
Data integration with many heterogeneous
sources and dynamic target schemas

(extended abstract)

Luigi Bellomarini, Paolo Atzeni, Luca Cabibbo

Università Roma Tre, Italy

1 Introduction and motivation

Information integration is the general problem that arises in applications that
need to consolidate (in a virtual or materialized way) data coming from different
sources [9, Ch.21]. In this paper, we consider a scenario for data integration,
very common in practice, for which existing solutions are not effective. We re-
fer to those applications where there are many (dozens or hundreds or even
more) sources, in the same domain, that have to contribute to one, single global
(“target”) system. A common case is that of “central” organizations that re-
ceive data from a large set of “local” companies or administrations; a specific
case is that of a national central bank that receives data from all the banks
in the country. This scenario is often handled by imposing to all local sources
an exchange format, so that data are transferred to the central institution in a
standardized form. In some cases, this solution is just inapplicable, as companies
might refuse the adoption of the standard unless forced by regulations. Moreover,
exchange formats (especially for statistics and finance) are inherently flexible,
versatile and unstable, allowing a number of different source schemas. Finally,
due to the complexity of exchange formats, their adoption is often partial or
incorrect. In particular, a diverging interpretation of the exchange format can
be even accepted in case the central institution realizes that the various sources
have specific features that, though not general, are nevertheless interesting and
deserve to appear in the target.

An approach based on the theory of mappings [6] can be interesting in this
case, but the large quantity of source schemas would render the classical tech-
niques not much effective, as it would require the specification of many different
mappings, between each of the various sources and the target. Also, the sources
are not completely known beforehand (and there are often new ones, also simi-
lar, but with additional differences) and therefore mappings cannot be directly
specified in advance. Finally, given the interest in considering specific features of
sources, it turns out that even the target schema should not be fixed in advance,
as some portions depend on sources (their schema and even their data). All these
three aspects are not addressed by current mapping-based approaches.

We also have an observation that mitigates the difficulties: in many cases the
sources are indeed different from one another, but they do share similarities that
can be exploited.



On the basis of the above requirements we propose a new approach, where
there is one source schema S0, used as a reference, and the other source schemas
can be seen as variations of S0. Then, we consider variations on the target
schema, induced by specific features of the source schemas, including their data,
in order to support “schematic transformations” [11], that is, the possibility to
generate schema elements in the final target schema G, given data and schema
elements in S0.

G

RepositoryOfBalances
Bank IoBName Amount
1005 Asset 8
1005 Liability 19
1006 Asset -42
1006 Liability 21

G′

RepositoryOfBalancesAlt
Bank Asset Liability
1005 8 19
1006 -42 21

Fig. 1. Sample target data

For example, Figure 1 represents two desired global schemas, each of which
is able to store summaries of balance sheets of banks. The relation Reposito-
riesOfBalances stores the Amount (that is, the difference between credits
and debits) aggregated by Bank and IoBName (item of balance name). Repos-
itoriesOfBalancesAlt (“Alt” stands for “alternate”) stores the same items
for each bank with the difference that Asset and Liabilities are attributes.

Figure 2 represents the data as they are collected from the sources. S0 is
the established exchange format, where BalSheetTemplate prescribes the
local institution to structure its balance in relations (one or many) having the
attributes Year , Bank , IoBName, IoBCred , the amount of credit for the item of
balance, IoBDeb, the amount of debit for the item of balance.

In the example, S1 is identical to S0 and reports the balance sheet as a
single relation. In S2 the balance sheet is (horizontally) partitioned into two
relations, with the same attributes as S0: tuples having Year preceding 2012
are stored in BalSheet2010-2011, the others in BalSheet2013. In S3, the
balance is (vertically) decomposed into credits and debits, with a coarser level of
granularity, as data are reported and grouped by Bank , disregarding the years.

In the rest of the paper we study the data integration scenario we have just
sketched. In Section 2 we show how we handle a large number of heterogeneous
but similar sources and in Section 3 we discuss how we cope with the issue of
generating new features in target schemas on the basis of source schemas and
data. Finally, in Section 4 we draw our conclusions and briefly discuss related
work.



S0
BalSheetTemplate

Year Bank IoBName IoBCred IoBDeb

S1

BalSheet
Year Bank IoBName IoBCred IoBDeb
2010 1005 Asset 35 27
2011 1005 Liability 29 10
2010 1006 Asset 41 30
2010 1006 Liability 31 30
2013 1006 Asset 0 53
2013 1006 Liability 33 13

S2

BalSheet2010-2011
Year Bank IoBName IoBCred IoBDeb
2010 1005 Asset 35 27
2011 1005 Liability 29 10
2010 1006 Asset 41 30
2010 1006 Liability 31 30

BalSheet2013
Year Bank IoBName IoBCred IoBDeb
2013 1006 Asset 0 53
2013 1006 Liability 33 13

S3

BalSheetCredit
Bank IoBName IoBCred
1005 Asset 35
1005 Liability 29
1006 Asset 41
1006 Liability 64

BalSheetDebit
Bank IoBName IoBDeb
1005 Asset 27
1005 Liability 10
1006 Asset 83
1006 Liability 43

Fig. 2. Sample source data

2 Handling many sources

Let us first concentrate on cases in which the global schema is completely defined
beforehand (and so coinciding with the baseline global schema G0), while in
Section 3, we give some insights about how we handle dynamic global schemas.

We recognize that each source schema Si can be considered as a variation
of S0. In this, we notice an analogy with the schema evolution problem [3, 8],
where schemas are derived from one another through the application of simple
and standardized operations, namely schema evolution operators.

Thus, we propose a new approach where each Si is described as an evolution
of S0, that is, as if it were the result of a “virtual” application of one or more
schema evolution operators to S0. In the remainder of the paper we will concen-
trate only on transformations involving a single operation. We consider a small
set of operators, which is however sufficiently expressive and general for most
common real scenarios: addition/deletion of attributes, partition of tuples into
separate relations, union of relations into a single relation, projection decompo-
sition of a relation into multiple ones, join of multiple relations into a single one,
attribute dereferencing (that is extracting an attribute into a foreign key-related
relation).



Fig. 3. Mappings for the scenario of variations

2.1 Transformations

Transformations could be modeled in various ways, procedural or declarative. We
adopt the notion of schema mapping [4], where the relationships between source
and target schemas are described in terms of first-order s-t tgd (source-to-target
tuple generating dependencies). 1

Hence, each transformation relating the reference schema S0 to any Si can
be associated with a schema mapping Ei. In the example, S1 is identical to S0

(so we have the identity mapping), while S2 is obtained with a partition on the
basis of Year values and S3 with decomposition by projection.

Then, in our example, the mappings between S0, S2 and S3 would be repre-
sented as follows:

E2: BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id), y < 2012
→ BalSheet2010-2011(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id);

BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id), y ≥ 2012
→ BalSheet2013(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id)

E3: BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id)

→ BalSheetCredit(Bank: b, IoBName: in, IoBCred: sum(ic, groupBy(b, in))),

BalSheetDebit(Bank: b, IoBName: in, IoBDeb: sum(id, groupBy(b, in)))

The idea we have just discussed, that the various source schemas are varia-
tions of a reference one S0, allows us to concentrate on the mapping between S0

and the target schema G0. This is summarized in Figure 3, where M relates S0 to
G0 and Ei is the representation of the transformation between S0 and a specific
source Si. Then, with our approach, the user should focus just on the reference
source schema S0 and describe its mapping M to the global schema. Indeed, we
are interested in mappings between the various Si’s and G. Intuitively, this can
be obtained by composing the inverse of each Ei with M . Let us go back to our
example; with respect to G in Figure 1, we have:

1 Our tgd’s are indeed a bit more complex than those usually found in data exchange
settings [4], but their semantics can be defined as an extension of the classical one.
Specifically they contain scalar operations (for example a difference of values) and
aggregations (like sum with group by in E3) in the rhs [2].



M : BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id)

→ RepoOfBalances(Bank: b, IoBName: in, Amount: sum(ic − id, groupBy(b, in)))

where for each Bank and IoBName, the Amount is calculated by subtracting
debits from credits. The aggregation then sums the contributions from different
Years. In order to make M work also for S2, we should “undo” the transfor-
mations from S0 to S2 (E2) and then apply the original mapping M , as sum-
marized in Figure 3. In other words, the goal would be to find a new mapping
M∗2 = E−1

2 ◦M and similarly for every other possible source Si. In most cases, the
various results would need to be consolidated, usually by means of a merge op-
erator [3], for which there can be various versions whose details are not relevant
here.

2.2 Technical issues

Let us now discuss the technical issues. Indeed, our goal is to find a mapping M∗i
between Si and G0, given the mappings Ei between S0 and Si and M between S0

and G0. For this kind of problems, solutions have been discussed in the literature,
based on composition and inversion operators [6, 7]2. However, such solutions
are not sufficient for our case as they would require the existence of an “exact
inverse” (a maximum recovery [1]) for Ei.

One major problem is that rarely do schema mappings have such an exact
inverse, as they may involve information loss; in such cases, source instances
cannot be rebuilt from target ones. This is also the case for our transformations:
E3, for instance, is lossy, since it decomposes a relation into two other relations
where aggregations are applied. This causes loss of information and the original
relation cannot be reconstructed with a join. Vice versa, E2 is lossless, because
the partition (which, by definition, forbids overlapping) can be reversed with
a union. However, let us consider, in this case, a relaxed notion of inverse, for
example quasi-inverses of schema mappings [7] 3. It does not exactly rebuild the
original instance, but another one, affected by information loss. For example a
quasi-inverse of E3 is
E−1

3 : BalSheetCredit(Bank: b, IoBName: in, IoBCred: ic),

BalSheetDebit(Bank: b, IoBName: in, IoBDeb: id)

→ ∃y (BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id))

Notice that E−1
3 is far from being an exact inverse because the aggregated con-

tributions of different Years have not been decomposed; moreover Year is exis-
tentially quantified and its original values have not been restored. Nevertheless,
we deem that this inverse is sufficient for our purpose since, in this case, E3 loses
less information than M . In facts, with a simple substitution, the composition

2 The inverse M−1 of a schema mapping M is such that M−1 ◦M = Id, where Id is
the identity mapping, transforming each instance into itself.

3 Notice that the original definition does not foresee aggregations, which however we
support here.



with M yields:

E−1
3 ◦M : BalSheetCredit(Bank: b, IoBName: in, IoBCred: ic),

BalSheetDebit(Bank: b, IoBName: in, IoBDeb: id)

→ RepoOfBalances(Bank: b, IoBName: in, Amount: sum(ic − id, groupBy(b, in)))

An interesting idea is the definition of some kind of order relation �s, based
on the amount of “transferred information” [1]: M �S0 Ei holds if M transfers
less information than Ei when applied to the same source S0. In this case we
observe that M �S0 E3; indeed it is possible to verify this by observing that the
instances of G can be generated from the ones of S3.

Our result is that whenever the order relation M �S0 Ei holds for every Si, it
is possible to integrate all the differing sources, also in presence of aggregations,
calculating M∗i through a suitable notion of inverse, for example quasi-inverses.
An intuitive proof for this consists in verifying that the order relation guarantees
the presence of some mappings from Si to G (since Ei transfers more information
than M) and one of them, M∗i , can be calculated by suitably inverting Ei and
composing with M .

3 Dynamic target schemas

Let us now consider the more general case, where the global schema is not de-
fined in advance, but it may depend on the specific sources. Different scenarios
are indeed possible and the global schema may depend on source data or meta-
data (names of relations and attributes) or both. Here we concentrate on the
most interesting case, which is the one where attributes of the global schema
derive from values in the sources. This is also the most relevant condition in real
contexts, as it can be the consequence of a common practice in exchange for-
mats between a local and a central organization, that of embedding “schematic”
information into data.

An example appears in Figure 2, where the values of IoBName (“Asset”
and “Liability”) are schematic elements as they qualify the other two attributes
IoBCred and IoBDeb: a credit or a debit, in facts, is meaningful only if referred
to a specific item of balance. An alternative representation would have four
attributes, for expressing credits and debits for each of the two possible item
names. In this latter representation, the introduction of a new item of balance,
for instance “Equity”, would require to alter the schema giving rise to a new
variant and so on.

Here we sketch a novel technique to handle such situations. Basically, it
consists in the definition of template tgd’s, an extended version of usual tgd’s
that allow metadata-data correspondences. They are intended to be used for
expressing correspondences between S0 and the baseline global schema G0, in
the mapping M . We allow quantified variables not only to denote values, but
also attribute names. Indeed, the baseline global schema referred to in the rhs of
template tgd’s is somehow polymorphic, as it contains variables for the attributes



that are not known in advance, but their presence and name depend on the source
data.

A key feature of our approach is a rewriting algorithm, generating usual tgd’s
out of the template ones, given the source data. For each tuple matching the lhs
of a template tgd, the algorithm generates one or more attributes in the schema
of the rhs, eventually specifying the global schema G, where all the attributes
have been made explicit. The tgd’s generated in this way respond to the usual
definition and can be then enforced with the common chase procedure [5].

An example of template tgd is the following mapping M ′ between S0 and G0:

M ′: BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id)

→ RepoOfBalancesAlt(Bank: b, in: sum(ic − id, groupBy(b)))

The rhs describes the baseline global schema G0, with an attribute variable, in,
used for unknown attributes. For its value, the expression sum(ic−id, groupBy(b))
specifies that in RepositoryOfBalancesAlt, Asset and Liability are all cal-
culated as aggregations (an aggregation each), grouping by the only disaggre-
gated attribute, which is Bank .

Initially G′ contains all the attributes that are fully specified in G0 (only
Bank in this case). In the rewriting phase, for each tuple in the lhs, an attribute
named after the value bound to in (“Asset” or “Liability”) is added. 4 At the
end, the rewritten tgd, which can be chased and enforced in the usual way, is:

cM ′: BalSheet(Year: ya, Bank: b, IoBName: “Asset”, IoBCred: ica, IoBDeb: ida),

BalSheet(Year: yl, Bank: b, IoBName: “Liability” , IoBCred: icl, IoBDeb: idl)

→ RepoOfBalancesAlt(Bank: b, Asset: sum(ica − ida, groupBy(b)),

Liability: sum(icl − idl, groupBy(b)))

4 Conclusions and related work

We provided a solution to the problem of data integration in contexts where there
are a large number of different sources whose schema is not completely known
beforehand and the global schema can depend on the source data. We consider
a single data source as a reference and map it, with schema mappings, into the
global schema. All the other sources are described as if they were obtained as a
schema evolution of the reference.

While data integration has been studied in a variety of theoretical and prac-
tical contexts [12], approaches to handling differences between schemas and rep-
resenting transformations with mappings are more typically studied at higher
level in the model management literature, for example in [3]. More recently,
the schema evolution problem has been pursued in [8, 1], however without any
connection to the data integration problem or adoption of a declarative relaxed

4 Some variable renamings are also needed to avoid unwanted matches.



notion of inverse. Theoretical details about inversion and composition are pre-
sented in [6], while a formal definition of quasi-inverse schema mappings can be
found in [7].

Dynamic global schemas rely on the notion of “schematic transformation”,
introduced in [11]. Some known approaches are specifically oriented to query
answering and concentrate on defining appropriate extensions to SQL or rela-
tional algebra to have result sets with a schema that varies depending on input
data [11, 14]. Others use schematic information to provide a certain degree of
schema independence to queries [13]. Since our specific target is data integra-
tion, we proposed an extension to the common language of mappings. A similar
operation has also been done in [10], with an approach more oriented towards
data exchange and the goal of solving specific issues such as nesting.

References

1. M. Arenas, J. Perez, J. L. Reutter, and C. Riveros. Foundations of schema map-
ping management. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2010, June 6-11,
2010, Indianapolis, Indiana, USA, pages 227–238, 2010.

2. P. Atzeni, L. Bellomarini, and F. Bugiotti. Exlengine: Executable schema mappings
for statistical data processing. In Proceedings of the 16th International Conference
on Extending Database Technology, EDBT ’13, pages 672–682, New York, NY,
USA, 2013. ACM.

3. P. A. Bernstein. Applying model management to classical meta data problems. In
CIDR Conference, pages 209–220, 2003.

4. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: Semantics and query
answering. In ICDT, pages 207–224, 2003.

5. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

6. R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing schema mappings:
Second-order dependencies to the rescue. ACM Trans. Database Syst., 30(4):994–
1055, 2005.

7. R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Quasi-inverses of schema map-
pings. ACM Trans. Database Syst., 33(2), 2008.

8. R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Schema mapping evolution
through composition and inversion. In Schema Matching and Mapping, pages 191–
222. 2011.

9. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete
Book. Prentice-Hall, Englewood Cliffs, New Jersey, second edition, 2008.

10. M. A. Hernández, P. Papotti, and W. C. Tan. Data exchange with data-metadata
translations. PVLDB, 1(1):260–273, 2008.

11. L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. Schemasql: An extension
to sql for multidatabase interoperability. pages 476–519, 2001.

12. M. Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–
246, 2002.

13. U. Masermann and G. Vossen. Sisql: Schema-independent database querying (on
and off the web). In IDEAS, pages 55–64, 2000.

14. C. M. Wyss and E. L. Robertson. Relational languages for metadata integration.
ACM Trans. Database Syst., 30(2):624–660, 2005.


