
PPDL: Probabilistic Programming with Datalog

Balder ten Cate1, Benny Kimelfeld?2,1, and Dan Olteanu3,1

1 LogicBlox, Inc., USA 2 Technion, Israel 3 University of Oxford, UK

1 Introduction

There has been a substantial recent focus on the concept of probabilistic pro-
gramming [6] towards its positioning as a prominent paradigm for advancing and
facilitating the development of machine-learning applications.4 A probabilistic-
programming language typically consists of two components: a specification of
a stochastic process (the prior), and a specification of observations that re-
strict the probability space to a conditional subspace (the posterior). This paper
gives a brief overview of Probabilistic Programming DataLog (PPDL), a recently
proposed declarative framework for specifying statistical models on top of a
database, through an appropriate extension of Datalog [1]. By virtue of extend-
ing Datalog, PPDL offers a natural integration with the database, and has a ro-
bust declarative semantics, that is, semantic independence from the algorithmic
evaluation of rules, and semantic invariance under logical program transforma-
tions. It provides convenient mechanisms to allow common numerical probability
functions as first-class citizens in the language; in particular, conclusions of rules
may contain values drawn from such functions.

2 PPDL

The semantics of a PPDL program is a probability distribution over the possible
outcomes of the input database with respect to the program. These outcomes are
minimal solutions with respect to a related program that involves existentially
quantified variables in conclusions. Observations are incorporated by means of
logical integrity constraints. As argued in [1], the ability to express probabilis-
tic models concisely and declaratively in a Datalog extension, with probability
distributions as first-class citizens, is what sets PPDL apart from the wealth of
literature on probabilistic Datalog [3], probabilistic databases [8,11], and Markov
Logic Networks [4, 7, 10]. In the remaining of this section we introduce PPDL
using an example program, and show how to interpret it probabilistically.

Our example is inspired by the burglar example of Pearl that has been fre-
quently used for illustrating probabilistic programming. This example models a
statistical process of alarming due to burglaries and earthquakes, and the goal is

? Taub Fellow – supported by the Taub Foundation
4 An effort in this direction is led by DARPA’s Probabilistic Programming for Advanc-

ing Machine Learning (PPAML) program.



House

id city

NP1 Napa
NP2 Napa
YC1 Yucaipa

Business

id city

NP3 Napa
YC1 Yucaipa

City

name burglaryrate

Napa 0.03
Yucaipa 0.01

ObservedAlarm

unit

NP1
YC1
YC2

Fig. 1. Database instance in the running example.

to estimate the likelihood that a given collection of alarms indicates these alarm-
ing events. Consider a database consisting of the following relations: House(h, c)
represents houses h and their location cities c, Business(b, c) represents businesses
b and their location cities c, City(c, r) represents cities c and their associated bur-
glary rates r, and ObservedAlarm(x) represents units (houses or businesses) x
where the alarm went off. These are the EDB relations that are not changed
by the program. Figure 1 shows an instance over the schema. Now consider the
PPDL program P in Figure 2, where some rules use the Flip distribution in their
heads. The first rule states, intuitively, that for every fact of the form City(c, r),
there must be a fact Earthquake(c, y) where y is drawn from the Flip (Bernoulli)
distribution with the parameter 0.01. The fourth rule states that a burglary hap-
pens in a unit (house or business) with probability r, where r is a number that
represents the rate of burglaries in the city of the unit (note that we represent by
Burglary(x, c, 1) and Burglary(x, c, 0) the fact that a Burglary did, respectively,
did not happen at unit x in city c; likewise for Earthquake and Trig). Finally,
c1 is a constraint stating that Alarm and ObservedAlarm have the same tuples.

We now address the semantics of a program. What does it mean for a rule
head like Earthquake(c,Flip[0.01]) to be satisfied? What if this fact is derived
by multiple, or even equivalent, rules? Do we need to sample more than once?
The probabilistic semantics of the above PPDL program is established via an
extension to Datalog, named Datalog∃, where rule heads can have existential
quantifiers. Datalog∃ rules (a.k.a. existential rules, which are syntactically iso-
morphic to tuple-generating dependencies), have been used extensively in many
areas, including data exchange [5] and ontological reasoning [2, 9]. Our PPDL

1. Earthquake(c,Flip[0.01]) ← City(c, r)

2. Unit(h, c) ← Home(h, c)

3. Unit(b, c) ← Business(b, c)

4. Burglary(x, c,Flip[r]) ← Unit(x, c) , City(c, r)

5. Trig(x,Flip[0.6]) ← Unit(x, c) , Earthquake(c, 1)

6. Trig(x,Flip[0.9]) ← Burglary(x, c, 1)

7. Alarm(x) ← Trig(x, 1)

c1. Alarm(x)↔ ObservedAlarm(x)

Fig. 2. PPDL program P for Pearl’s burglar example



1. ∃y EarthquakeFlip2 (c, y, 0.01) ← City(c, r)

2. Unit(h, c) ← Home(h, c)

3. Unit(b, c) ← Business(b, c)

4. ∃y BurglaryFlip
3 (x, c, y, r) ← Unit(x, c) , City(c, r)

5. ∃y TrigFlip
2 (x, y, 0.6) ← Unit(x, c) , Earthquake(c, 1)

6. ∃y TrigFlip
2 (x, y, 0.9) ← Burglary(x, c, 1)

7. Alarm(x) ← Trig(x, 1)

8. Earthquake(c, d)← EarthquakeFlip2 (c, d, p)

9. Burglary(x, c, b)← BurglaryFlip
3 (x, c, b, p)

10. Trig(x, y)← TrigFlip
2 (x, y, p)

Fig. 3. The Datalog∃ program P̂ for the PPDL program P in Figure 2

program P gives rise to the Datalog∃ program P̂ in Figure 3. Note that this
program does not take into account the constraints. To illustrate the transla-
tion, note how rule 6 in P becomes rule 6 in P̂. A special, distributional relation
symbol TrigFlip

2 is created for Trig that captures the intention of the rule: when-
ever the premise holds (there is a Burglary at a unit x), then there exists a fact

TrigFlip
2 (x, y, 0.9) where y is drawn from a Bernoulli distribution with parameter

0.9. Rule 10 is implicitly added to update Trig with the content of TrigFlip
2 , where

the additional parameter (i.e., the above 0.9) is projected out.

In the absence of constraints, a possible outcome of an input database in-
stance I (a “possible world”) is a minimal super-instance of I that satisfies
the rules of the program. One possible outcome of the input instance in Fig-
ure 1 with respect to the rules of P is the database instance formed by the
input instance and the relations in Figure 4. Each tuple of a distributional rela-
tion has a weight, which is the probability of the random choice made for that
fact. For presentation’s sake, the sampled values are under the attribute name
draw . Ignoring the constraints (c1 in the example), the probability of this out-
come is the product of all of the numbers in the columns titled “w(f),” that is,
0.01× 0.99× 0.03× · · · × 0.4. Note that this multiplication is an instance of the
chain rule Pr(A1∧· · ·∧An) = Pr(A1)×Pr(A2|A1)× . . . , and does not reflect an
assumption of independence among the involved draws. One needs to show that
this formula gives a proper probability space (i.e., the probabilities of all possible
worlds sum up to 1). We do so via an adaptation of the chase procedure [1].

Constraints, such as c1 in our example, do not trigger generation of tuples,
but rather have the semantics of conditional probability: violating possible worlds
(where Alarm is different from ObservedAlarm) are eliminated, and the proba-
bility is normalized across the remaining worlds. Hence, we unify the concept of
observations in Bayesian statistics with that of integrity constraints in databases.

In summary, a PPDL program associates to every given input instance a prob-
ability distribution over possible outcomes. One can then, for example, ask for
the marginal probability of an event such as Burglary(NP1). Standard techniques



EarthquakeFlip2

city draw param w(f)

Napa 1 0.01 0.01
Yucaipa 0 0.01 0.99

Earthquake

city draw

Napa 1
Yucaipa 0

BurglaryFlip
3

unit city draw param w(f)

NP1 Napa 1 0.03 0.03
NP2 Napa 0 0.03 0.97
NP3 Napa 1 0.03 0.03
YU1 Yucaipa 0 0.01 0.99

Alarm

unit

NP1
NP2

Burglary

unit city draw

NP1 Napa 1
NP2 Napa 0
NP3 Napa 1
YU1 Yucaipa 0

Unit

id city

NP1 Napa
NP2 Napa
NP3 Napa
YU1 Yucaipa

TrigFlip
2

unit draw param w(f)

NP1 1 0.9 0.9
NP3 0 0.9 0.1
NP1 1 0.6 0.6
NP2 1 0.6 0.6
NP3 0 0.6 0.4

Trig

unit draw

NP1 1
NP2 1
NP3 0

Fig. 4. An outcome of the instance in Figure 1 with respect to the PPDL program P.

from the probabilistic programming literature (analytical, as lifted inference, or
sampling-based, as MCMC) can be used to answer such questions.

3 Discussion

Currently, PPDL semantics supports only discrete numerical distributions (e.g.,
Poisson). But even then, the space of possible outcomes may be uncountable (as
possible outcomes may be infinite). We have defined a probability measure over
possible outcomes by applying the known concept of cylinder sets to a probabilis-
tic chase procedure. We have also shown that the resulting semantics is robust
under different chases; moreover, we have identified conditions guaranteeing that
all possible outcomes are finite (and then the probability space is discrete) [1].
The framework has a natural extension to continuous distributions (e.g., Gaus-
sian or Pareto), though this requires a nontrivial generalization of our semantics.
Additional future directions include an investigation of semantic aspects of ex-
pressive power, tractability of inference, and a practical implementation (e.g.,
corresponding sampling techniques).

Acknowledgements

We are thankful to Molham Aref, Vince Bárány, Todd J. Green and Emir Pasalic
Zografoula Vagena for insightful discussions and feedback on this work. We
are grateful to Kathleen Fisher and Suresh Jagannathan for including us in
DARPA’s PPAML initiative; this work came from our efforts to design transla-
tions of probabilistic programs into statistical solvers.



References

1. V. Bárány, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena. Declarative
statistical modeling with Datalog. CoRR, abs/1412.2221, 2014.

2. A. Cal̀ı, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Datalog+/-: A
family of logical knowledge representation and query languages for new applica-
tions. In LICS, pages 228–242, 2010.

3. D. Deutch, C. Koch, and T. Milo. On probabilistic fixpoint and Markov chain
query languages. In PODS, pages 215–226, 2010.

4. P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial In-
telligence. Synthesis Lectures on AI and Machine Learning. Morgan & Claypool
Publishers, 2009.

5. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
query answering. In ICDT, volume 2572 of LNCS, pages 207–224. Springer, 2003.

6. N. D. Goodman. The principles and practice of probabilistic programming. In
POPL, pages 399–402, 2013.

7. G. Gottlob, T. Lukasiewicz, M. Martinez, and G. Simari. Query answering under
probabilistic uncertainty in Datalog+/ ontologies. Annals of Math.& AI, 69(1):37–
72, 2013.

8. B. Kimelfeld and P. Senellart. Probabilistic XML: models and complexity. In
Adv. in Probabl. Databases for Uncertain Information Management, volume 304 of
Studies in Fuzziness and Soft Computing, pages 39–66. 2013.

9. M. Krötzsch and S. Rudolph. Extending decidable existential rules by joining
acyclicity and guardedness. In IJCAI, pages 963–968, 2011.

10. F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling up statistical inference
in Markov Logic Networks using an RDBMS. PVLDB, 4(6):373–384, 2011.

11. D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.


