
Functional Decomposition of a Socio-Technical System:
What is Missing?

Ilia Bider

Department of Computer and Systems Sciences (DSV), Stockholm University, Stockholm,
Sweden

Ilia@dsv.su.se

Abstract. The paper discusses the needs of new expressive means for modeling
a socio-technical system as consisting of functional components that are con-
nected to each-other through the output-input relationships. The discussion is
based on an example of depicting so-called feedback connections between the
functional components of a system. The need to introduce a feedback connec-
tion arises when two connected components are heavily dependent on the intel-
lectual activity of people who man the components. In such a situation, there is
a risk that the output from one component could be misinterpreted by the com-
ponent which takes it as an input. Using a simplified example of a software de-
velopment project, the paper introduces the notion of a feedback connection and
discusses the ways it could be realized in a socio-technical system.

1 Introduction

A socio-technical system differs from other types of systems in that it has human
participants performing essential tasks inside the system. However, as any other sys-
tem, a socio-technical system can be modeled as a consisting of a number of compo-
nents interacting with each other, and the systems’ environment t. In this paper, we do
not consider the type of decomposition that differentiates social and technical compo-
nents of the system [1]. Instead, we look at functional components of socio-technical
system, which can be thought of as different teams of people completing different
tasks that contribute to proper functioning of the system as a whole.

In a model with a functional decomposition, each component can be defined as
having inputs and outputs, while connections between the components are modeled as
outputs of some components serving as inputs for other components. There are sever-
al notations that can be used for depicting a system that consists of functional compo-
nents connected via output-input relationships. These notations can be used for func-
tional decomposition of purely technical systems, as well as the systems that include
human activity. The most typical notation of this sort is IDEF0 [2] used for functional
modeling of an enterprise/organization. To the same class belong workflow-based
notations, e.g. BPMN [3], though they are less suitable for explicit representation of

Socio-Technical Perspective in IS Development

Edited by S. Kowalski, P. Bednar and I. Bider 114

output-input connections, as they are more focused on ordering the functional compo-
nents in time sequence.

The question arises, whether the existing notations are sufficient for functional de-
composition of socio-technical systems. In this paper, we will discuss one feature that
is normally missing in the existing notations – representation of feedback connec-
tions. This is to demonstrate that notations/modeling techniques with better expressive
power are needed for functional decomposition of socio-technical systems.

A functional model that depicts output-input relationships between the components
can be useful for various purposes, for example, for examining logistics, including the
informational one, between the components. However, such model has limitations as
it presumes that an output produced by one component can be unambiguously inter-
preted by a component for which it serves as an input. This can be true in some cases,
e.g., when an output of a technological department is a program controlling the auto-
mated equipment of the production line. However, when (a) both the outputting com-
ponent and the component which accept the output rely on human actions, and (b) the
output cannot be totally formalized to exclude possible ambiguities. Case (b) often
happens when an output is a result of intellectual work that only partly can be strictly
specified. A software engineering project is a typical example where such ambiguities
are norm rather than exception.

In case when a risk for misinterpretation between the humanly manned compo-
nents exists, there is a need to introduce an additional channel of communication be-
tween the components to mitigate the risk. This channel, which we call a feedback
channel, needs to be explicitly represented in the model so that the presence and the
quality of it can be properly analyzed. Not having feedback channels in the functional
model used for analysis of existing problems, or planning organizational change may
lead to a disaster. In the first case, a cause of the problem can be missed, and wrong
action can be planned, like trying to more formalize the output, instead of introducing
or improving a feedback channel. In the second case, organizational change can be
planned so that the existing feedback channels become broken, while the new ones
are not provided.

In this position paper, using a simplified example, we introduce the concept of
feedback connection between functional components of a socio-technical system. The
introduction is done in a way to be understandable for non-specialists in socio-
technical systems or functional/enterprise modeling. We believe that our explanation
of feedback can be used for raising awareness of the need to represent feedback in a
functional model of a socio-technical system. After introducing the notion of feed-
back connection between functional components of a socio-technical system, we dis-
cuss the ways the feedback can be implemented: either via proper technical infrastruc-
ture or proper social structure of the system or both.

The material presented in this paper is based on the author’s engagement in devel-
oping a modeling technique, called step-relationship model, for building high-level
business process models [4,5]. The notion of feedback presented in this paper first
appeared in [4] under the name weak dependency. It was later further developed when
applying the step-relationship model to modeling two distributed software develop-

Proceedings of STPIS'15

©Copyright held by the author(s) 115

ment projects, see [6,7]. The term feedback connection was introduced in [7], along
with its description that was adapted for this paper and presented in the next section.

2 Introducing the concept of feedback connection in socio-
technical systems

To introduce the concept of feedback in socio-technical systems, we use an example
of software development project in its simplified form presented in the diagram of
Fig. 1. In this diagram, the software project is presented as a system that consists of
four functional components: (1) Requirements Engineering (RE), (2) Design, (3) Cod-
ing and (4) Testing1. Behind each component, there is a team of professionals com-
pleting the task of the corresponding component using specific methods, e.g. for de-
sign or coding, and tools, e.g., compilers, version management systems, etc. The
teams that belong to different component may or may not intersect.

 The functional components in Fig. 1 are related to each other through output-input
relationships that are represented in Fig. 1 as arrows going from one component to
another.

Fig. 1. Simple model of a software project as a system (note that connections between the pro-

ject and its environment are not shown); adapted from [7].

The diagram in Fig. 1 does not prescribe in which order the functional components
work. The order may be “in turns” when the “next” component idles until the full
output from the “previous component” is delivered as its input. Alternatively, the
components can work in parallel delivering its output in smaller portions as inputs to
the next component in line. Also, the outputs could be arranged and delivered in vari-
ous ways. For example, the requirements could be delivered to Design by Require-
ments Engineering via giving Design access to a requirement management system
where the requirements are stored in a structured way.

A system as in Fig. 1 can work satisfactorily if the inputs received can be interpret-
ed unambiguously by the receiving components. This is difficult, if ever possible, to
achieve for a software project. The interpretation depends “on our background, educa-
tion, experience, and simply from where we are standing at the moment (our respon-
sibilities on the project)” [8]. To minimize the risk that the input is interpreted in a
different way than it was meant, a negative (corrective) feedback needs to be intro-
duced into the system. The work of such feedback is presented in Fig. 2.

1 Description of a more complex and real example, can be found in [6,7]

Requirements
Engineering (RE) Design Coding Test

RE spec Design spec Code

Test spec

Reports on missing
or incorrect functionality

Bug reports

Socio-Technical Perspective in IS Development

Edited by S. Kowalski, P. Bednar and I. Bider 116

Fig. 2 depicts two components A and B connected through the output (or one of the
outputs) of component A serving as input for component B. To create formalized out-
put, the project members inhabiting component A need to build an understanding of
this output in their minds, i.e. on the tacit level in the terminology of [9]; this is shown
as a cloud inside the box that represents component A. The Understanding is not nec-
essarily built before creating the Formalized output; this can be done in parallel or
through a number of iterations. For functional component B to create their own For-
malized output, they need to create their own understanding (interpretation) of For-
malized input from A. There is a risk that Understanding B will not be equal to Un-
derstanding A, which would create a deviation possibly resulting in the production of
ill-suited software by the project.

To exclude, or at least minimize, the deviation between Understanding A and Un-
derstanding B, a Feedback controller can be introduced into the system. As shown in
Fig. 2, the controller compares Understanding A with Understanding B and adds ad-
ditional correcting input to B.

Fig. 2. Negative feedback between two components of the system (adapted from [7]).

The work of Feedback controller is illustrated in Fig. 3. The axes in Fig. 3 represent
the space of all possible interpretations of Formalized input B. This space is shown
two-dimensional for illustrative purposes; in reality it may be multi-dimensional.
Understanding A is represented as a point in this space. Understanding B is shown in
Fig. 3 as it develops, starting as a wider circle in the 1st iteration that in the end
should be narrowed to a point, hopefully coinciding2 with the point which marks the
position of Understanding A in the interpretation space.

As long as Understanding B “covers” Understanding A, as in the 1st iteration in
Fig. 3, there is no need for the Feedback controller to take an action. However, as
soon as the coverage vanishes, as in the 2nd iteration in Fig. 3, the Feedback control-
ler reacts and provides a signal to “move” Understanding B in a way that it again
“covers” Understanding A, as represented by the double line circle in Fig. 3.

The feedback connection between the system’s components is needed as a com-
plement for any output-input relationship that cannot be understood unambiguously.
We represent this connection with a dashed double arrow connecting the functional

2 Understanding A and understanding B needs to be equal only in the dimensions that are rele-
vant for both component A and component B. Each of these components may have additional
dimensions to its understanding that are not important for the other component. For example,
Design has dimensions related to the design of the system, which is normally considered of no
importance for RE (separation of the problem and solution domain).

Formalized
output

Feedback
controller

Formalized
input

Formalized
output

Building
understanding

Creating
formalized

output
Understanding

Functional component A

Building
understanding

Creating
formalized

output
Understanding

Functional component B

Proceedings of STPIS'15

©Copyright held by the author(s) 117

blocks with a label of what type of information is to be used by the feedback control-
ler. For example, adding feedback connections to the system diagram on Fig. 1 pro-
duces the system diagram of Fig. 4. Note, that we have not provided feedback connec-
tions between Test and Coding, and Test and Design, regarding the inputs as unam-
biguous. The latter might not hold true in every case, which would require adding
feedback connections between these components as well.

Fig. 3. Interpretation space and the work of the feedback controller (adapted from [7]).

Fig. 4. Diagram from Fig. 1 complemented with feedback connections (adapted from [7]).

3 Implementing feedback connections in a socio-technical
system

Naturally, in a socio-technical system, the feedback controller cannot be implemented
as a mechanical, analog, or digital device. It should be implemented in some other
way, e.g.:

• Informal communication between the project members inhabiting functional com-
ponents A and B by having a channel for questions and answers, or regular meet-
ings. This way of arranging feedback requires that some members of the team of
component A are available even if the task entrusted to them has been completed.

• The teams assigned to components A and B have substantial intersection so that
intersecting parts know Understanding A on a tacit level, and can transfer it to the

Requirements
Engineering (RE) Design Coding Test

RE spec Design spec Code

Test spec

Reports on missing
or incorrect functionality

Bug reportsInterpreting
requirements

Interpreting Design
Interpreting test specification

Socio-Technical Perspective in IS Development

Edited by S. Kowalski, P. Bednar and I. Bider 118

rest of the team of component B through socialization, in terms of Nanako’s theory
of knowledge creation [10].

• Team B has access to the internal working documents produced by team A, e.g.
meetings minutes, protocols of meetings with stakeholders, video recordings etc.
This can be made available as documents or as traces in a computer system that
supports the work of team A, if such system is in use by team A.

Note that discovery of divergence, and thus the need for correction, falls in the area of
responsibility of team B. The discovery can, for example, happen when (a) team B
starts having doubts that they understand the input properly, (b) they cannot continue
to narrow down their understanding as they feel that some information is missing or
incorrect, e.g. there is a contradiction. In case (a), the behavior of team B is somewhat
reactive, they have already interpreted their formalized input, but suspect that that the
divergence have happened and need a corrective signal. In case (b), the behavior of
team B is somewhat proactive, as its initiates receiving a corrective signal before ac-
tual divergence happens.

Note, also, that during the feedback communication initiated by team B, team A
can come to a conclusion that their understanding may be incorrect/incomplete,
which may lead to initiating a feedback communication channel with a component
from which they have got their own input. Thus, initiation of the feedback communi-
cation between two components can result in a recursive wave of initiations of feed-
back channels backwards in order for the first feedback channel to produce a proper
corrective signal.

4 Concluding remarks: new modeling techniques are needed
for functional decomposition of socio-technical systems

In Sections 2, we have introduced and explained the notion of feedback connection in
socio-technical systems, which, hopefully, could bring attention of business analysts
and organizational change planners to the issues related to the lack or insufficient
quality of these connections. Without feedback connections, a socio-technical system
may rely too heavily on the formalized outputs as inputs for the next functional com-
ponents, and therefore may not provide means for correcting misinterpretation. For
example, suppose an RE team is dissolved after completing its work, or moved to
another project and becomes unavailable. Such a situation may leave the divergence
of Understanding A and B in Fig. 3 uncorrected, which can result in erroneous soft-
ware being produced by the project.

As was discussed in Section 3, there are several ways for arranging feedback con-
nections in a socio-technical system, e.g.: (1) through the proper arrangement of the
social structure of the system, e.g. through intersecting teams, and (2) through its
technical infrastructure, e.g., providing a groupware system that stores all intermedi-
ate results produced by each team and makes them available for other teams, or (3) a
combination of 1 & 2. These means are completely different from those used to ar-
ranging feedback in the pure technical systems.

Proceedings of STPIS'15

©Copyright held by the author(s) 119

Feedback connections is only one type of phenomena that need to be represented
when modeling a socio-technical system as a decomposition of functional compo-
nents. Some other issues, related to Global Software Development (GSD), are listed
in [7], e.g. heterogeneousness of components teams. The particularities of socio-
technical systems make the existing modeling languages and notations for functional
decomposition insufficient for modeling this type of systems. Either the existing lan-
guages and notations needs to be extended or the new ones are to be introduced. The
modeling technique we introduced in [7] for GSD can serve as an example of such
techniques. However, whether this technique is universal enough to be suitable for
other types of socio-technical systems remains an open question.

Acknowledgements: Many thanks to all people participated in the projects that lead
to the discovering and, partially, solving the problems discussed in this paper, espe-
cially to E. Perjons, A. Karapantelakis, B. Rutkowska, H. Otto. The author is also
grateful to the anonymous reviewers whose comment helped to improve the text.

References

1. Mumford, M.: The story of socio-technical design: reflections on its successes, failures and
potential. Information Systems Journal 16(4), 317–342 (2006)

2. NIST: Integration definition for function modeling (IDEF0), Draft Federal Information
Processing Standards, Publication 183, 1993. (Accessed February 2015) Available at:
www.idef.com/downloads/pdf/idef0.pdf

3. OMG: Business Process Model and Notation (BPMN), Version 2.0.2, Object Management
Group (OMG), Document formal/2013-12-09, December 2013. (Accessed February 2015)
Available at: http://www.omg.org/spec/BPMN/2.0.2/PDF

4. Bider, I., Perjons, E.: Preparing for the Era of Cloud Computing: Towards a Framework for
Selecting Business Process Support Services. In : Enterprise, Business-Process and
Information Systems Modeling, LNBIP, Vol 113, Springer, pp.16-30 (2012)

5. Bider, I., Perjons, E.: Design science in action: developing a modeling technique for
eliciting requirements on business process management (BPM) tools. Software & Systems
Modeling, http://link.springer.com/article/10.1007/s10270-014-0412-6 (2014)

6. Bider, I., Karapantelakis, A., Khadka, N.: Building a High-Level Process Model for
Soliciting Requirements on Software Tools to Support Software Development: Experience
Report. In : Short Paper Proceedings of the 6th IFIP WG 8.1 Working Conference on the
Practice of Enterprise Modeling (PoEM 2013). CEUR, Vol. 1023, Riga, Latvia, pp.70-82
(2013)

7. Bider, I., Otto, H.: Modeling a Global Software Development Project as a Complex Socio-
Technical System to Facilitate Risk Management and Improve the Project Structure. In :
Proceedings of the 10th IEEE International Conference on Global Software Engineering
(ICGSE), forthcoming, Ciudad Real, Spain (2015)

8. Jacobs, D.: Requirements Engineering so Things Don't Get Ugly. In : ICSE 2007
Companion, Minneapolis, MN, US, pp.159-160 (2007)

9. Polanyi, M. S.: Knowing and Being. University of Chicago, Chicago (1969)
10. Nonaka, I.: A dynamic theory of organizational knowledge creation. Organ. Sci. 5(1), 14–

37 (1994)

Socio-Technical Perspective in IS Development

Edited by S. Kowalski, P. Bednar and I. Bider 120

