different subsets of T .

The state hypergraph of G is the dual hypergraph HX̃ of HT and has X̃ ={
x̃1, . . . , x̃r

}
as node set, where its family of hyperedges is determined by EX̃ ={

X(t) ∩ X̃ : t ∈ T
}
. Directly from the definition of HX̃ we deduce:

Lemma 2. The intersection graph G(HX̃ ) of the state hypergraph HX̃ is exactly
the transition conflict graph K.

A hypergraph H = (V, E) has the Helly property if, for any family E ′ ⊆ E
of pairwise intersecting hyperedges, there exists a node v ∈ V contained in all
hyperedges from E ′. A well-known result in hypergraph theory [4] states that H
has the Helly property if and only if the inclusion-wise maximal hyperedges of
its dual hypergraph H∗ are precisely the inclusion-wise maximal cliques of the
intersection graph G(H) of H [4]. This implies:

Lemma 3. HX̃ satisfies the Helly property.

A direct consequence from Lemma 3 and the preceding observations is ob-
tained in [30]:

Theorem 3. The inclusion-wise maximal hyperedges from ET are exactly the
inclusion-wise maximal cliques of K. Thus, for every inclusion-wise maximal
clique Q there is some state x̃i ∈ X̃ , 1 ≤ i ≤ r, satisfying T (x̃i) = Q.

We next show that K has an interesting property, provided that HT and HX̃
belong to certain classes of hypergraphs. A cycle of length k in a hypergraph
H = (V, E) is a sequence (v1, E1, v2, E2, . . . , vk, Ek, vk+1) such that vi ∈ V for
all 1 ≤ i ≤ k + 1, Ei ∈ E for all 1 ≤ i ≤ k, Ei 6= Ej if i 6= j, vi, vi+1 ∈ Ei for all
1 ≤ i ≤ k, and vk+1 = v1. Due to [1], a hypergraph H is acyclic if and only if
H is conformal (i.e., its dual H∗ has the Helly property) and for every cycle of
length at least 3 in H, some edge of H contains at least 3 nodes of the cycle. On
the other hand, a hypergraph H∗ = (V ∗, E∗) is called arboreal if there exists a
tree T ∗ on the node set V ∗ such that every hyperedge of H∗ induces a subtree in
T ∗. Due to structural characterizations in [7,8,27], arboreal hypergraphs are dual
to acyclic hypergraphs and their intersection graphs are chordal, i.e. each cycle
having four or more nodes contains a chord: an edge joining two nodes that are
not adjacent in the cycle. Moreover, it can be shown that arboreal hypergraphs
have the Helly property.

Combining all these properties, the following result is obtained in [30].

Theorem 4. The following assertions are equivalent:

– HT is acyclic.
– HX̃ is arboreal.
– K is chordal.
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Note that a chord (t, t′) within a directed cycle C in D induces a new directed
cycle with a smaller number of nodes, as C contains both a directed path from
t to t′ and a directed path from t′ to t. Hence, an orientation of a chordal graph
contains a directed cycle of length 3 if and only if it contains any directed cycle.
This observation was used in [30] to obtain a new characterization of acyclic
transition hypergraphs:

Theorem 5. The transition hypergraph HT is acyclic if and only if, for any
orientation D of K, the following two statements are equivalent:

1. D is strongly valid.
2. D is acyclic.

5 Finding valid orientations

In the previous sections, we addressed the problem of the existence of a valid ori-
entation and how to recognize and characterize such orientations. This motivates
a canonical further question, namely, once the existence of a valid orientation
has been confirmed for a deterministic system, can we also find it?

As pointed out in [28], infering a valid orientation of a transition conflict
graph shall be done by taking observations on dynamic processes in the under-
lying deterministic system into account. That is: Based on the knowledge of the
values of succ(x) at some states x ∈ X , we aim at finding a valid orientation
that encodes the global dynamic behavior of the system since succ(x) can be
determined with the help of this orientation for all states x ∈ X .

In the following we consider a deterministic system S = (G, u, trans) that
fulfills the consistency condition from Theorem 1 and hence trans can be encoded
as a valid orientation D of the transition conflict graph. Given as input the
capacitated network (G, u) and an oracle for returning the value of trans(x) at
any state x ∈ X , we want to determine D by calling the oracle as few times
as possible since in practice, a call to the oracle stands for the execution of a
(probably expensive and time-consuming) experiment.

We call a set X ′ ⊆ X of states a valid test set if the information about the
corresponding highest-priority transitions {trans(x) : x ∈ X ′} suffices for infer-
ring the direction of all arcs in D. Consequently, we are interested in the following
problem, formulated in [28].

Definition 3 (Minimum Valid Test Set Problem (MVTP)). Given a de-
terministic system S together with an oracle for returning highest-priority tran-
sitions, find a valid test set of minimum cardinality.

The meaning of inferring an orientation deserves further explanation. Let
us denote by partial orientation a (mixed) graph D′ := (T,A′,E′) obtained by
fixing the direction for some edges of K, with A′ being the set of the correspond-
ing oriented arcs, and E′ the set of the remaining unoriented edges. A partial
orientation is extendible if it is possible to choose directions for all unoriented
edges in such a way that a valid orientation is obtained. Given an extendible
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partial orientation D′ := (T,A′,E′), a yet unoriented edge tt′ ∈ E′ is said to be

inferable as (t, t′) if the partial orientation D̂′ := (T,A′∪{(t′, t)},E′\{tt′}) is not
extendible. Moreover, D′ is sufficient for inferring a valid orientation D := (T,A)
if all edges in E′ are inferable as the corresponding arcs in A.

Example 3. Figure 3 illustrates these concepts. The partial orientation depicted
in (a) is not extendible, as choosing any direction for edge t2t3 produces one
inclusionwise maximal clique without sink. In contrast, any direction chosen for
this edge in (b) leads to a valid orientation, so t2t3 is not inferable in the second
example. A sufficient partial orientation is shown in (c): the two unoriented edges
t2t3 and t3t4 must be oriented as (t3, t2) and (t3, t4). Orienting any of them in
the opposite direction leads to a non-extendible partial orientation.

This shows that the optimal solution of MVTP may depend on the underlying
valid (complete) orientation D, and not on the transition conflict graph alone.

t4

t3

t1

t2

(a)

t4

t3

t1

t2

(b)

t4

t3

t1

t2

(c)

Fig. 3. Different types of partial orientations: (a) non-extendible; (b) extendible, but
non-sufficient; and (c) sufficient

In general, recognizing if a partial orientation is extendible, or if an unoriented
edge is inferable constitutes a difficult task, due to the lack of a characterization
of valid orientations from a graph theoretical point of view. In this section we
consider the particular case when D is acyclic. As mentioned earlier, acyclic
orientations are always (strongly) valid and the only strongly valid orientations
for deterministic dynamic systems with acyclic transition hypergraph HT (see
Theorem 5). Trivially, if D is acyclic then any partial orientation cannot contain
a directed cycle. On the other hand, in [28] it is proved the following:

Lemma 4. Any acyclic partial orientation is extendible.

Recall from Theorem 2 that an orientation is strongly valid if and only if
it does not contain a directed cycle of length three. Hence, for any extendible
partial orientation D′ := (T,A′,E′), if (t, t′), (t′, t′′) ∈ A′ and tt′′ ∈ E′ then tt′′ is
inferable as (t, t′′).

It follows from the previous lemma that an edge tt′ ∈ E′ in an acyclic partial
orientation D′ = (T,A′,E′) can be inferred as (t, t′) if and only if the digraph
(T,A′) contains a directed path from t to t′. As a consequence, D′ is sufficient if
for every tt′ ∈ E′ the digraph (T,A′) contains either a directed path from t to t′,
or a directed path from t′ to t. We say in this case that D′ has the path-property.
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Conversely, given a (complete) orientation D = (T,A), an arc a := (t, t′) ∈ A
is called essential if the digraph (T,A \ {a}) does not contain a directed path
from t to t′. Observe that the direction of a cannot be inferred in any partial
orientation extendible to D. Hence, any sufficient partial orientation must contain
all essential arcs from D. The next result from [28] shows that no further arcs
are required.

Theorem 6. Let D = (T,A) be a valid orientation and A∗ ⊆ A the set of
essential arcs. The partial orientation D∗ := (T,A∗,E∗), where E∗ is the set of
edges from K corresponding to the arcs in A \ A∗, is sufficient for inferring D.

Observe that the set A∗ is unique, and that it can be computed from D in
O(m2) time complexity, with m := |A|, for example by several runnings of a
breadth-first search algorithm to determine if each arc of A is essential or not.

Determining the direction of essential arcs is specially important for recon-
structing valid orientations. The following lemma from [28] implies that any valid
test set has cardinality larger than or equal to the number of essential arcs in D.

Lemma 5. For any state x ∈ X , knowledge of the highest-priority transition
from T (x) can be used to orient at most one essential arc.

As a consequence, the following result is obtained in [28].

Theorem 7. A valid test set X ′ ⊆ X is optimal for MVTP if and only if A(x)∩
A∗ 6= ∅ for every x ∈ X ′, where A(x) := {(t, trans(x)) : t ∈ T (x), t 6= trans(x)}
is the set of arcs whose directions are revealed by testing the system at x.

Note that such an optimal valid test set can be easily determined if D is
known. However, in the setting of the MVTP it is not possible to devise a
“winning strategy” that guarantees that each A(x) contains an essential arc, as
the next example shows.

Example 4. Consider the conflict graph given in Figure 5(a). Observe that K
contains three cliques of size 3 (triangles) and seven edges, and that every edge is
contained in one triangle. It can be checked that for any edge e ∈ E, there exists a
valid orientation where e is not essential. Hence, any winning strategy for MVTP
must start by querying the oracle at a state x∗ ∈ X related to one of the cliques
of size 3. But for any of these cliques, there is a valid orientation where A(x∗)
contains no essential arc. Indeed, if T (x∗) = {t1, t2, t3} or T (x∗) = {t1, t3, t4},
choose the orientation from Figure 5(c). Otherwise, if T (x∗) = {t1, t4, t5}, choose
the orientation from Figure 5(b).

Even if it is not possible to devise a “winning strategy” that guarantees to
orient an essential arc with each oracle call in general, a valid orientation can
be obtained by Algorithm 3, provided that the underlying system has one state
associated with each clique of the transition conflict graph K = (T,E). Observe
that in this case the obtained orientation is strongly valid.

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



16 LM Torres, AK Wagler

t1

t2

t3t4

t5

(a)

t1

t2

t3t4

t5

(b)

t1

t2

t3t4

t5

(c)

Fig. 4. A transition conflict graph (a) and two valid acyclic orientations (b)-(c). Es-
sential arcs are marked bold.

Input: K {transition conflict graph}
Q = {Q1, . . . , Qk} {partition of the edges into cliques}

3: Output: D {strongly valid orientation}
for i ← 1, . . . , k do

while Qi contains more than one node do
6: determine x ∈ X with T (x) = Qi

call oracle and determine trans(x)
orient arcs {(t, trans(x)) : t ∈ T (x), t 6= trans(x)}

9: remove trans(x) from Qi

end while
end for

Algorithm 3: Inferring a strongly valid orientation.

Algorithm 3 takes as input a partition of the edges in E into a set of cliques
Q := {Q1, . . . , Qk}. At each iteration of the outer loop, it processes a clique
Qi ∈ Q. At first, the oracle is called to orient all edges incident to the unique
sink node of Qi. Then this node is removed from Qi and the oracle is called
again on the remaining subclique. The procedure is repeated until Qi contains
only one node, which means that all its edges have been oriented. Since the inner
loop is executed |Qi| − 1 times, a total of

∑k
i=1 |Qi| − k calls to the oracle are

required to find the valid orientation D. This quantity is strictly smaller than
m if |Qi| ≥ 3 holds for at least some Qi ∈ Q, since then there is at least one
iteration where two edges are oriented simultaneously, and no edge is oriented
more than once.

This indeed ensures:

Theorem 8. If the underlying system has one state associated with each clique
of the transition conflict graph, then Algorithm 3 computes a strongly valid ori-
entation.

6 Discussion

Petri nets constitute a well-established framework for modeling complex dynamic
systems. It is common practice to study dynamic processes in terms of directed
paths in the reachability or marking graph G(x0) starting from a designated
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initial state x0. Hereby, a particular situation occurs when dynamic conflicts are
present at states, in which two transitions are enabled, but switching one dis-
ables the other. In this case, model animation does not allow definite conclusions
about any system properties [11]. The reason is that the occurrence of dynamic
conflicts is understood as alternative (branching) system behavior, where a de-
cision between these alternatives is taken non-deterministically. Therefore, the
classical reachability analysis has the drawbacks that it

– explores the studied system only from a local point of view, starting from a
particular initial state x0;

– is only applicable for systems of a limited size since the reachability graph
G(x0) needs to be explicitly constructed, but grows exponentially in the size
of the network;

– cannot be used to study systems that exhibit a deterministic behavior.

Our aim was to overcome these difficulties by presenting a way to compactly
model deterministic systems from a global point of view (independent from a
particular initial state), and to predict the systems behavior for all possible
system states (whithout generating explicitly the state digraph). For that, we
have examined a new approach for encoding the dynamic behavior of certain
deterministic discrete systems that relies on extending the familiar framework
of Petri nets. Our encoding consists in a realization of the successor-oracle as a
valid orientation of the edges of the transition conflict graph K, together with
Algorithm 1. This encoding is compact in the sense that the amount of space
required for its storage is polynomial in the size of the network. Therefore, it is
well-suited for being integrated into simulation algorithms like [12] to study the
dynamics of large complex deterministic systems, and to address issues such as
reachability, boundedness, existence of deadlocks, and liveness, among others.

A possible interesting extension of our model concerns the study of dynamic
systems where the concurrent switch of various transitions can occur. Through-
out this paper we have assumed that a change from a state x ∈ X to its suc-
cessor state succ(x) can always be explained by the switch of a single transition
trans(x). However, there are deterministic systems where this does not hold, as
shown in the following example.

Example 5. Consider a deterministic system (G, 1l, succ) with network G as de-
picted in Figure 5 and w = 1l. It is straightforward to check that the system
has the four branching states x0, . . . , x3 shown in the figure. The following ta-
ble lists the sets of enabled transitions at each of these states, as well as the
corresponding successor states specified by succ:

j branching state xj T (xj) succ(xj)
0 (1, 1, 0, 0)T {t1, t2} (0, 0, 1, 1)T

1 (0, 1, 1, 0)T {t2, t3} (0, 1, 0, 1)T

2 (1, 0, 0, 1)T {t1, t4} (0, 1, 0, 0)T

3 (1, 1, 1, 0)T {t2, t3} (1, 1, 0, 1)T
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Observe that t1 and t2 have to be switched concurrently at state x0 to reach
succ(x0), whereas at each of the other branching states a single transition is
switched to reach the corresponding successor state, namely, t3 at x1 or x4, and
t4 at x2. The enabled transitions are highlighted in gray in Figure 5, while the
transitions actually switched are marked in bold.

The above successor function cannot be realized with the help of a transi-
tion selection function trans due to the following reason. Considering x0 as initial
state, trans has to select one of the transitions t1, t2 ∈ T (x0). However, any choice
leads to an intermediate state (x1 for trans(x0) = t1, x

2 for trans(x0) = t2) where
the remaining transition from T (x0) is still enabled but must not be selected, as
both trans(x1) = t3 and trans(x2) = t4 are implied by the specification of succ.
(See the reachability graph in Figure 5.) Thus, none of the potential interleaving
sequences between x0 and succ(x0) can be expressed by means of single transi-
tion switches such that every switch is determined by the value of trans at the
corresponding state.

1 b 2b

3 4

t1 t2

t3

t4

x0

1 b 2

3 4b

t1 t2

t3

t4

x2

1 2b

3 b 4

?

t1 t2

t3

t4

x1,3

x0

x1 x2

(0, 1, 0, 1) (0, 0, 1, 1) (0, 1, 0, 0)

t 1
+

t 2

t1 t2

t3 t4

Fig. 5. A deterministic system whose dynamic behavior cannot be modeled via a tran-
sition selection function. The enabled transitions at each state are highlighted in gray,
the next transitions to be switched are shown in bold. All place capacities and arc
weights are assumed to be equal to one.

One way of dealing with these systems could be through the inclusion of
pseudo-nodes in the transition conflict graph, to account for the simultaneous
switching of various transitions. The advantage would be that all results from the
previous sections directly carry over to the extended setting. The disadvantage of
such a modification is, however, the dramatic increase in the size of the transition
conflict graph, as (in the worst-case) the number of required pseudo-nodes may
grow exponentially with respect to |T |.

An alternative approach consists in working on a slightly different transition
conflict graph, where an edge between two transitions means that they are in
dynamic conflict (i.e. when switching one transition disables the other). In this
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case, T (x) does not longer induce a clique in K. Yet we can now define an ori-
entation to be valid if for any state x ∈ X the set T (x) of enabled transitions
induces a subgraph containing at least one sink. These sinks reveal an anti-chain
of transitions with maximal priorities, which have to be switched concurrently.
Theorem 1 can be generalized to this new setting in a straightforward man-
ner, characterizing which deterministic systems admit valid orientations. The
advantage of this scheme is that it is still compact with respect to the size of
the network G. However, as the sets T (x) do not induce cliques in the conflict
graph, many of the combinatorial properties pointed out in Section 3-5 do not
hold anymore. Moreover, since all transitions that may switch concurrently are
required to do so, it is again possible to construct examples of deterministic sys-
tems whose behavior cannot be modeled in this way. Hence, further research is
necessary to ensure a compact encoding of a successor oracle for all deterministic
systems. For a large number of such systems, however, the here presented results
allow us already the use of such an oracle for the study of dynamic processes
from a global point of view, independent from a particular initial state and the
(complete) construction of the reachability graph.
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Abstract. We consider trophic networks, a kind of networks used in
ecology to represent feeding interactions (what-eats-what) in an ecosys-
tem. We observe that trophic networks can be naturally modelled as
Petri nets and this suggests the possibility of exploiting Petri nets for
the analysis and simulation of trophic networks. Some preliminary steps
in this directions and some ideas for future development are presented.

1 Introduction

Ecosystems are very complex systems constituted by biotic communities (popu-
lations of different species), abiotic components of the environment (like air, wa-
ter, soil) and interactions among these (living and non-living) elements. A branch
of ecology deals with the study of feeding relationships within ecosystems and
represents them as networks of interacting compartments called trophic networks
or food webs. Due to the common limited availability of experimental informa-
tion, a static approach (the mass balance steady state approach) to the study of
such networks has been developed as alternative to the dynamic description.

Complex networks of interacting entities are widely studied in computer sci-
ence: computer networks, agent systems, and, in general, all concurrent and
distributed systems fall into this category. Uncountably many formalisms and
practical tools have been developed for the representation and analysis of inter-
acting systems. This suggests the possibility of reusing models and techniques
from computer science for the study of trophic networks.

This idea is pursued in [17], where the authors advocate the use of process
calculi for ecological modelling. Their claim is that the compositionality prop-
erties of process calculi can be fruitfully exploited for a modular representation
of complex ecosystems. Moreover, process calculi provide an individual based
modelling and stochastic extensions.

In this paper we explore the use of another widely used model of concur-
rency, namely Petri nets [19, 11]. Petri nets permit individual based modelling,
they explicitly represent parallelism and dependencies among entities, they offer
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stochastic and continuous extensions and, as a major advantage, they enable
a qualitative analysis of systems when dynamic information are not available.
Many tools for systems visualisation, analysis and simulation are also available
(see The Petri net World site [21]). In this paper we consider the representation
and analysis techniques generally adopted for trophic networks and discuss the
pros and cons of the application of Petri nets to this field.

The structure of the paper is as follows. In Section 2 trophic networks are
introduced with a small case study related to the Venice lagoon. In Section 3 the
main concepts in Petri nets used to model trophic networks are briefly recalled. In
Section 4 we propose a simple application of Petri nets to the representation and
analysis of trophic networks when dynamic information are not available. This
is exemplified in the case study. Some conclusions and suggestions for further
work are given in Section 5.

2 Tropic Networks

An ecosystem is a community of living organisms, such as plants, animals and
microbes, in conjunction with the nonliving components of their environment,
such as air, water and bioavailable organic matter (detritus), which interact as
a system. A trophic network (or food web) is a representation of feeding inter-
actions in an ecosystem, where the components are connected by binary links
(what-eats-what). Food webs permit to represent and analyse the trophic struc-
ture and functioning of an ecosystem. This knowledge can be used to identify
key species and to detect anthropogenic impacts, such as the effects of pollution,
of physical disturbance, of resources exploitation, etc. Real trophic networks are
very complex, hence models provide partial and abstract representations where,
for instance, similar species are aggregated into groups with similar feeding be-
haviour. Model representation of a trophic network generally focuses on the
fluxes of energy or biomass between nodes. Such fluxes are directional and gener-
ally encompass some very relevant organism-level processes, such as production,
consumption, assimilation, predation, non-predatory mortality and respiration.
An ecosystem is generally an open system, i.e. there are flows of material or
energy between the system and the rest of the world. For this reason, when rep-
resenting and analysing trophic networks, generally also the input and output
flows are taken into account. Inputs can be primary production, immigration or
incoming of detrital matter into the system, while outputs can be emigration,
harvesting by humans and exit of detrital matter from the system. Some energy
may be dissipated into heat (respiration) or some material may be degraded into
its lowest energy form (detritus).

Knowledge on the species present in the studied ecosystem and on their feed-
ing behaviour is a needed prerequisite for representing the trophic network. First
of all it is necessary to single out the n living and non-living compartments to be
represented. A compartment can represent a population of a given species or of
some aggregation of species with comparable feeding habits. For each compart-
ment it is necessary to determine which other taxa are included in its diet, thus
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Nocost. Flux
1 CO2→PHP
2 input→DET
3 PHP→MIZ
4 PHP→MEZ
5 PHP→DET
6 PHP→TAP
7 DET→BPL
8 BPL→CO2

9 BPL→MEZ
10 BPL→MIZ
11 BPL→TAP
12 MIZ→MIZ
13 MIZ→DET
14 MIZ→CO2

15 MIZ→MEZ
16 MIZ→TAP
17 MEZ→MEZ
18 MEZ→DET
19 MEZ→CO2

20 TAP→DET
21 TAP→CO2

22 TAP→Harvesting
23 DET→TAP
24 DET→Export

Fig. 1. A trophic network TV of the Venice Lagoon [4] (left) and its fluxes (right).

specifying the interactions among species or groups of species. These information
determine the network topology, which already provides some relevant insights
on the features of the ecosystem. It is normally represented as a directed graph
where each node represents a compartment and each arc denotes an interaction
between the source and target nodes. More precisely, an arc from node A to node
B represents a flow of energy or biomass from A to B. A common convention
is to depict dissipation for some node with an arc outgoing from the node and
ending in the ground symbol of electrical circuits [20]. A quantity may be asso-
ciated with each arc, representing the magnitude of biomass or energy flow or
the relative occurrence of such a flow. The resulting graph is a directed weighted
graph.

The graph of a simple planktonic trophic network of the Venice Lagoon,
taken from [4], is shown in Figure 1 (left). Numbers on arrows indicate the
fluxes, which are listed in Figure 1 (right). The compartments considered are
phytoplankton (PHP), bacterioplankton (BPL), microzooplankton (MIZ), meso-
zooplankton (MEZ), R. philippinarum (TAP) and organic detritus (DET). The
network provides a representation of the food items digested and assimilated by
R. philippinarum (a marine bivalve mollusk), namely, green algae, cyanobacte-
ria, diatoms, bacterioplankton, microzooplankton, and dead, dissolved, and/or
particulate organic matter.

This trophic network has some peculiarities:

– dissipation (respiration) of PHP is not considered because the flow from CO2

to PHP models the net photosynthetic production, known from experimental
data, i.e. the CO2 needed for respiration has been already subtracted;
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– flow from BPL to DET (mortality of BPL) is not considered because it is
known to be negligible by experimental data;

– flows from TAP, MEZ and MIZ to DET include both natural mortality and
production of faeces;

– flow from PHP to DET indicates only mortality, because PHP does not
produce faeces;

– in the case of MIZ and MEZ cannibalism is represented by arrows exiting
and entering in the same compartment (flows 12 and 17).

From the topology of the graph, or the corresponding adjacency matrix, some in-
formation about system behaviour can be derived. Clearly the adjacency matrix
does not represent the information on weights of the interactions. For this reason
various other matrices have been defined and used for analysis purposes, such as
the matrix of dietary coefficients, the Leontief structure matrix, the total depen-
dency matrix and many others which express different views of the network in
relation to structural and quantitative dependencies among compartments [28].
The main advantage of a matrix representation of a trophic network is that lin-
ear algebra techniques can be applied and in fact matrix methods are the most
used for static analysis of trophic networks (e.g. I-O modelling techniques for
economics modified for ecosystems [28]).

To move from purely topological analysis of a trophic network to quantitative
analysis, ecologists need quantitative data. Estimation of biomass and knowledge
of several rates (e.g. production rate, consumption rate, respiration rate, etc.)
are needed to quantify flows among compartments, together with quantitative
knowledge about diet composition of each living compartment. Some informa-
tion on primary production, specific consumption rates and diet compositions
can be gained from field and laboratory studies but it is unfeasible to deter-
mine the magnitudes of all flows in the system directly. It becomes necessary,
therefore, to estimate the magnitudes of some of them by indirect means. A
helpful approach for estimating unknown flows consists in assuming the bal-
ance of inputs and outputs for each compartment. If a sufficiently long time
period is considered, mass balance in each node of the network is a reasonable
assumption because of the conservation of mass principle. Under the mass bal-
ance assumption, the system is represented as a steady state snapshot of energy
flows, averaged over time. Different techniques are used for the trophic network
reconstruction, that is to infer unspecified flows by solving the balance equa-
tions and satisfying the constraints among the flows in the system. The problem
is generally underdetermined and an infinite number of solutions comply with
the data set and the mass balance assumption. One technique is the Inverse
Model (IM), which has been firstly applied to trophic network in [31] and it has
become quite common among ecologists. IM combines mass balance equations,
data equations and constraints on the flows expressed as inequalities. It finds a
unique solution based on some optimisation criteria, for example by minimising
the sum of squared flows, which corresponds to the most parsimonious solution.
The package LIM implements linear inverse models in R [29]. Another freely
available popular automated balancing routine that supports representation of
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trophic networks, estimation of unknown flows and ecological network analysis
is Ecopath [6] and its evolutions Ecopath-Ecosym-Ecospace [7, 8].

Several analyses on ecological networks have been defined in the last decades.
Some of them are based only on the topology of the model, for instance deter-
mining food chain length, connectance and the presence of cycles. In a balanced
model it is possible to study both qualitative and quantitative properties mea-
sured by global system status indexes such as degree of recycling [2], stability [16,
30], development [27], ascendency [28] and maturity [20]. Analysis of recycling
is intended to characterise how the biomass or energy is reused in a trophic net-
work. Such analysis requires the topology of pathways over which the medium
is recycled, as well as the amounts of material cycling in each loop. In [28] the
author proposes to do this into two steps: first all simple cycles in the network
are identified, then cycled flows are separated from straight-through flows and a
technique is proposed to identify and subtract them from the original network.

3 Petri Nets

Petri nets are a well known formalism originally introduced in computer science
for modelling discrete concurrent systems. Petri nets have a sound theory and
many applications which are not limited to computer science (see, e.g., [19]
and [11] for surveys). A large number of tools have been developed for analysing
Petri nets (see a list at the Petri Nets World site [21]).

We denote a basic Petri net by N = (P, T,W,M0), where P = {p1, . . . , pn}
is the set of places, T = {t1, . . . , tm} is the set of transitions, W :

(
(P × T ) ∪

(T ×P )
)
→ N is the weight function and M0 is the initial marking of the net, an

n-dimensional integer vector assigning to each place its initial number of tokens.
We write t− for the pre-condition of a transitions t, namely the n-dimensional

vector t− = (i1, . . . , in), where ij = W (pj , t) for j ∈ {1, . . . , n}. Sometimes it
will be confused with its support, i.e., the set of places {pj | ij > 0}. The
post-condition t+ = (o1, . . . , on) is defined dually.

The incidence matrix of a Petri net N , denoted by AN , is the n×m matrix
which has a row for each place and a column for each transition. The column
associated with transition t is the vector (t+− t−)T , which represents the marking
change due to the firing of t.

Depending on the available information, Petri nets may permit to represent
and study a system qualitatively, based only on the graph structure, as much as
quantitatively or dynamically. An interesting structural analysis is based on the
incidence matrix and it aims to determine the so-called invariants of the net.
We focus here on T-invariants. Let N be a Petri net, with m transitions and
n places, a T-invariant (transition invariant) of N is a multiset of transitions
whose execution starting from a state will bring the system back to the same
state, namely it is an m-dimensional vector in which each component represents
the number of times that a transition should fire to take the net from a state M
back to M itself. It can be obtained as a solution of the equation

AN ·X = 0, where X = (x1, . . . , xm)T and xi ∈ N, for i ∈ {1, . . . ,m}.
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A T-invariant X 6= 0 indicates that the system can cycle on a state M enabling
the cycle. As discussed in [13, 18], T-invariants admit two possible interpreta-
tions. On the one hand, the components of a T-invariant represent a multiset of
interactions (transitions) whose partially ordered execution reproduces a given
initial state of the system (marking). On the other hand, the components of
a T-invariant may be interpreted as the relative rates of interactions (transi-
tions) which occur permanently and concurrently in a steady state. Minimal
T-invariants of a finite Petri net, N , form a basis, B(N), for the set of semi-
positive T-invariant (Hilbert basis [24]). Any T-invariant can be obtained as a
linear combination, with positive integer coefficients, of elements of the basis.
Uniqueness of the basis B(N) makes it a characteristic feature of the net N .

Two subclasses of Petri nets will be of interest in the modelling of trophic
networks [10]. A state machine Petri net is a Petri net where every arc has weight
one and every transition has exactly one place in its pre- and post-condition.
State machine Petri nets are conservative, namely the total number of tokens of
the system remains invariant under the occurrence of transitions. A free choice
Petri net is characterised by the fact that for any place p, either p has at most
one post-transition (i.e. no conflict) or it is the only pre-place of all its post-
transitions. The class of state machine Petri nets is strictly included in the class
of free choice Petri nets.

Petri nets supply an executable specification: in the case of basic Petri nets,
we can play the token game, i. e. the non-deterministic firing of all the en-
abled transitions. More sophisticated and realistic models and simulations can
be obtained through extended Petri net models. The most interesting in our
context are Continuous Petri nets. In Continuous Petri nets [13] the state is no
longer discrete. Places contain non-negative real numbers, called marks, usually
interpreted as the concentration of the species represented by the place. The in-
stantaneous firing of a transition is carried out like a continuous flow. The firing
rate expresses the “speed” of the transformation from input to output places.
The rate functions associated with transitions may follow, under simplifying
assumptions, known kinetic equations such as the mass action equation.

4 Petri Nets for Analysing Trophic Networks

We start discussing how Petri nets can be used to model and analyse a trophic
network. We assume to know only the species (or compartments) and their rela-
tions, which is the minimal knowledge generally available on a trophic network.
As a running example, we consider the trophic network TV of the Venice lagoon
in Figure 1. We illustrate how to build corresponding Petri net models and dis-
cuss what we can obtain by applying some Petri net analysis techniques. We
use the tools Snoopy [14], Charlie [15] and 4ti2 [1] for editing and analysing the
Petri net models.
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4.1 Modelling trophic networks with Petri nets

Given a trophic network T , a simple Petri net model can be immediately derived
by replicating the topological structure of T in the Petri net. Recall that in
the graph representation of T each species (or compartment) is a node and a
relation between two species is a directed arc representing the flux between the
two species.

A structural Petri net model of a trophic network T is the net Ns(T ) where

– any species (or compartment) becomes a place;
– any flow (relation) between two species S1 and S2 in T , becomes a transition

having S1 as a pre-condition and S2 as a post-condition.
– any outgoing flow from a species S1 to the external environment (e.g., dis-

sipation) in T , becomes a transition with pre-condition S1 and empty post-
condition; similarly, any incoming flow from the environment to a species
S2, becomes a transition with empty pre-condition and post-condition S2.

In absence of any information regarding the fluxes, all weights are set to one.
Transitions corresponding to interactions among species are referred to as inter-
nal transitions, while those corresponding to interactions with the environment
are referred to as interface transitions. Note that the structural Petri net model
of a trophic network is a free choice Petri net and, when restricted to internal
transitions, it is a state machine Petri net.

By applying the described construction to the running example TV in Fig-
ure 1, we obtain a structural Petri net model which is depicted in Figure 2
(for the moment, please ignore the rates associated with transitions). The net
includes six places (in yellow) representing the six compartments (DET, PHP,
BPL, MIZ, MEZ, TAP) of the trophic network, and by as many transitions as
the flows of biomass, to which we associate different colors to improve readabil-
ity. More specifically, respiration flows (producing CO2) are represented by light
blue transitions; defecation flows are represented by brown transitions; mortality
flows are represented by purple transitions; input and export flows for DET, as
well as the harvesting flow for TAP are represented by red transitions; predation-
prey flows are represented by white transitions.

Note that transitions PHP CO2, representing respiration of PHP, and BPL DET,
representing BPL mortality in the Petri net model of Figure 2, do not have a
direct match in the trophic network TV of Figure 1. This is due to the fact
that, as already mentioned, TV was simplified by taking into account also some
experimental data. More precisely, the flow corresponding to PHP CO2 was inte-
grated in CO2 PHP (modelling CO2 needed for photosynthesis) and BPL DET
was considered irrelevant and thus omitted.

4.2 Structural analysis of trophic networks modelled as Petri nets

Since the structural Petri net model strictly adheres to the graph representation
used by ecologists, it obviously enables the usual structural analyses for trophic
networks, for example to determine food chains lengths and connectance.
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In addition, standard structural analyses for Petri nets can be used, like those
based on T-invariants. The presence of T-invariants in a Petri net model of a
trophic network is ecologically of interest as it can reveal the presence of steady
states. The set of transitions involved in a T-invariant can be seen as a subsystem
of the original system, whose equilibrium is autonomously maintained.

Given a trophic network T , consider the set of semi-positive T-invariants
of the structural Petri net model Ns(T ) and the corresponding Hilbert basis
B(Ns(T )), consisting of the minimal T-invariants. According to the terminology
in [13], we classify T-invariants into two groups:

– internal T-invariants, consisting of internal transitions only;
– I/O T-invariants, which include also interface transitions.

If we consider the elements of the basis, then for any such T-invariant I =
(x1, . . . , xm) we have xi ≤ 1 for all i ∈ {1, . . . ,m}, namely each transition occurs
at most once and the invariant is a set rather than a proper multiset. Moreover,
since Ns(T ), when restricted to the internal transitions, is a state machine, for
any pair of transitions ti, tj in the same invariant, whenever they share a place
in the pre-condition or in the post-condition, they coincide. Therefore:

– Minimal internal invariants are simple cycles, involving only internal tran-
sitions.

– Minimal I/O invariants are acyclic paths, connecting two interface transi-
tions.

In both cases we recover well-known concepts in trophic networks as presented,
e.g., in [28]. The internal minimal T-invariants are Ulanowicz simple cycles,
which are associated with the internal recycling of matter. The minimal I/O
T-invariants are the Ulanowicz straight-through flows, which represent the way
energy and matter are provided by the environment, used by the network and
then (partially) released back to the environment. The correspondence is at the
structural level and the quantities of fluxes are needed for Ulanowicz analyses.

In our case study, the structural Petri net model has an Hilbert basis consist-
ing of 69 minimal T-invariants, nine are internal and sixty are I/O invariants. The
internal T-invariants are shown in Table 1. The first two invariants describe the
self-predation (cannibalism) of MEZ and MIZ. All the other T-invariants “tra-
verse” the DET place, pointing out that Detritus is the way for recycling matter
in this network. The I/O invariants start from source transitions CO2 PHP
and input DET and end in sink transitions PHP CO2, BPL CO2, MIZ CO2,
MEZ CO2, TAP CO2 and TAP harvesting. They model trophic chains allowing
for respiration of the various compartments and for input and output of matter.

4.3 T-invariant based steady state

In this section we refine the structural Petri net model of a trophic network,
turning it into a continuous Petri net model. What we obtain closely resembles
the representation of the trophic network usually adopted by ecologists, where
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Inv no. Transitions
1 MEZ MEZ
2 MIZ MIZ
3 DET TAP; TAP DET
4 DET BPL; BPL DET
5 DET BPL; BPL MEZ; MEZ DET
6 DET BPL; BPL MIZ; MIZ DET
7 DET BPL; BPL TAP; TAP DET
8 DET BPL; BPL MIZ; MIZ MEZ; MEZ DET
9 DET BPL; BPL MIZ; MIZ TAP; TAP DET

Table 1. Internal minimal T-invariants of the structural Petri net model of TV .

the system is at a steady state and the input and output flows in all the compart-
ments are balanced (the mass balance assumption). The choice of considering
a continuous extension is motivated by the fact that we are modelling fluxes of
biomass which better correspond to continuous fluxes.

The continuous Petri net model is still derived only from the network topol-
ogy by exploiting the minimal T-invariants in a way similar to what is done in
[22] for Time Petri nets. A first observation is in order.

Remark 1. In the structural Petri net model of a trophic network Ns(T ) any
place has typically at least one incoming and one outgoing transition, otherwise
the place would unnaturally correspond to a compartment with monotonically
increasing or decreasing content. Under this assumption, Ns(T ) is covered by
T-invariants, namely each transition in the Petri net belongs to at least one
minimal T-invariant. In fact, when we exclude interface transitions Ns(T ) is
a state machine, hence for any transition, if we follow the predecessors and
successors we will get back to the transition itself (internal T-invariant) or to an
interface transition on both sides (I/O T-invariant).

In order to associate rates with the transitions, we assume that each subsys-
tem corresponding to a minimal T-invariant

1. is active and
2. performs all its transitions once per time unit.

The assumption that all minimal subsystems of an ecosystem are active is quite
reasonable from an ecological viewpoint. On the contrary the assumption that
all subsystems perform all their transitions exactly once per time unit is rather
strong and unrealistic. This is the simplest choice which can be taken in absence
of further information on the ecosystem. When additional knowledge is available,
it could be integrated in the model, as shown in the next section.

Let us consider the structural Petri net model Ns(T ) of a trophic network
T as described in Section 4.1 and its Hilbert basis B(Ns(T )). According to the
assumptions above, the rate of a transition t should depend on the number
of minimal invariants in which t occurs. Then, for the trophic network T , we
define the simple continuous Petri net model Nc(T ) as the continuous Petri net
obtained by considering the structural model Ns(T ) as underlying Petri net and
by associating to each transition t a constant rate given by:
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rate(t) = |{Ii|Ii ∈ B(Ns(T )) ∧ t ∈ Ii}|.

With such rates, all the transitions in all the invariants in Nc(T ) are per-
formed once in one time unit and the system is in a steady state. Moreover, since
all transition arcs are 1-weighted, rates and flows per time unit coincide.

Remark 2. The continuous Petri net model of a trophic network satisfies the
mass balance assumption, namely, for all compartments the sum of ingoing and
outgoing fluxes coincide. This is an immediate consequence of the fact that
minimal T-invariants are simple cycles or paths. Hence, given a place p, for any
invariant Ii that “crosses” place p, one token is added to p by a transition in Ii
and one token is consumed by another transition in Ii, namely the flux flowing
through p via Ii is balanced. This holds for any invariant crossing p and for any
p. Therefore, the input and output fluxes coincide for any place of the network.

In the simple continuous model Nc(T ), the system is represented in a steady
state, with the fluxes of biomass balanced in all compartments. This corresponds
closely to the ecologists representation of a trophic network as a snapshot of the
system at steady state. Note that the continuous Petri net model Nc(T ), despite
the fact that it makes explicit some additional features, is still based only on the
topology of T : biomasses do not play a role in the definition of the rates.

For our case study, the continuous Petri net model resulting from the con-
struction outlined above is shown in Figure 2, where each transition have an
associated rate. Note that all places are balanced. We would like to validate
our simple continuous model by considering some basic ecological processes and
check their plausibility from an ecological point of view. For each compartment
we compute the throughput, namely the total amount of flux flowing per unit of
time, in order to measure the degree of activity of the compartment. Besides we
compute food consumption (total amount of ingested food per time unit), food
assimilation (amount of ingested food minus amount of faeces, per time unit),
respiration and mortality as percentages of the consumption. Table 2 shows the
throughputs, the assimilation and respiration values as resulting from the model
compared with those found in the literature.

The values derived from the simple continuous model are quite interesting.
Considering the throughput, the various compartments are ordered as follows:

DET>PHP>BPL=TAP>MIZ>MEZ.

We may distinguish two main groups: lower trophic level compartments (DET,
PHP and BPL), having higher throughput, and higher trophic level compart-
ments (TAP, MIZ and MEZ), having lower throughput. This is coherent with
the general knowledge on metabolic and growth rates of the two different groups
of compartments under consideration.

Assimilation of the top compartment TAP is just over the maximum indi-
cated in the literature, while assimilation requirements for MEZ and MIZ are
perfectly met. However, MEZ assimilation is close to the lower bound of the
indicated range. This is due to the fact that MEZ is a top level compartment
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Fig. 2. Continuous Petri net model for the case study

in the network and no predators are modelled for it. This is a quite unrealistic
assumption: in natural systems MEZ are actually preyed by other species, like
fishes. By adding an external predation on MEZ, we found that its assimilation
becomes close to TAP and MIZ assimilation values.

Concerning respiration, TAP and MEZ satisfy the constraints found in the
literature, while MIZ and BPL are slightly below the indicated value. Respiration
of PHP is instead largely below the lower bound of the indicated range. The
low respiration flows for MIZ, BPL and PHP is caused by the fact that there
are only a few I/O minimal invariants involving these compartments. This is a
misbehaviour of the simple continuous model, that must be somehow overcome.

Concerning mortality, for BPL it is irrelevant and this is in accordance with
experimental data (see discussion in Section 2). Mortality of PHP is instead
quite high: this is probably due to the fact that some PHP grazers, like fishes
usually occurring in lagoon systems, are not modelled.

On the whole, the continuous Petri net model realistically reproduces the
main processes of the trophic network considered in the case study. Even if it
based only on the network topology, it allows for deriving some quantitative
information on trophic network flows, which are coherent with results of ex-
perimental measures taken in natural ecosystems. Moreover, the quantitative
validation shows that the model is somehow incomplete, signalling that two fur-
ther predation fluxes, one for MEZ and one for PHP, should be represented in
the model.
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Compartment throughput Literature values Model values
TAP 41 [25] Respiration ≥ 20% Respiration = 36%

[25] 37% ≤ Assimilation ≤ 70% Assimilation = 73%
Defecation and Mortality = 27%

MEZ 28 [12] Respiration ≥ 20% Respiration = 37%
[23, 9] 40% ≤ Assimilation ≤ 80% Assimilation = 39%

Defecation and Mortality = 61%
MIZ 37 [12] Respiration ≥ 20% Respiration = 14%

[23, 9] 40% ≤ Assimilation ≤ 80% Assimilation = 78%
Defecation and Mortality = 22%

BPL 41 [26, 5] Respiration ≥ 20% Respiration = 17%
Assimilation = Consumption Assimilation = Consumption

Mortality = 2,4%
PHP 49 [32, 3] 10% ≤ Respiration ≤ 30% Respiration = 2%

Assimilation = Consumption Assimilation = Consumption
Mortality = 22%

DET 58 not relevant not relevant

Table 2. Literature values and measured values for the continuous Petri net model of
the case study.

4.4 Introducing ecological constraints in the Petri net model

In the previous section we underlined some misbehaviours of the simple continu-
ous Petri net model. These are somehow expected since the model is only based
on the topology of the system and it relies on the strong assumption that all
subsystems proceed at the same speed. In order to adjust the model and make
it closer to the real trophic network, one can follow two directions:

1. Drop the assumption that all the subsystems perform their path exactly once
in one time unit and “speedup” some subsystems.

2. Use additional knowledge on the trophic network besides the topology, such
as the metabolism of the species or their diet, and impose some constraints
on the rates of the corresponding transitions.

We next examine more closely these two alternatives and apply them to our
case study.

Speeding-up subsystems. Recall that any linear combination of minimal T-invariants
is a T-invariant and a possible steady state of the network. Let us consider a
generic linear combination of all minimal T-invariants:

∑

Ii∈B(Nc(T ))

kiIi , ki ∈ R.

The simple continuous model Nc(T ) corresponds to a steady state given by
a linear combination of all the minimal T-invariants where all the ki are set to
one. The refined continuous Petri net model, Ncs(T ), is obtained from Nc(T ) by
dropping the assumption that all subsystems have the same speed and setting
the invariants constants ki to values possibly greater than one. In Ncs(T ) the
rate associated with each transition is generalised to:

rate(t) =
∑

Ii∈B(Ns(T )), t∈Ii
ki.
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rate after rate after rate after
No. Transition rate speedup No. Transition rate speedup No. Transition rate speedup
1 CO2 PHP 49 60 10 BPL MIZ 16 17 19 MEZ CO2 10 10
2 input DET 11 14 11 BPL TAP 11 11 20 TAP DET 11 11
3 PHP MIZ 20 22 12 MIZ MIZ 1 1 21 TAP CO2 15 15
4 PHP MEZ 10 10 13 MIZ DET 8 8 22 TAP Harv. 15 15
5 PHP DET 11 11 14 MIZ CO2 5 8 23 DET TAP 11 11
6 PHP TAP 7 7 15 MIZ MEZ 11 11 24 DET Export 7 7
7 DET BPL 41 44 16 MIZ TAP 12 12 25 PHP CO2 1 10
8 BPL CO2 7 9 17 MEZ MEZ 1 1 26 BPL DET 1 1
9 BPL MEZ 6 6 18 MEZ DET 17 17

Table 3. Rates of the continuous Petri net model before and after speedup.

The refined continuous Petri net model Ncs(T ) still represents the trophic
network at a steady state and with all compartments balanced, since the input
and output fluxes are balanced in each place for each minimal T-invariant.

We applied this idea to the case study and speed up the invariants involving
respiration of PHP, BPL and MIZ, since the respiration flows of these compart-
ments do not satisfy the ranges indicated in the literature (see Table 2). The
new rates for the transitions are shown in Table 3.

Concerning PHP, it receives in input CO2 and partially release it for respira-
tion. The unique I/O T-invariant for this process is {CO2 PHP; PHP CO2}. By
speeding up this invariant to run ten times per unit of time, the respiration flow
for PHP becomes the 16% of its total consumption, within the range indicated
by the literature (see Table 2).

Concerning BPL, it is fed by the Detritus and part of the ingested food is used
for respiration. The invariants involving transition BPL CO2 are {CO2 PHP;
PHP DET; DET BPL; BPL CO2} and {input DET; DET BPL; BPL CO2}.
By allowing the second invariant to run three times per unit of time, respiration
of BPL become the 20% of its total consumption.

Concerning MIZ, we could speedup the invariants involving MIZ CO2, namely
{CO2 PHP; PHP DET; DET MIZ; MIZ CO2} and {input DET; DET MIZ;
BPL MIZ}. By allowing them to run three and two times per unit of time, re-
spectively, respiration of BPL becomes the 20% of its total consumption. Assim-
ilation of BPL becomes the 80% of the consumption, still in the range indicated
in Table 2.

Including constraints in the model. The second alternative for improving the
model consists in “embedding” into the continuous Petri net model of the trophic
network some available information regarding the metabolism of the species
or their diet. We work under the simplifying assumption that flux constraints
imposed on the model are linear. This assumption is generally satisfied by the
constraints on metabolic fluxes and on the diet partitions. For our case study,
some metabolic constraints taken from the literature are given in Table 2.

We define a continuous Petri net model which structurally coincides with
Ns(T ) and whose transition rates satisfy a set of linear inequalities. As in the
previous cases, the transition rates are derived from the “speed” ki of each
minimal invariant, but now we are interested only in invariants that satisfy the

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



34 P Baldan et al.

constraints. These can be obtained as solutions of a system of inequalities

AN ·X = 0
C ·X ≥ 0

(1)

where AN is the incidence matrix of Ns(T ). We can consider the minimal such
T-invariants, referred to as the constrained Hilbert basis BC(Ns(T )), so that any
solution of (1) will be a linear combination of elements in BC(Ns(T )).

A continuous Petri net model Nc(T , C) for the trophic network T satisfying
the constraints C is defined as follows. The underlying Petri net is Ns(T ) and
each transition t is associated with a constant rate:

rate(t) = |{Ii : Ii ∈ BC(Ns(T )) ∧ t ∈ Ii}|.

In this way each transition in each constrained invariant Ii in BC(Ns(T )) can
be performed once in one time unit.

When applied to our case study, this approach produces a linear system of
equalities and inequalities, where the inequalities express the literature knowl-
edge summarised in Table 2. By considering only the inequalities given by the
lower bounds, the constrained Hilbert basis contains 349 minimal invariants. The
induced rate constants for the extended network automatically satisfy the given
ecological constraints.

The two approaches could be combined, by determining the constrained in-
variants and by setting for them possibly different speeds.

Simulations on continuous models with constant rates do not provide mean-
ingful information. Some hints on how to further refine the model to do simula-
tion analyses are given in the conclusions.

5 Conclusions and Future Work

In this paper we explored the use of Petri nets for representing and analysing
trophic networks and our preliminary results are encouraging. A trophic network
naturally translates into a structural Petri net model which allows for recovering
classical trophic networks concepts and analyses. The structural model can be
refined into a continuous Petri net model that closely resembles the representa-
tion of the trophic network usually adopted by ecologists, where the system is at
a steady state and the input and output flows are balanced in all the compart-
ments. Despite the fact that the Petri net models proposed are still simplistic
(in particular, the continuous models have constant rates, independent of the
masses), in our case study of the Venice lagoon, the analysis of the continu-
ous Petri net model shows that it realistically reproduces the main ecological
processes. Furthermore, it shows that the continuous Petri net model can be
fruitfully used for an early stage validation of the trophic network under study.
Two refinements of the continuous Petri net are considered: the first is based on
a fine tuning of the speed of the minimal T-invariants, while the second one is
based on a systematic embedding of some ecological knowledge expressed as lin-
ear inequalities into the calculation of the Hilbert basis. This however might have

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



Petri nets for trophic networks 35

scalability problems, since the constraints increase the size of the Hilbert basis,
and the problem of determining the Hilbert basis is already in EXPSPACE.

Future work deals with making the Petri net model more realistic and dy-
namic, by adding biomass information on compartments. The knowledge of
biomasses at a steady state can, in fact, be used to derive constants for a con-
tinuous model governed, e.g., by the mass action equation. We believe that in-
troducing rates dependent on biomasses could allow for interesting simulations,
describing, not only the steady state but also the transient behaviour leading
to such state. Additionally, on such model perturbations of the biomasses and
of the speed of the various interactions could be used for performing what-if
analyses.

Acknowledgements. We are grateful to Monika Heiner and Andrea Marin for
many inspiring discussions.
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Abstract. Systems and synthetic biology require multiscale biomodel
engineering approaches to integrate diverse spatial and temporal scales
in order to understand and describe the various interactions in biological
systems. Our BioModelKit framework for modular biomodel engineering
allows to compose multiscale models from a set of modules, each describ-
ing an individual molecular component in the form of a Petri net. In this
framework, we do now propose a feature for spatial modelling of molec-
ular biosystems. Our spatial modelling methodology allows to represent
the local positioning and movement of individual molecular components
represented as modules. In the spatial model, interactions between com-
ponents are restricted by their local positions. In this context, we use
coloured Petri nets to scale the modular composed spatial model, such
that each molecular component can exist in an arbitrary number of in-
stances. Thus, a modular composed spatial model can be mapped to the
cellular arrangement and di�erent cell geometries.

Keywords: Modular Model Composition, Spatial Modelling, Multiscale
Biomodel Engineering, Coloured Petri nets

1 Introduction

Systems biology aims at describing and understanding complex biological pro-
cesses on a systems level. Therefore, systems biology employs modelling and
simulation as indispensable tools to describe, predict and understand biological
systems in an integrative and quantitative context. Besides complex interactions,
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models do also need to integrate diverse temporal and spatial scales spanning
the biological systems. Multiscale biomodel engineering goes beyond standard
modelling approaches in systems biology and addresses physical problems as im-
portant features at multiple scales in time and space [1]. Current challenges and
methodologies used so far in multiscale biomodel engineering have been reviewed
in [2] and [3].

Here, we focus on the spatial aspects in multiscale biomodel engineering,
which have been mostly neglected in the description of intracellular processes
until now [1]. In particular, we demonstrate, based on the BioModelKit frame-
work for modular biomodel engineering [4], how to extend plain models of intra-
cellular processes to spatial models without their reimplementation. The models
in our case are composed from modules, where each module describes the func-
tionality of a certain molecular component in the form of a Petri net. The use
of coloured Petri nets in our approach allows to represent di�erent numbers of
module instances for each component. To our knowledge, the methodology for
spatial modelling in the context of modular model composition, which we suggest
in this paper, is unique.

As modelling tool, we chose Snoopy [5], because it supports low-level and
coloured Petri net network classes, as well as the concept of logical (fusion)
nodes and hierarchical modelling.

In the next section, we will shortly describe the BioModelKit framework and
summarize the use of coloured Petri nets for multiscale modelling. Afterwards,
in Section 3, we introduce our spatial modelling methodology as a new feature
of the BioModelKit framework. Section 4 applies the introduced methodology
for spatial modelling to a simple example of a molecular interaction between two
proteins represented as modules. In the last section, we give a short summary
and outlook.

2 Previous Work

2.1 BioModelKit Framework for Modular Model Composition

The BioModelKit framework (BMK framework) is a tool for modular biomodel
engineering [4], see Fig. 1. The main motivation behind BMK framework was
to develop a modelling environment, where modules are specifically designed for
the purpose of model composition. The modularisation approach used in BMK
framework was inspired by the natural composition of biomolecular systems,
where molecular components (genes, mRNAs and proteins) are the main build-
ing blocks. Thus, each molecular component is represented as a self-contained
module, describing the underlying functionality using the formal language of
Petri nets. Interface networks, which are part of each module describe the inter-
actions with other molecular components and are used to automatically couple
respective modules [4].

Since, the functionality of genes, mRNAs and proteins is diverse, di�erent
module types have been defined in BMK framework, as well as allelic influence
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Fig. 1: Overview of the BioModelKit Framework for Modular Model Composi-
tion.

modules and causal influence modules to capture also correlations with missing
mechanistic descriptions [6,7]. Modules can be generated by forward and reverse
engineering approaches or by transforming boolean models or models provided
in the systems biology markup language (SBML) into modules [8,9], see Fig. 1.

The web-interface of BMK framework (www.biomodelkit.com [4]) includes a
feature to submit modules and to create a model annotation file in the BMK
markup language (BMKml, unpublished work). The submitted module and its
annotation have to be curated by an administrator before publicly releasing them
by storing their content in a relational MySQL database (BMKdb). Another
feature of the BMK framework is a model composition algorithm, which allows
to automatically compose comprehensive models from a set of chosen modules.
In addition, the composed model can also be modified by applying algorithms
mimicking single/double gene knock-outs or structural mutations of the included
molecular components (unpublished work).
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2.2 Coloured Petri Nets

We use Petri nets (PN ) as modelling paradigm, which gives us a complete
formalised and standardised framework, as well as an intuitive way of modelling
concurrent behaviour.

In systems biology, as well as in other fields, it’s quite common that parts of
larger models have similar structures. In such a case simplifying the model via
reusing that part, instead of having redundant structures is demanded. Coloured
Petri nets (PN C) are a modelling paradigm that fits well in such a case.

We are using Snoopy [10] as modelling and simulation tool, thus we describe
PN C how they are defined there.

coloursets:
enum species := red, green, blue
product complex := species, species

variables:
species x
species y

species

2‘green++

1‘blueB

complex

AB

species
2‘red++

1‘green

A

[x<>y]

x

y

(x,y)

(a) Before Firing

species

2‘green
B

complex

1‘(green,blue)

AB

species 2‘red

A

[x<>y]

x

y

(x,y)

(b) After Firing

Fig. 2: Example PN C of abstract complex formation.

We use the coloured Petri net in Fig. 2 as an example. It represents an ab-
stract complex formation of two species of di�erent kind into one complex. The
model contains two coloursets, first a simple colourset named species of type
enum, including the colours red, green and blue. Second a product colourset
named complex, its colours are 2-tuples of the species colourset. The net consists
of three places A, B and AB and one transition. The colourset species is asso-
ciated with the places A and B and the place AB has colourset complex. The
variables x and y are used in the arc inscriptions and the transition guard. The
transition guard x <> y determines that only tokens of di�erent colour are valid
bindings for the variables x and y. The arc inscriptions x and y on the incoming

We summarize the following net classes together under the term Petri net (PN ):
Qualitative Petri net (QPN ), eXtended Petri net (XPN ), Continuous Petri net
(CPN ), Stochastic Petri net (SPN ) and Hybrid Petri net (HPN ). The same goes
for the coloured Petri nets (PN C).
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arcs of the transition define its precondition, i.e. there have to be at least one
token on place A and one token on place B and they have to be of di�erent
colour due to the guard. The arc inscription (x, y) on the outgoing arc of the
transition defines the production of one complex token. In Fig. 2a the place A
has two tokens of colour red and one token of colour green and the place B has
two tokens of colour green and one token of colour blue. This gives the following
bindings for the variables x and y: (red, green), (red, blue), (green, blue). We se-
lected the binding (green, blue) and let the transition fire. One green token from
place A and one blue token from place B are consumed and one (green, blue)
token is produced on place AB, see Fig. 2b.

Much more extensive descriptions how to use coloured Petri nets in systems
biology are given in [11,12,13]. Besides the animation of the coloured Petri net,
it is possible to unfold every PN C into an uncoloured PN [11]. So it is possible
to apply any analysis and simulation technique available for uncoloured Petri
nets on coloured Petri nets too.

Up to this, modelling biochemical systems using coloured Petri nets did not
incorporate spatial aspects or movement in space. But this can be included in
the model as shown by Gilbert et al. [14]. Therefore the space is discretised into
a grid of one, two or three dimensions and a position in the grid is represented
by a single place. This works fine if there is no need to distinguish between the
entities on each position. One can model the di�usion of substances using this
approach quite well, as presented in [14].

This can be extended to more complex reaction-di�usion systems, as shown
in [15]. More examples of using coloured Petri nets for modelling of biological
systems including spatial aspects are [16,17].

All models above have in common that they model space by discretisation
into a grid and having one subnet (ranging from a single place to a complex
network) per grid position. This is handy, if the entities moving around have no
internal behaviour or state and there is no need to distinguish them. But if that
is the case, the internal network has to move around as well and this leads to
some issues on modelling and simulation. Parvu et al. [17] used this approach
for a model of phase variation in bacterial colony growth. The bacteria have
two di�erent states, i.e. two places A and B representing the two states and
two transitions for changing the state are needed. In order to let the bacteria
move around, the whole subnet is needed in every grid position. Incorporating
this in the coloured model is straightforward, but the size of the unfolded model
increases drastically. This has an impact on the analysis and simulation of the
model and may lead to inconvenient run times.

While the approaches of representing space via discretisation into grid-places
fit well in the shown cases, it is not practical in our use case, because we have
complex subnets moving around. We present our approach of incorporating space
by adding coordinate places in the following section.
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3 Spatial Modelling Methodology for Modular Composed
Models

Before we start with the formal description of the spatial transformation al-
gorithm, we have to introduce some general definitions which apply to our
modular modelling approach. A module Mi is defined by a quintuple Mi =
(Pi, Ti, fi, vi,m0,i) according to the general definition of quantitative Petri nets.
Each module Mi consists of nci + 1 components, the main component C0 and
nci interacting components. Thus, each module Mi represents a set of compo-
nents Ci = {C0, C1, . . . , Cnci}. The mapping of a place pij œ Pi of a module

Mi to a set of components Cpij
i ™ Ci is given by the relation g : Pi æ Ci,

such that g(pij) = Cpij
i . A place pij with |g(pij)| > 1 represents a complex

of |g(pij)| components. The set Ki = {Cpij
i | |g(pij)| > 1} contains all com-

plexes among the components in Ci. A transition tij œ Ti of a module Mi with
|g(•tij)flg(tij•)| > 1 represents an interaction with at least two di�erent involved
components. The total set of all interacting transitions in a Module Mi is given
by T IA

i = {’tij œ Ti : |g(•tij) fl g(tij•)| > 1}.
A set of modules defines a modular composed model M = {M1, . . . ,Mn},

where n is the number of modules. Consequently, the modular composed model
can also be defined as M = (PM, TM, fM, vM,mM

0 ) according to the general
definition of quantitative Petri nets with the following relations:

– PM =
t
Pi, where Mi œ M - total finite and non-empty set of places.

– TM =
t
Ti, where Mi œ M - total finite and non-empty set of transitions.

– fM =
t
fi, where Mi œ M - total set of directed arcs, weighted by a non-

negative integer value.
– vM :

t
Ti æ H, where Mi œ M - total set of firing rates.

– mM
0

t
Pi æ N0, ÷pikÕ , p

j
kÕÕ with pikÕ œ Pi, p

j
kÕÕ œ Pj , where

pikÕ = pjkÕÕ , {pikÕ : pjkÕÕ} æ pMk œ PM, mM
0 (pMk ) = max(m0,i(pikÕ),m0,j(pjkÕÕ))

In addition to the definitions above, the following relations can be derived:

– CM =
t

Ci , where Mi œ M - total set of components
– gM :

t
Pi æ t

Ci, where Mi œ M - total set of place component relations
– TMIA ™ TM =

t
T IA
i , where Mi œ M - total set of all interacting transitions

– KM =
t
Ki, where Mi œ M - total set of complexes.

Spatial Transformation Algorithm For the spatial transformation of the
flat modular composed model the following procedure needs to be executed.

Step 1: Explicit Encoding of Local Positions. The position of each component
Ci œ CM is explicitly encoded by d places pCi

1 , . . . pCi

d (termed coordinate places),
which can be interpreted as coordinates, where d, d Ø 1, defines the number of
axes (e.g. 1D, 2D or 3D grid). The marking m(pCi

j ) of a place pCi
j defines the

current coordinate value, which must be restricted by a lower mL(pCi
j ) and
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upper bound mU (pCi
j ) to represent the boundaries of the encoded grid, such

that, mL/U (pCi
j ) > 0 and mL(pCi

j ) < mU (pCi
j ).

Step 2: Local Restriction of Interactions. To restrict the executability of each
transition t œ TMIA , the firing rate h(t) must be multiplied by a boolean relation
b(t) describing a defined neighbourhood relation: hIA(t) = b(t) ú h(t), t œ TMIA .
If the neighbourhood relation claims that the distance between components in-
volved in the interaction represented by a transition t œ TMIA must be zero, b(t)
has to be defined as follows:

b(t) =
I

1,
q|g(•t)fig(t•)|≠1

i=1
q|g(•tfig(t•)|

j=i+1
qd

k=1(m(pCi

k ) ≠ m(pCj

k ))2 = 0
0,

q|g(•t)fig(t•)|≠1
i=1

q|g(•t)fig(t•)|
j=i+1

qd
k=1(m(pCi

k ) ≠ m(pCj

k ))2 ”= 0
In addition, read edges, connecting each transition t œ TMIA and the coordinate
places of the respective components have to be added, such that
fReadEdge(pg(•t)fig(t•)

1≠d , t) = 1.

Step 3: Explicit Encoding of Local Position Changes. To encode the position
changes for a component Ci œ CM two di�erent scenarios have to be considered
dependent on the state of interaction:
1. Local position change of individual components:

For each component Ci œ CM and each coordinate place pCi
j œ {pCi

1 , . . . , pCi

d }
two transitions tCi

j,L and tCi

j,U are needed to incrementally decrease or increase
the amount of tokens. The transition tCi

j,L subtracts tokens from the coordi-
nate place pCi

j till m(pCi
j ) = mL(pCi

j ). Therefore, the following edges have
to be introduced fM(pCi

j , tCi

j,L) = 1 and fMReadEdge(p
Ci
j , tCi

j,L) = mL(pCi
j ) + 1.

The transition tCi

j,U adds tokens to the coordinate place pCi
j till m(pCi

j ) =
mU (pCi

j ). Therefore, the following edges have to be introduced
fM(tCi

j,U , p
Ci
j ) = 1 and fMInhibitorEdge(p

Ci
j , tCi

j,U ) = mU (pCi
j ). To ensure that

the position of the component Ci can only be changed if it does not in-
teract with another component Cj , i ”= j, additional inhibitory edges for
each transition tCi

j,L/U have to be introduced: fInhibitorEdge(PCi

IS , t
Ci

j,L/U ) = 1,
where PCi

IS ™ PM and PCi

IS = {’p œ PM : Ci œ g(p) · |g(p)| > 1}.
2. Local position change of complexes:

The local position of components forming a complex ki œ KM have to be
updated consistently during the local position change. For each complex
ki œ KM and each dimension j, 1 Æ j Æ d, two transitions tkij,L and tkij,U are
needed to incrementally decrease or increase the amount of tokens. The tran-
sition tkij,L removes tokens from the set of coordinate places

t
Chœki p

Ch
j till at

least for one component Ch œ CM the condition m(pCh
j ) = mL(pCh

j ) is ful-
filled. Therefore, for each component Ch œ ki the following edges have to be
introduced fM(pCh

j , tkij,L) = 1 and fMReadEdge(p
Ch
j , tkij,L) = mL(pCh

j ) + 1. The
transition tkij,U adds tokens to the set of coordinate places

t
Chœki p

Ch
j till at

least for one component Ch œ CM the condition m(pCh
j ) = mU (pCh

j ) is ful-
filled. Therefore, for each component Ch œ ki the following edges have to be
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introduced fM(tkij,U , p
Ch
j ) = 1 and fMInhibitorEdge(p

Ch
j , tkij,U ) = mU (pCh

j ). To
ensure that the position of the complex ki can only be changed if it is actually
formed additional read edges for each transition tkij,L/U have to be introduced:
fReadEdge(P ki

IS , t
ki
j,L/U ) = 1, where P ki

IS ™ PM and
P ki
IS = {’p œ PM | ki = g(p)}. Furthermore, it must be excluded for each

component Ch œ ki that interacts with other components using a di�erent
binding site. Therefore, all co-existing interactions have to be determined
Kki
coex = {’kj œ KM : ki fl kj ”= ? | kj ”= ki}. All places representing a

complex kj œ Kki
coex have to be added to each transition tkij,L/U using an

inhibitory edge: fInhibitoryEdge(P ki
COEX , t

ki
j,L/U ) = 1, where P ki

COEX = {’p œ
PM : g(p) = k, k œ Kki

coex}.
To allow the movement of co-existing complexes which use di�erent interac-
tion sites simultaneously, the above described procedure has to be applied
to all possible combination of co-existing complexes, compare Section 4.

For simplicity reasons the firing rate of each transition tkij,L/U and tCh

j,L/U

is given by Fick’s laws of di�usion [18]. Furthermore, we assume equidistant
subvolumes with the width and hight h = 1 and set all di�usion coe�cient to
one. Please note, it is straightforward to define the di�usion coe�cients more
precisely based on experimental results.

Step 4: Encoding of Component Instances by Applying Coloured Petri nets. A
colourset ‡simple

Ci
with 1 ≠ qCi

colours needs to be specified for each component
Ci œ CM, where qCi

œ N defines the number of instances for a component Ci.
The total set of simple coloursets is given by Àsimple = {‡simple

C1
, . . . ,‡simple

|CM| }.
For each ‡simple

Ci
œ Àsimple a variable aCi needs to be specified. All edges f(p, t)

and f(t, p) of the flat model M for which it is true, that a component Ci œ
CM, where Ci œ g(p) and |g(p)| = 1 are extended to the multiset expression
aCi ‘f(p, t), or respectively aCi ‘f(t, p). The total set of simple coloursets Àsimple

is mapped to a subset of places according to the relation Ssimple : Àsimple æ
PM, such that Ssimple(‡simple

Ci
) = {p œ PM | Ci œ g(p) · |g(p)| = 1}.

Each complex ki œ KM, where ki represents a subset of components, such
that ki ™ CM, is represented by a compound colourset of type product
‡compound
ki

=
r

Cjœki ‡simple
Cj

. The total set of compound coloursets is given by
Àcompound = {‡compound

k1
, . . . ,‡compound

|KM| }. The total set of compound coloursets
Àcompound is mapped to remaining subset of places according to the relation
Scompound : Àcompound æ PM, such that
Scompound(‡compound

ki
) = {p œ PM | ki = g(p)}. All edges f(p, t) and f(t, p) of

the flat model M for which its is true, that a complex ki œ KM, where ki = g(p)
are extended to the multiset expression

t
Cjœki a

Cj ‘f(p, t), or respectivelyt
Cjœki a

Cj ‘f(p, t). The marking and firing rates are kept constant over all place
and transition instances, such that marking of each place p œ PM is represented
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by all()‘m0(p) and the firing rates of each transition t œ TM all()‘h(t), where
all() is a function that extracts all instances of a coloured node.

4 Example

For demonstration purposes we introduce in Fig. 3 a running example of a mod-
ular composed model, which consists of two modules, a module for Protein A
and a module for Protein B. The module of Protein A describes the complex for-
mation and cleavage between the two ligand binding domains of Protein A and
Protein B (ProteinA_LBD, ProteinB_LBD). The formation of the complex be-
tween Protein A and Protein B (ProteinA_LBD__ProteinB_LBD) is the trig-
ger for the phosphorylation of a tyrosine residue at Protein B (ProteinB_TY R,
ProteinB_TY Rp). To phosphorylate Protein B, the catalytic domain of Protein
A needs to be in an active state (ProteinA_CD_active). The catalytic domain
of Protein A can switch between being active or inactive (ProteinA_CD_active,
ProteinA_CD_inactive). In the module of Protein B, the subnet describing the
interaction between Protein A and Protein B is redundant. Redundant subnets
are called interface networks (indicated by logical (fusion) places and transitions
shaded in grey), and are used to automatically couple modules. An additional
subnet in the module of Protein B explains the complex formation and cleavage
between the phosphorylated Tyrosine of Protein B (ProteinB_TY Rp) and a SH2
domain of Protein C (ProteinC_SH2). The Module of Protein C is not given
in this example. Since this paper is not dealing with kinetic aspects, we assume
mass action kinetics and set all kinetic coe�cient to one. It is straightforward
to replace this assumption with more detailed kinetic descriptions.

Module of Protein BModule of Protein A

ProteinA LBD ProteinA LBD

ProteinB LBD ProteinB LBD

ProteinA LBD ProteinB LBD ProteinA LBD ProteinB LBD

ProteinA CD active ProteinA CD active

ProteinB TYRp

ProteinB TYRp

ProteinA CD inactive

ProteinB TYRp ProteinC SH2 ProteinC SH2ProteinB TYR ProteinB TYR

AB t3 AB t3

AB t1 AB t1AB t2 AB t2

A t2 A t1

BC t2

BC t1

Fig. 3: Running example with two protein modules.

The module of Protein A (M1) contains two components
C1 = { ProteinA, ProteinB} and the module of Protein B (M2) contains three
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components C2 = {ProteinA, ProteinB, ProteinC}. For the composed Model
M = {M1,M2}, we get the following mapping of places to the components:

– gM({ProteinA_LBD,ProteinA_CD_active, ProteinA_CD_inactive})
=ProteinA

– gM({ProteinB_LBD,ProteinB_TY R, ProteinB_TY Rp}) =ProteinB

– gM({ProteinB_SH2}) =ProteinC

– gM({ProteinA_LBD__ProteinB_LBD}) = {ProteinA, ProteinB}
– gM({ProteinB_TY Rp__ProteinC_SH2}) = {ProteinB, ProteinC}

Furthermore places ProteinA_LBD__ProteinB_LBD and
ProteinB_TY Rp__ProteinC_SH2 represent two complexes
k1 = {ProteinA, ProteinB} and k2 = {ProteinB, ProteinC}. The set of inter-
acting transitions is given by TMIA = {AB_r1, AB_r2, AB_r3, BC_r1, BC_r2}.

For the spatial model we assume a two dimensional grid (d = 2) of the size
5◊5 for each component given by the constants xDimA = xDimB = xDimC = 5
and yDimA = yDimB = yDimC = 5.

Step 1 of the spatial transformation algorithm introduces two coordinate
places representing the x- and y-coordinate of each component, e.g. for com-
ponent ProteinA we add two places ProteinA_X and ProteinA_Y , see Fig. 4.
We chose the marking of the places representing the local position according to
the following assumption: component ProteinA is initially positioned at (1,1),
component ProteinB at (3,3) and component ProteinC at (4,4).

XY-Position of Protein CXY-Position of Protein BXY-Position of Protein A

ProteinB YProteinA YProteinA X ProteinB X

4

ProteinC X

4

ProteinC Y

Fig. 4: Encoding of the local positions for each component in the composed
modular model.

Step 2 of the spatial transformation algorithm restricts the interaction of
components dependent on their local position. The restriction applies only to
transitions in the set TMIA . We assume that components can only interact, if
their local positions are identical, meaning the distance between them must be
zero. Therefore, the firing rates of transitions AB_t1, AB_t2 and AB_t3 must
be multiplied with the boolean expression bAB(t):

bAB(t) =
I

1, distAB = 0
0, distAB ”= 0

with

distAB = (m(ProteinA_X)≠m(ProteinB_X))2+(m(ProteinA_Y )≠m(ProteinB_Y ))2
The places representing the local positions of component ProteinA and compo-
nent ProteinB have to be connected by read edges to the transitions AB_t1,
AB_t2 and AB_t3, compare Fig. 5. Accordingly, the firing rates of transitions
BC_t1 and BC_t2 must be multiplied with the boolean expression bBC(t):
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bAB(t) =
I

1, distBC = 0
0, distBC ”= 0

with

distBC = (m(ProteinB_X)≠m(ProteinC_X))2+(m(ProteinB_Y )≠m(ProteinC_Y ))2.
The places representing the local positions of component ProteinB and com-
ponent ProteinC have to be connected by read edges to the transitions BC_t1
and BC_t2, compare Fig. 5.

Restricted Interaction - Only if ProteinB (X,Y) =ProteinC (X,Y)

Restricted Interaction - Only if ProteinA (X,Y) =ProteinB (X,Y)

ProteinB YProteinB Y

ProteinB Y ProteinB Y ProteinB YProteinA Y ProteinA Y ProteinA Y

ProteinA X ProteinA X ProteinA X

ProteinB XProteinB X

ProteinB X ProteinB X ProteinB X

ProteinC XProteinC X

ProteinC Y ProteinC Y

AB t3AB t1 AB t2

BC t2BC t1
4

4

4

4

Fig. 5: Restriction of interactions depending on the local position of the involved
components.

Step 3 of the spatial transformation algorithm encodes the local position
change in respect to the interaction state of the components. In our example we
assume only movement along the horizontal and vertical axes. For each axis
two transitions are needed to either increase or decrease the marking value
of the respective coordinate place of a component with respect to the grid
size. A component can only move as a single entity if it is not interacting at
the same time with other components. Therefore we have to check if the cor-
responding places representing the interaction states (complexes) are empty,
e.g. in case of component ProteinB it can only move as single entity if places
ProteinA_LBD__ProteinB_LBD and ProteinB_TY Rp__ProteinC_SH2
are empty, see Figure 6(A). To move components forming a complex or which
build co-existing complexes, the coordinates of all involved components have
to be updated simultaneously, see Figure 6(B). Form the definitions above,
we know that component ProteinB can form a complex with ProteinA and
ProteinC. Thus, these two complexes can co-exist because component ProteinB
uses di�erent interaction sites. To move the complex of component ProteinA

and component ProteinB we need to check whether the corresponding place
ProteinA_LBD__ProteinB_LBD is marked and if the place
ProteinB_TY Rp__ProteinC_SH2 is empty. In contrast, to move the complex
of component ProteinB and component ProteinC we need to check whether the
place ProteinB_TY Rp__ProteinC_SH2 is marked and if place
ProteinA_LBD__ProteinB_LBD is empty. And to move the co-existing com-
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plex of component ProteinA, component ProteinB and component ProteinC, we
need to check if both places ProteinA_LBD__ProteinB_LBD and
ProteinB_TY Rp__ProteinC_SH2 are marked.

Step 4 of the spatial transformation algorithm has to be applied to represent
more than one instance of each component, compare Fig. 7 and 8. In our example
the number of instances for each component is three, which we represent by the
constants numA = numB = numC = 3. For each component Ci œ CM we define
a simple colourset:
– int csProteinA := 1 - numA,
– int csProteinB := 1 - numB,
– int csProteinC := 1 - numC

where colourset csProteinA is mapped to the places with the relation
g(p) =ProteinA, colourset csProteinB is mapped to the places with the rela-
tion g(p) =ProteinB and colourset csProteinC is mapped to the places which
fulfil relation g(p) =ProteinC. The coordinate places of each component have to
be bound to the respective colourset as well. Furthermore, we need to define a
variable for each simple colourset:
– csProteinA A
– csProteinB B
– csProteinC C

All in-going and out-going arcs of places bound to one of the simple coloursets de-
fined above have to carry the respective variable as arc expression. Since, we have
two binary complexes k1 = {ProteinA, ProteinB} and k2 = {ProteinB, ProteinC},
we need to define a compound colourset for each as product of the respective
simple coloursets:
– product csProteinA_ProteinB := csProteinA, csProteinB
– product csProteinB_ProteinC := csProteinB, csProteinC

where colourset csProteinA_ProteinB is mapped to the places with the relation
g(p) = {ProteinA, ProteinB} and colourset csProteinB_ProteinC is mapped to
the places with the relation g(p) = {ProteinB, ProteinC}. All in-going and out-
going arcs of places bound to one of the compound coloursets defined above have
to carry a 2-tuple of respective variables as arc expression.

Fig. 9 presents one exemplifying stochastic simulation run of the final spatial
model of Fig. 7 and 8. In Fig. 9(A), we depict the movement of all instances of
components ProteinA, ProteinB and ProteinC on separate two-dimensional grids
of the size 5◊5. During the simulation time three complexes between instances of
component ProteinA and component ProteinB could be obtained (ProteinA_1+
ProteinB_1,ProteinA_1+ProteinB_2,ProteinA_3+ProteinB_3), as well as two
complexes between instances of component ProteinB and component ProteinC
(ProteinB_1 + ProteinC_1,ProteinB_3 + ProteinC_3). The simulation result
also shows that the distance between the corresponding instances of compo-
nents forming a complex is zero, which means that they can only move has one
entity. Subfigure (1) and (2) of Fig. 9(B) shows that the instance ProteinB1 is
interacting with instance ProteinA1 and instance ProteinC1 at the same time
near the end of the simulation run, thus the two complex states co-exist.
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(A)

Movement of Protein CMovement of Protein BMovement of Protein A

ProteinA LBD ProteinB LBD

ProteinA LBD ProteinB LBD

ProteinA LBD ProteinB LBD

ProteinA LBD ProteinB LBD

ProteinB Y

ProteinB TYRp ProteinC SH2

ProteinB TYRp ProteinC SH2

ProteinB TYRp ProteinC SH2

ProteinB TYRp ProteinC SH2

ProteinA Y

ProteinA X ProteinB X
ProteinC X

ProteinC Y

XL A XR A

YU AYD A YL B YD B

XR BXL B

YD A YU A

XR AXL A

2

2

2

2 2

2xDimA

yDimA

xDimB

yDimB yDimC

xDimC

4

4

(B)
Movement of complex ProteinA ProteinB ProteinCMovement of complex ProteinB ProteinCMovement of complex ProteinA ProteinB

ProteinA LBD ProteinB LBD

ProteinA LBD ProteinB LBD ProteinA LBD ProteinB LBD

ProteinA LBD ProteinB LBD ProteinA LBD ProteinB LBD

ProteinA LBD ProteinB LBD

ProteinB Y ProteinB Y ProteinB Y

ProteinB TYRp ProteinC SH2

ProteinB TYRp ProteinC SH2 ProteinB TYRp ProteinC SH2

ProteinB TYRp ProteinC SH2 ProteinB TYRp ProteinC SH2

ProteinB TYRp ProteinC SH2

ProteinA Y

ProteinA Y

ProteinA X

ProteinA X

ProteinB X ProteinB X ProteinB X

ProteinC X ProteinC X

ProteinC Y ProteinC Y

YL AB YD AB

XR ABXL AB XL BC XR BC

YU BCYD BC YD ABC YU ABC

XR ABCXL ABC

2

2

2

2 2

2

2

2 2

2

2

2

yDimA

xDimA

yDimB

xDimB xDimB

yDimB

xDimC

yDimC yDimC

xDimC

yDimB

xDimB

xDimA

yDimA

4 4

4 4

Fig. 6: Local position change dependent on the state of interaction. (A) compo-
nents are not in complex, (B) components are in complex with each other.
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Restricted Interaction - Only if ProteinB (X,Y) =ProteinC (X,Y)

XY-Position of Protein C

Restricted Interaction - Only if ProteinA (X,Y) =ProteinB (X,Y)

XY-Position of Protein BXY-Position of Protein A

Module of Protein BModule of Protein A

csProteinA
1‘all()ProteinA LBD

csProteinA
1‘all()ProteinA LBD

csProteinB 1‘all()ProteinB LBD csProteinB 1‘all()ProteinB LBD

csProteinA ProteinB
ProteinA LBD ProteinB LBD

csProteinA ProteinB
ProteinA LBD ProteinB LBD

csProteinA
ProteinA CD active

csProteinA
ProteinA CD active

csProteinB
ProteinB TYRp

csProteinB
ProteinB TYRp

csProteinBcsProteinB

csProteinB

3‘all()3‘all()

3‘all()
9

ProteinB YProteinB Y

ProteinB Y

csProteinB

3‘all()

9

ProteinB Y

csProteinB

3‘all()
9 ProteinB Y

csProteinB

3‘all()

9 ProteinB Y

csProteinA
1‘all()ProteinA CD inactive

csProteinB ProteinC
ProteinB TYRp ProteinC SH2

csProteinC

1‘all()

ProteinC SH2

csProteinA

1‘all()

ProteinA Y

csProteinA

1‘all()

ProteinA Y

csProteinA

1‘all()

ProteinA Y

csProteinA

1‘all()
ProteinA Y

csProteinA
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ProteinA X

csProteinA
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ProteinA X

csProteinA
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ProteinA X
csProteinA
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ProteinA X

csProteinBcsProteinB

csProteinB
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ProteinB XProteinB X

ProteinB X

csProteinB
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9

ProteinB X

csProteinB

3‘all()
9 ProteinB X

csProteinB

3‘all()
9 ProteinB X

csProteinB csProteinB

1‘all()1‘all()ProteinB TYR ProteinB TYR

csProteinCcsProteinC

csProteinC
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ProteinC XProteinC X

ProteinC X

csProteinC csProteinC
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12

ProteinC Y ProteinC Y
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9

9
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– simple coloursets:
• int ProteinA := 1 - numA
• int ProteinB := 1 - numB
• int ProteinB := 1 - numC

– compound coloursets:
• product ProteinA_ProteinB := Pro-

teinA, ProteinB
• product ProteinB_ProteinC := Pro-

teinB, ProteinC
– variables:

• ProteinA A
• ProteinB B

– constants:
• int numA := 3
• int numB := 3
• int numC := 3
• int xDimA := 5
• int yDimA := 5
• int xDimB := 5
• int yDimB := 5
• int xDimC := 5
• int yDimC := 5

Fig. 7: Part 1: Instantiation of modules using coloured Petri nets.

5 Conclusions & Outlook

We presented a new approach for incorporating spatial aspects into modular
composed models. A new approach was necessary, because existing techniques
(see Section 2.2) are not suitable for model composition. In particular, we demon-
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Movement of complex ProteinAProteinB ProteinCMovement of complex ProteinBProteinC

Movement of Protein CMovement of Protein BMovement of Protein A
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Fig. 8: Part 2: Instantiation of modules using coloured Petri nets.

strated based on the BioModelKit framework for modular biomodel engineer-
ing [4], how to extend plain models of intracellular processes to spatial models
without their reimplementation. The models in our case are composed from mod-
ules, where each module describes the functionality of a certain molecular com-
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Fig. 9: Stochastic Simulation of the Spatial Model.

ponent in the form of a Petri net. To transform a flat modular composed model
into a spatial model the following steps have to be performed: (1) components
have to be equipped with individual spatial attributes to represent their localisa-
tion and movement in the biomolecular system, (2) components are only allowed
to interact if they fulfil certain neighbourhood conditions, (3) the movement of
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components depends on their state of interaction, e.g. interacting components
forming a complex can only move as one entity. The use of coloured Petri nets
in our approach allows us to represent individual numbers of module instances
for each component.

In our approach we use d di�erent places per module to hold the spatial
informations. The value of d is usually 1, 2 or 3 for one-, two- or three-dimensional
space. The position of a module is characterized by the number of tokens on these
places, e.g. ProteinA_X = 3 and ProteinA_Y = 2 is position (3,2) in two-
dimensional space. Furthermore, we add transitions to each module to enable
movement and interaction of modules. The structure of the non-spatial modules
remains the same, while converting it into a spatial module. So it is possible to
revert it back again easily.

The use of places holding spatial information does not restrict our approach
to discrete space, but allows us to model continuous space as well by using
continuous places. This is not possible using the grid-places approach presented
in Section 2.2.

The whole process does not depend on the module and can be applied easily
to any module of the BMKdb. Thus it fits quite well in the BMK framework
presented in Section 2.1. The spatial transformation algorithm will be a new
feature in the next release of the BMK online tool.

Further investigation is needed in terms of simulation. Adding space surely
increases the computational complexity and the question is, how can we challenge
this.
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Abstract. In traditional Chinese medicine, internal organs imply five
viscera and six bowels. Five viscera mean liver, heart, spleen, lung and
kidney, and six bowels mean gallbladder, small intestine, stomach, large
intestine, urinary bladder and triple energizer. Also, meridian system rep-
resents the passage of metabolites in the human body. In this paper, we
deal with construction of Petri net model of internal organs and meridian
based on traditional Chinese medicine. At first, we introduce relations of
mutual generation and mutual restriction between five viscera to make
a basic Petri net model of five viscera based on five-elements theory. An-
alyzing the relation between five viscera and six bowels, we propose a
model of internal organs that include five viscera and six bowels. After
that, through investigating the syndrome of internal organs as well as the
function of pericardium meridian, we propose a Petri net model includ-
ing internal organs and meridians by combining the model of internal
organs with meridians. Finally, we do simulation of the proposed model
by using CPN Tools to show how our model works.

Keywords: traditional Chinese medicine, five-elements theory, five vis-
cera and six bowels, meridian system, modeling, Petri net

1 Introduction

Traditional Chinese medicine or oriental medicine has been widely applied in
treating disease in China as well as in various asian countries since ancient times.
This is because of its less secondary effect and possible curing for ahead sick and
incurable disease. Especially acupuncture and moxibustion therapy that stimu-
late acupuncture points in meridian system to treat disease have spread rapidly
since the times when acupuncture and moxibustion therapy were admitted by
WHO in 1989 and 361 acupuncture points were standardized by WHO in 2006.
However mechanism of meridian system is still not scientifically elucidated and
many of related researches and treatments have been made empirically and clini-
cally. Therefore it is required to develop new knowledge to elucidate acupuncture
and moxibustion treatment [1].

In traditional Chinese medicine, internal organs include five viscera and six
bowels. Five viscera mean liver, heart, spleen, lung and kidney, and six bowels
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mean gallbladder, small intestine, stomach, large intestine, urinary bladder and
triple energizer. Five viscera and six bowels imply the systematic functions of
human body rather than internal organs of human anatomy. Five viscera and six
bowels are closely related each other and have the correspondence relationship
between liver and gallbladder, heart and small intestine, spleen and stomach,
lung and large intestine, kidney and urinary bladder, respectively. Once one
becomes sick, the other has high possibility of abnormalities. Such relationship is
expressed in five-elements theory of traditional Chinese medicine [2]. In Chinese
medicine, human body is also thought of a complex and interconnected system,
and consists of meridian system that connects skin to inner organs from head
to foot. The elements of meridians are considered as the acupuncture points of
the body. Stimulating acupuncture points on the body, various diseases can be
treated and prevented [2].

Recently, five viscera of traditional Chinese medicine have been studied through
modeling and quantitatively analyzing [3]. Fusing five-elements theory and fuzzy
system theory, Sun et al. have proposed a fuzzy model (called Sun’s model here-
after) of five viscera by focusing on the physiological equilibrium states of liver,
heart, spleen, lung and kidney [4]. Based on the evolution law of five viscera,
Guo et al. have proposed a quantitative measurement model in order to realize
five-elements theory [5]. Nevertheless these models have a common problem that
they are difficult to be used in simulating the behaviour of five viscera as well as
six bowels. On the other hand, Petri net is a modeling and analyzing tool of sys-
tems and can represent and analyze static structure and dynamic behaviour of
a system. There have been many success stories on modeling biological systems
and elucidating the mechanisms by Petri nets. On modeling and simulation of
meridian system using Petri net [6], P.A. Heng et al. have presented an intel-
ligent virtual environment for Chinese acupuncture learning and training using
state-of-the-art virtual reality technology in order to develop a comprehensive
virtual human model for studying Chinese medicine [7]; J. Pan and M. Zhou
have modeled and analyzed meridian system by adopting Petri net methods [8].
However, these studies deals with meridian system only, without taking into ac-
count of the internal organs, five viscera and six bowels. We aim to propose a
Petri net model for both internal organs and meridian system in order to finally
elucidate the mechanism of meridian system as well as the internal organs.

In this paper, we are to propose a method of modeling both internal organs
and meridian system by using discrete Petri nets as the first step towards eluci-
dating meridian system. Section 2 introduces five-elements theory in traditional
Chinese medicine and gives basic knowledge of Petri nets. Section 3 describes
a model of internal organs including both five viscera and six bowels based on
five-elements theory. Section 4 introduces a concept of “syndrome” used in tra-
ditional Chinese medicine and describes syndrome of five viscera and six bowels
as well as the function of a meridian, pericardium meridian, to propose a Petri
net model including internal organs and meridian system. Section 5 shows sim-
ulation of the proposed model by using CPN Tools [9] to show how our model
works.
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2 Five-Elements Theory and Petri Nets

2.1 Five-Elements Theory

According to ancient Chinese five-elements theory, the five elements, wood, fire,
earth, metal and water are indispensable to the daily life of mankind. And in five-
elements theory of traditional Chinese medicine, five viscera, liver, heart, spleen,
lung and kidney, are mapped to the five elements respectively. Liver flows Qi
through over the body free of all care, as a tree getting taller; Heart warms the
body as fire; Spleen produces nutrients, as soil that produce all things; Lung
takes down Qi and Bodily Fluid, as astringent action of the metal; Kidney pools
Mind and adjusts the moisture of the body, as water that flows to the low place
from on high [2].

In five-elements theory, there are generation and restriction relationships
between five viscera. Generation is that of mother-to-child relationship to give
birth to the other party and is circulating in the order of wood → fire → earth
→ metal → water [2]. Restriction is to suppress the other party in the order
of wood → earth → water → fire → metal [2]. In traditional Chinese medicine,
health is maintained if generation and restriction relationships are balanced, and
hence cause of the disease and methods of treatment can be investigated from
the interrelationship of five viscera. Fig.1 shows the generation and restriction
relationships.

In addition, five viscera and six bowels have relations that interact with each
other. That is, liver and gallbladder, heart and small intestine, spleen and stom-
ach, lung and large intestine, and kidney and urinary bladder interact with each
other, respectively. Triple energizer consists of upper energizer, middle energizer
and lower energizer, which are the paths for Qi and Bodily Fluid to pass. Since
triple energizer does not corresponds to any one of five viscera, we are not to
deal with it in this paper.

2.2 Petri Nets and Colored Petri Nets

A Petri net is one of several mathematical modeling languages for the description
of concurrent systems [6][10]. A Petri net is a weighted directed bipartite graph
and consists of two types of nodes, transitions (i.e. events that may occur, signi-
fied by bars) and places (i.e. conditions, signified by circles). Places may contain
a number of marks called tokens. Any token distribution over the places will rep-
resent a configuration of the net called a marking. The directed arcs with weights
describe which places are pre- and/or postconditions for which transitions (sig-
nified by arrows). A Petri net is expressed by a 5-tuple PN = (P, T,A,W,M0).
Here, P={p1, p2, ...p|P |} is a set of places, T = {t1, t2, ...t|T |} is a set of transi-
tions, A ⊆ (P×T )∪(T×P ) is a set of arcs, W is weight function A 7→ {1, 2, ...}
and M0 is initial marking P 7→ {0, 1, 2, ...}.

Colored Petri nets (CPN) is extended from Petri nets by adding colors to
tokens and is a discrete-event modeling language combining the capabilities of
Petri nets with the capabilities of a high-level programming language. It allows
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Fig. 1. Generation and restriction relationships between five viscera.

tokens to have a data value attached to them. This attached data value is called
token color. A Petri net is a tuple CPN=(P, T,A,Σ,C,N,E,G, I) [11], where,
P , T and A are the same as Petri net, Σ is a set of color sets and contains all
possible colors, operations and functions. C is a color function and maps places
into colors. N is a node function and maps A into (P×T )∪(T×P ). E is an arc
expression function and maps each arc into the expression. G is a guard function
and maps each transition into guard expression. I is an initialization function
and maps each place into an initialization expression.

3 Construction of Petri Net Model of Internal Organs

3.1 A Control Model of Five Viscera

In Sun’s model [4], physiological equilibrium states are quantitatively defined in
domain (−1, 1) individually for liver, heart, spleen, lung and kidney, and a fuzzy
model had been proposed based on five-elements theory. The domain is divided
into (−1, b1)[b1, a1)[a1, a2](a2, b2](b2, 1) as shown in Fig.2, which respectively five
states, weak, little weak, equilibrium, little strength, strength. These five states
respectively represent dysfunction and no power of generation ((−1, b1)), delicate
health and weak power of generation ([b1, a1)), health and stable state ([a1, a2]),
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Fig. 2. Five viscera’s state.

Fig. 3. Generation and restriction relationship.

Excess and disease state with power of restriction ((a2, b2]), and severe state of
excess (b2, 1).

Among five viscera, there are generation and restriction relationships. In the
case of heart, it is generated by liver but restricted by kidney, which is shown in
Fig.3. Meanwhile, liver may loss its energy itself. Therefore, the state of liver at
time t, f(t), is expressed by the following equation that is modified from Sun’s
model [4]:

f(t) = as·fs(t− 1)− bk·fk(t− 1) + c·f(t− 1) (1)

where, t is the time, as, bk, c are non-negative parameters, as·fs(t−1) represents
generation affection (fs is the state of liver) and bk·fk(t−1) represents restriction
affection (fk is the state of kidney).

3.2 A Petri Net Model of Five Viscera

Here, we propose a Petri net model of five viscera based on Sun’s model. Firstly,
we give a model for a single viscus as shown in Fig.4. Places, pin and pstate, are
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Fig. 4. A Petri net model for a single viscus.

Fig. 5. A model including generation and restriction.

called input place and state place, and the token in state place is called state
token whose value expresses the state of the viscus. tin is called input transition
that works to calculate the state value of Eq. (1). tstate is called state transition
and works to generate a state of the viscus. The token with calculated state
value passes through pin and tstate and then arrive at pstate. tout is called output
transition and works to generate and restrict other viscera.

Fig.5 shows a Petri net model including relationship of generation and re-
striction between viscera. This model is comprised of three single viscus models,
the models of liver, heart and spleen, which are connected by places p1s, p1k and
p2s. Places p1s and p1k express liver’s generation and restriction affection to heart
and spleen, respectively, and these two places are respectively called generation-
output place and restriction-output place of liver. Tokens in generation-output
and restriction-output places are respectively called generation token and re-
striction token. Similarly, p2s is generation-output place of heart.

Proc. BioPPN 2015, a satellite event of PETRI NETS 2015



Modeling of internal organs and meridian system 61

Fig. 6. A Petri net mode of liver and gallbladder.

Since liver generates heart and restricts spleen, state token of liver flows
through output transition t1out to generation-output place p1s (that is also an
input place of heart model) and to restriction-output place p1k (that is also an
input place of spleen model). In the same way, state token of heart flows to
generation-output place p2s that is an input place of spleen model.

3.3 A Petri Net Model of Internal Organs

The Petri net shown in Fig.6 can be treated as a model of any one pair of five
viscera and six bowels (say liver and gallbladder). Hence to make a full model
that includes both five viscera and six bowels, we need only to consider how to
connect these models together into one model.

Five viscera and six bowels are in the relationship of the front and back,
such as liver and gallbladder, heart and small intestine, spleen and stomach,
lung and large intestine, and kidney and urinary bladder. Each of these pairs
interacts with each other to maintain life. Such a pair, for example liver and
gallbladder, is modeled by Petri net as shown in Fig.6. This model is made by
adding transitions tzf and tfz and connecting them to the single model of liver
and gallbladder. tzf and tfz represent the affections from liver to gallbladder
and from gallbladder to liver, respectively.

Synthesizing the models we have made till now, we can complete a model of
internal organs. The process is summarized as follows: (1) Make a single model
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Fig. 7. A complete Petri net model of internal organs.

for each of five viscera as Fig.4; (2) Connect these single models according to
generation and restriction relationship between five viscera as Fig.5; (3) Add to
the model of each viscus by the model of its pair partner of six bowels as Fig.6.
Then the complete model is obtained as shown in Fig.7.

4 A Combined Model of Internal Organs and Meridian
Based on Syndrome

4.1 Meridians and Acupuncture Points

In traditional Chinese medicine, meridian system is considered as important
channels to transfer Qi (means energy) and blood in human body. Meridian
system is divided into meridians and collaterals [12], [13]. Meridians are main
part of meridian system and represent paths that trend almost upside down.
Collaterals play the role of branches and connect all the way to the whole body.

Meridians consist of twelve principal meridians and eight extra meridians.
Twelve principal meridians include three Yin and three Yang meridians of hand
and also three Yin and three Yang meridians of foot. Here, Yin and Yang are
the concept of duality forming a whole and mean respectively sunny side and
shady side (e.g., the palm and the back of the hand). Yin meridians belong to
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Fig. 8. Pericardium meridian containing nine acupuncture points (from [14]).

five viscera and Yang meridians belong to six bowels. Each principal meridian
has acupuncture points. In eight extra meridians, only Renmai and Dumai have
acupuncture points. Twelve principal meridians along with Renmai and Dumai
are thought of main meridians [12]. Collaterals consist of fifteen collaterals and
other collaterals (tiny collateral, superficial collaterals and musculature that is
not connected to internal organs).

Acupuncture points exist in twelve principal meridians, Renmai and Dumai.
Through these acupuncture points, Qi passes inside and outside of body and
thus various diseases can be prevented and cured by stimulating these acupunc-
ture points [2, 12, 13]Here, we consider the modeling of pericardium meridian.
Pericardium meridian is an important Yin meridian of hand and is closely re-
lated to heart. It begins near the heart, goes down each arm to the palms and
then goes to the tip of the middle finger. As can be found in Fig.8, pericardium
meridian contains nine acupuncture points, Tianchi, Tianquan, Quze, Ximen,
Jianshi, Neiguan, Daling, Laogong and Zhongchong.

4.2 Relationship between Internal Organs and Pericardium
Meridian Based on Syndrome

In traditional Chinese medicine, “syndrome” is a measure to evaluate the state
and physical condition of human body [2, 12, 13]. The acupuncture points of
pericardium meridian are efficacious against various symptoms. For example,
Quze corresponds thirsty; Ximen heartbeat, shortness of breath and tenosyn-
ovitis; Neiguan motion sickness, hangover, hiccup and chronic gastritis; Daling
rheumatoid arthritis and halitosis; Laogong stomatitis, thirsty and forgetful; and
so on [15].

On the other hand, when the states of internal organs are no longer nor-
mal, various functions will be modulated by each organ. For example, in liver
the dispersing and dredging function and the capability to store the blood are
probably decreased; in heart abnormalities may occur in the blood stream; in
spleen the functions of transportation and transformation, which send up the
lucid Yang and govern the blood, may be decreased; in lung dissipating and ex-
erting effect may become weak; and in kidney functions of storing the essence of
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Table 1. The relationship between internal organs and acupuncture points of peri-
cardium meridian.

life and regulating the metabolism of water are probably decreased. In the case
of six bowels, the abnormalities related to digest, absorption and excretion may
probably occur. [2, 12, 13].

Combining these syndromes due to the modulations of internal organs with
the effect of acupuncture points of pericardium meridian, we can make a table
representing the relationship between each internal organ and each acupuncture
point of pericardium meridian as shown in Table.1, in which notion “*” shows
the efficacious relations. For example, the acupuncture point Quze is supposed
to be efficacious against the symptoms related to liver, heart, lung and kidney,
as well as stomach and large intestine.
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4.3 Modeling Internal Organs and Pericardium Meridian

Here, we construct a model of pericardium meridian and combine it with the
model of internal organs proposed in the last section according to Table 1. As we
have stated, meridians and acupuncture points connect skin and inner organs
of body. Stimulating an acupuncture point, the signal is transmitted to the
meridian and then circulation of Qi and flood is improved, which makes internal
organs active. In the case of Quze, when it is stimulated, liver, heart, lung and
kidney, as well as stomach and large intestine, are activated.

Based on the above, we modeled the influence of a single acupuncture on a
single organ as shown in Fig.9. Acupuncture point is represented by a transition,
stimulation of the acupuncture point is represented by firing the transition. Fit-
ting together with state token of the single organ, the token generated by the
firing goes through transition tp to the input place of the organ, and it further
moves to the state place (Output&State Place). Thus activation of the organ is
represented.

Fig. 9. A combined model of single acupuncture point and single organ.

Applying the same way as Fig.9 for all the organs according to Table 1,
we finally get a complete model of internal organs and pericardium meridian as
shown in Fig.10. Note that plural tokens generated by plural acupuncture points
are accumulated at one place.

5 Simulation using CPN Tools

We have done simulation by using CPN Tools [9] for the model of Fig.10. The
parameters are set as follows:

(1) Data type for each place is defined by REAL;
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Fig. 10. A complete Petri net model of internal organs and pericardium meridian.

Fig. 11. Parameter setting for model of liver and gallbladder.
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(2) Value of state token of each organ is defined in domain (0.5, 5.5), which
means that (0.5, 1.5)[1.5, 2.5)[2.5, 3.5](3.5, 4.5](4.5, 5.5) respectively five states,
weak, little weak, equilibrium, little strength, strength;

(3) The parameters as, bk, c in equation f(t) = as·fs(t − 1) − bk·fk(t − 1) +
c·f(t− 1) are defined as as = 0.15bk = 0.05c = 0.90;

(4) For each pair of five viscera and six bowels (e.g. liver and gallbladder as

shown in Fig.11), set expression z for arc (pzstate, tfz), f for (pfstate, tzf ),

d·f + e·z for (tzf , p
f
in) and d·z + e·f for (tfz, p

z
in), where d and e are defined

as d = 0.90e = 0.10;
(5) One stimulation of each puncture point provides 0.01 active influence on

the related organ.
Note that all the constants are temporarily decided for the simulation.

Fig. 12. Change of states of five viscera.

Simulations have been done based on the above parameters. We suppose that
initially stomach is in weak state with state token value “1” and all the other
organs are in normal state with “3”. Among acupuncture points, Quze, Neiguan,
Daling and Laogong have influence on stomach, and we choose Daling to do the
stimulation for 50 times. Simulation results are shown in Fig.12 and Fig.13.

From Fig.12 and Fig.13 we can observe the following phenomenons. At first,
weak stomach adversely affects spleen directly, and thus spleen weakens rapidly
and its state value becomes lower than 2.5. Due to weakening of spleen and also
the relationship of generation and restriction between five viscera, all the viscera
gradually weaken except heart. On the other hand, spleen directly strengthens
stomach and the acupuncture point, Daling, is stimulated continuously. These
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Fig. 13. Change of states of six bowels.

actions strengthen stomach rapidly and as the result stomach recovers its state
value to 2.5 when Daling is stimulated 22 times. After that, all the organs recover
gradually and finally get to health state with state values almost 3 when Daling
is stimulated 50 times. Of particular interest is that any organs of six bowels are
almost not affected by stomach except large intestine.

6 Conclusions

We have proposed a method of constructing Petri net model for internal organs
and meridians based on traditional Chinese medicine. According to five-elements
theory and the control model proposed by Sun et al., we have proposed a Petri
net model of five viscera by considering the generation and restriction relation-
ship between five viscera. Taking into account of the relationship of front and
back between five viscera and six bowels (except triple energizer), we have made
a model of internal organs. Through investigating the syndrome of internal or-
gans as well as the function of pericardium meridian, we have proposed a Petri
net model including internal organs and meridians by combining the model of
internal organs with meridians. Finally, we do simulation to show how our model
works by using CPN Tools.

It should be pointed out that this work does not intend to be a scientific
contribution to medical science in the sense as it is usually understood. As the
future works, we are to (1) decide parameters for all the transitions and places,
as well as for tokens and arcs on the basis of the data of acupuncture treatment
site; (2) do simulation to verify the validity of the proposed model and the
parameters, in order to improve the model; (3) develop a method to construct a
Petri net model for the whole human body.
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Abstract. In this paper we propose a method for implementing a full
structural model refinement of a (biological) model represented as a (col-
ored) Petri net. We build on the full structural data refinement definition
of C. Gratie and Petre, and the type refinement of colored Petri nets in-
troduced by Charles Lakos. Given a (biological) reaction-based model
and a desired full structural refinement of it, we propose a general color-
ing scheme for a colored Petri net implementation of the model and give
an algorithm for adding the refinement details in the Petri net model.
We then prove that the construction is a type refinement, and that by
our choice of color sets the resulting refined colored Petri net implements
the full structural refinement of the given model.

Keywords: Colored Petri nets, type refinement, reaction network, struc-
tural model refinement.

1 Introduction

Model refinement, the process of adding more details to an existing model, is
an important step in the model building cycle. Many refinement methods have
been proposed for different modeling frameworks and formalisms, e.g., action
systems [1], Petri nets [17, 11], kappa [4], biochemical reaction networs [7], π-
calculus [16], etc. We bridge here two modelling frameworks and their respective
ways of implementing refinement, namely reaction network models with struc-
tural refinement and colored Petri nets with type refinement.

Type refinement of colored Petri nets has been introduced in [11], and consists
of refining the color sets of places such that the new color sets are polymorphic
with the initial color sets. The authors see this as adding some supplementary
data to a given data type represented as a color set, e.g. include in the entry of
a book in a library not only its title and authors, but also the maximum number
of days it can be borrowed.

The concept of (full) structural refinement of a reaction network (bio-)model
has been introduced in [7] (where it was called data refinement), with a focus on
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an ODE-based representation of a model and its refinement. A sufficient condi-
tion for the refined model to preserve the fit of the original one was discussed
in [6] for mass-action models. We follow in this paper the terminology of [6]. We
use the main concepts of species refinement and (full) structural refinement for
models represented as (colored) Petri nets, and give a methodology for imple-
menting full structural refinements as type refinements of colored Petri nets. An
approach to implementing model refinement in the colored Petri net framework
has been exemplified for a model of the eukaryotic heat shock response mech-
anism in [8]. The authors present there two coloring schemes that can be used
for the particular refinement they were implementing. We derive here a general
coloring scheme for model refinement that can be used when implementing a full
structural data refinement of a model.

We assume the reader is familiar with (colored) Petri nets, but we recall some
of the basic definitions so that the paper is self-contained.

The paper is structured as follows: in Section 2 we present reaction network
(also called reaction-based) models and the notions of species refinement and
(full) structural refinement of such models, with a discussion on the explosion of
the model induced by a refinement, in terms of number of species and reactions
that the initial model refines to. In Section 3 we recall some notions and notations
for Petri nets and their colored version, give a coloring scheme and discuss how
a reaction network model can be implemented as a (colored) Petri net. We
continue in Section 4 with proposing a type refinement based on a refinement
relation ρ and prove that the chosen type refinement results in a colored Petri
net that is the implementation of the full structural ρ−refinement of the initial
model. We draw our conclusions and discuss about the model size and successive
refinements in Section 5.

2 Model Refinement

In systems biology, model refinement comprises two aspects: the structural side
and the quantitative side. The structural side handles the newly introduced
species and presents a methodology for computing the new set of reactions,
while the quantitative side deals with changes in the kinetic constants of the
model and ways of setting the new parameters in such a way that previous data
is used. Quantitative model refinement was introduced in [15, 4] for rule-based
models, and for reaction-based models in [13, 7]. We recall here the structural
refinement of reaction network models, as presented in [7] and based on the
terminology of [6]. We are only interested in the structural refinement, so we
will not focus on any quantitative details.

A reaction-based model M consists of a finite set of species S = {A1, . . .,Am}
and a finite set of reactions R = {r1, . . . , rn} using only species in S . A reaction
rj ∈ R can be formulated as a rewriting rule of the form:

rj : c1,jA1 + . . .+ cm,jAm
krj−−→ c′1,jA1 + . . .+ c′m,jAm, (1)
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with the meaning that ci,j copies of species Ai are consumed by the reaction and
c′i,j copies of species Ai are produced, i = 1..m. Constants c1,j , . . . , cm,j , c

′
1,j , . . . ,

c′m,j ∈ N are the stoichiometric coefficients of rj and krj ≥ 0 is the kinetic rate
constant of reaction rj . We denote by r−j = (c1,j , . . . , cm,j) the vector of stoi-
chiometric coefficients on the left hand side of the reaction, for the species being
consumed in reaction rj , and by r+

j = (c′1,j , . . . , c′m,j) the vector of stoichiometric
coefficients on its right hand side, those of species being produced. Without a
risk of ambiguity, reaction rj can then be written as r−j

krj−−→ r+
j .

Example 1. A biological system with two irreversible reactions that encode the
dimerization of a molecule P can be represented as a reaction-based model M =
(S ,R) where S = {P, P2} and R = {2P → P2, P2 → 2P}. P represents the
monomeric molecule and P2 is the dimer that is formed from two P monomers.

Data refinement is the type of refinement of a model that consists in adding
details related to the species of the model, i.e., it replaces a species with several of
its subspecies. The subspecies may account for post-translational modifications
of macromolecules, or distinguish between possible variants of some trait.

All species are considered to be refined at once, thus each species in an initial
model is replaced by a non-empty set of refined species to yield a refined model,
as dictated by a species refinement relation ρ. This is formalized in Definition 1.

Definition 1 ([6]). Given two sets of species S and S ′, and a relation ρ ⊆
S ×S ′, we say that ρ is a species refinement relation iff it satisfies the following
conditions:

1. for each A ∈ S there exists A′ ∈ S ′ such that (A,A′) ∈ ρ;
2. for each A′ ∈ S ′ there exists exactly one A ∈ S such that (A,A′) ∈ ρ.

We denote ρ(A) = {A′ ∈ S ′ | (A,A′) ∈ ρ}. We say that all species A′ ∈ ρ(A)
are siblings.

Intuitively, each species A ∈ S is replaced in the refined model with the set
of species ρ(A). For the case where ρ(A) is a singleton set, one may consider
that species A does not change, even if its refined counterpart is denoted by a
different name in S ′; such a refinement of a species is called trivial.

Next we recall the definitions of refinement of a vector (of stoichiometric
coefficients), of a reaction, and of a reaction-based model.

Definition 2 ([6]). Let S = {A1, . . . , Am} and S ′ = {A′1, . . . , A′p} be two sets
of species, and ρ ⊆ S ×S ′ a species refinement relation.

1. Let α = (α1, . . . , αm) ∈ NS and α′ = (α′1, . . . , α′p) ∈ NS ′ . We say that α′ is
a ρ-refinement of α if

∑

1≤j≤p
A′j∈ρ(Ai)

α′j = αi, for all 1 ≤ i ≤ m .

We denote by ρ(α) the set of all ρ−refinements of α.
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2. Let r : r− → r+ and r′ : r′− → r′+ be two reactions over S and S ′, resp.
We say that r′ is a ρ-refinement of r if

r′− ∈ ρ(r−) and r′+ ∈ ρ(r+) .
We denote by ρ(r) the set of all ρ−refinements of r. Note that ρ(r) = ρ(r−)×
ρ(r+).

3. Let M = (S ,R) and M ′ = (S ′,R′) be two reaction-based models, and
ρ ⊆ S ×S ′ a species refinement relation. We say that M ′ is a ρ-structural
refinement of M if

R′ ⊆
⋃

r∈R

ρ(r) and ρ(r) ∩R′ 6= ∅ ∀r ∈ R .

In case R′ =
⋃
r∈R ρ(r), we say M ′ is the full structural ρ-refinement of M ,

denoted M ′ = Mρ.

Model explosion. Note that a vector of coefficients α′ ∈ NS that respects the
sum condition

∑
1≤j≤p
A′j∈ρ(Ai)

α′j = αi, for all 1 ≤ i ≤ m can be seen as a way of

choosing αi elements from a bag containing elements of |ρ(Ai)| types, where the
selection may contain several elements of the same type. The total number of
different ways in which one may choose k elements from a bag with elements of
n types (assuming enough copies of each type are available) is

((
n
k

))
=
(
n+k−1

k

)
,

the so-called multiset coefficient, n multichoose k.
A reaction rj of the form (1) can refine to

∏
1≤i≤m

((|ρ(Ai)|
ci,j

))
·
((|ρ(Ai)|

c′
i,j

))
different

reactions. The number stems from the number of possible ways of choosing ci,j
(c′i,j , resp.) copies from the possible refinements of a species Ai ∈ S . The number
of reactions in a full structural ρ−refinement of a model with n reactions is thus:

∑

1≤j≤n

∏

1≤i≤m

((|ρ(Ai)|
ci,j

))
·
((|ρ(Ai)|

c′i,j

))
.

Example 2. Consider the reaction-based model M = (S ,R) from Example 1.
One possible refinement for this model is to consider that molecule P can be in
two states: acetylated (P (1)) and non-acetylated(P (0)). Then the dimer P2 could
have none (P (0)

2 ), one (P (1)
2 ) or both (P (2)

2 ) of its composing monomers acety-
lated. Consider a set of species S ′ = {P (0), P (1), P

(0)
2 , P

(1)
2 , P

(2)
2 }. A relation

ρ ⊆ S ×S ′ that would capture such a refinement is ρ = {(P, P (0)), (P, P (1)),
(P2, P

(0)
2 ), (P2, P

(1)
2 ), (P2, P

(2)
2 )}. One can easily see that ρ is a refinement rela-

tion, based on Definition 1.
A full structural ρ-refinement of M is the model M ′ = (S ′,R′), where R′ =
{2P (0) → P

(0)
2 , 2P (0) → P

(1)
2 , 2P (0) → P

(2)
2 ,

2P (1) → P
(0)
2 , 2P (1) → P

(1)
2 , 2P (1) → P

(2)
2 ,

P (0) + P (1) → P
(0)
2 , P (0) + P (1) → P

(1)
2 , P (0) + P (1) → P

(2)
2 ,

P
(0)
2 → 2P (0), P

(0)
2 → 2P (1), P

(0)
2 → P (0) + P (1),

P
(1)
2 → 2P (0), P

(1)
2 → 2P (1), P

(1)
2 → P (0) + P (1),

P
(2)
2 → 2P (0), P

(2)
2 → 2P (1), P

(2)
2 → P (0) + P (1)}.
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3 Modeling Biological Systems as (Colored) Petri Nets

Many biological models are implemented as Petri nets due to the graphical,
intuitive formalism, and the many simulation strategies they offer. We start our
discussion over refinement and implementations of models as Petri nets from the
standard version of Petri nets. We then continue with colored Petri nets.

3.1 Preliminaries

We assume the reader is familiar with the basic notions and notations related
to Petri nets and we refer to [5], [14] for details. We also assume that the reader
is familiar with constructing a standard Petri net associated to a reaction-based
model; we refer to [2] for details.

In order to implement a reaction-based model as a Petri net, one represents
each species via a place, and each reaction via a transition having as pre-places
the places representing the reactants of the reaction, and as post-places the
places representing the products of the reaction, with each arc expression being
the stoichiometry of the represented species in that reaction, see [2].

Definition 3 (Implementation of a reaction network model as a Petri
net). Given a reaction-based model M = (S ,R), and a Petri net N = (P, T,A,
f,M0) with |S | = |P | and |R| = |T |, we say that the Petri net N structurally
implements model M if there exists a bijection δ : S ∪ R → P ∪ T mapping
species of M into places of N and reactions of M into transitions of N (δ(x) ∈ P ,
for all x ∈ S and δ(x) ∈ T for all x ∈ R) such that for every reaction rj ∈ R
and its corresponding transition t = δ(rj) and for every species Si ∈ S the
following conditions hold:

1. if ci,j > 0 then (δ(Si), t) ∈ A and f(δ(Si), t) = ci,j, otherwise (δ(Si), t) 6∈ A;
2. if c′i,j > 0 then (t, δ(Si)) ∈ A and f(t, δ(Si)) = c′i,j, otherwise (t, δ(Si)) 6∈ A.

Example 3. An example of a Petri net structural implementation of the model
described in Example 1 is given in Figure 1. The bijection δ is defined such that
δ(P ) = P , δ(P2) = P 2, δ(2P → P2) = T fw, δ(P2 → 2P ) = T bw. One can
easily see that the arc multiplicities respect the two conditions in Definition 3.

P P 2

T fw

T bw

2

2

Fig. 1. Standard Petri net structural implementation of a dimerization model (only
multiplicities greater than 1 are displayed)
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There exist two ways of defining colored Petri nets, one proposed by Kurt
Jensen in [9], and an equivalent one adapted from the first definition, by Charles
Lakos in [11]. In this paper we consider the definition of colored Petri nets
proposed by Lakos because it does not explicitly include transition guards (that
we are not using in our construction) and because of the definition of type
refinement of colored Petri nets proposed in [11]. We use the following less well
known notations:Σ denotes a universe of non-empty color sets with an associated
partial order <:⊆ Σ × Σ indicating that values from one color set X with
X <: Y can be used in contexts expecting values of Y . ΠY is a projection
function mapping values of X into values of Y . ΦΣ = {X → Y | X,Y ∈ Σ}
denotes the functions over Σ, and µX = {X → N} denotes the multisets over
X. E−, E+ : Y → M represent the incremental negative and positive, resp.
changes of the occurrence of a step Y , and are given by the linear extension of:
E−((t, c)) =

∑
p∈P {p} × E((p, t))(c) and E+((t, c)) =

∑
p∈P {p} × E((t, p))(c),

∀t ∈ T, ∀c ∈ C(t).

Definition 4 ([11]). A colored Petri net is a tuple N = (P, T,A,C,E, Σ, M,
Y, M0) where:
– P is the finite set of places;
– T is the finite set of transitions, such that P ∩ T = ∅;
– A ⊆ P × T ∪ T × P is the finite set of arcs;
– Σ is a universe of non-empty color sets with an associated partial order;
– C : P ∪ T → Σ is the color set function, assigning color sets to places and

(modes) of transitions;
– E : A → ΦΣ is the arc expression function, where E(p, t), E(t, p) : C(t) →
µC(p);

– M = µ{(p, c) | p ∈ P, c ∈ C(p)} is the set of markings;
– Y = µ{(t, c) | t ∈ T, c ∈ C(t)} is the set of steps;
– M0 the initial marking, with M0 ∈M.

Arc expressions may contain variables, which are seen as symbols whose value
is determined by the color (mode) of the transition the arc is connected with.

For any colored Petri net with finite color sets there exists a standard Petri
net that is behaviorally equivalent, see [10]. The process of transforming a colored
Petri net into its standard Petri net equivalent is called unfolding. We give in
the following the definition of the unfolding of a colored Petri net as adapted
from [10] to the notations we use.

Definition 5 ([10]). Given a colored Petri net N = (P, T,A,Σ,C,E,M,Y,
M0), its unfolded Petri net is denoted by N∗ = (P ∗, T ∗, A∗, f∗,M∗0 ), where:
– P ∗ is the set of place instances, pairs (p, c) with p ∈ P and c ∈ C(p);
– T ∗ is the set of transition instances, pairs (t, c) with t ∈ T and c ∈ C(t);
– A∗ = {((p, c), (t, c′)) ∈ P ∗ × T ∗ | E((p, t))(c′)(c) > 0} ∪{((t, c′), (p, c)) ∈
T ∗ × P ∗ | E((t, p))(c′)(c) > 0};

– f∗((p, c), (t, c′)) = E((p, t))(c′)(c), ∀((p, c), (t, c′)) ∈ A∗ and
f∗((t, c′), (p, c)) = E((t, p))(c′)(c), ∀((t, c′), (p, c)) ∈ A∗;

– M∗0 ((p, c)) = M0(p, c).
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3.2 Coloring a Standard Petri Net

A colored Petri net representation of a model can be obtained from a standard
Petri net implementation of the model by assigning to each place a color set with
just one element. We propose here a general coloring scheme that uses record
color sets (i.e. a data structure containing a finite collection of fields, each with
a name and an associated data type) and can easily be extended to incorporate
refinement details by adding new fields. Each place is assigned its own record
color set with one field that has exactly one value. Each transition is assigned
a color set that is a multiset of color sets of its pre- and post-places, where the
multiplicity of each color set is given by the multiplicity of the arc connecting
the place and the transition. It is basically a multiset with elements of different
types. For example, the color set CS T fw in Figure 2 is a collection of two
elements of type CS P and one element of type CS P2. Note that this is not the
only possible coloring scheme and moreover it may not be optimal (in terms of
number of variables and data structures used), but it is general. One may use
integers, records, sets, Cartesian products, or whatever coloring scheme better
suits the system being modeled.

A further change that is required when turning a standard Petri net into a
colored one is assigning to each arc a with arc function f(a) = k where k ∈ N
the expression E(a) = v1 + + . . .++vk where ++ denotes multiset addition and
vi :C(p) are typed variables with i = 1..k, and p is the place of arc a. Intuitively,
we use a different variable for each token that may traverse an arc. The total
number of variables needed in a model is thus

∑
a∈A f(a). A further change is in

the initial marking, where each place p is assigned the same number of tokens as
in the standard network, and all tokens have as color the one color in p’s color
set. We call such a colored Petri net the trivial coloring of the initial network.

We denote by C(x) the one color in the color set of a place/transtition x. In
order to identify precisely the variables used in the expression of an arc (x, y) ∈ A
we denote the variables by vx,y,i, where i = 1..f((x, y)). We also use the shorthand
notation va,i to denote the i-th variable on arc a ∈ A.

Definition 6 (Trivial coloring of a Petri net). Given a standard Petri net
N = (P, T,A, f,M0), we call a trivial coloring of N a colored Petri net T (N) =
(P, T,A,Σ,C,E,M,Y,M ′0) such that:

– Σ =
⋃
p∈P Cp ∪

⋃
t∈T Ct where Ct : {Cp | p ∈ P} → N is a multiset such

that:

Ct(Cp) =





0 (p, t) 6∈ A and (t, p) 6∈ A
f((p, t)) (p, t) ∈ A and (t, p) 6∈ A
f((t, p)) (p, t) 6∈ A and (t, p) ∈ A
f((p, t)) + f((t, p)) otherwise

;

– C : P ∪T → Σ, such that C(x) is a record color set defined as above if x ∈ P
and a multiset defined as above if x ∈ T ;
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– E(a) = ++∑
1≤i≤f(a) va,i = va,1 + + · · ·+ +va,f(a), for all a ∈ A, where va,i :

C(p) with p being the place of arc a;
– M is the set of markings;
– Y is the set of steps;
– M ′0(p) = M0(p)`C(p), for all p ∈ P .

Example 4. An example of a trivial coloring of the Petri net described in Exam-
ple 3 is given in Figure 2.

P
CS P

P 2
CS P2

T fw
CS T fw

T bw
CS T bw

v11++v12 v21

v21v11++
v12

colset CS P = record id:int with 0..0;
colset CS P2 = record id:int with 0..0;
colset CS T fw = multiset with CS P, CS P, CS P2 ;
colset CS T bw = multiset with CS P, CS P, CS P2 ;

Fig. 2. Trivial coloring of a Petri net structural implementation of a dimerization model

Definition 7 (Implementation of a reaction-based model as a colored
Petri net). We say that a colored Petri net N structurally implements a given
reaction-based model M iff N∗, the unfolding of N , structurally implements
model M in the sense of Definition 3.

Proposition 1. The unfolding T (N)∗ of a trivial coloring T (N) of a standard
Petri net N is equivalent to the initial net N (as every color set has exactly one
color).

Proposition 2. If a standard Petri net N structurally implements a reaction-
based model M , then its trivial coloring T (N) structurally implements the same
model M .

Proof. By Proposition 1, N and T (N)∗ are equivalent, thus the unfolding of
T (N) structurally implements model M and, by Definition 7, T (N) structurally
implements M .

3.3 Type Refinement of Colored Petri Nets

Refinements of Petri nets have been a subject of interest for many years. In par-
ticular, we are concerned here with the work of Charles Lakos, who has identified
and formalized three types of refinements: type refinement, subnet refinement and
node refinement, see [11] for details. The concepts of type and node refinement
have been further extended by Choppy et. al., see [3]. We prove in this paper that
a full structural refinement of a model can be implemented via a type refinement
of the colored Petri net representing the model.
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We recall now the definition of type refinement of a colored Petri net as it
was proposed in [11].

Definition 8 ([11]). Let N and N ′ be two colored Petri nets. A morphism
Φ : N → N ′ captures a type refinement of a colored Petri net if:

1. Φ is the identity function on P, T,A;
2. C(x) <: Φ(C)(x), for all x ∈ P ∪ T ;
3. Φ(1 `(x, c)) = 1`(x,ΠΦ(C)(x)(c)) for all x ∈ P ∪ T and for all c ∈ C(x);
4. Φ(E−(1`(t,m)))(p) = ΠΦ(C)(p)(E(p, t)(m)) = Φ(E)(p, t)(ΠΦ(C)(t)(m)), for

all (p, t) ∈ A and for all (t,m) ∈ Y;
5. Φ(E+(1`(t,m)))(p) = ΠΦ(C)(p)(E(t, p)(m)) = Φ(E)(t, p)(ΠΦ(C)(t)(m)), for

all (t, p) ∈ A and for all (t,m) ∈ Y.

A morphism that captures a type refinement is a system morphism, see [11],
which means that it is a behavior-respecting mapping of two colored Petri nets.
Expressing structural refinement as a type morphism will thus guarantee that
the behavior of the initial network is preserved in the refined network. Moreover,
as discussed in [12], type refinement ensures bisimilarity between the initial and
the refined network.

Note that for every refined state or action there exists a corresponding ab-
stract state or action, resp. via the projection from subtype to supertype. Also
note that in Definition 8, N denotes the refined network.

4 Full Structural Refinement as Type Refinement of
Colored Petri Nets

In this section we prove that the full structural refinement of a reaction-based
model implemented as a Petri net can be implemented as a type refinement of
the trivial coloring of the Petri net. We give a coloring strategy (type refinement)
for implementing a full structural data refinement of a model represented as a
Petri net, and conclude by proving that our construction indeed implements the
required full structural data refinement.

4.1 Implementing a Full Structural Model Refinement via a Type
Refinement in a Colored Petri Net Model

Intuitively, species refinement implies replacing each species with a non-empty
set of species. This can be done in a colored Petri net by replacing for each place
representing a species its default color set by a new record or enumeration color
set having as many elements as the set of species that its corresponding species
refines to. Or, assuming color sets defined as records, by replacing a single value
field with a new field with as many possible values as the cardinality of the
refined subspecies set. Formally, we need to define a morphism from the refined
colored Petri net to the initial colored Petri net that respects all the properties
of a type refinement, as described in [11] and presented in Section 3.3.
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Definition 9 (Colored Petri net implementation of a structural refine-
ment of a reaction network model). We say that a colored Petri net N
structurally implements the full structural refinement of a model M as described
by a refinement relation ρ iff the unfolding of N , N∗, structurally implements
the full structural refinement of M , ρ(M) in the sense of Definition 3.

We describe next a type refinement of a given trivial coloring of a Petri net
implementation of a reaction-based model M that captures the full structural
data refinement of M as described by a given refinement relation ρ.

Algorithm 1 TypeRef
function TypeRef(N, ρ)

Σ′ ← ∅;
. create the new color sets based on the old ones;

for all p ∈ P do
cs← C(p);
define a new color set cs′ that extends cs with a new field with ρ(δ−1(p))

values;
Σ′ ← Σ′ ∪ {cs′};
C′(p)← cs′;

end for
for all t ∈ T do

define cs as a multiset cs : {C′(p) | p ∈ P} → N such that cs(C′(p)) =
C(t)(C(p)), ∀p ∈ P ;

Σ′ ← Σ′ ∪ {cs};
C′(t)← cs;

end for
. re-type the arc expressions: for each variable in an arc expression, create one

having as type the new color set of the place that the arc is connected to; the new
arc expression is a multiset sum of these variables;

E′ ← ∅;
for all e ∈ E do

p← the place connected to e;
V ← set of variables appearing in e;
V ′ ← ∅;
for all vi ∈ V do

define v′i : C′(p);
V ′ ← V ′ ∪ {v′i}

end for
e′ ← ++∑

v∈V ′ v; .
++∑ denotes multiset addition;

E′ ← E′ ∪ {e′};
end for
M′ ← µ{(p, c) | p ∈ P, c ∈ C′(p)};
Y′ ← µ{(t, c) | t ∈ T, c ∈ C′(t)};
M′0 is designed such that

∑
c∈C′(p) | M

′
0(p, c) |=| M0(p, C(p)) |, ∀p ∈ P ;

N ′ ← (P, T,A,Σ′, C′, E′,M′,Y′,M ′0);
return N ′;
end function
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Let N = (P , T,A,Σ,C, E,M,Y, M0) be a trivially colored Petri net that
implements a reaction-based model M = (S ,R) with correspondence function
δ. Let ρ ⊆ S × S ′ be a full structural refinement relation that refines model
M to model M ′ = (S ′,R′). We build a colored Petri net N ′ = (P , T,A,Σ′, C ′,
E′,M′,Y′, M ′0) and then show that the construction is a type refinement. More-
over, we show that the resulting network implements the full structural refine-
ment ρ(M). The procedure takes as input a trivially colored Petri net that
implements M , and the refinement function ρ. It then updates the color sets of
the network such that the color set of each place is extended with a new field
that will account for the new subtypes of the species that the place stands for.
Each transition gets as color set a multiset of the color sets of its pre- and post-
places, with multiplicities dictated by the cardinality of each arc expression, just
like in the trivial coloring. Note that this means that the refined transition color
sets are subtypes of the initial transition color sets, as multisets of subtypes of
a color set that is a multiset of supertypes, with identical multiplicities.

Using a distinct variable for each token on every arc is important because
it allows for exact identification of each token. One can thus encode all pos-
sible combinations of in- and out- tokens for a transition t, i.e. the full set of
refinements of the reaction encoded by transition t.
Proposition 3. Given a trivially colored Petri net N that is an implementation
of a reaction-based model M , and a full structural refinement relation ρ of M ,
the colored Petri net N ′ = TypeRef(N, ρ) is a type refinement of the initial
network.
Proof. Based on the construction described in Algorithm 1, we detail here the
type refinement morphism between the two networks.

Note that N is trivially colored, so all color sets have exactly one color. The
projection from any color in a color set of Σ′ onto its corresponding supertype
color set is the one color in the supertype color set: ΠC(x)(c) = C(x), for any
x ∈ P ∪ T , and any color c ∈ C ′(x).

We now describe a morphism Φρ : N ′ → N between the two networks, that
is a type morphism.
1. Φρ(x) = x for all x ∈ P ∪ T ∪A.
2. Φρ(C ′)(x) = C(x). By definition of the color sets in N ′, the color set of

each place and of each transition in N ′ is a subtype of the color set of the
same place/transition in N , i.e. C ′(x) <: Φρ(C ′)(x). Moreover, for any color
c ∈ C ′(x) : ΠΦρ(C′)(x)(c) = ΠC(x)(c) = C(x).

3. ∀x ∈ P ∪T : ∀c ∈ C ′(x) : Φρ(1 `(x, c)) = 1 `(x,ΠC(x)(c)) = 1 `(x, C(x)): for
every colored place/transition in N ′ with color c, the morphism Φρ returns
the same place/transition (because Φρ is the identity on P ∪ T ), having as
color the projection of c on the color set of x as given by the morphism Φρ,
namely C(x).

4. ∀(p, t) ∈ A : ∀(t,m) ∈ Y′ : Φρ(E′(p, t)) = E(p, t) and the multiset of col-
ored tokens consumed from place p at the firing of transition t in mode
m is E′(p, t)(m). By construction of E′, the number of consumed tokens is
E(p, t)(C(t)). The projection of every color in C ′(p) is C(p), thus we get:
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Φρ(E−(1`(t,m))(p)) = ΠΦρ(C′)(p)(E′(p, t)(m)) = E(p, t)(C(t)) =
= E(p, t)(ΠC(t)(m)) = Φρ(E′)(p, t)(ΠΦρ(C′)(t)(m)).

5. Similarly, ∀(t, p) ∈ A : ∀(t,m) ∈ Y′ : Φρ(E′(t, p)) = E(t, p) and the multiset
of colored tokens added to place p at the firing of transition t in mode
m is E′(t, p)(m). By construction of E′, the number of produced tokens is
E(t, p)(C(t)). The projection of every color in C ′(p) is C(p), thus we get:

Φρ(E+(1`(t,m))(p)) = ΠΦρ(C′)(p)(E′(t, p)(m)) = E(t, p)(C(t)) =
= E(t, p)(ΠC(t)(m)) = Φρ(E′)(t, p)(ΠΦρ(C′)(t)(m)).

Because the morphism Φρ respects all conditions for being a type refinement
of a Petri net it follows that Algorithm 1 computes a type refinement of its input
Petri net.

Theorem 1. Given a reaction-based model M = (S ,R), a structural refine-
ment relation ρ ⊆ S ×S ′, and a colored Petri net N = (P, T,A,Σ,C,E,M,Y,
M0) that is trivially colored and implements model M with function δ : S ∪R →
P ∪ T , the colored Petri net TypeRef(N, ρ) implements the full structural ρ-
refinement of model M .

Proof. Let N ′ denote the refined colored Petri net TypeRef(N, ρ), and let M ′ =
(S ′,R′) denote the full structural ρ-refinement Mρ. By construction of the
refined colored Petri net N ′ there exists a type morphism between N ′ and N ,
as detailed in the proof of Proposition 3.

First, note that N is trivially colored and thus the network is equivalent to
its unfolding (see Proposition 1). With a slight abuse of notation, we will use x
to denote the unfolded equivalent of a place/transition x ∈ P ∪ T , (x, C(x)).

We show now that the unfolding of N ′ implements the full structural refine-
ment of M . Let N∗ = {P ∗, T ∗, A∗, f∗,M∗0 } be the unfolding of N ′. The color
set of a place p ∈ P ′ has | ρ(δ−1(p)) | elements, where each color represents
one refined species S′ ∈ S ′, (δ−1(p), S′) ∈ ρ. The places of N∗ represent pairs
(p, c) such that p ∈ P and c ∈ C ′(p). Given that every place p has a symbolic
correspondence with one species S = δ−1(p) in S , and the colors of places in
N ′ can be thought of as the refinements of S, there exists a one-to-one corre-
spondence between places in P ∗ and species in S ′. Let δρ : S ′ → P ∗, with
δρ(S′) = (δ(S), c) ∈ P ∗ where (S, S′) ∈ ρ and no two siblings are mapped to the
same value.

δρ can be extended to map also reactions in R′ to (t,m) pairs. The color
m of a transition t uniquely identifies its pre- and post-places in the unfolded
network, and the arc inscriptions. By definition of the color sets of transitions
as multisets over the color sets of neighbouring places, it follows that every
possible combination of colored tokens flowing through a transition is captured
by a transition color. This means that a transition t in N ′ encodes all possible
refinements ρ(r) of the reaction r = δ−1(t) that transition t stands for in N .

A transition (t,m) ∈ T ∗ encodes the reaction
∑

(p,c)∈•(t,m)

f∗((p, c), (t,m))δ−1
ρ ((p, c))→

∑

(p,c)∈(t,m)•
f∗((t,m), (p, c))δ−1

ρ ((p, c)).
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The reaction r′ = δ−1
ρ (t,m) that a transition (t,m) ∈ T ∗ implements in N ′∗

is a ρ-refinement of the reaction r = δ−1(t) that transition t implements in N .
This comes from the type refinement conditions 4 and 5 (see Definition 8). The
incremental effects of executing a step (t,m) in the refined network equal the
incremental effects of executing the step (t,ΠC(t)(m)) in the initial network. The
negative incremental effect E− encodes the left hand side of a reaction, and the
positive incremental effect E+ encodes the right hand side.

We detail here the negative incremental effect of a step, and relate it to
its meaning in the model M ′. E−(1`(t,m)) =

∑
(p,t)∈A p × E((p, t))(m). In

the unfolded network N∗ a transition (t,m) is connected to places via edges
((p, c), (t,m)) ∈ A∗ where f∗((p, c), (t,m)) = E((p, t))(m)(c). Summing over all
unfolded instances of a place in N∗ yields

∑

c∈C′(p)

f∗((p, c), (t,m)) =
∑

c∈C′(p)

E((p, t))(m)(c) =| E((p, t))(m) | .

Note that the arc expressions in N and N ′ are the same, which means that
their cardinality is also the same. N implements model M , thus |E((p, t))| = ci,j
and |E((t, p))| = c′i,j where ci,j is the stoichiometric coefficient of species Si =
δ−1(p) on the left hand side of reaction rj = δ−1(t) and c′i,j is the soichiometric
coefficient of Si on the right hand side of rj . Arc multiplicities in N∗ represent
stoichiometries, and for any place p of N ′ its unfolded places {(p, c) | c ∈ C ′(p)}
represent the sibling species in ρ(δ−1(p)).

A similar argument can be made for the right hand side of a reaction, starting
from the positive incremental effect of a step. With both the left and the right
hand side of a reaction represented by (t,m) being a ρ-refinement of the left
or right, respectively hand side of the reaction δ−1(t), it follows that (t,m)
implements a ρ-refinement of the reaction implemented by t.

5 Discussion
In this paper we have made a connection between the notions of type refinement
of a colored Petri net proposed in [11] and that of full structural refinement of
reaction network models proposed in [6]. The connection is based on modeling a
reaction network system as a Petri net and using a coloring scheme that allows
for easy type refinement. Starting from a Petri net implementation of a reaction-
based model, we proposed a general coloring scheme that uses record color sets
and further detailed the construction and how the color sets can be refined. We
proved that the colored Petri net obtained by coloring the initial Petri net with
our coloring strategy is also an implementation of the model implemented by the
initial net. We further proved that our strategy is in fact using a type refinement
that implements a full structural refinement of a model.

The size of the refined colored Petri net model We discuss here about the size
of the colored Petri net model obtained by refining a given model, in terms of
number of places and transitions.
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A type refinement of a colored Petri net preserves the structure of the network
unchanged, i.e. the number of places and transitions does not change. But the
semantics of each place and transition is different, and we will therefore consider
the unfolding of the colored Petri net.

Given N = (P , T,A,Σ,C,E,M,Y, M0) a trivial colored Petri net implemen-
tation of a reaction-based model M = S ,R, a refinement relation ρ ⊆ S ×S ′

and a colored Petri net N ′ = (P , T,A,Σ′, C ′, E,M′,Y′, M ′0) which is the imple-
mentation of the full structural ρ−refinement of M by Algorithm 1 with function
δ : S ∪R → P ∪ T , we discuss the size of the unfolding of N ′, denoted byN∗.

N has by construction |S | places and |R| transitions. In N ′ by construction
each place representing a species S ∈ S has ρ(S) colors, and will therefore unfold
to ρ(S) places. The total number of unfolded places is

∑
S∈S |ρ(S)| = |S ′|. The

total number of possible colors of a transition depends on the number of colors in
the color set of the pre- and post-places of the transition, and on the cardinality
of the arc expressions of arcs connected on either end with the transition. A
transition t ∈ T will thus unfold to

∏

p∈•t

((|ρ(δ−1(p))|
E((p, t))

))
·
∏

p∈t•

((|ρ(δ−1(p))|
E, ((t, p))

))

transitions in N∗, which yields a total number of transitions in N∗ equal to

∑

t∈T

( ∏

p∈•t

((|ρ(δ−1(p))|
E((p, t))

))
·
∏

p∈t•

((|ρ(δ−1(p))|
E, ((t, p))

)))
.

Depending on the refinement function ρ, this number can be much larger than
the number of transitions in the colored network N ′, which successfully avoids
this explosion in number of places and transitions of the network.

Consecutive full structural refinements Very often models go through several
steps of refinement, as new information about the modeled system is available,
and a more detailed representation is needed. We discuss in this paragraph how
subsequent full structural refinements of a model can be implemented using
our approach. The problem can be formulated as follows. Given a reaction-
based model M = (S ,R) and two refinement relations ρ ⊆ S ×S ′ and
ρ′ ⊆ S ′ ×S ′′, obtain the full structural ρ′−refinement of the full structural
ρ−refinement of M . In our construction, we start from a trivial coloring of a
Petri net implementation of a model. This is however not a limitation of the
approach, since subsequent refinements can be implemented as one single refine-
ment that is the composition of the two (or more) successive refinements to be
implemented.

We conclude that colored Petri nets can be used to implement full structural
refinements of reaction-based models. The major advantage of using the colored
Petri nets formalism lies in their ability to represent the fully structurally refined
system in a compact way, using the same network structure and adding all
refinement details in the colors of places and transitions.
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Abstract. Retention-free Petri net has been used in modeling of sig-
naling pathways, which is a timed Petri net such that total input and
total output token flows are equivalent at any place. Previously we have
investigated the dependency of transitions in retention-free Petri net. In
this paper, we introduce a modeling method for signaling pathway by
using Petri net, giving properties of retention-freeness by considering arc
weight. Based on the obtained properties, we propose an algorithm to
find shrinkable transitions and to shrink them into a single transition.
This algorithm eventually provides a set of transitions whose firing fre-
quencies are dependent. As an example, we apply the algorithm to IL-3
signaling pathway Petri net model to show the usefulness of our proposed
algorithm.

Keywords: signaling pathway, Petri net, retention-free Petri net, de-
pendent shrink

1 Introduction

Li et al. [1] have proposed a qualitative modeling method by paying attention
to the molecular interactions and mechanisms using discrete Petri nets. Further-
more, Miwa et al. [2] modeled it with timed Petri net, which is an extended
Petri net on the concept of time, proposing a method to have firing frequency
conditional expressions based on its structure information. At the same time,
they introduced “retention-free” Petri net for defining smooth signal flows in
signaling pathways.

In Petri net model of signaling pathway, firing frequency of each transition
should be measured by biological experiments. However, such biological data
of reactions are very few. As a method to cope with this problem, Murakami
et al. [3] proposed an approach to check the retention-freeness of a given Petri
net based on firing frequencies of transitions of this Petri net. According to
this method, Matsumoto et al. [4] formally described the concept of dependent
shrink after giving formal definitions of dependent subnet. Dependent shrink is
a concept to express a dependent subnet which is shrunk into a single transition.

M Heiner, AK Wagler (Eds.): BioPPN 2015, a satellite event of PETRI NETS 2015, 
CEUR Workshop Proceedings Vol. 1373, 2015.
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Place Transition Directed arc

Fig. 1. Elements of Petri nets

The advantage of this concept is that all the firing frequencies of transitions in
the subnet can be computationally obtained from the firing frequency of that
shrunk transition. Namely, by only getting the reaction speed of a reaction that
corresponds to that shrunk transition, all other reaction speeds in dependent
subnet can be estimated by the proposed procedure in this paper.

In this paper we propose an algorithm to do equivalent transformation for
retention-free Petri nets. Concretely, we first classify dependent shrink pattern
according to the patterns of input and output transitions of a place and then
perform the dependent shrink operations of the patterns. Finally, we reconstruct
the Petri net based on the dependent shrink result.

2 Basic Definitions and Properties

In this section, we briefly give the necessary definitions and properties of Petri
nets. For detailed definitions the reader is suggested to refer to [5].

Definition 1. A Petri net denoted as PN = (T, P,E, α, β) that is a bipartite
graph, where E = E+ ∪ E− and

– T : a set of transitions {t1, t2, · · · , t|T |}
– P : a set of places {p1, p2, · · · , p|P |}
– E+: a set of arcs from transitions to places e = (t, p)
– E−: a set of arcs from places to transitions e = (p, t)
– αe: is the weight of arc e = (p, t)
– βe: is the weight of arc e = (t, p) �

Definition 2. Let PN be a Petri net

1. •t (t•) is the set of input (or output) places of t, and •p (p•) is the set of
input (or output) transitions of p.

2. A transition without input arc is called source transition and the set of
source transitions are denoted by Tsour = {tsour1 , · · · , tsoura }(a ≥ 1).

3. A transition without output arc is called sink transition and the set of sink
transitions is denoted by Tsink = {tsink1 , · · · , tsinkb }(b ≥ 1).

4. A transition t is called Ps − synchronous transition if there exists a set
of input places Ps that for any p ∈ Ps, p

• = {t} holds, and is defined by
Tsync = {tsync1 , · · · , tsyncc }(c ≥ 1).
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5. A place can hold a positive integer that represents a number of tokens. An
assignment of tokens in places expressed in form of a vector M is called a
marking, which varies during the execution of a Petri net. Given with an
initial marking M0, the Petri net is called Marked Petri net and denoted by
MPN = (PN,Mo). �

Fig. 2 shows source(i) and sink(ii) transition and Fig. 3 shows synchronous
transitions. Note that, we use discrete Petri nets in this paper.

Fig. 2. Source and sink transition

t
1

p
2

p
1

p
4

p
3

Fig. 3. Synchronous transition

2.1 Modeling rules

Li et al. [1] gave the following modeling rules for signaling pathways based on
Petri net representation.

1. Places denote static elements including chemical compounds, conditions,
states, substances, and cellular organelles participating in the biological
pathways. Tokens indicate the presence of these elements. The number of
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tokens can be regarded as a representation of the amount of chemical sub-
stances. Current assignment of tokens to the places is expressed in form of
a vector, namely a marking as defined above.

2. Transitions denote active elements including chemical reactions, events, ac-
tions, conversions, and catalyzed reactions. A transition fires by taking off
tokens from its individual input places and creating new tokens that are dis-
tributed to its output places if its input places has at least as many tokens
in it as arc weight from the place to the transition.

3. Directed arcs connecting the places and the transitions represent the rela-
tions between corresponding static elements and active elements. Arc weights
α and β (defined in Definition 1) describe the quantities of substances re-
quired before and after a reaction, respectively. Especially in case of modeling
a chemical reaction, arc weights represent quantities given by stoichiometric
equations of the reaction itself. Note that, weight of an arc is omitted if the
weight is 1.

4. Since an enzyme itself plays a role of catalyzer in biological pathways and
there occurs no consumption in biochemical reactions, an enzyme is excep-
tionally modeled in Definition 3 below.

5. An inhibition function in biological pathways is modeled by an inhibitor arc.

Definition 3. [1] An enzyme in a biological pathway is modeled by a place,
called enzyme place, as shown in Fig. 4.

1. Enzyme place pi has a self-loop with the same weight connected from and to
transition ts. Once an enzyme place is occupied by a token, the token will
return to the place again to keep the firable state, if the transition ts is fired.

2. Let tp and td denote a token provider of pi and a sink output transition
of pi, respectively, where the firing of tp represents an enzyme activation
reaction and the firing of td implies a small natural degradation in a biological
pathway. pi holds up token(s) after firing transition tp and the weights of the
arcs satisfy α(pi, td)� α(pi, ts). �

Fig. 4. An enzyme place in Petri net model
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[Firing rule of Petri net] A transition t is firable if each input place pI of PN
has at least αe tokens, where αe denotes the weight of an arc e = (pI , t). Firing
of a transition t removes αe tokens from each input place pI of t and deposit
βe(e = (t, pO)) tokens to each output place pO of t, where βe denotes the weight
of an arc e = (t, pO). A source transition is always firable.

Definition 4. A timed Petri net TPN is defined by TPN = (PN,D), where D
is a set of positive number expressing firing delay times (or delay time for short)
of transitions in T . �

[Firing rule of timed Petri nets] (i) If the firing of a transition ti is decided,
tokens required for the firing are reserved. We call these tokens as reserved
tokens. (ii) When the delay time di of ti passed, ti fires to remove the reserved
tokens from the input places of ti and put non-reserved tokens into the output
places of ti. In a timed Petri net, firing times of a transition ti per unit time is
called firing frequency fi. fi represents the maximum firing frequency of ti.
The delay time di of ti is given by the reciprocal of fi.

Definition 5. [2] With the firing of transition tI , token amounts flowed into
place p per unit time is called “input token-flow”, and is denoted by TFtI ,p. On
the other hand, with the firing of transition tO, token amounts flowed out of place
p per unit time is called “output token-flow”, and is denoted by TFp,tO . TFtI ,p
and TFp,tO (shown in Fig. 5) are defined by following equations, respectively:

TFtI ,p = fI · βI (1)

TFp,tO = fO · αO, (2)

where fI and fO are firing frequencies of tI and tO, respectively; βI and αO are
the weights of e = (tI , p) and e = (p, tO), respectively. �

Based on this definition, the following equation hold.

Proposition 1. [2] Let p be a place with input transitions {tIi |tIi∈•p} and
out put transitions {tOj

|tOj
∈p•}. Then

∑m
i=1 TFtIi ,p and

∑n
j=1 TFp,tOj

are the

total input token-flow and the total output token-flow for place p, respectively.
Furthermore, when firing frequency f take the maximum firing rate f , input
token-flow TFtI ,p and output token flow TFp,tO become the maximum, FTtI ,p and
FTp,tO , respectively. These maximum token-flows satisfy following equations.

m∑

i=1

TFtIi ,p ≤
m∑

i=1

FTtIi ,p (3)

n∑

j=1

TFp,tOj
≤

n∑

j=1

FTp,tOj
(4)

�
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Fig. 5. Token flows

The following requirement is trivial.

Proposition 2. [2] In a timed Petri net, a total output token-flow is not more
than a total input token-flow for each place p:

m∑

i=1

TFtIi ,p ≥
n∑

j=1

TFp,tOj
, (5)

�

Definition 6. [2] A timed Petri net TPN is called Retention-free Petri net
(RFPN) (satisfying Proposition1) if a total input token-flow and a total output
token-flow are equivalent at any place of TPN; that is,

TFtIi ,p = TFp,tOj
(6)

�

Definition 7. [3] Each unreserved token deposited to input place p is assigned
to be reserved by the transition tOj that satisfies the following expression:

{
( cj
αj

)
/

n∑

k=1

( ck
αk

)
− sj} =

min{
( ci
αi

)
/

n∑

k=1

( ck
αk

)
− si | i = 1, 2, · · · , n} (7)
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When the number of reserved tokens of tOj is not less than a required token
number for the firing, the firing of tOj

is decided. After the delay time dOj
of

tOj
passed, tOj

fires to remove the reserved tokens from the input place of tOj

and deposit unreserved tokens into the output places of tOj
. �

In the above expression (7), sj is the firing probability of transition tOj
, which

represents the proportion of the firing frequency of each transition to the total
firing frequencies of the transitions in conflict. A probability sj is assigned to
corresponding transition tOj

, which is given as a constant in advance according
to the event. A variable c is an accumulated number of tokens that tOj

has been
reserved so far, and thus b cjαj

c represents the number of firing times of transition

tOj
from the beginning.
Expression (7) is designed to reserve the token to such a transition ti that

has the largest difference between calculated firing probability
cj
αj
/
∑n
k=1

ck
αk

and

given firing probability sj among all the transitions in conflict.

Definition 8. [2] If output transitions of p are in conflict, the maximum firing
frequency of tOj

must satisfy the following expression:

sj · αj∑n
k=1 sk · αk

·
m∑

i=1

TFtIi ,p = fOj
· αj , (8)

where αj is the weight of e = (p, tOj
) and sj is the firing probability of tOj

.
sj ·αj∑n

k=1 sk·αk
represents the ratio of the token amount deposited to tOj

to the total

token-flow from p to each output transition p•. �

3 Shrink of Dependent Subnet

The equation (8) shows a relationship of firing frequency about input and output
transitions, which are dependent each other. Based on this dependency, a set of
transitions can be obtained, by which firing frequencies of all transitions in a
Petri net model can be calculated. Note that the transitions in the set determined
in this way correspond to the reactions whose speeds need to be measured by
biological experiments.

3.1 Dependent subnet

Dependent subnet, obtained as follows, is a Petri net induced from a set of
transitions which are dependent on each other.

Definition 9. [4] If firing frequency of a transition t is determined by the firing
frequency of transition α, this transition is called α-dependent transition. The
subnet induced by the set of α-dependent transitions and transition α is called
α-dependent subnet, denoted by PNα. �
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Definition 10. [4] For a given set A of transitions, A-dependent transition is
a set of transitions whose firing frequencies are determined by the firing frequen-
cies of transitions in A. The subnet induced by A-dependent transition and A is
called A-dependent subnet, denoted by PNA. �

3.2 Dependent shrink

For a set of α-dependent transition T , dependent shrink is a procedure to sub-
stitute the set of α-dependent transition T to a single transition t.

Definition 11. [4] If two transitions ti and tj exist are dependent each other,
these two transitions can be shrunk into a single transition. �

Note that the proofs of the following propositions are omitted to save the space
of this paper.

Proposition 3. As shown in Fig. 6, if a place p has one input transition tI
and one output transition tO, these two transitions can be shrunk into a single
transition t′, where the weight of new input arc α′ = α1, and the weight of new
output arc β′ = β2 · β1

α2
. �

Fig. 6. Markgraph

Proposition 4. As shown in Fig. 7, if place p has multiple output transitions
TO = {tO.1, tO.2, · · · , tO.k}, TO can be shrink into a single transition t′, where
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the weights of input arc α′ and new output arc β′ are defined by the following
formulas;

α′ =
sO.1 · α1 + sO.2 · α2 + · · ·+ sO.k · αk

sO.1
(9)

β′1 = sO.1 · β1
β′2 = sO.2 · β2

...

β′k = sO.k · βk (10)

�

Fig. 7. Conflict structure

Proposition 5. As shown is Fig. 8, if place p has multiple output transitions
of two types, with self-loop Tl = {tl.1, tl.2, · · · , tl.k} and without self-loop TO =
{tO.1, tO.2, · · · , tO.k},Tl and TO can be shrunk into a single transition, where
input arc α′ and new output arc β′ are defined by the following formulas;

α′ =
(

(sO.1 · αO.1 + sO.2 · αO.2 + · · ·+ sl.k2 · αl.k2)

−(sl.1 · βl.1 + sl.2 · βl.2 + · · ·+ sl.k2 · βl.k2)
)
/sO.1 (11)

β′1 = sO.1 · β1
β′2 = sO.2 · β2

...

β′k2 = sl.k2 · βk2 (12)

Note that, in equation (11) α′ > 0 should be held. �
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Fig. 8. Self-loop structure

4 Dependent Shrink Algorithm and an Example

In this section, we propose a dependent shrink algorithm based on the dependent
shrink method. Furthermore, we apply this algorithm to IL-3 signaling pathway
Petri net model (shown in Fig. 10), which is transformed from IL-3 phenomenon
model (shown in Fig. 9) obtained from the website [10]. Note that IL-3 is a
glycoprotein and is known to be involved in the immune response [6–9].

4.1 Outline of shrink process

The shrink process of dependent subnet can be briefly described as follows:

step1: Shrink of self loop structure
A place randomly selected from a Petri net is stored in a queue after the
conversion of the self-loops and the structures of conflict of it.

step2: Shrink of conflict structure
If a place picked up from the queue has a self-loop or a transition of one-input
and one-output, this place is shrunk.

step3: Changing weight of the input arc
If shrunk Petri net has a multiple input place, it re-stores to the queue,
performing the above step2 again. This procedure is repeated until the queue
becomes empty.

The variables used in the algorithm are as follows:

– PN0 is a given signaling pathway Petri net model constituted by T0, P0, and E0.

– N is a variable that stores Petri net after dependent shrink, constituted by
T, P, andE.

– Q is a queue.

– X is a set of place initially set as a given place set P0.

– f is a flag, by which dependent shrink pattern is determined.
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Fig. 9. IL-3 phenomenon model

4.2 Dependent shrink algorithm

The following algorithm is used to shrink dependent subnets into a single tran-
sition in order to find transitions with interdependent firing frequency.

Algorithm: Dependent shrink
Input: PN0 = (T0, P0, E0)
Output: Shrunk Petri net N = (T, P,E)
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Main(PN0)
1◦T ← T0, P ← P0, E ← E0, N ← (T, P,E)
2◦X ← P , Q← φ
3◦while (X 6= φ)

Pull an element x from X(X ← X − {x})
Enqueue(Q, x)
Shrink1(N, x)

4◦Shrink2(N,Q)
Shrink1(N, x)
1◦if (|•x ∩ x•| ≥ 1) then

f ← 1
Arcweight(N, x, f)

2◦if (|x•| ≥ 2) then
f ← 2
Arcweight(N, x, f)

Shrink2(N,Q)
1◦while (|Q| ≥ 1)

x← Dequeue(Q)
if (|•x ∩ x•| ≥ 1) then

f ← 1
Enqueue(Q, x)

else if (|•x| = |x•| = 1) then
f ← 3

else if (|•x| ≥ 2) then
f ← 4
Enqueue(Q, x)

if (f 6= 4) then
Arcweight(N, x, f)

Arcweight(N, x, f)
1◦if (f = 1) then

∀t′ ∈ •x ∩ x•
α(x, t′) = α(x, t′)− β(t′, x)
if (α(x, t′) < 0) then

β(t′, x) = |α(x, t′)|
E ← E − {(x, t′)}

else if (α(x, t′) > 0) then
E ← E − {(t′, x)}

else if (α(x, t′) = 0) then
E ← E − {(t′, x), (x, t′)}

2◦else if (f = 2) then
T ← T ∪ {t′}
E ← E ∪ {(x, t′)} ∪ {(u, t′)|u ∈ •z, z ∈ x•} ∪ {(t′, v)|v ∈ z•, z ∈ x•}
Choose z′ ∈ x•.
∀z ∈ x• − {t′}

α(x, t′) = α(x, t′) + s(z) ∗ α(x, z)
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∀v ∈ z•, z ∈ x•
β(t′, v) = s(z) ∗ β(z, v)

∀u ∈ •z, z ∈ x•
α(u, t′) = s(z) ∗ α(u, z)/s(z′)

α(x, t′) = α(x, t′)/s(z′)
T ← T − {z|z ∈ x• − {t′}}

3◦else if (f = 3) then
T ← T ∪ {t′}
Let zi, zo be {zi} = •x, {zo} = x• (due to |•x| = |x•| = 1).
E ← E ∪ {(u, t′)|u ∈ •zi ∪ •zo} ∪ {(t′, v)|v ∈ z•i ∪ z•o}

∀u ∈ •zi
α(u, t′) = α(u, zi)

∀u ∈ zi•
β(t′, u) = β(zi, u)

∀v ∈ •zo
α(v, t′) = β(zi, x) ∗ α(v, zo)/α(x, zo)

∀v ∈ zo•
β(t′, v) = β(zi, x) ∗ β(zo, v)/α(x, zo)

T ← T − {zi|zi ∈ •x} − {zo|zo ∈ x•}
P ← X − {x}

When the above algorithm is applied, a dependent subnet, say S, is trans-
formed into a single transition, say tS . Obviously S and tS possess the same
input and output places. As the result, for each input place, p, the tokens flowed
out of p per unit time are the same before and after dependent shrink. Similarly,
the tokens flowed into an output place per unit time are the same.

4.3 An Example for Signaling Pathway Petri Net Model

Here we give an example to show an application of our proposed algorithm.
The algorithm is applied to dependent shrink for IL-3 Petri net model (see
Fig.10 (a)), obtained from the website [10]. As the result, the original IL-3 Petri
net model shown in Fig.10 (a) is shrunk into Fig.10 (c). This means that the
firing frequency of all transition in Fig.10 (a) are denpendent each other. In the
intermediate shrunk net (see Fig. 10 (b)), by assuming the firing frequency of
the input transition fI be 1, the weights of input and output arcs be 1

2 and 1,
respectively, then the firing frequency of output transition fO is 1

2 . In this way,
we can calculate all of the firing frequency of transitions in the IL-3 Petri net
model from one firing frequency in this model.

5 Conclusion

In this paper, after giving basic definitions of Petri net and modeling method,
we introduced dependent shrink method and its properties to find dependent
subnet. Further, we designed an algorithm of dependent shrink and applied it to
IL-3 signaling pathway Petri net model as an example.
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Fig. 10. Shrunk IL-3 Petri net model

By applying the dependent shrink algorithm, IL-3 Petri net model is con-
verted to a simple model, with which we could find the transitions which are
dependent each other.

This algorithm allows us to obtain firing frequencies of all transitions in a
dependent subnet only by measuring reactions corresponding to the transitions
by biological experiments in the simple model.
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In this paper, we only discussed discrete Petri nets. By extending transitions
to include firing speed, it is possible to extend our method to continuous Petri
nets.

As a future work, we need to improve our algorithm so that it can indicate
transitions corresponding to measurable reactions by biological experiment. Also
the uniqueness of our algorithm needs to be investigated.
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