
TriAL-QL: Distributed Processing of
Navigational Queries?

Martin Przyjaciel-Zablocki1, Alexander Schätzle1, and Adrian Lange2

1 Department of Computer Science, University of Freiburg, Germany
zablocki|schaetzle@informatik.uni-freiburg.de
2 IIG Telematics, University of Freiburg, Germany

lange@iig.uni-freiburg.de

Abstract. Navigational queries are natural query patterns for RDF
data, but yet most existing RDF query languages fail to cover all the
varieties inherent to its triple-based model, including SPARQL 1.1 and
its derivatives. TriAL* is one of the most expressive approaches but not
supported by any existing RDF triplestore. In this paper, we propose
TriAL-QL, an easy to write and grasp language for TriAL*, preserv-
ing its procedural structure. To demonstrate its feasibility, we provide
a proof of concept implementation for Hadoop using Hive as execution
layer and give some preliminary experimental results.

1 Introduction

Graph databases and their respective graph query languages are commonly used
for RDF data querying. However, in contrast to the standard graph model, an
edge label in RDF (predicate) does not come from a finite alphabet and may also
appear as a source or destination (subject and object, respectively) of another
edge. Consequently, RDF query languages based on typical graph query lan-
guages like nested regular expressions (NRE) are not capable of such constructs
and lose important features, e.g. reasoning over predicates within a query [2].
To the best of our knowledge, there are only two RDF query languages that
enable expressive navigational capabilities with reasoning and can be evaluated
in polynomial time, namely Triple Query Language Lite (TriQ-Lite) [3] and
Triple Algebra with Recursion (TriAL*) [4]. TriQ-Lite is defined as a Datalog
extension that captures SPARQL queries enriched with the OWL 2 QL profile,
whereas TriAL* is a closed language that works directly with triples includ-
ing recursion over triple joins. Although, the steady growth of Semantic Web
data with its high degree of diversity in both, structure and vocabulary, justi-
fies such expressive RDF query languages, it also raises the need for solutions
that scale with the data size. In recent years, Hadoop has become the de-facto
standard for processing Big Data, with a recent trend on scalable, interactive
SQL-on-Hadoop solutions. The descent of TriAL* from relational algebra and
its inherent compositionality led us to the decision to build an implementation of

? A substantially extended version will appear in [5]



TriAL* based on Hadoop. While TriAL* is a neat approach for querying RDF,
its algebraic notation is inappropriate for practical usage. Thus, we propose the
TriAL* Query Language (TriAL-Ql) that keeps the procedural structure
of TriAL* by representing each algebra operation with a SQL-like statement.
This way, even complex navigational queries are easy to grasp and write.

Our major contributions can be summarized as follows: (1) We introduce
TriAL-QL, a query language for TriAL* with an intuitive mapping between
both. (2) Next, we provide an Hadoop-based implementation of TriAL-QL
using Hive. Optimizations include a precomputed 1-hop neighborhood, different
evaluation strategies and a carefully chosen storage layout. (3) Finally, we show
some preliminary experiments that demonstrate the scalability and feasibility of
our approach.

2 TriAL-QL: A Procedural Query Language for RDF

The Triple Algebra with Recursion (TriAL*) [4] is one of the most expressive
RDF query languages with polynomial complexity. In contrast to many other
approaches, TriAL* is a closed and hence compositional language, i.e. the out-
put is a set of triples rather than graphs or bindings. It works directly with
triples, which allows us to write queries that are not expressible using query lan-
guages based on the standard graph model (e.g. regular path queries and nested
regular expressions). TriAL* takes the relational algebra as its basis with some
restrictions to guarantee closure. The most important operator is a triple join
between two ternary relations E1 and E2 representing sets of triples, defined as:
E1 ./

i,j,k
θ,η E2, where i, j, k ∈ {s1, p1, o1, s2, p2, o2} indicate the implicit projection

on three fields to keep the operation closed with s1 referring to the subject of
E1, etc. θ represents the join conditions whereas η is a set of conditions be-
tween objects and data values. To express paths of arbitrary length, recursion
is added with the right (e ./i,j,kθ,η )∗ and left (./i,j,kθ,η e)∗ Kleene closure, where
e is a TriAL* expression. Thus, a reachability query that asks for pairs (x, z)

which follow the connection pattern corre-
sponds to the TriAL* expression (E ./ s1, p1, o2

o1=s2 )∗ with E being a relation name
in a triplestore (cf. [4] for more details).

TriAL-QL. Next, we introduce the notation of TriAL-QL. The basic idea
is to flatten the algebra expressions of TriAL* to a sequence of interrelated
statements. A complete grammar can be found on our project website 1. Table 1
shows the algebra of TriAL* with the corresponding syntax in TriAL-QL.
Each algebra operation is represented by exactly one SQL-like statement. Ac-
cordingly, we can express the previously discussed reachability query by the
following TriAL-QL statement:

SELECT s1, p1, o2 FROM E ON o1 = s2 USING right

1 http://dbis.informatik.uni-freiburg.de/forschung/projekte/DiPoS/



Table 1. TriAL-QL Algebra & Syntax, where e, e1 and e2 correspond to a TriAL*
expression. (i, j, k, θ, η as previously defined, cf. [4].)

Algebra (TriAL*) Syntax (TriAL-QL)

σθ,η(e) SELECT i, j, k FROM e FILTER θ, η

e1 ./
i,j,k
θ,η e2 SELECT i, j, k FROM e1 JOIN e2 ON θ FILTER η

e1 ∪ e2 e1 UNION e2
e1 − e2 e1 MINUS e2

(e ./i,j,kθ,η )∗ SELECT i, j, k FROM e ON θ FILTER η USING right

(./i,j,kθ,η e)∗ SELECT i, j, k FROM e ON θ FILTER η USING left

Next, we consider a more complex reachability problem introduced in [4]
asking for pairs (x, z) which follow a connection pattern that requires reasoning
capabilities:

TriAL*:
e1 = (E ./ s1, o2, o1

p1=s2 )∗

e2 = (e1 ./
s1, p1, o2
o1=s2, p1=p2)∗

⇓
TriAL-QL:
e1 = SELECT s1, o2, o1 FROM E

ON p1 = s2 USING left
e2 = SELECT s1, p1, o2 FROM e1

ON o1 = s2, p1 = p2 USING left

The inner expression e1 computes the transitive closure of the predicates from
E, while e2 computes the transitive closure of this resulting relation. Again, we
can see that TriAL-QL stays close to its TriAL* expression illustrating the
strength of a compositional language where the result of the first statement can
be used as input for the second. This makes TriAL-QL queries easy to write,
understand and modify.

Further, new operators can be added smoothly, meeting our requirements.
First, we extend the syntax of TriAL-QL with a STORE operation that enables
us to materialize the result of a TriAL* expression e as a new relation in a
triplestore. This way, not only the output but also intermediate results can be
stored for later processing, if desired. Next, as we focus on processing web-scale
RDF data, we have seen the need to introduce more control over the recursion
depth of the right and left Kleene operator. Therefore, we introduce a scalar
that replaces the Kleene Star and limits the number of join compositions. In
TriAL-QL this can be formulated within the USING clause by writing, e.g.,
left(4) for applying left Kleene four times.

3 A Distributed Execution Engine for TriAL-QL

We implemented our execution engine on top of Hadoop using Hive as intermedi-
ate layer rather than working directly with MapReduce. This makes us indepen-
dent of any Hadoop changes (e.g. Yarn) while taking advantage of continuously



optimized Hive versions or newer execution engines like Tez that come along
with the recent SQL-on-Hadoop trend. Due to very limited space restrictions,
we give only a brief introduction to our implementation. In short, a TriAL-QL
query is first parsed to generate an abstract syntax tree and next mapped to
TriAL* which is in turn translated into HiveQL queries. We investigated dif-
ferent evaluation strategies based on (1) linear and (2) nonlinear recursion as
introduced in [1] and performed exhaustive experiments with different storage
formats (e.g. RCFile, ORC, Parquet) and strategies (e.g. indices, partitions) to
identify best practices for storing RDF data in Hive. Further, a precomputed
1-hop neighborhood reduces the amount of required joins.

Experiments. Some preliminary results are illustrated in Figure 1. We used the
Social Intelligence Benchmark (SIB) data generator2 to create social networks
of different sizes. The left hand side (a) shows execution times and number of
resulting triples for an exemplary query with three joins and one set operation
using linear evaluation. Both series exhibit an almost linear scaling behavior.
The right hand side (b) compares the linear to the nonlinear evaluation on a
more complex query involving the Kleene Star. In this example, the nonlinear
evaluation is superior to the linear one with increasing data size as it reduces the
amount of required join iterations from 12 (linear) to 8 (nonlinear). Exhaustive
experiments that include more advanced evaluation strategies are needed for
more comprehensive conclusions and are part of ongoing work [5]. However, the
first preliminary results already demonstrate the scalability and feasibility of our
approach.

200 400 600 1000 2000
0

250

500

750

1,000

1,250

3
4
3 5

4
0 6

9
3

7
3
4

1
,0

3
6

R
u
n
ti

m
es

(i
n

s)

0

20

40

60

80

100

0
4
.8 1

2
.1 1
9
.5

3
4

7
1
.1

R
es

u
lt

s
(i

n
M

tr
ip

le
s)Runtimes

Results

200 400 600
0

2.5

5

7.5

10

12.5

15

2
.1

7

6
.3

3

1
1
.7

7

2
.4

9 5
.1

3

7
.9

9

R
u
n
ti

m
es

(i
n

1
0
0
0

s) linear

nonlinear

Fig. 1. (a) execution times vs. results (linear) (b) linear vs. nonlinear execution

References

1. Afrati, F.N., Borkar, V.R., Carey, M.J., Polyzotis, N., Ullman, J.D.: Map-reduce
extensions and recursive queries. In: EDBT 2011, Sweden, March 21-24 (2011)

2. Angles, R.: A comparison of current graph database models. In: 28th ICDE Work-
shops, 2012, Arlington, VA, USA, April 1-5 (2012)

3. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: PODS’14, Snowbird, UT, USA, June 22-27, 2014 (2014)

4. Libkin, L., Reutter, J.L., Vrgoc, D.: Trial for RDF: adapting graph query languages
for RDF data. In: PODS 2013, New York, NY, USA - June 22 - 27, 2013 (2013)

5. Przyjaciel-Zablocki, M., Schätzle, A., Lausen, G.: TriAL-QL: Distributed Processing
of Navigational Queries. In: 18th WebDB 2015, Melbourne, Australia (2015)

2 http://www.w3.org/wiki/Social_Network_Intelligence_BenchMark


