
Andrea Calı̀
Maria-Esther Vidal (Eds.)

AMW2015
Alberto Mendelzon International Workshop
on Foundations of Data Management

Lima, Perú, May 6th-8th, 2015
Proceedings

Copyright c© 2015 for the individual papers by the papers’ authors. Copying permitted
only for private and academic purposes. This volume is published and copyrighted by its
editors. Re-publication of material from this volume requires permission by the copyright
owners.

Editors’ addresses:
Birkbeck College, University of London, UK
andrea@dcs.bbk.ac.uk;

Universidad Simón Bolı́var
Department of Computer Science
Valle de Sartenejas
Caracas 1086, Venezuela
mvidal@ldc.usb.ve

Preface

The Alberto Mendelzon Workshop (AMW) is a Latin American initiative started in 2006
to honor the memory of Alberto Mendelzon, who gave a significant contribution to the
field of data management. The AMW is a research venue for top-quality research on
foundations of data management; while focused especially on Latin American students and
scholars, the workshop is open to submissions from anywhere and it has so far gathered
some of the world’s best researchers in the field.

This volume contains papers accepted at the 9th edition of the AMW, held in Lima, Perú,
from the 6th to the 8th of May, 2015. The call for papers of this edition requested two types
of submissions: regular and short papers, where the latter were intended to present ongoing
research, results previously published, or data management applications. With around 40
submissions, we could put up an exciting program, which gave raise to discussions and
new ideas. Despite the beauties of Lima, including its sophisticated cuisine and drinks,
the attendees and the organizers worked hard and made the AMW 2015 a great success,
both from the scientific and organizational point of view. The school, which took place
before the workshop, provided local students with tutorials whose quality was on par with
those at the best conferences in the area. The invited talks at the workshop were also
certainly world-class and given by leading researchers: Guy van den Broeck (KU Leuven,
Belgium), Wagner Meira Jr (Universidade Federal de Minas Gerais, Brazil), Dan Olteanu
(University of Oxford, UK), and Victor Vianu (UC San Diego, USA).

For what we are proud to call a very exciting scientific event, we would like to warmly
thank, in no particular order: the authors of the papers, the Program Committee and the
external reviewers, the local organizers, the AMW School committee, the Steering Com-
mittee, the General Chair, and the local supporting institutions. Without the effort of all
the above, the AMW 2015 could not have been successful.

We are also looking forward to the next editions of the Alberto Mendelzon Workshop,
which has become an established and high-quality venue in the area of Data Management.

Lima, May 2015

Andrea Calı̀1

Maria-Esther Vidal

1Andrea Calı̀ acknowledges support from the EPSRC grant “Logic-based Integration and Querying of Unin-
dexed Data” (EP/E010865/1)

General Chair

Pablo Barceló (Universidad de Chile, Chile)

PC Chairs

Andrea Cali, Birkbeck College, University of London, UK)
Maria-Esther Vidal, Universidad Simón Bolı́var, Venezuela

Program Committee

Cristina Dutra De Aguiar Ciferri (Universidade de Sao Paulo, Brazil)
Oscar Corcho (Universidad Politecnica de Madrid, Spain)
Isabel Cruz (University of Ilinnois at Chicago, USA)
Amelie Gheerbrant (Universite Paris VII Denis Diderot, France)
Parke Godfrey (York University, Canada)
Sergio Greco (Universita della Calabria, Italy)
Claudio Gutierrez (Universidad de Chile)
Mauricio A. Hernandez-Sherrington (IBM Research Almaden, USA)
Aidan Hogan (Universidad de Chile)
Elizabeth Leon (Universidad Nacional de Colombia)
Jorge Lobo (ICREA and Universidad Pompeu Fabra, Spain)
Maria Vanina Martinez (Universidad Nacional del Sur, Argentina)
Filip Murlak (University of Warsaw, Poland)
Mauricio Osorio (Universidad de las Americas Puebla, Mexico)
Reinhard Pichler (Vienna University of Technology, Austria)
Andreas Pieris (Vienna University of Technology, Austria)
Alessandro Provetti (University of Messina, Italy)
Jarek Szlichta (University of Ontario, Canada)
Regina Paola Ticona Herrera (Universite de Pau et des Pays de l’Adour, France)
Riccardo Torlone (Universita Roma Tre)
Peter Wood (Birkbeck, University of London, UK)

Steering Committee

Ricardo Baeza-Yates (Yahoo Research, Spain)
Pablo Barcelo (Universidad de Chile, Chile)
Leopoldo Bertossi (Carleton University, Canada)
Mariano Consens (University of Toronto, Canada)
Alberto H. F. Laender (Universidade Federal de Minas Gerais, Brazil)
Jorge Perez (Universidad de Chile, Chile)

Local Supporting Institutions

Universidad Mayor de San Marcos

• Facultad de Ingenierı́a de Sistemas e Informática

• Facultad de Ciencias Matemáticas

Universidad Ricardo Palma

• Facultad de Ingenierı́a Informática

Universidad Católica de San Pablo

• Escuela Profesional de Ciencia de la Computación

Sociedad Peruana de Computación

IEEE- Sección Peú

Colegio de Matemáticos de Peú

Contents

A Database Framework for Classifier Engineering
Benny Kimelfeld and Christopher Re 1

Extending Datalog with Analytics in LogicBlox
Molham Aref, Benny Kimelfeld, Emir Pasalic1 and Nikolaos Vasiloglou 6

Towards Reconciling SPARQL and Certain Answers (Extended Abstract)
Shqiponja Ahmetaj, Wolfgang Fischl, Reinhard Pichler, Mantas Simkus and Sebas-
tian Skritek 12

Efficient Evaluation of Well-designed Pattern Trees (Extended Abstract)
Pablo Barcelo, Reinhard Pichler and Sebastian Skritek 18

Approximation Algorithms for Schema-Mapping Discovery from Data Examples
Balder ten Cate, Phokion G. Kolaitis, Kun Qian and Wang-Chiew Tan 24

IMGpedia: A Proposal to Enrich DBpedia with Image Meta-Data
Benjamin Bustos and Aidan Hogan 35

From Classical to Consistent Query Answering under Existential Rules
Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris and Gerardo I. Simari 40

Finding Similar Products in E-commerce Sites Based on Attributes
Urique Hoffmann, Altigran da Silva, and Moises Carvalho 46

Entity Matching: A Case Study in the Medical Domain
Luiz F. M. Carvalho, Alberto H. F. Laender and Wagner Meira Jr. 57

Using Statistics for Computing Joins with MapReduce
Theresa Csar, Reinhard Pichler, Emanuel Sallinger and Vadim Savenkov 69

TriAL-QL: Distributed Processing of Navigational Queries
Martin Przyjaciel-Zablocki, Alexander Schatzle and Adrian Lange 75

On Axiomatization and Inference Complexity over a Hierarchy of Functional De-
pendencies
Jaroslaw Szlichta, Lukasz Golab and Divesh Srivastava 79

PPDL: Probabilistic Programming with Datalog
Balder ten Cate, Benny Kimelfeld and Dan Olteanu 91

CONTENTS

Implementing Graph Query Languages over Compressed Data Structures: A
Progress Report
Nicolás Lehmann and Jorge Pérez 96

Tractable Query Answering and Optimization for Extensions of Weakly-Sticky
Datalog±
Mostafa Milani and Leopoldo Bertossi 101

Saturation, Definability, and Separation for XPath on Data Trees
Sergio Abriol, Mara Emilia Descotte, and Santiago Figueira 106

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms
Ricardo Mora and Claudio Gutierrez 110

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs
Alejandro Flores, Maria-Esther Vidal and Guillermo Palma 121

On the CALM Principle for BSP Computation
Matteo Interlandi and Letizia Tanca 131

Chase Termination for Guarded Existential Rules
Marco Calautti, Georg Gottlob and Andreas Pieris 142

Data integration with many heterogeneous sources and dynamic target schemas
(extended abstract)
Luigi Bellomarini, Paolo Atzeni and Luca Cabibbo 148

Rewriting-based Check of Chase Termination
Marco Calautti, Sergio Greco, Cristian Molinaro and Irina Trubitsyna 156

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results
Meghyn Bienvenu, Magdalena Ortiz and Mantas Simkus 162

LDQL: A Language for Linked Data Queries
Olaf Hartig 172

Intuitionistic Data Exchange
Gosta Grahne, Ali Moallemi and Adrian Onet 184

A preliminary investigation into SPARQL query complexity and federation in
Bio2RDF
Carlos Buil-Aranda, Martin Ugarte, Marcelo Arenas and Michel Dumontier 196

CONTENTS

Keyword Search in the Deep Web
Andrea Cali, Davide Martinenghi and Riccardo Torlone 205

Implementing Data-Centric Dynamic Systems over a Relational DBMS
Diego Calvanese, Marco Montali, Fabio Patrizi and Andrey Rivkin 209

Disentangling the Notion of Dataset in SPARQL
Daniel Hernandez and Claudio Gutierrez 213

A Database Framework for Classifier Engineering

Benny Kimelfeld1 and Christopher Ré2

1 LogicBlox, Inc. and Technion, Israel
2 Stanford University

1 Introduction

In the design of machine-learning solutions, a critical and often the most resourceful
task is that of feature engineering [7, 4], for which recipes and tooling have been devel-
oped [3, 7]. In this vision paper we embark on the establishment of database founda-
tions for feature engineering. We propose a formal framework for classification, in the
context of a relational database, towards investigating the application of database and
knowledge management to assist with the task of feature engineering. We demonstrate
the usefulness of this framework by formally defining two key algorithmic challenges
within: (1) separability refers to determining the existence of feature queries that agree
with the given training examples, and (2) identifiability is the task of testing for the
property of independence among features (given as queries). Moreover, we give pre-
liminary results on these challenges, in the context of conjunctive queries. We focus
here on boolean features that are represented as ordinary database queries, and view
this work as the basis of various future extensions such as numerical features and more
general regression tasks.

2 Formal Framework

We first present our formal framework for classification with binary features within a
relational database.

2.1 Classifiers and Learning

In this work, a classifier is a function of the form

γ : {−1, 1}n → {−1, 1}

where n is a natural number that we call the arity of γ. A classifier class is a (possibly
infinite) family Γ of classifiers. We denote by Γn the restriction of Γ to the n-ary
classifiers in Γ . An n-ary training collection is a multiset T of pairs 〈x, y〉 where x ∈
{−1, 1}n and y ∈ {−1, 1}. We denote by Tn the set of all n-ary training collections.
A cost function for a classifier class Γ is a function of the form

c :
(
∪n (Γn ×Tn)

)
→ R≥0

1

where R≥0 is the set of nonnegative numbers. In the context of a classifier class Γ and
a cost function c, learning a classifier is the task of finding a classifier γ ∈ Γn that
minimizes c(γ, T), given a training collection T ∈ Tn.

We illustrate the above definitions on the important class of linear classifiers. An
n-ary linear classifier is parameterized by a vector w ∈ Rn, is denoted by Λw, and is
defined as follows for all a ∈ {−1, 1}n.

λw(a)
def
=

{
1 if a ·w ≥ 0;
−1 otherwise.

where “·” denotes the operation of dot product. By Lin we denote the class of linear
classifiers. An example of a cost function is the least square cost lsq that is given by

lsq(Λw, T)
def
=

∑

〈x,y〉∈T
(x ·w − y)2

for the arguments Λw ∈ Linn and T ∈ Tn.

2.2 Relational Formalism

Our relational terminology is as follows. A schema is a pair (A, Σ), where A is a
signature that consists of relation symbols, andΣ is a set of logical integrity constraints
overA. Each relation symbolR has an associated arity. We assume an infinite set Const
of constants. An instance I over a schema S = (A, Σ) associates with every k-ary
relation symbol R ∈ A a finite subset RI of Constk, such that all the constraints of Σ
are satisfied. The active domain of an instance I , denoted adom(I), is the set of all the
constants in Const that are mentioned in I .

Let S be schema. A query (over S) is a function Q that is associated with an arity
k, and that maps every relation instance I over S into a finite subset Q(I) of Constk. A
query Q′ contains a query Q if Q(I) ⊆ Q′(I) for all instances I over S; if Q ⊆ Q′ and
Q′ ⊆ Q then Q and Q′ are said to be equivalent. A query Q is additive if for every two
instances I1 and I2, if adom(I1) and adom(I2) are disjoint, then

Q(I1 ∪ I2) = Q(I1) ∪Q(I2) .

A query class is a mapping that associates with every schema S a class of queries over
S. An example of a query class is that of the conjunctive queries. A conjunctive query
(CQ) is represented by the logical formula q(x) that has the form

∃y[φ1(x,y,d) ∧ · · · ∧ φm(x,y,d)]

where x and y are disjoint sequences of variables, d is a sequence of constants, and each
φi is an atomic query over S (i.e., a formula that consists of a single relation symbol and
no logical operators). The result of applying the CQQ = q(x) to the instance I consists
of all the tuples a (of the same length as x) such that q(a) is true in I; we denote this
result is denoted by Q(I).

A Database Framework for Classifier Engineering

2

2.3 Classification Framework

We now present our formal framework. An entity schema is a triple (A, Σ,E), where
(A, Σ) is a schema and E is a relation symbol in A that represents the entities (as tu-
ples). An instance I over a schema (A, Σ,E) is simply an instance over (A, Σ). Intu-
itively, an instance I over an entity schema (A, Σ,E) represents a set of entities, namely
EI (i.e., the set of tuples in E), along with information about the entities that is con-
tained in the remaining relations RI . For example, E may be the relation Persons and
A may include, besides Persons, relations such as PersonAddress, PersonCompany,
CompanyCity, and so on. If S = (A, Σ,E) is an entity schema, then the elements A,
Σ and E are denoted by AS, ΣS and ES, respectively.

Let S be an entity schema, and let I be an instance over S. A feature query (over
S) is a query π over the schema S, such that π ⊆ ES, where ES is viewed as the query
that, given an instance I , copies the relation EI

S. In other words, a feature query is a
query that selects entities. For example, if E is Persons(ssn,name) then a feature can
be the following CQ q(s, n) (selecting persons working in New York City).

∃c
[
Persons(s, n) ∧ PersonCompany(s, c) ∧ CompanyCity(c, ‘NYC’)

]

If π is a feature query, then πI denotes the function f : EI
S → {−1, 1} where

f(e) =

{
1 if e ∈ π(I);
−1 otherwise.

A statistic (over S) is a sequence Π = (π1, . . . , πn) of feature queries. We denote by
ΠI the function (πI

1 , . . . , π
I
n) from EI

S to {−1, 1}n.
A feature schema is a pair (S, Π), where S is an entity schema, and Π is a statistic

over S that produces a sequence of features for every entity of a given input instance.
We say that Π and (S, Π) are in a query class Q if every query in Π belongs to Q. A
training instance over S is a pair (I, o), where I is an instance over S and o : EI

S →
{−1, 1} is a function that partitions the entities into positive and negative examples.
Given a feature schema (S, Π) and a classifier class Γ , the training instance (I, o)
defines the training collection that consists of the tuple 〈ΠI(e), o(e)〉 for every e ∈ EI

S.

3 Feature Engineering

In feature engineering, one devises feature queries for a classification task. Next, we
discuss two computational challenges that naturally arise in feature engineering.

3.1 Separability

Let (S, Π) be a feature schema, and let Γ be a classifier class. A training instance (I, o)
is said to be Γ -separable with respect to (w.r.t.) Π if there exists a classifier γ ∈ Γ that
fully agrees with o; that is, γ and Π have the same arity, and γ(e) = o(e) for every
e ∈ EI

S. We define the following core computational problem.

A Database Framework for Classifier Engineering

3

Problem 1 (Separability). Let S be an entity schema, let Q be a query class over S, and
let Γ be a classifier class. The separability problem is the following. Given a training
instance (I, o) over S, determine whether there exists a statistic Π in Q such that (I, o)
is Γ -separable w.r.t. Π .

The separability problem, as defined, can be extended in various practical direc-
tions. The input can include a bound N on the length n of the statistic Π (hence,
limiting the model complexity, which results in classifiers that are more efficient and
less overfitting). One can allow for an approximate agreement with o (e.g., the classifier
should agree with o on at least (1 − ε) of the entities, or at most k examples should
be misclassified). And one can impose various constraints on common query classes
Q (e.g., limit the size of queries, number of constants, etc., again to limit the model
complexity and potential overfitting). The following theorem considers the complexity
of testing for separability in the case where the class of queries is that of CQs without
constants,3 which we denote by CQnc. It states that, in the absence of such extensions
of the problem, it can very quickly get intractable.

Theorem 1. Let Q be the class CQnc, and let Γ be the class Lin. For every entity
schema S, separability is in NP. Moreover, there exists an entity schema S such that
separability is NP-complete.

The proof of membership in NP is using the concept of a canonical database [1], and
the proof of NP-hardness is by a reduction from the maximum-clique problem.

We note that a problem similar to separability has been studied in a recent paper by
Cohen and Weiss [2], where data are labeled graphs and features are tree patterns.

3.2 Statistic Identifiability

We denote by 0m the vector ofm zeroes. LetM be an n×k real matrix. A linear column
dependence in M is a weight vector w ∈ Rk such that w 6= 0k and M · w = 0n; if
M does not have any linear column dependence, then we say that M is linearly column
independent. Let (S, Π) be a feature schema, and let I be an instance of S. We fix
an arbitrary order over the entities in EI

S, and denote by JΠIK the matrix that consists
of the rows ΠI(e) for every e ∈ EI

S in order. The second computational problem we
define is the following.

Problem 2 (Identifiability). Let Q be a query class. Identifiability is the problem of
testing, given a feature schema (S, Π) in Q, whether there exists an instance I over S
such that the matrix JΠIK is linearly column independent; in that case, we say that Π
is identifiable.

Identifiability is an important property in the design of machine-learning solutions [5].
Particularly, in the case of the classifier class Lin and the cost function lsq , this property
implies that there is a single optimal classifier, whereas its absence implies that the
space of optimal solutions is unbounded.

3 For CQs with constants, the problem is trivial and not interesting, since the positive examples
can be hardcoded into the statistic.

A Database Framework for Classifier Engineering

4

Next, we show that in the case of CQs. identifiability amounts to query equivalence.
A statistic Π is said to have redundancy if it contains two distinct feature queries that
are equivalent.

Theorem 2. Let Q be the query class of additive CQs, and let (S, Π) be a feature
schema such that Π is in Q. Then Π is identifiable if and only if Π has no redundancy.

We conclude with comments on Theorem 2. First, this theorem is proved again
by applying the concept of a canonical database of a CQ. Second, we can extend the
theorem to the class of all CQs, but the condition that characterizes identifiability is
significantly more complicated (and will be given in the extended version of this paper).
Third, this theorem generalizes to affine independence, which is important in different
cost functions such as maximum entropy [6]. Finally, by an immediate application of
the NP-completeness of CQ containment [1] we get that identifiability is NP-complete
in the case of additive CQs.

Acknowledgments

Benny Kimelfeld is a Taub Fellow, supported by the Taub Foundation. The research of
Christopher Ré is supported by DARPA’s projects XDATA (FA8750-12-2-0335), DEFT
(FA8750-13-2-0039), MEMEX, and SIMPLEX. His research is also supported by NSF
Career Award IIS-1353606, ONR Awards N000141210041 and N000141310129, NIH
Grant U54EB020405 (awarded by NIBIB through funds provided by the trans-NIH
BD2K initiative), the Sloan Research Fellowship, the Moore Foundation, American
Family Insurance, Google, and Toshiba. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not neces-
sarily reflect the views of DARPA, AFRL, NSF, ONR, NIH, or the U.S. government.

References

1. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational
data bases. In J. E. Hopcroft, E. P. Friedman, and M. A. Harrison, editors, STOC, pages 77–90.
ACM, 1977.

2. S. Cohen and Y. Y. Weiss. Learning Tree Patterns from Example Graphs. In M. Arenas
and M. Ugarte, editors, 18th International Conference on Database Theory (ICDT 2015),
volume 31 of Leibniz International Proceedings in Informatics (LIPIcs), pages 127–143,
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

3. I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh. Feature Extraction: Foundations and
Applications (Studies in Fuzziness and Soft Computing). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

4. S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Enterprise data analysis and visualiza-
tion: An interview study. IEEE Trans. Vis. Comput. Graph., 18(12):2917–2926, 2012.

5. E. L. Lehmann and G. Casella. Theory of point estimation, volume 31. Springer, 1998.
6. M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational

inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.
7. C. Zhang, A. Kumar, and C. R. Materialization optimizations for feature selection workloads.

In SIGMOD Conference, pages 265–276, 2014.

A Database Framework for Classifier Engineering

5

Extending Datalog with Analytics in LogicBlox

Molham Aref1, Benny Kimelfeld?1,2, Emir Pasalic1, and Nikolaos Vasiloglou1

1 LogicBlox, Inc.
2 Technion, Israel

1 Introduction

LogicBlox is a database product designed for enterprise software development, com-
bining transactions and analytics. The underying data model is a relational database,
and the query language, LogiQL, is an extension of Datalog [13]. As such, LogiQL
features a simple and unified syntax for traditional relational manipulation as well as
deeper analytics. Moreover, its declarative nature allows for substantial static analysis
for optimizing evaluation schemes, parallelization, and incremental maintenance, and it
allows for sophisticated transactional management [11]. In this paper, we describe vari-
ous extensions of Datalog for supporting prescriptive and predictive analytics. These ex-
tensions come in the form of mathematical optimization (mixed integer programming),
machine-learning capabilities, statistical relational models, and probabilistic program-
ming. Some of these extensions are currently implemented in LogicQL, while others
are in either development or planning phases.

2 LogiQL Basics

In this section we briefly (and informally) describe LogiQL. (See [13] for a full descrip-
tion of the language.) The core components of LogiQL are its rules and constraints,
which are stated over the predicates of the database schema. A (basic) derivation rule
is a standard Datalog rule that defines how new facts are derived in the database. For
example, the following rules define Anc as the transitive closure of the predicate Par.

Anc(x, y)← Par(x, y)

Anc(x, y)← Anc(x, z),Par(z, y)

An integrity constraint does not derive new facts, but rather fires an error when violated.
For example, the rule Anc(x, y) → x 6= y states that ancestorship is antireflexive, and
the rule

Par(x, y),Par(x, z)→ y = z

states that every object has at most one parent, that is, in Par the first element is a
key. For interpretability sake, brackets are used to implicitly express key constraints,
as in Par[x] = y. Derivation rules and constraints syntactically differ in the direction
of the implication arrow. The logical language for specifying the right-hand-side of

? Taub Fellow – supported by the Taub Foundation

6

rules, as well as both sides of constraints, allows arbitrary propositional formulas with
numerical operations and comparisons (while safety conditions, such as stratification,
may be imposed to bound complexity).

Predicate-to-Predicate (P2P) rules are used for deriving whole relations over tuples.
An example of such a rule is the aggregate P2P rule, such as the following one that sums
up the salaries for each employee.

Annual[e] = a← agg�a = sum(s)� Salary(e, 2014, s)

Such a rule always includes a component of the form func�arg�, where func is the
type of the predicate rule, and arg is an additional argument that gives specific argu-
ments for the rule. In the above rule, e is a grouping variable (as it occurs in the head).
This rule derives a fact Annual(e, a) for every e in the first attribute of Salary.

3 Extensions for Analytics

We now describe several extensions of the LogicBlox system, for supporting prescrip-
tive and predictive analytics.

3.1 Mixed Integer Programming (MIP)

MIP is often applied for effectively solving real-world optimization problems that nat-
urally arise in prescriptive analytics, such as network flow optimization, resource al-
location, and scheduling. Solutions for various classes of mathematical programming
problems can be obtained by deploying specialized, highly optimized solvers (e.g., [12,
1]). As an example, a warehouse supplies stores s with products i from its available in-
ventory ai. For each store s and product i there is a demand dsi and available inventory
asi . For each product i, let wi denote the quantity of i in the warehouse, and pi denote
its unit price. A set of N trucks delivers commodity, and for simplicity assume that
each truck makes a single warehouse-to-store trip. We need to determine the quantity
qsi to ship to each store in order to maximize revenue. In standard MIP notation, the
problem can be phrased as follows. Here, ψs is a binary variable (with values in {0, 1})
determining whether a truck should be sent to store s, and ms

i is the quantity of product
i missing in order to satisfy the demand at store s.

Maximize (
∑

i,s

dsi −ms
i) ∗ pi subject to:

∀i, s ws
i + qsi +ms

i ≥ dsi , qsi ≤ B ∗ ψs ,
∑

s′

qs
′

i ≤ ai ,
∑

s′

ψs′ ≤ N

∀i, s ms
i ≥ 0 , qsi ≥ 0 , ψs ∈ {0, 1}

In this program, we assume that a store can hold at most 1000 units of each product.
Observe that the unknown variables are the qsi , ms

i and ψs (while the others are fixed).
MIP declaration in LogiQL is done by means of predicates with free second-order

variables, which are essentially unknown functions over predefined domains, except

Extending Datalog with Analytics in LogicBlox

7

that they are eventually assigned actual values (by invoking a MIP solver). Moreover,
the objective function (that one wishes to minimize or maximize) is simply an attribute
of a relation. Linear constraints are phrased as LogiQL constraints. Hence, a LogiQL
program with MIP is an ordinary program, with the addition that attributes are marked
as second-order variables or objectives. As an example, the following program corre-
sponds to the above MIP specification. Here, the second-order variables are m[i, s],
q[i, s] and psi[s], and the objective is Obj(v).

Obj(v)← agg�v = sum(z)� z = (d[i, s]−m[i, s]) ∗ p[i]
Store(s),Prod(i)→ w[i, s] + q[i, s] + m[i, s] ≥ d[i, s]

TotalTrans[i] = v ← agg�v = sum(z)� q[i, s] = z

TotalTrans[i] = v → v ≤ a[i]

q[i, s] = v1,psi[s] = v2 → v1 ≤ v2 ∗ 1000
TotalTrucks(v)← agg�v = sum(z)� psi[s] = z

TotalTrucks(v)→ v ≤ AvailableTrucks[]

m[i, s] = v → v ≥ 0 , (psi[s] = 0 or psi[s] = 1)

Observe that the constraints are used in a fashion similar to the stable-model (or
answer-set) semantics [8], except that we also optimize an objective. Other similar ap-
proaches include [5, 10, 16, 14]. As far as we know, LogicBlox is the first commercial
database system to provide native support for prescriptive analytics.

The engine automatically synthesizes the necessary mathematical programming in-
stances from the program, and invokes a MIP solver (e.g., [12, 1]). Specifically, we
ground (i.e., eliminates quantifiers in) the problem instance in a manner similar to [15],
and translate the constraints over variable predicates into a representation that can be
consumed by the solver. Then, the solver output is used for populating the value of
marked predicates (turning unknown values into known ones). The evaluation engine
listens to updates in the relevant relations (as part of standard view maintenance), and
invokes the solver when necessary to populate unknown values. The underlying MIP in-
stance is constructed incrementally. For example, if a store demand changes, then only
the portion of the program that is relevant to that store is replaced in the current MIP
instance (before being re-sent to the solver to obtain an updated solution). We found
that this optimization often leads to considerable reduction in execution cost.

3.2 Machine Learning (ML) Aggregates

The next extension is predictive analytics by means of a built-in set of ML algorithms.
We use the special predict P2P rule that comes in two modes: learning mode (where a
model is being learned) and evaluation mode (where a model is being applied to make
predictions). We do not give here the formal syntax and semantics for these rules; rather,
we give an illustrative example.

Suppose that we wish to predict the monthly sales of products in branches. We have
the following predicates:

Extending Datalog with Analytics in LogicBlox

8

– Hstr[sku,branch,month]=amount contains historical sales per sku (“stock keep-
ing unit”) and branch;

– Ftr[sku,branch,name]=value associates with every sku, branch and feature name
a corresponding feature value.

The following learning rule learns a logistic-regression model for each sku and branch,
and stores the resulting model object (which is handle to a representation of the model)
in the predicate SM[sales,branch] = model.

SM[s, b] = m← predict�m = logist(v|f)� Hstr[s, b, t] = v,Ftr[s, b, t, n] = f

And the following evaluation rule evaluates the model to get specific predictions.

Sales[s, b, t] = v ← predict�v = eval(m|f)�
Unknown(s, b, t),SM[s, b] = m,Ftr[s, b, t, n] = f

3.3 Statistical Relational Models

Such models are specified by various mechanisms, including Markov Logic Networks
(MLN) [6] and Probabilistic Soft Logic (PSL) [4]. MLNs and PLSs are, intuitively,
logical formalisms that allow for soft rules. The canonical example is

R(x)← R(y) , Friends(x, y)

where R describes a person property (e.g., “smokes” or “votes”). This rule states that
whenever x and y are friends, the property R propagates from y to x; this rule should
be taken as a hint on the unknown, and not as rigid truth. While an ordinary Datalog
program specifies a unique extension of the database, soft rules specify a probability
space over such extensions. Intuitively, the probability of a possible extension is deter-
mined by the extent to which the rules are satisfied (where weights of rules are taken
into account). A common practice is to find the most likely extension (i.e. Maximum A-
Priori, or MAP, inference), such as the most likely votes given partial knowledge about
votes, and use that world as an ordinary database. We make an ongoing effort to support
MLN and PSL within LogicBlox. Our current implementation applies MAP inference
by translation into MIP. In future work we plan to include specialized algorithms to
reduce the execution cost.

3.4 Probabilistic Programming Datalog (PPDL)

Formalisms for specifying general statistical models, such as probabilistic-programming
languages [9], typically consist of two components: a specification of a stochastic pro-
cess (the prior), and a specification of observations that restrict the probability space
to a conditional subspace (the posterior). We plan to enhance LogiQL with capabilities
of probabilistic programming, in order to facilitate the design and engineering of ML
solutions. Towards that, we have initiated a theoretical exploration of such an extension.
In a recent paper [3], we have proposed Probabilistic Programming Datalog (PPDL),
which is a framework that extends LogiQL with convenient mechanisms to include

Extending Datalog with Analytics in LogicBlox

9

common numerical probability functions; in particular, conclusions of rules may con-
tain values drawn from such functions. As a (simplistic) example, assume the relation
Client(ssn,branch,#visits) that associates clients with social security numbers, local
branches, and an average number of visits (per month) in the branch. The rule

Visits(c, b,Poisson[λ])← Client(c, b, λ)

associates with the client a random number of visits in the branch, where that number
is drawn from the Poisson distribution with average (parameter) #visits.

The semantics of a program is a probability distribution over the possible outcomes
of the input database with respect to the program; these possible outcomes are minimal
solutions with respect to a related program that involves existentially quantified vari-
ables in conclusions. Observations are naturally incorporated by means of constraints.
We focused on discrete numerical distributions (such as Poisson), but even then the
space of possible outcomes may be uncountable (as a solution can be infinite). We de-
fined a probability measure over possible outcomes by applying the known concept of
cylinder sets [2] to a probabilistic chase procedure. This chase is similar to that of data
exchange with tuple-generating dependencies [7], except that instead of introducing
named nulls, we sample real values from the associated distribution (e.g., Poisson[5]).
We have shown that the resulting semantics is invariant under different chases.

4 Conclusions

We described four approaches taken by LogicBlox to extend LogiQL with built-in ana-
lytics. While MIP and ML aggregates are conceptually syntactic bridges between Data-
log and external solvers, statistical relational models, and PPDL feature stronger ties to
Datalog (and naturally require more in-house implementation effort). In future work we
plan to investigate the applicability of our statistical specifications to real-life problems
that arise in our business, as well as their theoretical and system aspects.

References

1. T. Achterberg. Scip: Solving constraint integer programs. Mathematical Programming Com-
putation, 1(1), 2009. http://mpc.zib.de/index.php/MPC/article/view/4.

2. R. B. Ash and C. Doleans-Dade. Probability & Measure Theory. Harcourt Academic Press,
2000.

3. V. Barany, B. t. Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena. Declarative statistical mod-
eling with datalog. arXiv preprint arXiv:1412.2221, 2014.

4. M. Bröcheler, L. Mihalkova, and L. Getoor. Probabilistic similarity logic. In UAI, 2010.
5. M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, and D. Vasile. Np-spec: an executable specifi-

cation language for solving all problems in np. Computer Languages, 26(2):165–195, 2000.
6. P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial Intelligence.

Synthesis Lectures on AI and Machine Learning. Morgan & Claypool Publishers, 2009.
7. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query

answering. In ICDT, volume 2572 of LNCS. Springer, 2003.

Extending Datalog with Analytics in LogicBlox

10

8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Logic
Programming, Proceedings of the Fifth International Conference and Symposium, Seattle,
Washington, August 15-19, 1988 (2 Volumes), pages 1070–1080. MIT Press, 1988.

9. N. D. Goodman. The principles and practice of probabilistic programming. In POPL, 2013.
10. S. Greco, C. Molinaro, I. Trubitsyna, and E. Zumpano. NP datalog: A logic language for

expressing search and optimization problems. TPLP, 10(2):125–166, 2010.
11. T. J. Green, M. Aref, and G. Karvounarakis. LogicBlox, platform and language: A tutorial.

In Int Conf on Datalog in Academia and Industry, 2012.
12. I. Gurobi Optimization. Gurobi optimizer reference manual, 2015.
13. T. Halpin and S. Rugaber. LogiQL: A Query Language for Smart Databases. CRC Press,

2014.
14. A. Meliou and D. Suciu. Tiresias: The database oracle for how-to queries. In SIGMOD,

pages 337–348, 2012.
15. F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling up statistical inference in markov

logic networks using an rdbms. PVLDB, 4(6):373–384, 2011.
16. T. E. Sheard. Painless programming combining reduction and search: Design principles for

embedding decision procedures in high-level languages. In ICFP, pages 89–102, 2012.

Extending Datalog with Analytics in LogicBlox

11

Towards Reconciling SPARQL and Certain
Answers (Extended Abstract)?

Shqiponja Ahmetaj, Wolfgang Fischl, Reinhard Pichler, Mantas Šimkus, and
Sebastian Skritek

Institute of Information Systems, TU Vienna, Austria
{ahmetaj,wfischl,pichler,simkus,skritek}@dbai.tuwien.ac.at

Abstract. SPARQL entailment regimes are strongly influenced by the
big body of works on ontology-based query answering, notably in the area
of Description Logics (DLs). However, the semantics of query answering
under SPARQL entailment regimes is defined in a more naive and much
less expressive way than the certain answer semantics usually adopted
in database and DL literature. In this paper we introduce an intuitive
certain answer semantics also for SPARQL and show the feasibility of
this approach. For OWL 2 QL entailment, we develop algorithms for
the evaluation of an interesting fragment of SPARQL (the so-called well-
designed SPARQL). Exploiting these algorithms, we can show that the
complexity of neither query answering nor the most fundamental query
analysis tasks (such as query containment and equivalence testing) is
negatively affected by the presence of OWL 2 QL entailment under the
proposed semantics.

1 Introduction

In the recently released recommendation [7], the W3C has defined various
SPARQL entailment regimes to allow users to specify implicit knowledge about
the vocabulary in an RDF graph. The theoretical underpinning to the systems
for query answering under rich entailment regimes is provided by the big body
of work on ontology-based query answering, notably in the area of Description
Logics (DLs) [4]. However, the semantics of query answering under SPARQL
entailment regimes is defined in a more naive and much less expressive way than
the certain answer semantics usually adopted in the DL and database literature.

Example 1. Consider an RDF graph G containing a single triple (b, a,Prof) –
stating that b is a professor – and an ontology O containing the triples

(Prof, rdfs:sc, :b), (:b, a, owl:Restriction),

(:b, owl:onProperty, teaches), (:b, owl:someValuesFrom, owl:Thing).

? A longer version of this paper was presented at WWW 2015 [1].

12

– stating that every professor teaches somebody. Now consider the following
simple SPARQL query: SELECT ?x WHERE (?x, teaches, ?y).1 Following the
SPARQL entailment regimes standard [7], this query yields an empty result. �

This result is rather unintuitive: by the inclusion we know for certain that b
teaches somebody. However, the SPARQL entailment standard requires that all
values assigned to any variable must come from the RDF graph – thus treat-
ing distinguished variables (which are ultimately output) and non-distinguished
variables (which are eventually projected out) in the same way. In contrast, the
certain answer semantics retrieves all mappings on the distinguished variables
that allow to satisfy the query in every possible model of the database and the
ontology (yielding the certain answer µ = {?x→ b} in the above example).

The goal of this work is to introduce an intuitive certain answer semantics
also for SPARQL under OWL 2 QL entailment with similarly favorable results as
for CQ answering under DL-LiteR (which provides the theoretical underpinning
of the OWL 2 QL entailment regime).

The reason why for this purpose we cannot simply take over all the results
from CQ answering under DL-Lite is that SPARQL provides some crucial exten-
sions over CQs. One of them is the OPTIONAL operator (henceforth referred
to as OPT operator, for short). It allows the user to retrieve partial solutions in
cases where no match for the complete query can be found, instead of failing to
provide any solution. Observe that these queries are no longer monotone. Thus,
the usual certain answer semantics (i.e., something is a certain answer if it is
present in every model) turns out to be unsatisfactory:

Example 2. Consider the SPARQL query: SELECT
?x, ?z WHERE (?x, teaches, ?y) OPT (?y, knows, ?z) over the graph
G = {(b, teaches, c)} and empty ontology O. The query yields a unique
solution µ = {?x→ b}. Clearly, also the extended graph G′ = G∪{(c, knows, d)}
is a model of (G,O). But in G′, µ is no longer a solution since µ can be extended
to solution µ′ = {?x → b, ?z → d}. Hence, there exists no mapping which is a
solution in every possible model of (G,O). �

In this paper, we discuss further problems with a literal adoption of a certain
answer semantics in the presence of the OPT operator, and propose a suitable
modified definition for the class of well-designed SPARQL queries [11]. This
modified semantics also requires an adaptation and extension of the known query
answering algorithms for DL-Lite. We present two such modified algorithms for
query evaluation. Finally, we shall show that the additional expressive power
due to the certain answers comes without an increase of the complexity.

Related Work. For our findings the following work is most relevant to us:
the semantics of SPARQL was investigated in [3], which also introduces weakly-
monotone queries, i.e. well-designed SPARQL. The semantics for SPARQL over

1 Following [11], we use a more algebraic style notation, denoting triples in parentheses
with comma-separated components, rather than the blank-separated turtle notation.

Towards Reconciling SPARQL and Certain Answers (Extended Abstract)

13

OWL ontologies is standardized by the World Wide Web consortium in [7].
Our two algorithms are based upon the standard rewriting algorithm for DL-
Lite [5] and a more advanced algorithm for the DL Horn-SHIQ [6]. There is a
huge body of results on CQ answering under different DLs (cf. [5, 6, 10, 12]). For
SPARQL recent work [8] presents a stronger semantics, where entire mappings
are discarded, whose possible extensions to optional subqueries would imply
inconsistencies in the knowledge base. In [2], the authors describe a rewriting of
SPARQL query answering under OWL 2 QL into Datalog±. A slight modification
allows them to remove the active domain semantics of variables, however this
only applies to variables occuring in a single BGP. Libkin [9] also criticizes the
standard notion of certain answers in case of non-monotone queries. Similar to
his suggestion to use the greatest lower bounds in terms of informativeness, our
approach chooses the most informative solutions as certain answers.

2 SPARQL and OWL 2 QL

OWL 2 QL is based on DL-LiteR, a lightweight description logic. Its funda-
mental building blocks are constants c, atomic concepts A and atomic roles R,
which are countably infinite and mutually disjoint subsets of a set U of URIs.
From these we can build basic roles R and R−, and basic concepts B and ∃Q,
where Q is a basic role. Using the above, DL-LiteR allows one to express the
following kind of statements: Membership assertions (c, a, B) or (c,Q, c′), con-
cept inclusions (B1, rdfs:sc, B2), role inclusions (Q1, rdfs:sp, Q2) as well as
concept and role disjointness (where c, c′ are constants and Bi, Qi are basic
concepts resp. basic roles). In the following, an ontology O is any set of such
expressions, excluding membership assertions, which we assume to be part of
the RDF graph. A knowledge base (KB) G = (G,O) consists of an RDF graph
G and an ontology O.

The basic building block of SPARQL queries are triple patterns (s, p, o) ∈
(U ∪ V)3, where V is a set of variables. In this work we only consider triple
patterns of the form (?x, a, B) or (?x,Q, ?y) where B (Q) is a basic concept
(role). More complex graph patterns are built from triple patterns via operators
like e.g. AND, OPT, or UNION. Here, we consider a SPARQL query to be a
graph pattern, possibly extended by top-level projection. Given a graph pattern
P , a set X ⊆ V of variables occurring in P and an RDF graph G, the answer
J(P,X)KG to P , projected to X , over G is a set of partial mappings from X to U.
We say a mapping µ1 is subsumed by another mapping µ2, denoted by µ1 v µ2,
if dom(µ1) ⊆ dom(µ2) and µ1(?x) = µ2(?x) for all ?x ∈ dom(µ1), where dom(µi)
denotes the set of variables the mapping µi is defined on.

By imposing certain restrictions on the occurrence of variables, the fragment
of well-designed SPARQL (wdSPARQL) was introduced in [11]. It possesses sev-
eral desirable properties, like coNP-completeness of query evaluation. Of impor-
tance for our work is that these queries are weakly-monotone [3]: If µ ∈ J(P,X)KG,
then for every RDF graphG′ withG ⊆ G′, there exists µ′ ∈ J(P,X)KG′ s.t. µ v µ′
(i.e., while µ need not be a solution over G′, it can be extended to one).

Towards Reconciling SPARQL and Certain Answers (Extended Abstract)

14

3 Certain Answers of well-designed SPARQL

Before providing our definition of certain answers, we need to introduce two
additional notions. Let P be a well-designed graph pattern. Following [11], we
say that P ′ is a reduction of P (denoted as P ′ E P) if P ′ can be constructed
from P by replacing in P sub-patterns of the form (P1 OPT P2) by P1. Second,
for a mapping µ and some property A, we shall say that µ is v-maximal w.r.t.
A if µ satisfies A, and there is no µ′ such that µ v µ′, µ′ 6v µ, and µ′ satisfies A.

Definition 1. Let G = (G,O) be a KB and Q = (P,X) a well-designed query.
A mapping µ is a certain answer to Q over G if it is a v-maximal mapping s.t.
(1) µ v JQKG′ for every model G′ of G, and (2) vars(P ′)∩X = dom(µ) for some
P ′ E P . We denote by cert(P,X ,G) the set of all certain answers to Q over G.
The reason for restricting the set of certain answers to v-maximal mappings is
that queries with projection and/or UNION may have “subsumed” solutions,
i.e. solutions s.t. also some proper extension is a solution. But then – with set
semantics – we cannot recognize the reason why some subsumed solution is
possibly not a solution in some possible world, as illustrated in Example 3. Since
in our first step towards reconciling SPARQL and certain answers we decide to
stick to set semantics, we allow only “maximal” solutions as certain answers.

Example 3. Consider the following query SELECT ?x, ?z WHERE
(?x, teaches, ?y) OPT (?y, knows, ?z) over the graph G =
{(a, teaches, b), (b, knows, c), (a, teaches, d)} and empty ontology O. As possible
models of (G,O) we have all graphs containing G. Hence, µ = {?x→ a, ?z → c}
and µ′ = {?x → a} (?y is bound to d) are both answers to G and can be
extended to solutions in every possible model.

Next consider G′ = {(a, teaches, b), (b, knows, c)}. If we take as certain an-
swers all mappings that can be extended to some solution in every possible
model, then µ′ from above is still a certain answer. �

Property (2) in the definition of certain answers ensures that the domain of
such an answer adheres to the structure of nested OPTs in the query. However,
we can show that this property need not be considered during the computation of
the certain answers, but can be enforced in a simple post-processing step. We call
such answers that satisfy Definition 1 except property (2) certain pre-answers,
and use certp(P,X ,G) to denote the set of all certain pre-answers. The same is
also true for projection, which can also be performed in a simple post-processing
step. Thus, it suffices to compute certp(P,G), which can be done via universal
solutions (referred to as canonical model in the area of DLs) as follows.

Theorem 1. Let G = (G,O) be a KB and P a well-designed graph pattern.
Then, certp(P,G) = MAX(JP Kuniv(G)↓), where MAX(M) is the set of v-maximal
mappings inM ,M↓:= {µ↓| µ ∈M} (µ↓ is the restriction of µ to those variables
mapped to the active domain of G), and univ(G) is a universal solution of G.

However, computing the certain answers via a universal solution is not always
practical, e.g. the universal solution can be infinite. As a result, query rewriting

Towards Reconciling SPARQL and Certain Answers (Extended Abstract)

15

algorithms have been developed: These algorithms take the input query and
the ontology, and rewrite them into a single query that can be evaluated over
the input database without considering the ontology. By introducing several
adaptations and extensions of the rewriting-based CQ evaluation for DL-Lite
from [5], we develop two different approaches to answer well-designed SPARQL
queries under OWL 2 QL entailment.

The first one proceeds in a modular way by rewriting basic building blocks
of a SPARQL query (so-called BGPs) individually. It thus follows the general
philosophy of SPARQL entailment regimes. One possible disadvantage of this
modular approach is that it requires to maintain additional data structures to
ensure consistency when combining the partial solutions for different BGPs.
As a consequence, the complete algorithm has to be implemented from scratch
because the standard tools cannot handle these additional data structures.

The goal of the second approach is thus to make use of the standard technol-
ogy as much as possible. The idea is to transform the OWL 2 QL entailment un-
der our new semantics into SPARQL query evaluation under RDFS entailment,
for which strong tools are available. Unlike the first – modular – approach, this
rewriting proceeds in a holistic way, i.e. it always operates on the whole query.

Based on these rewriting algorithms, we analyze the complexity of query
answering and of several static query analyzing tasks such as query containment
and equivalence. We are able to show that the additional power of our new
semantics comes without additional costs in terms of complexity.

Acknowledgements

This work was supported by the Vienna Science and Technology Fund (WWTF),
project ICT12-15 and by the Austrian Science Fund (FWF): P25207-N23.

References

1. S. Ahmetaj, W. Fischl, R. Pichler, M. Šimkus, and S. Skritek. Towards reconciling
SPARQL and certain answers. In Proc. of WWW 2015, 2014.

2. M. Arenas, G. Gottlob, and A. Pieris. Expressive languages for querying the se-
mantic web. In Proc. of PODS 2014, pages 14–26. ACM, 2014.

3. M. Arenas and J. Pérez. Querying semantic web data with SPARQL. In Proc. of
PODS 2011, pages 305–316. ACM, 2011.

4. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J.Autom.Reasoning, 39(3):385–429, 2007.

6. T. Eiter, M. Ortiz, M. Šimkus, T. Tran, and G. Xiao. Query rewriting for Horn-
SHIQ plus rules. In Proc. of AAAI 2012. AAAI Press, 2012.

7. B. Glimm and C. Ogbuji. SPARQL 1.1 Entailment Regimes. W3C Recommenda-
tion, W3C, Mar. 2013. http://www.w3.org/TR/sparql11-entailment.

Towards Reconciling SPARQL and Certain Answers (Extended Abstract)

16

8. E. V. Kostylev and B. Cuenca Grau. On the semantics of SPARQL queries with
optional matching under entailment regimes. In Proc. of ISWC 2014, 2014.

9. L. Libkin. Incomplete data: what went wrong, and how to fix it. In Proc. of PODS
2014, pages 1–13. ACM, 2014.

10. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in ex-
pressive description logics via tableaux. Journal of Automated Reasoning, 41(1):61–
98, 2008.

11. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3), 2009.

12. R. Rosati. On conjunctive query answering in EL. In Proc. of DL 2007, 2007.

Towards Reconciling SPARQL and Certain Answers (Extended Abstract)

17

Efficient Evaluation of Well-designed Pattern Trees
(Extended Abstract)?

Pablo Barceló1, Reinhard Pichler2, and Sebastian Skritek2

1 Center for Semantic Web Research & Department of Computer Science, University of Chile
2 Faculty of Informatics, Vienna University of Technology

Abstract. Conjunctive queries (CQs) constitute the core of the query languages
for relational databases and also the most intensively studied querying mecha-
nism in the database theory community. But CQs suffer from a serious drawback
when dealing with incomplete information: If it is not possible to match the com-
plete query with the data, they return no answer at all. The semantic web there-
fore provides a formalism - known as well-designed pattern trees (WDPTs) - that
tackles this problem. In particular, WDPTs allow us to match patterns over the
data if available, but do not fail to give an answer otherwise. Here, we abstract
away the specifics of semantic web applications and study WDPTs over arbitrary
relational schemas. Since our language properly subsumes the class of CQs, the
evaluation problem associated with it is intractable. In this paper we identify nat-
ural structural properties of WDPTs that lead to tractability of various variants of
the evaluation problem.

1 Introduction

Conjunctive queries (CQs) constitute the core of the query languages for relational
databases and also the most intensively studied querying mechanism in the database
theory community. But CQs suffer from a serious drawback when dealing with incom-
plete information: they fail to provide an answer when the pattern described by the
query cannot be matched completely into the data.

The semantic web therefore provides formalisms to overcome this problem. One
simple such formalism corresponds to the {AND,OPT}-fragment of SPARQL – the
standard query language for RDF, the semantic web data model. The OPT-operator
extends the AND-operator by the possibility to return partial answers. I.e., instead of
returning no answer at all if not the complete query can be matched into the data, it al-
lows to match parts of the query. Pérez et al. noticed that a non-constrained interaction
of these two operators may lead to undesired behavior [11]. This motivated the defini-
tion of a better behaved syntactic restriction of the language, known as well-designed
{AND,OPT}-SPARQL. Queries in this fragment allow for a natural tree representa-
tion, called well-designed pattern trees (WDPTs) [10]. Here, we abstract away from the
specifics of RDF and define WDPTs over arbitrary relational schemas.

Despite the importance of WDPTs, very little is known about some fundamental
problems related to them. In particular, no in-depth study has been carried out regarding

? This is an extended abstract of [3]

18

efficient evaluation of these queries, a problem that permeates the literature on CQs and
its extensions [13, 8, 9]. The main goal of this work is to initiate a systematic study of
tractable fragments of WDPTs for the different variants of query evaluation that have
been studied in the literature. We explain this in more detail below.

2 Well-designed Pattern Trees

We define the class of WDPTs below. Intuitively, the nodes of a WDPT represent CQs
(called “basic graph patterns” in the semantic web context) while the nesting of optional
matching is represented by the tree structure of a WDPT.

A well-designed pattern tree (WDPT) over schema σ is a pair (T, λ, x̄), such that:

1. T is a rooted tree and λ maps each node t in T to a set of relational atoms over σ.
2. For every variable y mentioned in T , the set of nodes where y occurs is connected.
3. The tuple x̄ of distinct variables from T denotes the free variables of the WDPT.

We say that (T, λ, x̄) is projection-free, if x̄ contains all variables mentioned in T .
Assume p = (T, λ, x̄) is a WDPT over σ. We write r to denote the root of

T . Given a subtree T ′ of T rooted in r, we define qT ′ to be the CQ Ans(ȳ) ←
R1(v̄1), . . . , Rm(v̄m), where {R1(v̄1), . . . , Rm(v̄m)} =

⋃
t∈T ′ λ(t), and ȳ are all the

variables that are mentioned in T ′. That is, all variables in qT ′ appear free.
We define the semantics of WDPTs by naturally extending their interpretation un-

der semantic web vocabularies [10]. The intuition behind the semantics of a WDPT
(T, λ, x̄) is as follows. A mapping h is an answer to (T, λ) over a database D, if it is
“maximal” among the mappings that satisfy the patterns qT ′ defined by the subtrees T ′

of T . This means, h is a solution to qT ′ and there is no way to “extend” h to a solution
of some qT ′′ for some bigger subtree T ′′ of T . The evaluation of a WDPT (T, λ, x̄)
overD corresponds then to the projection over the variables in x̄ of the mappings h that
satisfy (T, λ) over D. We formalize this next: Let D be a database and p = (T, λ, x̄) a
WDPT over schema σ. Assume that dom(D) is the set of elements in the active domain
of D and X are the variables mentioned in p. Then:

– A homomorphism from p to D is a partial mapping h : X→ dom(D), for which it
is the case that there is a subtree T ′ of T rooted in r such that h is a homomorphism
from the CQ qT ′ to D.

– The homomorphism h is maximal if there is no homomorphism h′ from p to D
such that h′ extends h.

If h is a homomorphism from p = (T, λ, x̄) to D we denote by hx̄ the restriction
of h to the variables in x̄. The evaluation of p over D, denoted p(D), corresponds to all
mappings of the form hx̄, such that h is a maximal homomorphism from p to D.

Notice that WDPTs properly extend CQs. In fact, assume q(x̄) is a CQ of the form
Ans(x̄) ← R1(v̄1), . . . , Rm(v̄m). Then q(x̄) is equivalent to WDPT p = (T, λ, x̄),
where T consists of a single node r and λ(r) = {R1(v̄1), . . . , Rm(v̄m)}. In other
words, q(D) = p(D), for each database D.

Efficient Evaluation of Well-designed Pattern Trees (Extended Abstract)

19

3 Efficient evaluation of WDPTs

3.1 Evaluation of WDPTs:

We study the complexity of the evaluation problem EVAL(C) for different classes C of
WDPTs. This problem is formally defined as follows: Given a databaseD and a WDPT
p over σ, as well as a partial mapping h : X→ dom(D), where X is the set of variables
mentioned in p, is it the case that h belongs to p(D)?

The complexity of EVAL(C) has been studied for the case when C is the class Call
of all WDPTs or the class Cpf of projection-free WDPTs. In particular, EVAL(Call) is
ΣP

2 -complete [10] and EVAL(Cpf) is CONP-complete [11]. This raises the need for
understanding which classes of WDPTs can be evaluated in polynomial time.

Evaluation of WDPTs is defined in terms of CQ evaluation, which is an intractable
problem in general. Therefore, our goal of identifying tractable classes of WDPTs nat-
urally calls for a restriction of the classes of CQ patterns allowed in them. In particular,
there has been a flurry of activity around the topic of determining which classes of CQs
admit efficient evaluation that could be reused in our scenario [13, 8, 9]. These include
classes of bounded treewidth [6], hypertreewidth [9], etc. We concentrate on the first
two. From now on, we denote by TW(k) (resp., HW(k)), for k ≥ 1, the class of CQs
of treewidth (resp., hypertreewidth) at most k.

A condition that has been shown to help identifying relevant tractable fragments of
WDPTs is local tractability [10]. This refers to restricting the CQ defined by each node
in a WDPT to belong to a tractable class. Formally, let C be either TW(k) or HW(k),
for k ≥ 1. A WDPT (T, λ, x̄) is locally in C, if for each node t ∈ T such that λ(t) =
{R1(v̄1), . . . , Rm(v̄m)} the CQ Ans() ← R1(v̄1), . . . , Rm(v̄m) is in C. We write `-C
for the set of all WDPTs that are locally in C.

It is known that local tractability leads to tractability of evaluation for projection-
free WDPTs [10]. On the other hand, this result does not hold in the presence of pro-
jection, even when C is of bounded treewidth. Formally, EVAL(`-TW(k)) and EVAL(`-
HW(k)) are NP-complete for every k ≥ 1 [10].

This raises the question of which further restrictions on WDPTs are needed to
achieve tractability. Here we identify a natural such restriction, called bounded inter-
face. Intuitively, this restricts the number of variables shared between a node in a WDPT
and its children. Formally, a WDPT (T, λ, x̄) has c-bounded interface, for c ≥ 1, if for
each node t ∈ T with children t1, . . . , tk it is the case that the number of variables
that appear both in a relational atom in λ(t) and in a relational atom in λ(ti), for some
1 ≤ i ≤ k, is at most c. We denote by BI(c) the set of WDPTs of c-bounded interface.
Interestingly, similar restrictions on the number of variables shared by different atoms
of CQs have been recently applied for obtaining reasonable bounds for the problem of
containment of Datalog into unions of CQs [5]. One of our main results states that local
tractability and bounded interface yield tractability of WDPT evaluation:

Theorem 1. Let C be TW(k) or HW(k) and c ≥ 1. Then EVAL(`-C ∩ BI(c)) is in
PTIME.

Notice that CQs are a special case of WDPTs consisting of the root node only. Hence,
TW(k) ⊆ `-TW(k) ∩ BI(c) and HW(k) ⊆ `-HW(k) ∩ BI(c) hold for each c ≥ 1.

Efficient Evaluation of Well-designed Pattern Trees (Extended Abstract)

20

Therefore, Theorem 1 tells us that `-TW(k)∩BI(c) and `-HW(k)∩BI(c) define relevant
extensions of TW(k) and HW(k), respectively, that preserve tractability of evaluation.

3.2 Partial evaluation of WDPTs:

Given the nature of WDPTs, it is also interesting to check whether a mapping h is
a partial answer to the WDPT p over D [11, 1], i.e., whether h can be extended to
some answer h′ to p overD. This gives rise to the partial evaluation problem PARTIAL-
EVAL(C) for a class C of WDPTs defined as follows: Given a database D and a WDPT
p ∈ C over σ, as well as a partial mapping h : X→ U, where X is the set of variables
mentioned in p, does there exists some h′ ∈ p(D) such that h′ extends h?

If projection is allowed, then partial evaluation is NP-complete even under local
tractability, i.e., even for the classes `-TW(k) and `-HW(k), for each k ≥ 1 [10].

It is easy to modify the proof of Theorem 1 to show that adding bounded inter-
face to local tractability yields efficient partial evaluation; that is, PARTIAL-EVAL(`-
TW(k) ∩ BI(c)) and PARTIAL-EVAL(`-HW(k) ∩ BI(c)) are in PTIME. However, par-
tial evaluation is seemingly easier than exact evaluation. Hence, the question naturally
arises if tractability of partial evaluation of WDPTs can be ensured by a weaker condi-
tion. Indeed, we give a positive answer to this question below. This condition will be re-
ferred to as global tractability. Intuitively, it states that there is a bound on the treewidth
(resp., hypertreewidth) of the CQs defined by the different subtrees of a WDPT (T, λ, x̄)
rooted in r. Formally, let C be TW(k) or HW(k), for k ≥ 1. A WDPT (T, λ, x̄) is glob-
ally in C, if for each subtree T ′ of T rooted in r it is the case that the CQ qT ′ is in C.
We denote by g-C the set of all WDPTs that are globally in C.

The following proposition formally states that global tractability is a strictly weaker
condition than the conjunction of local tractability and bounded interface.

Proposition 1. 1. Let k, c ≥ 1. Then `-TW(k) ∩ BI(c) ⊆ g-TW(k + 2c) and `-
HW(k) ∩ BI(c) ⊆ g-HW(k + 2c).

2. For every k ≥ 1 there is a family Ck of WDPTs in g-TW(k) (resp., in g-HW(k))
such that Ck 6⊆ BI(c), for each c ≥ 1.

We can now formally state that global tractability leads to tractability of the partial
evaluation problem for WDPTs:

Theorem 2. PARTIAL-EVAL(g-TW(k)) and PARTIAL-EVAL(g-HW(k)) are in PTIME
for every k ≥ 1.

It remains to answer the question if global tractability also suffices to ensure
tractability of (exact) evaluation for WDPTs. It turns out that this is not the case.

Proposition 2. EVAL(g-TW(k)) and EVAL(g-HW(k)) are NP-complete for all k ≥ 1.

3.3 Semantics based on maximal mappings:

The semantics of projection-free WDPTs is only based on maximal mappings, i.e., map-
pings that are not subsumed by any other mapping in the answer. This is no longer the

Efficient Evaluation of Well-designed Pattern Trees (Extended Abstract)

21

case in the presence of projection [10]. Recent work on query answering for SPARQL
under entailment regimes has established the need for a semantics for WDPTs that is
uniquely based on maximal mappings [1]. This semantics is formalized as follows. As-
sume D is a database and p is a WDPT over σ. The evaluation of p over D under
maximal mappings, denoted pm(D), corresponds to the restriction of p(D) to those
mappings h ∈ p(D) that are not extended by any other mapping h′ ∈ p(D). This natu-
rally leads to the decision problem MAX-EVAL(C) defined as follows: Given a database
D and a WDPT p ∈ C over σ, as well as a partial mapping h : X→ U, where X is the
set of variables mentioned in p, is h ∈ pm(D)?

It follows from [1] that MAX-EVAL(C) is clearly intractable for the class C of all
WDPTs. Analogously to PARTIAL-EVAL, local tractability is not sufficient to ensure
tractability of MAX-EVAL:

Proposition 3. For every k ≥ 1 the problems MAX-EVAL(`-TW(k)) and MAX-
EVAL(`-HW(k)) are NP-hard.

To obtain tractability in this case it is however sufficient to impose global tractability,
which is exactly the same condition that yields tractability of partial evaluation for
WDPTs (as stated in Theorem 2):

Theorem 3. MAX-EVAL(g-TW(k)) and MAX-EVAL(g-HW(k)) are in PTIME for ev-
ery k ≥ 1.

4 Further Results

Taking these results as a starting point, we were also able to show that in several cases
the complexity of static analysis tasks, like deciding containment and equivalence [12],
decreases. Next, we also studied the problem of testing if some WDPT is equivalent to
one from a tractable class (cf. e.g. [2, 4, 7]), and showed that evaluating such queries
is fixed-parameter tractable w.r.t. the size of the query. Finally, we also studied the
problem of approximating WDPTs by one from a tractable class (a problem that is now
well-understood in the context of CQs [2]).

Acknowledgments. The work of Pablo Barceló is funded by the Millenium Nucleus
Center for Semantic Web Research under grant NC120004. Part of this work was done
while Reinhard Pichler and Sebastian Skritek were visiting Pablo Barceló on invitation
by the Millenium Nucleus Center for Semantic Web Research. Reinhard Pichler and Se-
bastian Skritek were supported by the Vienna Science and Technology Fund (WWTF)
through project ICT12-015 and by the Austrian Science Fund (FWF):P25207-N23.

References

1. S. Ahmetaj, W. Fischl, R. Pichler, M. Simkus, and S. Skritek. Towards reconciling sparql
and certain answers. In WWW’15, 2015. Accepted for publication.

2. P. Barceló, L. Libkin, and M. Romero. Efficient approximations of conjunctive queries.
SIAM J. Comput., 43(3):1085–1130, 2014.

Efficient Evaluation of Well-designed Pattern Trees (Extended Abstract)

22

3. P. Barcelo, R. Pichler, and S. Skritek. Efficient evaluation and approximation of well-
designed pattern trees. In PODS’15, 2015. Accepted for publication.

4. P. Barceló, M. Romero, and M. Y. Vardi. Semantic acyclicity on graph databases. In
PODS’13, pages 237–248, 2013.

5. P. Barceló, M. Romero, and M. Y. Vardi. Does query evaluation tractability help query
containment? In PODS’14, pages 188–199, 2014.

6. C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theor. Comput.
Sci., 239(2):211–229, 2000.

7. V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction, bounded treewidth, and
finite-variable logics. In CP’02, pages 310–326, 2002.

8. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J.
ACM, 48(3):431–498, 2001.

9. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. J.
Comput. Syst. Sci., 64(3):579–627, 2002.

10. A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static analysis and optimization of semantic
web queries. ACM Trans. Database Syst., 38(4):25, 2013.

11. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM Trans.
Database Syst., 34(3), 2009.

12. R. Pichler and S. Skritek. Containment and equivalence of well-designed SPARQL. In
PODS’14, pages 39–50, 2014.

13. M. Yannakakis. Algorithms for acyclic database schemes. In VLDB’81, pages 82–94, 1981.

Efficient Evaluation of Well-designed Pattern Trees (Extended Abstract)

23

Approximation Algorithms for Schema-Mapping
Discovery from Data Examples

Balder ten Cate2,1, Phokion G. Kolaitis1,3, Kun Qian1, and Wang-Chiew Tan1

University of California Santa Cruz1

LogicBlox, Inc.2

IBM Research - Almaden3

{btencate,kolaitis,kunqian,tan}@soe.ucsc.edu

Abstract. In recent years, data examples have been at the core of several
different approaches to schema-mapping design. In particular, Gottlob
and Senellart introduced a framework for schema-mapping discovery from
a single data example, in which the derivation of a schema mapping is cast
as an optimization problem. Our goal is to refine and study this framework
in more depth. Among other results, we design a polynomial-time log(n)-
approximation algorithm for computing optimal schema mappings from a
given data example, for a restricted class of schema mappings; moreover,
we show that this approximation ratio cannot be improved.

Keywords: Schema Mappings, Data Examples, Approximation

1 Introduction

Schema mappings between a source schema and a target schema constitute the
essential building blocks for the specification of data exchange and data integration
tasks [6,15,16]. However, deriving a schema mapping between two schemas can be
an involved and time-consuming process. Most commercial systems (e.g., Altova
Mapforce and the Stylus Studio) and research prototypes derive schema mappings
automatically using correspondences between the elements of two schemas, as
specified by a user through a graphical interface [7, 13,18]. A shortcoming of this
approach is that multiple non-equivalent schema mappings may be compatible
with the same set of correspondences. More recently, data examples have been
used as the basis of alternative approaches to schema-mapping design.

Data examples have been used in several different areas of data management
(e.g., see [11,17,19,21]). In the context of schema-mapping design, a data example
is a pair (I, J) consisting of a source instance and a target instance. In [2, 22],
the goal is, given a schema mapping, to produce meaningful data examples, that
illustrate the schema mapping at hand. In [1], the goal is to investigate whether a
given schema mapping can be uniquely characterized by a finite set of examples.
In the reverse direction, there has been work on deriving a schema mapping that
fits one or more given data examples [3, 8]

Gottlob and Senellart [12] introduced and studied a cost model for deriving a
schema mapping from a ground data example, i.e., a data example consisting of

24

instances without nulls. Ideally, given a ground data example (I, J), one would
like to find a GLAV schema mapping M that is valid (meaning that (I, J)
satisfied the constraints of M) and fully explaining for (I, J) (meaning that
every fact in J belongs to every target instance K such that (I,K) satisfies
the constraints of M). However, such a schema mapping need not exist. For
this reason, Gottlob and Senellart developed a framework that uses two schema-
mapping languages: the standard language of GLAV constraints and an extended
language GLAV=,6= of repairs that augments, in precise way, GLAV constraints
with equalities, inequalities, and ground facts. The cost of a GLAV schema
mapping M w.r.t. a data example (I, J) is the minimum of the sizes of valid
and fully explaining schema mappings M′ obtained from M via a sequence of
operations that transform M to a schema mapping in the extended language.
Given a ground data example (I, J), the goal then is to find an optimal GLAV
schema mapping for (I, J), that is to say, a GLAV schema mapping whose cost
w.r.t. (I, J) is as small as possible. Gottlob and Senellart [12] investigated several
different decision problems arising naturally in the context of the above framework,
including the Existence-Cost problem: given a ground data example (I, J)
and a positive integer k, is there a GLAV schema mapping M whose cost w.r.t.
(I, J) is at most k? In [12], it is shown that the Existence-Cost problem is
NP-hard, and that it belongs to the third level Σp

3 of the polynomial hierarchy.

Here, we contribute to the study of schema-mapping discovery from data
examples by refining and investigating the Gottlob-Senellart framework in more
depth. We refine the framework by considering several different schema-mapping
languages. At the base level, we consider sublanguages L of the standard language
of GLAV constraints, such as the languages of GAV constraints, LAV constraints,
and SH-LAV (single-head LAV) constraints. For each of these schema-mapping
languages L, we consider two corresponding repair languages, namely, L=,6= and
L=; the former extends L with equalities, inequalities, and ground facts (as
in [12]), while the latter extends L with equalities and ground facts only.

The main algorithmic problem in the Gottlob-Senellart framework is to
compute an optimal schema mapping for a given ground data example. The
tractability of this optimization problem was left open in [12] (the hardness
of the Existence-Cost problem does not imply hardness of the optimization
problem, because computing the cost of a given schema mapping for a given
ground data example is itself a hard problem). We show that this optimization
problem is indeed hard for GLAV mappings, w.r.t. both GLAV=-repair and
GLAV=,6=-repairs. More precisely, unless RP = NP, there is no polynomial-time
algorithm that, given a ground data example, computes a GLAV mapping whose
cost is bounded by some fixed polynomial in the cost of the optimal GLAV
mapping. Moreover, an analogous result holds for GAV mappings.

After this, we design an approximation algorithm for computing near optimal
schema mappings for the case of SH-LAV schema mappings. Specifically, we
present a polynomial-time O(log n)-approximation algorithm that, given a data
example (I, J), produces a SH-LAV mappingM together with a SH-LAV=-repair
M′ of M for (I, J), whose cost is within a logarithmic factor of the cost of the

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

25

optimal SH-LAV mapping for (I, J). Finally, we establish that this is a best
possible approximation result.

2 Preliminaries

Schemas and Instances An instance over a schema R = {R1, . . . , Rk} can be
identified with the finite set of all facts Ri(a1, . . . , am), such that Ri is a relation
symbol of R and (a1, . . . , am) is a tuple that belongs to the relation RI

i of I
interpreting Ri. Database instances contain values that are either constants or
nulls. A ground instance is an instance such all of its facts are ground. i.e., they
consist entirely of constants. In this paper, we will primarily consider ground
instances, and we will, at times, drop the adjective “ground”. We write adom(I)
to denote the active domain of an instance I.

Schema Mappings Let S,T be two relational schemas, called the source schema
and the target schema. A schema mapping is a triple M = (S,T, Σ) consisting
of a source schema S, a target schema T, and a set Σ of constraints that are
typically expressed in some fragment of first-order logic.

A GLAV (Global-and-Local-As-View) constraint, also known as a tuple-
generating dependency (tgd), is a FO-formula of the form ∀x(ϕ(x)→ ∃yψ(x,y)),
where ϕ(x) is a conjunction of atoms over S and ψ(x,y) is a conjunction of atoms
over T. We will often drop the universal quantifiers when writing constraints.

The following are two important special cases of GLAV constraints: (1) A GAV
(Global-As-View) constraint is a GLAV constraint whose right-hand side is a
single atom without existential quantifiers, i.e., it is of the form ∀x(ϕ(x)→ T (x)).
(2) A LAV (Local-As-View) constraint is GLAV constraint whose left-hand side
is a single atom, i.e. it is of the form ∀x(S(x) → ∃yψ(x,y)). There is another
special case of LAV constraints, called SH-LAV (Single-Head LAV) constraints.
A SH-LAV constraint is a GLAV constraint in which both the left-hand side and
right-hand side are a single atom, i.e., it is of the form ∀x(S(x) → ∃yT (x,y)).
In fact every DL-lite concept subsumption axiom is equivalent to a SH-LAV
constraint [5].

Example 1. Geo(x, y) → City(y) is a LAV constraint that is also a GAV con-
straint, and hence, in particular, is a SH-LAV contraint; Geo(x, y)→ ∃zCity(z)
is a SH-LAV constraint that is not a GAV constraint. Finally, the constraint
Geo(x, y)∧Geo(x, z)→ City(y) is a GAV constraint that is not a LAV constraint.

A GLAV schema mapping is a schema mappingM = (S,T, Σ), where Σ is a
finite set of GLAV constraints. The notions of GAV, LAV, and SH-LAV schema
mappings are defined in an analogous way.

Data Examples Let S be a source schema and T be a target schema. A data
example is a pair (I, J) such that I is a source instance and J is a target instance.
A data example (I, J) is ground if both I and J are ground instances. The size
||(I, J)|| of a data example (I, J) is the total number of facts in I and J .

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

26

Table 1. Data Example (I, J)

Source Instance
Geo(US, San Francisco) Geo(Calif, San Jose)
Geo(US, Los Angeles) Geo(Calif, San Francisco)
Geo(US, Miami) Geo(Calif, Los Angeles)
Geo(US, Boston) Geo(Calif, San Diego)
Geo(US, New York) Geo(Canada, Vancouver)
Geo(NorthAm, Boston) Geo(Germany, Berlin)
Geo(NorthAm, Toronto) Geo(Japan, Tokyo)
Geo(NorthAm, New York) Geo(China, Beijing)
Geo(NorthAm, Miami) Geo(France, Paris)

Geo(UK, London)

Target Instance
City(San Francisco)
City(San Jose)
City(San Diego)
City(Los Angeles)
City(Boston)
City(Toronto)
City(New York)
City(Miami)

Let M = (S,T, Σ) be a schema mapping, and let (I, J) be a ground data
example. We say that M is valid for (I, J) if (I, J) |= Σ, that is, (I, J) ∈ E
satisfies all constraints in Σ. We say that M explains a fact f of J with respect
to I if, for all target instances K such that (I,K) |= Σ, we have that f ∈ K.
Finally, we say thatM is fully explaining for a data example (I, J) ifM explains
each fact of J with respect to I. We will use the expression vfe as a shorthand
for “valid and fully explaining”.

In [1, 3], a schema mapping M was said to fit a data example (I, J) if J is
a universal solution of I w.r.t. M, i.e., J is a solution for I w.r.t. M such that
for every solution J ′ for I, there is a homomorphism from J to J ′ that maps
constants to themselves (see [10] for more on universal solutions). It is not hard
to verify that if (I, J) is a ground data example and M is a schema mapping,
then M fits (I, J) if and only if M is vfe for (I, J).

Example 2. LetM = (S, T,Σ), where S = {Geo(area, city)}, T = {City(cityName)},
Σ = {Geo(x, y)→ City(y)}. Consider the data examples (Ii, Ji), i = 1, 2, 3, where

I1 : Geo(CA, San Francisco),Geo(CA,San Jose),Geo(US,Boston),Geo(US, Los Angeles)
J1 : City(San Francisco),City(San Jose)

I2 : Geo(CA, San Francisco)
J2 : City(San Francisco),City(New York)

I3 : Geo(CA, San Francisco),Geo(US,New York)
J3 : City(San Francisco),City(New York)

In these data examples, since I1 contains Geo(US,Boston), but City(Boston)
is not in J1, we have that M is not valid for (I1, J1); moreover, M is valid for
(I2, J2), but it fails to explain the target fact City(New York); however, M is
valid and fully explaining for (I3, J3). Using a simple automorphism argument, it
is easy to see there is no valid and fully explaining GLAV schema mapping for
(I1, J1). Moreover, since J2 contains a constant that does not appear in the I2,
there is no valid and fully explaining GLAV schema mapping for (I2, J2).

3 Repair Framework and Cost Model

In [12], the language of GLAV constraints was used as the “base language”,
and an extended “repair language” was introduced; the repair language includes
equalities, inequalities, and ground facts, and is used for “repairing” GLAV

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

27

schema mappings, so that they are valid and fully explaining for a given ground
data example. We refine this framework by considering different sublanguages of
the language of GLAV constraints, as well different repair languages.

Definition 1. Fix a schema-mapping language L (e.g., GLAV). An L=,6=-constraint
is a formula θ of the form ∀x(ϕ(x) ∧ α(x)→ ∃y(ψ(x,y) ∧ β(x,y))), where

1. ∀x(ϕ(x)→ ∃yψ(x,y)) is an L-constraint;

2. α(x) is a possibly empty conjunction of formulas of the form x ∼ c, where
∼∈ {=, 6=}, x ∈ x, and c is a constant;

3. β(x,y) is a possibly empty conjunction of formulas of the form (x1 = c1 ∧ . . . ∧ xn = cn)→
y = c, where each xi ∈ x, y ∈ y, and c1, . . . , cn, c are constants.

A L=-constraint is a L=,6=-constraint with no conjuncts of the form x 6= c in α.

We will write L to denote a schema-mapping language (e.g., GLAV), and we
will write L=,6= and L= to denote the corresponding repair language (with and
without inequalities). We will use L∗ to refer to either L=,6= or L=. We say that
the formula θ as above is a L∗-repair of the constraint ∀x(ϕ(x)→ ∃yψ(x,y)).

Definition 2. An L∗-repair of an L-schema mapping M = (S,T, Σ) is an L∗-
schema mapping M′ = (S,T, Σ′) such that each ψ ∈ Σ′ is either a ground fact
or is an L∗-repair of some φ ∈ Σ, and, for each φ ∈ Σ, at least one L∗-repair of
φ belongs to Σ′. We write repairL∗(M) to denote the set of all L∗-repairs of M.

The above definition differs from that of repairs in [12] in that we allowM′ to
contain multiple repairs of the same L-constraint from M, whereas, in [12], the
L∗-constraints ofM′ stand in a one-to-one correspondence with the L-constraints
of M. There are cases in which a L-constraint may need to be repaired more
than once with, say, different combinations of equalities and inequalities. In such
cases, the optimal schema mapping in [12] may contain multiple copies of the
same GLAV constraint or multiple GLAV constraints that are identical up to a
renaming of variables (see Example 4). Our definition addresses this shortcoming.

Example 3. Recall that the data example (I1, J1) in Example 2 had no vfe GLAV
schema mapping. Consider the following GLAV =,6= schema mappings:

• M1={Geo(x, y) ∧ (x = CA)→ City(y)}
• M2={Geo(x, y)→ ∃z City(z) ∧ (y = San Jose→ z = San Jose)
∧ (y = San Francisco→ z = San Francisco)}

• M3={City(San Francisco),City(San Jose)}
• M4={Geo(x, y) ∧ (x 6= US)→ City(y)}
• M5={Geo(x, y) ∧ (x = moon)→ City(x)}
M1,M2,M3, andM4 are vfe for (I1, J1), but in different ways:M1 consists of
a repair of Geo(x, y)→ City(y) that uses an equality to restrict the constraint
to source facts whose first attribute has value CA; M2 consists of a repair of
Geo(x, y)→ ∃zCity(z) that uses two conditional equalities to explicitly specify
a value of z depending on the value of y; M3 is a repair of the empty schema

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

28

mapping, and it lists all the ground facts of J1; finally, M4 consists of a repair
of the same constraint as M1 that, instead, uses an inequality.
M5 is valid, but does not explain (I1, J1). It uses the equality (x = moon),

where moon is outside the active domain of (I1, J1). We informally say that this
equality cancels M5 (with respect to the data example (I1, J1)).

Example 4. We illustrate the need for multiple repairs of the same constraint.
For the data example (I, J) in Table 1, consider the GLAV schema mappings

– M1 = {Geo(x, y)→ City(y)},
– M2 = {Geo(x1, y1)→ City(y1),Geo(x2, y2)→ City(y2)}

and consider the GLAV=, 6=-schema mapping Mr specified by the constraint
Geo(x, y) ∧ (x = Calif)→ City(y), Geo(x, y) ∧ (x = NorthAm)→ City(y).

Note that Mr is vfe for (I, J). Note also that M2 consists of two renamings
of the GLAV constraints ofM. By our definition of repair,Mr is a repair ofM1

and also of M2. However, according to the definition of repair in [12], Mr does
not qualify as a repair of M1, and, indeed, one of the smallest repairs of M1 is
obtained by adding an equality (x = US) to the left-hand side of the constraint
in M1 together with adding three ground facts: City(San Jose), City(Toronto),
and City(San Diego). Since the cost of a schema mapping w.r.t. a data example
will be measured by the size of the smallest repair, we have that, under the cost
model of [12], M2 has a lower cost than M1, which is counterintuitive.

As pointed out in [12], if (I, J) is a ground data example, then there is always
a vfe GLAV=,6= schema mapping for (I, J). In fact, trivially, the collection of
all the ground facts in J is a vfe schema mapping for (I, J). This shows that,
for all schema-mapping languages L considered her, every ground data example
has a L= repair. Indeed, every L-schema mapping has a L=-repair that is vfe
(obtained by cancelling all constraints and adding all ground target facts).

The cost model introduced in [12] focuses on finding a schema mapping in
the base language, such that the cost of transforming it to a vfe schema mapping
in the repair language is as small as possible.

Definition 3. [12] The size of a first-order formula ϕ, denoted size(ϕ), is the
number of occurrences of variables and constants in ϕ (each variable and constant
is counted as many times as it occurs in ϕ); occurrences of variables as arguments
of quantifiers do not count. A ground fact R(a1, . . . , an), for present purposes,
is viewed as shorthand for ∃x1, . . . , xnR(x1, . . . , xn) ∧ x1 = a1 ∧ · · · ∧ xn = an;
therefore, we consider its size to be 3n. The size of a repair of a schema mapping
is the sum of the sizes of the constraints and the ground facts of the repair.

Note that the motivation for the above treatment of ground facts is to discourage
the use of ground facts in repairing schema mappings.

Definition 4. The cost of an L-schema mapping M for a data example (I, J)
and a repair language L∗, denoted by cost(M, (I, J),L∗), is the smallest size of
a vfe L∗-repair of M for (I, J). An L-schema mapping M is L∗-optimal for
(I, J) if cost(M, (I, J),L∗) is the minimum of the quantities cost(M′, (I, J),L∗),
where M′ ranges over all L-schema mappings.

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

29

Example 5. We continue from Example 3 by considering the schema mappings
Ma = {Geo(x, y)→ City(y)}, Mb = {Geo(x, y)→ ∃z City(z)}, and Mc = ∅.

Both M1 and M5 are vfe repairs of Ma for (I1, J1) and both have size 5;
it is easy to verify that no other vfe repairs of Ma has size less than 5, hence
cost(Ma, {(I1, J1)}, GLAV =, 6=) = 5. The repair M3 is the only vfe repair of
Mc, and cost(Mc, {(I1, J1)}, GLAV =,6=) = 6. Moreover, M2 is a vfe repair of
Mb and size(M2) = 11, but the cost of Mb is not 11. To see this, consider the
schema mapping M′2 specified by the constraint

M′
2 = {Geo(x, y)→ ∃z City(z) ∧ (z = San Jose),City(San Francisco)}.

Clearly, M′2 is also a vfe repair of Mb for (I1, J1) and has size of 8.

The notion of an optimal schema mapping in Definition 4 differs from the
corresponding definition in [12] in that we consider a slightly different notion
of repair, as explained in the remarks following Definition 2. A consequence of
this is that an optimal schema mapping in our sense has cost less than or equal
than the cost of an optimal schema mapping in the sense of [12]. However, the
complexity-theoretic results concerning the various algorithmic problems do not
depend on this, and, indeed, the proofs are not affected by this change.

4 Hardness of Computing Optimal Schema Mappings

As we have seen, the main characteristic of the framework introduced in [12] and
refined here is to cast schema-mapping discovery as an optimization problem:
given a finite set of ground data examples, produce a schema mapping of minimum
cost. Two different decision problems naturally arise in this setting.

Definition 5. The decision problem CostL∗ asks: given a ground data example
(I, J), a L-schema mappingM, and an integer k ≥ 0, is cost(M, (I, J),L∗) ≤ k?

Definition 6. The decision problem Existence-CostL∗ asks: given a ground
data example (I, J) and an integer k ≥ 0, does there exists a L-schema mapping
M such that cost(M, (I, J),L∗) ≤ k?

In these two problems, the source schema and the target schema are part
of the input. One can also consider the variants of these problems, such as
Existence-CostL∗(S,T), obtained by fixing the source and target schemas.

The preceding problems were introduced and studied in [12] when the base
language L is GLAV or GAV, and the repair language is L=,6=. It was shown there
that CostGLAV=, 6= belongs to Σp

3 (the third level of the polynomial hierarchy) and
is Πp

2 -hard, while CostGAV=, 6= belongs to Σp
2 and is DP-hard. It was also shown

that Existence-CostGLAV=, 6= belongs to Σp
3 and that Existence-CostGAV=, 6=

belongs to Σp
2 ; moreover, both these problems were shown to be NP-hard.1

We show that the problems Cost and Existence-Cost are NP-complete for
the languages of LAV schema mappings and SH-LAV schema mappings. Neither
of these schema-mapping languages was considered in [12].

1 The NP-hardness proof given in [12] is flawed. The authors have shared with us, in
private communication, a correct NP-hardness proof.

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

30

Theorem 1. Assume that L∗ ∈ {LAV=,6=,LAV=,SH-LAV=,6=,SH-LAV=}. Then
the problems CostL∗ and Existence-CostL∗ are NP-complete. In fact, there
are fixed schemas S and T for which these problems are NP-complete.

Theorem 1 is established via a reduction from the Set-Cover problem. Next,
we show that the problem of computing optimal GLAV schema mappings is
not solvable in polynomial time, unless RP=NP. Note that this does not follow
directly from the Πp

2 -hardness of Existence-CostGLAV =, 6= established in [12],
because CostGLAV =, 6= is DP-hard. The same holds true for GAV mappings.
Actually, we show a stronger result: unless RP = NP, there is no polynomial-time
algorithm that, given a ground data example (I, J), computes a GLAV schema
mapping whose cost is bounded by a polynomial in the cost of the optimal GLAV
schema mapping; moreover, the same holds true for GAV schema mappings.

Theorem 2. Assume that L ∈ {GLAV,GAV } and let p(x) be a polynomial. Un-
less RP = NP, there is no polynomial-time algorithm that, given a ground data ex-
ample (I, J), computes a L-schema mappingM such that cost(M, (I, J),L=,6=) ≤
p(cost(Mopt, (I, J),L=,6=)), where Mopt is an L=,6=-optimal schema mapping for
(I, J). Moreover, the same holds true when L=,6= is replaced by L=. In fact, there
are fixed source and target schemas for which these results hold.

Theorem 2 also shows that the computational hardness is, to some extent,
robust under changes to the precise cost function. The proof is based on procedure
that transforms a ground data example (I, J) into another ground data example
(I ′, J ′), which, intuitively, contains many isomorphic copies of the original data
example (I, J), such that every near-optimal GLAV (GAV) schema mapping
for (I ′, J ′) corresponds to a fitting GLAV (GAV) schema mapping for (I, J) of
near-minimal size. This is combined with a hardness result for computing fitting
GAV schema mappings of near-minimal size, established in [8].

5 Approximation of Optimal Single-Head LAV Mappings

We now study the approximation properties of the following optimization problem:

Definition 7. The Optimal-RepairL∗(S,T) problem asks: given a ground data
example (I, J) with source schema S and target schema T, compute a minimal-size
valid and fully explaining L∗-schema mapping for (I, J) and L∗.

This problem is equivalent to the problem that asks to compute an optimal
L-schema mappingM together with a minimal-size L∗-repair ofM; in particular,
it contains, as a special case, the problem of computing an optimal L-schema
mapping for a given ground data example. This is so because, from a minimal-size
valid and fully explaining L∗-schema mapping, we can immediately extract an
optimal L-schema mapping by, simply by dropping all equalities, inequalities,
and ground facts. Therefore, it follows from Theorem 2 that (assuming RP 6= NP)
there is no polynomial-time algorithm that solves Optimal-RepairL∗ , when
L∗ ∈ {GLAV =, GLAV =,6=, GAV =, GAV =,6=}.

We establish a positive approximability result for SH-LAV= mappings.

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

31

Theorem 3. Fix a pair of schemas S,T. There is a polynomial-time H(n)-
approximation algorithm for Optimal-RepairSH-LAV=(S,T), where H(n) =∑n

i=1
1
i is the n-th harmonic number.

Our approximation algorithm is obtained by establishing a close connection
between Set-Cover and Optimal-RepairL∗ . It is known that, although the
Set-Cover problem is not constant-approximable, it is H(n)-approximable,
where n is the size of the universe. Moreover, this approximation ratio is known to
be asymptotically optimal: unless P = NP, Set-Cover can only be approximated
up to a factor of c ln(n), where c is a constant (specified in [4, 14]) and n is the
size of universe (recall that H(n) = O(lnn)). Our approximation algorithm is
largely based on the approximation algorithm of Weighted Set-Cover [9].
Here, we can think of each constraint as describing a set of facts, namely, the set
of target facts that it explains, and the size of the constraint is the weight of the
corresponding set.

The above approximation algorithm can be extended in a straightforward
manner to the case of SH-LAV=,6=-constraints with a bounded number of inequal-
ities per variable, as well as to LAV=,6=-constraints with a bounded number of
inequalities per variable and a bounded number of atoms in the right-hand side.
We leave it as an open problem whether an analog of Theorem 3 holds for the
general case of SH-LAV=, 6= and LAV=,6=.

We conclude with a matching lower bound for the approximability of Optimal-
RepairSH-LAV=(S,T). This result is established via an approximation-preserving
reduction (more precisely, an L-reduction [20]) from Minimum Set Cover.

Theorem 4. Let L ∈ {LAV,SH-LAV}. There are fixed schemas S and T, and a
constant c such that there is no polynomial-time c ln(n)-approximation algorithm
for Optimal-RepairL=(S,T), where n is the total number of target facts in the
input data example. The same holds true for Optimal-RepairL=, 6=(S,T).

6 Concluding Remarks

The cost function in Definition 5 naturally extends to sets of data examples,
where cost(M, E,L∗) is defined as the smallest size of an L∗-repair of M that is
vfe for each (I, J) ∈ E (provided that such a repair exists). Similarly, the decision
problems and optimization problems we studied naturally extend to the case
where the input is a finite set of data examples. All upper bounds presented in
this paper hold true also in the more general setting for multiple data examples.

Two important questions that remain to be answered are the existences of
a polynomial time H(n)-approximation algorithms for computing near-optimal
LAV=,6= and SH-LAV=,6= schema mappings.

We have focused on obtaining a complexity-theoretic understanding of the
algorithmic aspects of schema-mapping discovery from data examples. Our results
pave the way for leveraging further the rich area of approximation algorithms
and applying it to schema-mapping discovery. In parallel, we have embarked
on a prototype implementation of our approximation algorithm enhanced with

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

32

heuristic rules. While much remains to be done, there is preliminary evidence
that this is an approach that may lead to a reasonably efficient system for
schema-mapping discovery from data examples.

7 Acknowledgments

Research partially supported by NSF Grant IIS-1217869; Tan is partially sup-
ported by NSF grant IIS-1450560.

References

1. B. Alexe, B. T. Cate, P. G. Kolaitis, and W.-C. Tan. Characterizing schema
mappings via data examples. ACM Trans. Database Syst., 36(4):23:1–23:48, 2011.

2. B. Alexe, L. Chiticariu, R. J. Miller, and W. C. Tan. Muse: Mapping Understanding
and deSign by Example. In ICDE, pages 10–19, 2008.

3. B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan. Designing and refining
schema mappings via data examples. In SIGMOD, pages 133–144, 2011.

4. N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-
restrictions. ACM Trans. Algorithms, 2(2):153–177, Apr. 2006.

5. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The dl-lite family
and relations. JAIR, 36:1–69, 2009.

6. P. Barceló. Logical foundations of relational data exchange. SIGMOD Record,
38(1):49–58, 2009.

7. A. Bonifati, E. Chang, T. Ho, V. Lakshmanan, and R. Pottinger. HePToX: Marrying
XML and Heterogeneity in Your P2P Databases. In VLDB, pages 1267–1270, 2005.

8. B. ten Cate, V. Dalmau, and P. G. Kolaitis. Learning schema mappings. ACM
Trans. Database Syst., 38(4):28, 2013.

9. V. Chvtal. A greedy heuristic for the set covering problem. Math. Oper. Res.,
4:233–235, 1979.

10. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and
Query Answering. TCS, 336(1):89–124, 2005.

11. G. H. Fletcher and C. M. Wyss. Towards a general framework for effective solutions
to the data mapping problem. Journal on Data Semantics, XIV, 2009.

12. G. Gottlob and P. Senellart. Schema mapping discovery from data instances. JACM,
57(2), 2010.

13. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio Grows Up: From
Research Prototype to Industrial Tool. In ACM SIGMOD, pages 805–810, 2005.

14. D. S. Johnson. Approximation algorithms for combinatorial problems. In Proceedings
of STOC, pages 38–49, New York, NY, USA, 1973. ACM.

15. P. G. Kolaitis. Schema Mappings, Data Exchange, and Metadata Management. In
ACM PODS, pages 61–75, 2005.

16. M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM PODS, pages
233–246, 2002.

17. H. Mannila and K.-J. Räihä. Automatic generation of test data for relational
queries. JCSS, 38(2):240–258, 1989.

18. R. J. Miller, L. M. Haas, and M. A. Hernández. Schema Mapping as Query
Discovery. In VLDB, pages 77–88, 2000.

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

33

19. C. Olston, S. Chopra, and U. Srivastava. Generating example data for dataflow
programs. In ACM SIGMOD, pages 245–256, 2009.

20. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. In Proceedings of STOC, pages 229–234, New York, NY, USA, 1988. ACM.

21. A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and J. Widom. Synthesizing
view definitions from data. In ICDT, pages 89–103, 2010.

22. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-Driven Understanding and
Refinement of Schema Mappings. In ACM SIGMOD, pages 485–496, 2001.

Approximation Algorithms for Schema-Mapping Discovery from Data Examples

34

IMGpedia: A Proposal to Enrich DBpedia
with Image Meta-Data

Benjamin Bustos and Aidan Hogan

Center for Semantic Web Research
Department of Computer Science

University of Chile
{bebustos,ahogan}@dcc.uchile.cl

Abstract. We introduce IMGpedia: a research proposal aiming to bridge
structured knowledge-bases and multimedia content. Our concrete plan
is to enrich DBpedia data with further metadata about images from
Wikipedia, including content-based visual descriptors. Our concrete goal
is to create a unified querying and inference system that allows for
interrogating the DBpedia knowledge-base and the visual content of
Wikipedia’s images together. Our broader ambition is to explore meth-
ods by which multimedia data can be made a first-class citizen of the
Semantic Web.

1 Introduction

DBpedia [1] is an ongoing effort by the Linked Data community to extract
structured content from Wikipedia and represent it in RDF. The main goal is
to enable users to query the content of Wikipedia as a whole, getting direct
answers automatically aggregated from multiple articles. The most recent ver-
sion of DBpedia contains billions of facts extracted from 125 language versions
of Wikipedia, with links to and from dozens of external datasets. Over the
past seven years, it has become the central dataset of the Linked Open Data
community [5].

However, DBpedia mainly focuses on extracting information from Wikipedia’s
info-boxes: attribute–value panes that appear on the right-hand side of articles.
As such, aside from adding links, DBpedia ignores the images appearing in the
body of the article for a given entity as well as the structured data available in
image pages: no meta-data are extracted for images. Like many initiatives in the
Semantic Web1, DBpedia links to but otherwise disregards multimedia content.

Our proposal is thus to extract and associate meta-data from the images em-
bedded in Wikipedia and link the resulting corpus with the DBpedia dataset.
This dataset – which we call IMGpedia – would consider all images in an arti-
cle, all meta-data associated with the image available from Wikimedia (author,
date, size, etc.) and visual descriptors that capture the content of the image
itself.

1 But not all: see, e.g., http://www.w3.org/2005/Incubator/mmsem/

35

We are motivated by the idea of creating a corpus that allows for querying,
in unison, both the structured/semantic meta-data of DBpedia and the visual
content extracted from images; e.g., “give me Europe cathedrals that have an im-
age visually similar to one of the external images for Cusco Cathedral in Peru”.
Likewise, we foresee the possibility of inferring new links from this dataset, e.g.,
inferring that Saddam Hussein and Donald Rumsfeld have met based on being
associated with the same image (in which they are co-depicted). The resulting
corpus may also serve as an interesting experimental dataset for the image-
processing community, where the structured data associated with images may
serve as a ground truth.

2 Images and Visual Descriptors

Before describing IMGpedia, we need to introduce some basic concepts about
how images are encoded and what are visual descriptors. An image is a matrix of
so-called pixels (picture elements). A pixel contains information about its color,
which can be displayed for example on a computer monitor. There are several
ways to encode the color information of a pixel, which depends on the selection of
a color space. Common color spaces are RGB (red-green-blue, used by computer
monitors) and CMYK (cyan-magenta-blue-black, used by printers), where colors
are represented as tuples of numbers; for example, an RGB color is represented
by a three tuple. There are several ways to compress the image encoding, mainly
lossy compression methods (e.g., JPEG format) and lossless methods (e.g., PNG
format).

A visual descriptor is a way of characterizing an image based on its content.
This can be done considering the whole image (global descriptor) or regions of
interest detected on the image (local descriptors). For this work, we will initially
focus on global descriptors since they can be computed more efficiently than
local descriptors, and likewise similarity between them is also more efficient to
compute.

Visual descriptors can be defined in several ways; e.g., based on the colours,
texture and/or shape of the image. They do not include any semantic information
about what appears on the image—hence why they are also called “low-level
features”. For instance, a simple colour descriptor is the colour histogram [2], that
captures the distribution of colour in the image. We note that visual descriptors
are usually vectors of high dimensionality (tens to hundreds of real values).

Visual descriptors allow us to implement, e.g., content-based similarity search.
A similarity query in an image data set returns the most similar images, accord-
ing to its content, to a given one (the query image). This is also known as
query-by-example. Formally, let U be the universe of all images, let S ∈ U be
the image data set, and let δ : U × U → R+ be a function (the distance) that
returns how dissimilar are two images. There are two basic types of similarity
queries: (1) Range query : given the query image q ∈ U and a tolerance radius
r ∈ R+, return all images from S that are within distance r to q; (2) Top-k
query : return the k-closest objects to q. If S is formed by all visual descriptors

IMGpedia: A Proposal to Enrich DBpedia with Image Meta-Data

36

(high-dimensional vectors) extracted from the images in the data set, and if q is
the visual descriptor of the query image, and if δ is any metric function (e.g., the
Euclidean distance), it is relatively straightforward to implement content-based
range and top-k queries over S.

3 IMGpedia Dataset

Our vision of IMGpedia is an enhanced version of DBpedia with image en-
tities. An image entity contains metadata (e.g., title, subject, source, format,
description, date, size, location, etc.) and content-based descriptors (e.g., colour
descriptor) of the image. Image entities can be linked with other entities (not
necessarily images).

For creating the IMGpedia dataset itself, we propose the following proce-
dure:

– Locate and download images/image-pages from Wikimedia.
– Extract meta-data from the image page, including its size, author, licence,

etc. Annotate images with tags computed from its (possibly many) cap-
tions [4].

– Compute the visual descriptors for the images. For this, we can use global vi-
sual descriptors like colour and edge [2], following the MPEG-7 standard [3].

– Create the image entities using the extracted metadata and content-based
data.

– Represent and publish the IMGpedia dataset as Linked Data.

4 Querying IMGpedia

Our main research goal is to investigate methods by which semantic data (in
this case DBpedia) and multimedia data (in this case describing Wikipedia
images) can be combined such that they can be queried in a holistic manner. In
the context of IMGpedia, our approach is divided into three main parts: mate-
rialising links between image resources, extending SPARQL to execute content-
based analysis at runtime, and inferring new links between “primary entities”
based on image data.

Materialising relations between images using content-based descriptors. Low-
level descriptors do not contain any semantic information about the original
image, making them hard for users to leverage in queries. This problem is known
as the semantic gap [6]. However, high-level relations among image entities can
be computed from visual descriptors and similarity queries. For example, the
relation near-copy can be defined as two different images with distance δ less
than some threshold τ . By using range queries, it would be easy to find all pairs
of near-copies among the images. Other relevant relations that can be considered
are alt-size, contains and similar. These could also be materialised as triples
and added to the structured knowledge-base, with appropriate inference – e.g.,

IMGpedia: A Proposal to Enrich DBpedia with Image Meta-Data

37

for symmetry, reflexivity or subsumption of relations – allowing users to specify
SPARQL queries such as:

SELECT ?usPolitician WHERE {

db:Saddam_Hussein foaf:depiction ?img1 .

?usPolitician dbo:party db:Republican_Party_(US) ;

foaf:depiction ?img2 .

?img1 i:nearCopy ?img2 .

}

Extend SPARQL with functions for content-based image search. Not all content-
based user requirements can be anticipated in the form of discrete relations.
Hence we propose to extend SPARQL to include content-based analysis features.
More specifically, we propose to use extensible functions in SPARQL and custom
datatypes to enable queries that combine querying of semantic content and image
content. Taking the introductory example, let’s say that the user wishes to find
cathedrals in Europe with similar images to external images of Cusco Cathedral
in Lima:

SELECT ?cathedral ?sim WHERE {

db:Cusco_Cathedral foaf:depiction ?img1 .

FILTER(i:colorRatio(?img1,i:rgb(40,100,150),i:rgb(170,200,255)) > 0.2)

?eurCathedral rdf:type dbo:ReligiousBulding ;

dbo:location [dcterms:subject dbc:Countries_in_Europe] ;

foaf:depiction ?img2 .

BIND(i:sim(?img1,?img2) as ?sim) FILTER(?sim > 0.7)

} ORDER BY ?sim

The first FILTER uses extended functions to only consider images that have
more than 20% of their pixels falling within the cuboid of colours bounded by the
two RGB points (looking for blue sky). The subsequent BIND and FILTER allow
the images from European buildings to be filtered and ordered by similarity.

A major challenge here is balancing expressivity and efficiency. In the above
case, given a reasonable query plan, the first filter can be applied over the six
images appearing in the Cusco Cathedral article, but then all images of all
religious buildings in Europe need to be compared with the images that pass
the first step. In order to improve the performance of queries, we propose to
investigate the use of image indexing techniques that allow for such filters to be
executed a lookup, rather than a post-filter, which should lead to more options
for query planning. For example, in the query above, a more efficient query plan
may try to bind values for ?img2 using a similarity range query (over values
bound for ?img1) allowing for a join to be computed with the knowledge-base
rather than applying a brute-force similarity filter over bindings produced by
the knowledge-base for ?img2.

We see this as being one of the deepest technical challenges posed by the work:
creating cost models and query plans that combine indexes over the knowledge-
base and multimedia content appears to be a challenging but general problem.

IMGpedia: A Proposal to Enrich DBpedia with Image Meta-Data

38

Content-based-driven knowledge discovery. A more speculative idea is to infer
new knowledge about the data using the images entities and their relations.
For example, say that two DBpedia resources are associated with the same
(near-copy of an) image. If both resources are of type dbo:Person, the relation
hasMet could be inferred. If one resource was a dbo:Person and the other was
a dbo:Place, the relation hasVisited could be inferred. Such inferences could
be axiomatised as domain-specific rules. Of course, the resulting inferences may
not always be crisp conclusions, but may be associated with a confidence value.

5 Conclusions

In this short paper, we have introduced and motivated IMGpedia: a proposal
to enrich DBpedia with meta-data extracted from Wikipedia images. We view
IMGpedia as a concrete use-case through which to investigate the challenges
and opportunities of combining semantic knowledge-bases with multimedia con-
tent.

Acknowledgements This work was supported by the Millennium Nucleus Center
for Semantic Web Research, Grant № NC120004, and Fondecyt, Grant № 11140900.

References

1. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia - A Large-scale,
Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web Journal,
2014.

2. B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada. Color and texture
descriptors. IEEE Transactions on Circuits and Systems for Video Technology,
11(6):703–715, 2001.

3. MPEG-7 Overview. URL: http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-
7.htm (accessed: 2015–01–29), 2015.

4. S. Noah, D. Ali, A. Alhadi, and J. Kassim. Going Beyond the Surrounding Text to
Semantically Annotate and Search Digital Images. In Intelligent Information and
Database Systems, pages 169–179. 2010.

5. M. Schmachtenberg, C. Bizer, A. Jentzsch, and R. Cyganiak. Linking Open Data
Cloud Diagram 2014. http://lod-cloud.net/; l.a. 2015/01/30.

6. A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-
based image retrieval at the end of the early years. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(12):1349–1380, 2000.

IMGpedia: A Proposal to Enrich DBpedia with Image Meta-Data

39

From Classical to Consistent Query Answering under
Existential Rules

Thomas Lukasiewicz1, Maria Vanina Martinez2, Andreas Pieris3, and
Gerardo I. Simari2

1 Department of Computer Science, University of Oxford, UK
thomas.lukasiewicz@cs.ox.ac.uk

2 Departamento de Ciencias e Ingenierı́a de la Computación, Universidad Nacional del Sur and
CONICET, Argentina {mvm,gis}@cs.uns.edu.ar

3 Institute of Information Systems, Vienna University of Technology, Austria
pieris@dbai.tuwien.ac.at

Abstract. Querying inconsistent ontologies is an intriguing new problem that
gave rise to a flourishing research activity in the description logic (DL) com-
munity. The computational complexity of consistent query answering under the
main DLs is rather well understood; however, little is known about existential
rules. The goal of the current work is to perform an in-depth analysis of the com-
plexity of consistent query answering under the main decidable classes of exis-
tential rules enriched with negative constraints. Our investigation focuses on the
standard inconsistency-tolerant semantics, namely, the AR semantics. We estab-
lish generic complexity results, which demonstrate the tight connection between
classical and consistent query answering. These results allow us to obtain in a
uniform way a relatively complete picture of the complexity of our problem.

1 Introduction

An ontology is an explicit specification of a conceptualization of an area of interest. One
of the main applications of ontologies is in ontology-based data access (OBDA), where
they are used to enrich the extensional data with intensional knowledge. In this setting,
description logics (DLs) and rule-based formalisms such as existential rules are popular
ontology languages, while conjunctive queries (CQs) form the central querying tool. In
real-life applications, involving large amounts of data, it is possible that the data are
inconsistent with the ontology. Since standard ontology languages adhere to the classi-
cal FOL semantics, inconsistencies are nothing else than logical contradictions. Thus,
the classical inference semantics fails terribly when faced with an inconsistency, since
everything follows from a contradiction. This demonstrates the need for developing
inconsistency-tolerant semantics.

There has been a recent and increasing focus on the development of such semantics
for query answering purposes. Consistent query answering, first developed for relational
databases [1] and then generalized as the AR semantics for several DLs [9], is the most
widely accepted semantics for querying inconsistent ontologies. The AR semantics is

40

based on the idea that an answer is considered to be valid if it can be inferred from each
of the repairs of the extensional data set D, i.e., the ⊆-maximal consistent subsets of
D. The complexity of query answering under the AR semantics when the ontology is
described using one of the central DLs is rather well understood. The data and com-
bined complexity were studied in [11] for a wide spectrum of DLs, while the work [2]
identifies cases for simple ontologies (within the DL-Lite family) for which tractable
data complexity results can be obtained. On the other hand, little is known when the on-
tology is described using existential rules (a.k.a. tuple-generating dependencies (TGDs)
and Datalog± rules), that is, formulas of the form ∀X∀Y(φ(X,Y) → ∃Z(ψ(X,Z))),
and negative constraints (NCs) of the form ∀X(φ(X) → ⊥), where ⊥ denotes the truth
constant false.

Our main goal in this work is to perform an in-depth analysis of the data and com-
bined complexity of consistent query answering under the main decidable classes of
existential rules, enriched with negative constraints. Let us recall that the main (syntac-
tic) conditions on existential rules that guarantee the decidability of query answering
are guardedness [3], stickiness [4] and acyclicity. Interestingly, our complexity analy-
sis shows that a systematic and uniform way for transferring complexity results from
classical to consistent query answering can be formally established.

To briefly summarize the main contributions:

– We present generic complexity results, which demonstrate the tight connection be-
tween classical and consistent query answering (Theorems 1 and 2).

– By exploiting our generic theorems, we obtain a (nearly) complete picture of the
combined and data complexity of consistent query answering (Table 2).

For more details we refer the reader to [10].

2 Consistent Query Answering

In the classical setting of CQ answering, given a database D and a set Σ of TGDs and
NCs, if the models of D and Σ, denoted mods(D,Σ), is empty, then every query is
entailed since everything is inferred from a contradiction.

Example 1. Consider the database D = {professor(John), fellow(John)}, asserting
that John is both a professor and a fellow, and the set Σ of TGDs and NCs consisting of

∀X(professor(X) → ∃Y (faculty(X) ∧ teaches(X,Y)))

∀X(fellow(X) → faculty(X))

∀X(professor(X) ∧ fellow(X) → ⊥),

expressing that each professor is a faculty member who teaches a course, each fellow
is a faculty member, and professors and fellows form disjoint sets. It is easy to see
that mods(D,Σ) = ∅, since John violates the disjointness constraint; thus, for every
(Boolean) CQ q, (D ∧Σ) |= q.

As said above, the AR semantics is the standard semantics for querying inconsistent
ontologies. A key notion, which is necessary for defining the AR semantics, is that of
repair, which is a ⊆-maximal consistent subset of the given database.

From Classical to Consistent Query Answering under Existential Rules

41

Definition 1. Consider a databaseD, and a setΣ of TGDs and NCs. A repair ofD and
Σ is some D′ ⊆ D such that (i) mods(D′, Σ) ̸= ∅; and (ii) there is no a ∈ (D \D′)
for which mods(D′ ∪ {a}, Σ) ̸= ∅. Let rep(D,Σ) be the set of repairs of D and Σ.

Example 2. Consider the database D and the set Σ of TGDs and NCs given in Exam-
ple 1. The set of repairs of D and Σ consists of the following subsets of D:

D1 = {professor(John)} D2 = {fellow(John)}.

Clearly, we simply need to remove one of the database atoms in order to satisfy the
single negative constraint occurring in Σ.

The AR semantics [9] is based on the idea that a query can be considered to hold if
it can be inferred from each of the repairs.

Definition 2. Consider a database D, a set Σ of TGDs and NCs, and a Boolean CQ q.
We say that q is entailed by D and Σ under the AR semantics, written (D∧Σ) |=AR q,
if (D′ ∧Σ) |= q, for every D′ ∈ rep(D,Σ).

Example 3. Consider the database D and the set Σ of TGDs and NCs given in Exam-
ple 1, and also the Boolean CQs

q1 = faculty(John) q2 = ∃X(teaches(John, X)),

where q1 asks whether John is a faculty member, while q2 asks whether John teaches a
course. Recall that rep(D,Σ) consists of the databases D1 and D2 given in Example 2.
Clearly, (Di ∧Σ) |= q1, for each i ∈ {1, 2}, and thus (D∧Σ) |=AR q1. However, even
if (D1 ∧Σ) |= q2, (D2 ∧Σ) ̸|= q2, and therefore (D ∧Σ) ̸|=AR q2.

In the sequel, we refer to the problem of consistent (Boolean) CQ answering under
the AR semantics as AR-CQ answering.

3 Generic Complexity Results

We present two generic complexity results that demonstrate the tight connection be-
tween classical and consistent CQ answering. These results will automatically provide
us with a (nearly) complete picture of the combined and data complexity of AR-CQ an-
swering under the main classes of TGDs, enriched with NCs. Given a class C of TGDs,
let C⊥ be the formalism obtained by combining C with arbitrary negative constraints.

3.1 Combined Complexity

We first focus on the combined complexity. Since we would like to understand how the
complexity of our problem is affected when some key parameters are fixed, we also
consider the following two variants of the combined complexity: (1) the bounded-arity
combined complexity (ba-combined complexity), which is calculated by assuming that
the arity of the underlying schema is bounded; and (2) the fixed-program combined
complexity (fp-combined complexity), which is calculated by considering the set of
TGDs and negative constraints as fixed. We show the following:

From Classical to Consistent Query Answering under Existential Rules

42

Theorem 1. Assume that CQ answering under a class C of TGDs is C-complete in
(x-)combined complexity, where x ∈ {ba, fp}. Then, the (x-)combined complexity of
AR-CQ answering under C⊥ is (1) Πp

2 -complete, if C = NP; and (2) C-complete, if
C ⊇ PSPACE is a deterministic class.

Proof (sketch). Fix a database D, a set Σ ∈ C⊥ of TGDs and NCs, and a CQ q. The
problem of deciding whether (D ∧ Σ) ̸|=AR q can be easily solved via a guess-and-
check algorithm. We simply need to apply the following steps:

1. Guess an instance D′ ⊆ D;
2. Verify that D′ ∈ rep(D,Σ); and
3. Verify that (D′ ∧Σ) ̸|= q.

We can show that steps 2 and 3 are not harder than classical query answering, which
implies that AR-CQ answering under C⊥ is in coNPC . Therefore, (1) If C = NP, then
we get a Πp

2 upper bound since NPNP = Σp
2 and coΣp

2 = Πp
2 ; and (2) If C ⊇ PSPACE is

a deterministic class, then we get a C upper bound since NPC = C and coC = C.
Regarding the lower bounds, the C-hardness result, when C is deterministic class

above PSPACE, follows immediately since CQ answering is a special case of AR-CQ
answering. For the Πp

2 -hardness, we show, by a reduction from the validity problem of
2QBF formulas, that AR-CQ answering under a single negative constraint ∀X(φ(X) →
⊥), where φ consists of two atoms and it uses a single ternary predicate, while the
database and the query use only binary and ternary predicates, is already Πp

2 -hard.

3.2 Data Complexity

By providing a similar analysis as above, we can establish the following generic data
complexity result:

Theorem 2. Assume that CQ answering under a class C of TGDs is C-complete in
data complexity. Then, the data complexity of AR-CQ answering under C⊥ is (1) coNP-
complete, if C ⊆ PTIME; and (2) C-complete, if C ⊇ PSPACE is a deterministic class.

Let us say that AR-CQ answering under a single negative constraint of the form
∀X(p(X) ∧ s(X) → ⊥) and a fixed query is already coNP-hard, which in turn implies
the coNP-hardness result in Theorem 2. Actually, the latter is implicit [2, Example 5],
and it can be shown by a reduction from a variant of UNSAT, called 2+2UNSAT, where
each clause has two positive and two negative literals, where the literals involve either
regular variables or the truth constant true or false .

4 From Classical to AR-CQ Answering

We now focus on the main decidable classes of TGDs, enriched with NCs, and we
show that the complexity of AR-CQ answering can be obtained in a uniform way by
exploiting our generic complexity theorems. Recall that the main (syntactic) conditions
on TGDs that guarantee the decidability of CQ answering are the following: (1) guard-
edness [3], which guarantees the treelikeness of the underlying canonical models; (2)

From Classical to Consistent Query Answering under Existential Rules

43

Combined ba-combined fp-combined Data
Guarded 2EXPTIME EXPTIME NP PTIME

Weakly-Guarded 2EXPTIME EXPTIME EXPTIME EXPTIME

Sticky EXPTIME NP NP in AC0

Weakly-Sticky 2EXPTIME 2EXPTIME NP PTIME

Acyclic NEXPTIME NEXPTIME NP in AC0

Weakly-Acyclic 2EXPTIME 2EXPTIME NP PTIME

Table 1. CQ answering. All results are completeness results, unless stated otherwise.

Combined ba-combined fp-combined Data
Guarded 2EXPTIME EXPTIME Πp

2 coNP

Weakly-Guarded 2EXPTIME EXPTIME EXPTIME EXPTIME

Sticky EXPTIME Πp
2 Πp

2 coNP

Weakly-Sticky 2EXPTIME 2EXPTIME Πp
2 coNP

Acyclic NEXP - PNE NEXP - PNE Πp
2 coNP

Weakly-Acyclic 2EXPTIME 2EXPTIME Πp
2 coNP

Table 2. AR-CQ answering. A single complexity class in a cell refers to a completeness result,
while two classes C1-C2 refer to C1-hardness and C2-membership.

stickiness [4], which ensures the termination of backward resolution; and (3) acyclicity,
which guarantees the finiteness of the underlying canonical models. Interestingly, each
one of the above conditions has its “weakly” counterpart: weak-guardedness [3], weak-
stickiness [4] and weak-acyclicity [6], respectively. The complexity of CQ answering
under the above classes of TGDs is summarized in Table 1. Clearly, Table 1 and Theo-
rems 1 and 2 imply Table 2, apart from the (ba-)combined complexity for acyclic TGDs
and NCs; let us briefly comment on this.

The (ba-)combined complexity of CQ answering under acyclic TGDs has to our
knowledge never been explicitly studied; we show that is NEXPTIME-complete: the
upper bound is obtained by a reduction to nonrecursive logic programming [5], while
the lower bound by a reduction from a TILING problem [7]. Notice that Theorem 1
does not cover the cases where classical CQ answering is in a nondeterministic class
above PSPACE. Nevertheless, by exploiting the guess-and-check algorithm discussed in
the proof of Theorem 1, we obtain coNPNEXPTIME upper bound. It is implicit in [8] that
NPNEXPTIME = PNE, and since PNE is a deterministic class, coPNE = PNE. Consequently,
AR-CQ answering under acyclic TGDs and NCs is in PNE in (ba-)combined complexity;
the NEXPTIME-hardness is inherited from classical query answering.

5 Conclusions

In this work, which is a short version of [10], we performed an in-depth complexity
analysis of the problem of consistent query answering under the main decidable classes
of TGDs, focussing on the AR semantics. Notably, generic complexity results have
been established, which allowed us to obtain a (nearly) complete picture of the com-
plexity of our problem in a systematic and uniform way. Regarding future work, apart
from bridging the complexity gap for acyclic TGDs, we intend to perform a similar

From Classical to Consistent Query Answering under Existential Rules

44

complexity analysis for other important semantics such as the IAR semantics, that is, a
sound approximation of the AR semantics [9].

Acknowledgements. This work has been funded by the EPSRC grant EP/J008346/1.
M.V. Martinez and G.I. Simari are partially supported by Proyecto PIP-CONICET
112-201101-01000. A. Pieris is also supported by the Austrian Science Fund (FWF):
P25207-N23 and Y698.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases.
In: PODS. pp. 68–79 (1999)

2. Bienvenu, M.: On the complexity of consistent query answering in the presence of simple
ontologies. In: AAAI (2012)

3. Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive
relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

4. Calı̀, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The query
answering problem. Artif. Intell. 193, 87–128 (2012)

5. Dantsin, E., Voronkov, A.: Complexity of query answering in logic databases with complex
values. In: LFCS. pp. 56–66 (1997)

6. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answer-
ing. Theor. Comput. Sci. 336(1), 89–124 (2005)

7. Fürer, M.: The computational complexity of the unconstrained limited domino problem (with
implications for logical decision problems). In: Logic and Machines. pp. 312–319 (1983)

8. Hemachandra, L.A.: The strong exponential hierarchy collapses. J. Comput. Syst. Sci. 39(3),
299–322 (1989)

9. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant seman-
tics for description logics. In: RR. pp. 103–117 (2010)

10. Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consistent query
answering under existential rules. In: AAAI (2015)

11. Rosati, R.: On the complexity of dealing with inconsistency in description logic ontologies.
In: IJCAI. pp. 1057–1062 (2011)

From Classical to Consistent Query Answering under Existential Rules

45

Finding Similar Products in E-commerce Sites
Based on Attributes

Urique Hoffmann, Altigran da Silva, and Moisés Carvalho

Instituto de Computação
Universidade Federal do Amazonas

Manaus, Brazil
{uhsa,alti,moises}@icomp.ufam.edu.br

Abstract. We present a preliminary study on the problem of finding
products similar to a product given as input, based solely on their at-
tributes. We assume that we are given a set of products from a same
category of a same on-line store, were each product is described in a
catalog by a number of attributes (e.g., general characteristics, technical
specifications, etc.). This problem, which at a first glance may be seen as
straightforward or even mundane, is in fact challenging and intriguing.
In fact, any automatic solution for it requires techniques for comparing
tens of different atributes, whose semantics are often very technical and
specific (e.g., the shutter speed of a camera) and also requires dealing
with hundreds of products in the category. To be generic, such a solu-
tion must also deal with several distinct product categories. In here, we
describe and evaluate a similarity function we have proposed for compar-
ing products based on their attributes. This function uses a number of
attribute-specific similarity functions, which are selected according to a
class assigned to the attribute. The assignment of classes to attributes is
carried out by a simple classification strategy, which we also describe and
evaluate. Experiments we carried out to evaluate our proposed similarity
function using data from real catalogs in five distinct popular product
categories have shown promising results.

Keywords: Similarity Functions, E-Commerce, Recommender Systems

1 Introduction

Recommendation Systems are used by most e-commerce sites to suggest prod-
ucts to their users and provide additional information to help customers to decide
which products to acquire [8]. Products can be recommended based on several
different types of information such as top overall sellers on a site, customer’s de-
mographics, customer’s past buying behaviour, or product attributes, e.g., tech-
nical specifications, general characteristics, brand, etc. [8]. Recommendations
based on this last type of information are called content-based or knowledge-
based recommendations [3].

A simple way of enabling content-based recommendation is, given a product,
presenting to the user other products that are similar to it with respect to their

46

attributes. This is useful, for instance, when costumers explicitly want to find
products with certain characteristics or when the seller wants to present to a
customer products similar to a product she is interest in, e.g., for the sake of
comparison or to provide alternatives to out-of-stock itens.

However, in typical e-commerce sites, looking for similar products may re-
quire the user to browse manually through a large number of pages and prod-
ucts. For instance, suppose a user is interested in a specific camera, say, “Nikon
S3500”. Currently, if this user wants to find alternative cameras that are simi-
lar to this model (i.e., having similar features), for the sake of comparing their
prices, it is likely that she would have to browse over hundreds of other cameras
in the catalog to find them. On the other hand, if this camera is not in stock,
it would be interesting to provide the user with similar alternative cameras in
stock, without having her to look over the whole catalog.

Another interesting aspect of this kind of recommendation is that it enables
suggesting products to the customers without relying on historical data. It means
that the system can recommend products and provide buying options even if a
costumer is new to the system or if the item is new to the catalog.

To find whether two products are similar it is necessary to compare them.
Products on e-commerce sites are often described by their attributes. It means
that, to make a comparison between two products, it is necessary to compare
their attributes. This can be unfeasible to be carried out manually by casual
users on the Web.

For instance, in a certain e-commerce site, to verify whether the “Nikon
S3500” camera is similar to another camera, say the “Sony W830”, a user has
the option of comparing the 26 atributes provided for the first camera with the
corresponding attributes of the second cameras. The lists of attributes available
for each camera in this site are presented in Figure 1. Notice that the second
camera has only 18 attributes. Also, notice that many attributes are difficult to
be compared, unless the user is an expert in the field.

In general, the same situation occurs in many other categories, that is, com-
paring products requires comparing tens of attributes, some of them with very
specific semantics.

In this paper we present a preliminary study on the problem of finding prod-
ucts similar to a given product. We assume that we are given a set of products
from a same category of a same on-line store, along with their attributes. For
instance, one of the datasets used in our experiments comprises a set of 489
camera models under the Cameras category of a real on-line store.

Specifically, we describe and evaluate a generic similarity function we have
proposed for comparing products based on their attributes. This function uses a
number of attribute-specific similarity functions, which are selected according to
a class assigned to the attribute. The assignment of classes to attributes is carried
out by a simple but effective classification strategy, which we also describe and
evaluate here.

An experimental evaluation we carried out and reported here has shown
promising results. Our proposed similarity function showed to be accurate in

Finding Similar Products in E-commerce Sites Based on Attributes

47

finding similar products, achieving average F-1 values above 0.75 in 5 represen-
tative product categories we have tested. Also, our strategy for attribute classi-
fication has correctly classified most of the attributes from these categories.

Attribute Nikon S3500 Sony W830

Brand Nikon Sony
Type of Camera Compact Digital Camera
Monitor/Display 2,7” LCD / TFT 230.000 2.7”-LCD TFT-Clear Photo LCD

Resolution 20,1 20,1
Internal Memory 25MB 27MB
Memory Cards Yes Yes

Compatible Memory Cards SD, SDHC and SDXC Memory Stick Duo, Memory Stick
PRO Duo (High Speed)

Sensor CCD 1/2, 3 inch. Super HAD CCD
Optical Zoom 7x 8x
Digital Zoom 4x 32x

Lenses Crystal NIKKOR 26-182mm fixed -
Shutter Speed 1/2000 - 1 s 4 s -
Focus range [W]: Aprox. 50 cm/[T]: Aprox. 1 m

. . .
-

Opening f/3.4-6.4 -
Flash Modes Automatic TTL Flash with pre-

flash monitor
Auto/On/Off/ Slow Syncro / Flash
Extended

Flash range [T]:1,0 to 2,1m (3 feet 4 inch. to 7
feet 1 inch.) . . .

ISO Auto: Aprox. 0.3m to 2.8m

Battery Type Rechargeable Li-ion Battery EN-
EL19

Battery Charger Adapter, Power
Cable

Video Features Full HD: 1920px1080p/30 / HD:
1280px720p/30 . . .

-

Scene modes Backlight,. . .,Sports, Sunset Sensitivity/Twilight/. . ./Pets
File Formats .avi,.jpg,.wav JPEG

Built-in microphone Yes -
Tripod mount Yes -

Menu Languages Chinese,Danish,. . ., Arabic -
Color Purple Violet

Dimensions (HxWxD) 5,7x9,6x2cm 9,31x5,25x2,25cm
Weight 129g 120g

Fig. 1. Attributes available for camera models “Nikon S3500” and “Sony W830” with
their values. Some values were truncated to save space.

The remainder of this paper is organized as follows. In Section 2 we review
related work. In Section 3 we present our strategy for attribute classification
and in Section 4 we present our proposed similarity function. Section 5 reports
our experiments and its results. Finally, Section 6 presents our conclusions and
directions for future work.

2 Related Work

Although important and challenging, effective methods for finding similar prod-
ucts are scarce both in industry and in the academy.

Kagie et. al. [7] proposed a content-based graphical shopping interface based
on product attributes to recommend similar products. To use this interface,
the user must first define an ideal product by providing desired values to its
attributes. The interface then shows products considered as similar to this ideal

Finding Similar Products in E-commerce Sites Based on Attributes

48

product in a 2D Map. By interacting with this map, the user chooses, from the
products plotted, the most similar to the ideal. The interface then recalculates
the similarity between the ideal product to all other products in the dataset.
This process continues until the interface shows a product the user considers as
the most similar. In this work the authors consider only two of attribute classes:
categorical and numeric.

Our approach differs from this in many aspects. First, in our approach the
user does not need to specify an ideal product. In fact, this is avoided, since we
consider that casual users in e-commerce sites are not willing to specify desired
values for several attributes. Instead, we only require the user to select one
product to be used for comparison. Second, besides categorical and numerical
attributes, we consider two additional classes of atributes: multi-categorial and
dimensional. We adopted these two additional attributes classes because they
are very common in e-commerce products. Third, in our case there is no need to
ask the user to provide the class of each attribute involved in the comparison.
Fourth, while Kagie’s work seems to focused on a single category, our approach
was conceived to deal with many categories typically found in e-commerce sites.
Fifth, we instead of using a 2D map with several products, our approach can
produce, as output, a ranking of products in order of similarity.

3 Attribute Classification

Prior to the application of our similarity function, it is necessary to take each
attribute found in the products of a given category we are interested in and
assign each one to a single class of a simple attribute taxonomy comprising four
classes, namely: Numerical, Categorical, Multicategorical and Dimensional.

This taxonomy was created based on previous work by Kagie et. al. [6,7] and
in our own experience in dealing with e-commerce catalogs. The original taxon-
omy by Kagie et. al. in [7] included only Numerical and Categorical attributes. It
was extended in [6] to include the Multicategorical class. We further expanded it
with the Dimensional class to handle the common case of atributes that describe
the dimensions of products, displays, etc.

Although a number of different approaches could have been used for this
task, we opted for using a simple strategy in which the values expected for the
attributes in a given class are described by a regular expression we call domain
descriptors. Domain descriptors are similar to the Data Frames used by Embley
et. al. in several methods (e.g., in [1]) and provide a description on how values
of attributes of the four classes above are written.

The classification of a attribute is carried out as follows. Let Ai be an at-
tribute that occurs for products p1,. . .,pm in a given category. For instance,
attribute Scene Modes occurs in the description of many products in the Com-
pact Cameras category. First, for all products pj(1≤j≤p), we take the value vi,j
for Ai occurring in pj .

Next, we perform several cleaning and standardization operations over set of
values vi,j of Ai taken from products. These operations include duplicate values

Finding Similar Products in E-commerce Sites Based on Attributes

49

removal, white space and case normalization, among others. The result is a set of
values a1,. . .,am which we call the occurrences of Ai. Notice that by doing so we
assume that all values of Ai have the same semantics in all pj . For instance, we
assume that the attribute Scene Modes has the same semantics in the description
of all products in the Compact Cameras category.

Finally, we test each occurrence a1,. . .,am against each domain descriptor εk
(k=1,. . .,4) and associate atribute Ai with the atribute class Ck whose domain
descriptor εk recognizes the majority of its occurrences.

Although simple, this classification procedure is very effective as we demon-
strate in experiments we carried out and report later in this paper.

4 Similarity Function

Based on the general coefficient similarity proposed by Gower [5], we propose a
similarity function for comparing products as the sum of all non-missing simi-
larity scores sijk over the maximum number of attributes present in one of the
products according to Equation 1.

Sij =

K∑

k=1

mikmjksijk/max(

K∑

k=1

mik,

K∑

k=1

mjk) (1)

In this equation, similarity scores sijk are computed for every atribute Ak

that has value for both products pi and pj being compared. Also, mik (mjk) is
0 when the value for attribute Ak is missing for products pi (pj) and 1 when it
is not missing.

The specific functions used for computing the similarity score sijk depend on
the class of the attribute Ak. Recall from Section 3 that this class was already
defined. For each one of the four atribute classes we defined an appropriate
similarity function.

For the Numerical class, the similarity function is defined as the absolute
difference between the values of the attribute in the two products, as shown in
Equation 2.

sNijk = 1− |vik − vjk|
max (vik, vjk),

(2)

where vik and vjk are, respectively, the values of the attribute k for products pi
and pj .

For the Categorical class, the similarity function is defined as

sCijk = 1(vik = vjk) (3)

implying that objects having the same value get a similarity score of 1 and 0
otherwise.

Finding Similar Products in E-commerce Sites Based on Attributes

50

For the Multicategorical class, the similarity function is computed using the
Jaccard coefficient [4] between the sets of

sMijk =
|vik ∩ vjk|
|vik ∪ vjk|

(4)

In this case vik and vjk denote the sets of individual categorical values composing
the actual values. For instance, vik would be {Auto, On, Off, Slow Syncro, . . . }
for the attribute Flash Modes in the camera Sony W830 of Figure 1.

For the Dimensional class, the similarity function is the normalized euclidean
distance over the dimension values, as described in Equation 5.

sDijk = 1− [

D∑

d=1

((vdik)
′ − (vdjk)

′
)2]

1
2 (5)

where D is the number of dimensions found in the values of the attribute and
vdik is the value for dimension d in vik (the same applies to vdjk). For computing
this function, each dimension is mean-centered and normalized using

(vdxk)
′

= ((vdxk)− µd)/σd (6)

µd and σd are, respectively, the mean and the standard deviation of the set of
values of dimension p in all values of atribute k, for the products in the category.

As a final comment, it is worth noting that the general coefficient similarity
proposed by Gower [5], and latter used by Kagie et. al in [6, 7], is unsuitable to
deal with objects with few common attributes. For instance, if directly applied to
the problem of comparing products, when two products have just one common
attribute and this attribute have the same value in both products, the Gower
similarity measure will assign the highest similarity score between these two
products. Our function tries to overcome this problem by penalizing the score
when the products have few common attributes, as defined in Equation 1.

5 Experimental Results

In this section we report the results of experiments we performed to evaluate
the attribute classification strategy presented in Section 3, and the similarity
function described in Section 4.

5.1 Experimental Setup

For the experiments, we have used five datasets provided by Neemu1, a company
that develops search and recommendation technology for major e-commerce sites
in Brazil. These datasets comprise five different popular product categories,
namely: Cameras, Camcorders, Laptops, Smartphones and TVs. The product

1 http://www.neemu.com

Finding Similar Products in E-commerce Sites Based on Attributes

51

descriptions available in these datasets often provide many attributes that are
not related to the product characteristics themselves. For instance, attributes
related to the packing of the products such as, packing dimension, package con-
tents, etc., are very common. Thus, we disregarded these attributes in our ex-
periments. In addition, we removed all atributes that are not found in at least
20% of the products in a given category. By doing so, we tried to increased
the percentage of attributes that can be effectively compared to calculate the
similarity between products.

Table 1 compares the number of attributes originally available in each dataset
and the final number of attributes we considered in each category. Notice that,
even though many attributes were removed, still the number of attributes con-
sidered is large to be handled manually by humans. This table also presents the
number of distinct products available in each dataset.

Dataset Products Initial Attributes Remaining Attributes

Cameras 489 178 28

Camcorders 41 69 26

Laptops 423 76 28

Smartphones 147 105 48

TVs 244 96 37
Table 1. Datasets used in the experiments with the number of products available and
the number of attributes considered.

In Table 2, we present the number of attributes in each of the classes of our
taxonomy. This classification was carried out manually to be used as a golden
standard. Notice that the large majority of the attributes are categorical. This
trend was observed in all categories. Also, a single dimensional attribute was
available in each category,.

Dataset Numeric Categorical Multicategorical Dimensional

Cameras 5 16 6 1

Camcorders 4 14 7 1

Laptops 5 21 1 1

Smartphones 6 35 6 1

TVs 9 24 3 1
Table 2. Attributes from the datasets by class.

Finding Similar Products in E-commerce Sites Based on Attributes

52

5.2 Attributes Classification

In Table 3, we summarize the results obtained with our attribute classification
strategy. For this, we used the well known Precision, Recall and F-1 metrics.
In this table, each line corresponds to the results obtained with attributes of
a distinct classe, namely, “NUM” (Numerical), “CAT” (Categorical), “MCA”
(Multicategorical) and “DIM” (Dimensionall).

Class Cameras Camcorders Laptops Smartphones TVs
P R F P R F P R F P R F P R F

NUM 1.00 1.00 1.00 1.00 0.75 0.85 1.00 1.00 1.00 0.85 1.00 0.92 1.00 0.77 0.87
CAT 1.00 0.93 0.96 0.93 1.00 0.96 0.95 0.90 0.92 1.00 0.91 0.95 0.88 1.00 0.94
MCA 0.85 1.00 0.92 1.00 1.00 1.00 0.00 0.00 0.00 0.75 1.00 0.85 1.00 0.66 0.80
DIM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3. Experimental Results for Attribute Classification

As it can be notice, our strategy has correctly classified most of the attributes
from all categories we tested. We obtained perfect classification in many cases
and F-1 values equal or above 0.8 were obtained in all cases but one. This case is
the Multicategorical class in the Laptops category, which has a single attribute
(see Table 2), and our classification strategy missed it. In many cases, the value
of some attributes eventually presented noise our cleaning operation was unable
to identify and fix Nevertheless, we believe the small number of failures does not
compromise the effectiveness of our strategy and, as will see next, did not harm
the overall results of our method.

5.3 Similarity Measure Evaluation

Evaluating the effectiveness of the similarity measure we described in Section 4
proved to be a challenge by itself. Indeed, carrying out a thorough evaluation to
obtain values of Precision, Recall and F-1 would require to compare hundreds of
products, examining the values of tens of attributes, some of them very technical.
Thus, we opted to evaluate our proposed similarity measure in a task close to
its intended application. This task consists in taking a product given as input,
using the similarity measure to compare this product with all others in the same
category, and verifying if the k products deemed as the most similar are indeed
similar to the input product, according to a human-based evaluation. The results
are reported in terms of the precision considering these top-k answers, a metric
often known as P@k. In our case we used k = 5, which is reasonable in terms of
recommender systems.

For each of the five product categories, we randomly selected 10 products,
which we refer to as query products, and, for each of them, we examine the 5
most similar products in the same category according to our similarity measure.
Thus, a total of 250 pairs of products were manually evaluated. The results are
presented in Figure 2.

Finding Similar Products in E-commerce Sites Based on Attributes

53

Fig. 2. Experimental Results for the Similarity Measure

In Figure 2, each graph corresponds to a product category and shows the
P@5 values resulting from each of the 10 query products, along with the average
of the ten values. Our similarity measure led to P@5=1 in 22 out of the 50 query
products. Only in 8 cases, the P@5 values were below 0.5. In all categories, the
average of P@5 values was around 0.75. An average above 0.8 was observed
for the TVs category. Notice that the very low P@5 values obtained for some
queries (e.g., 0 for query 1 in Smartphones or 1 for query 9 in Cancorders) does
not necessarily implies that our similarity measure failed. For instance, it might
happen that the query product has very few or none similar product in the
catalog. In this case, our function just gave a low similarity score, but no similar
products would appear among the top-5 answers. To solve this, a threshold on
similarity score could be applied. However, there is no obvious way of imposing
this threshold. Thus, we leave this study for future work.

Finding Similar Products in E-commerce Sites Based on Attributes

54

6 Conclusions and Future Work

In this paper we presented a preliminary study on the problem of finding prod-
ucts similar to a product given as input. This problem, although important for
e-commerce sites, has been ill addressed so far both in the industry and in the
academy. We described and evaluated a similarity function we have proposed
for comparing products based on their attributes. Our function is generic in the
sense that it deals different types of attributes occurring in products from dis-
tinct categories. Prior to its application, the function requires that each attribute
has been classified into to a class that determines an specific similarity function
that handles this attribute. We demonstrate that this classification can be carry
out by a simple but highly effective strategy we proposed, which relies of reg-
ular expressions. Experiments we have performed with our similarity function
with datasests with real products, revealed that it is accurate in finding similar
products, achieving average F-1 values above 0.75 in 5 representative product
categories.

Our plans for future work address two main aspects. First, we are working
on improving the effectiveness of our function by considering that different at-
tributes may have different degrees of importante for users when comparing two
products of a given category. Thus, we are investiganting ways for capturing this
knowledge from the user and using it to improve our function. For this, we have
been working on machine learning techniques, which require training from user
data. Thus, the second aspect we are currently addressing is on how to obtain
training data without requiring users to label instances specifically for this prob-
lem. Another interesting future work we plan to address is considering additional
similarity functions for attributes. For instance, in the case of categorical data
it is worth investigating the metrics studied in [2].

References

1. M. Al-Muhammed and D. Embley. Ontology-based constraint recognition for free-
form service requests. In IEEE 23rd International Conference on Data Engineering,
pages 366–375, April 2007.

2. S. Boriah, V. Chandola, and V. Kumar. Similarity measures for categorical data:
A comparative evaluation. In Proceedings of the SIAM International Conference on
Data Mining, pages 243–254, 2008.

3. R. Burke. Knowledge based recommender systems. In J. Daily, A.Kent, and
H.Lancour, editors, Encyclopedia of Library and Information Science, volume 69.
2000.

4. S.-H. Cha. Comprehensive survey on distance/similarity measures between proba-
bility density functions. International Journal of Mathematical Models and Methods
in Applied Sciences, 4(1):300–307, 2007.

5. J. Gower. A general coefficient of similarity and some of its properties. Biometrics,
27(4):857–874, 1971.

6. M. Kagie, M. van Wezel, and P. J. Groenen. Choosing attribute weights for item
dissimilarity using clikstream data with an application to a product catalog map. In

Finding Similar Products in E-commerce Sites Based on Attributes

55

Proceedings of the 2008 ACM Conference on Recommender Systems, pages 195–202,
2008.

7. M. Kagie, M. van Wezel, and P. J. Groenen. A graphical shopping interface based
on product attributes. Decision Support Systems, 46(1):265 – 276, 2008.

8. J. Schafer, J. Konstan, and J. Riedl. E-commerce recommendation applications.
Data Mining and Knowledge Discovery, 5(1-2):115–153, 2001.

Finding Similar Products in E-commerce Sites Based on Attributes

56

Entity Matching: A Case Study in the Medical
Domain

Luiz F. M. Carvalho1 and Alberto H. F. Laender1 and Wagner Meira Jr.1

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

Belo Horizonte, Brazil
{fernandocarvalho,laender,meira}@dcc.ufmg.br

Abstract. In this paper, we propose a simple and effective solution for
the entity matching problem involving data records of healthcare profes-
sionals. Our method depends on three attributes that are available in
most data sources in the medical domain: name, specialty and address.
We apply a blocking technique to avoid comparisons, three matchers for
conciliating the data records and a rule-based heuristic to combine the
matchers. We performed experiments involving data from three Brazilian
Web sources of healthcare professionals. Our results show that our solu-
tion is able to avoid unnecessary comparisons and provides good results.

Keywords: Entity Matching, Medical Records, Blocking, Matchers.

1 Introduction

With the increasing amount of data available on the Web, especially in social
media networks and online catalogs of products and services, a recent challenge
in Computer Science is the identification of data records related to the same
real world entities. For example, a product offered on a website may appear
in another one under a different name or description. Furthermore, multiple
websites with similar functionality may offer different products. The conciliation
of such products is a core task towards price monitoring [1, 14].

The task of disambiguation is also crucial in scenarios in which it is necessary
to map all records related to a person considering her personal information such
as name, occupation and address. In these cases, the task can be very complex
due to existence of homonyms, incomplete data and multiple ways to represent
the same information. Some examples of scenarios in which this task is performed
are gathering all profiles of a same person in multiple social networks [19] and
collecting all papers or co-authors of a same author [9, 21].

The task of integrating all records related to a given person is known as entity
matching (also called data matching, entity resolution and record linkage) and
can be defined as [15]:

Given two datasets A and B from two semantically related data sources SA and
SB, the entity matching problem consists in finding all matches between data

57

records in A×B that refer to the same entity in the real world.

A similar problem is duplicate detection in which the matching is performed over
records from the same dataset [4, 5, 13].

Due to today’s widespread use of medical management systems and the pop-
ularization of medical service websites, the medical domain is rich in applications
that demand entity matching solutions for the integration of records of health-
care professionals. This task is important for many reasons that range from
providing better search facilities to fraud detection.

In this paper, we propose a problem-oriented method for integrating data
from healthcare professionals available on distinct Web sources, which is based
on simple string matching strategies and adopts an overlapping blocking mech-
anism for reducing the number of comparisons between the records. For its as-
sessment, we use data from three Brazilian Web sources: two general purpose
healthcare professional directories, Apontador1 and Doctorália2, and the Na-
tional Directory of Health Establishments maintained by the Brazilian Ministry
of Health, CNES 3. In summary, the main contributions of this paper are:

– A simple and effective solution for integrating data from healthcare profes-
sionals;

– A case study involving real data composed of 406,564 records collected from
three distinct data sources;

– A detailed discussion over the main implementation issues and decisions
involved in our method for entity matching in the medical domain.

Our method is generic for the medical domain and depends only on attributes
that are usually available in most Web sources that provide information on
healthcare professionals.

The rest of this paper is organized as follows. Section 2 provides some back-
ground on the core tasks involved in the entity matching problem. Section 3
presents our method and describes its implementation details. Section 4 dis-
cusses our experimental results. Finally, Section 5 presents our conclusions and
some insights for future work.

2 Background

According to Christen [5], the process for solving the entity matching problem
can be divided into five steps: (i) data pre-processing, (ii) indexing, (iii) record-
pair comparison, (iv) classification and (v) evaluation. The first step involves
the data preparation to ensure a standardized formatting for all involved data
sources. The following three steps comprise the main tasks involved in the actual
process of comparing the data records, whereas the last one consists of evalu-
ating the quality of the results. Next, we briefly provide some background on

1 http://www.apontador.com.br
2 http://www.doctoralia.com.br
3 http://cnes.datasus.gov.br

Entity Matching: A Case Study in the Medical Domain

58

specific tasks, namely blocking, matcher selection and matcher combination, that
support the three main steps of the entity matching process. For more details,
we refer the reader to [5] and to some surveys on entity matching found in the
literature [3, 8, 15].

Blocking. The purpose of blocking is to reduce the number of comparisons
among the data records. It consists of defining a strategy to group the records
in blocks so that only pairs of records in the same block are compared, avoiding
the quadratic cost of comparing all pairs. A good blocking strategy minimizes
the number of comparisons but does not separate related records into differ-
ent blocks. A blocking strategy can either assign each record to just one block
or set multiple blocks for each record (blocking with overlapping). In [11], the
authors propose the Sorted Neighborhood Method, which is considered one of
the first blocking methods described in the literature. The Canopy Clustering
method [17] provides a clustering-based approach for blocking. For more details,
Draisbach and Naumann [7] present a comparison of state-of-the-art blocking
methods.

Matcher Selection. Matchers are algorithms that measure the similarity be-
tween a pair of records. There are two kinds of matchers: context-based and
value-based matchers. Context-based matchers use structural information, such
as graph distances, to define the similarity of a pair of records. A popular ap-
plication of context-based matchers is the disambiguation of authors through
co-authorship graph analysis, such as the solution proposed in [12]. On the
other hand, value-based matchers establish a similarity degree between a pair of
records by using only attribute values. The most popular value-based matchers
are based on string comparison. For example, the Fragment Comparison algo-
rithm [18] compares the components of author names as they appear in biblio-
graphic citation records in order to decide whether they refer to the same author
or not. This algorithm is robust to typing errors, abbreviations and variations in
the sequence of name components. A comparison of string metrics for matching
names and records is presented in [6].

Matcher Combination. This task consists in combining the values resulting
from several distinct matchers to decide whether or not a pair of records is re-
lated to each other. The most popular solutions for combining matchers can
be classified into three types: numerical, rule-based and flow-based. Numerical
combinations apply a mathematical function to combine the involved matchers,
as described in [10] and [20]. Rule-based combinations rely on logical operations
and thresholds specifically defined for each case [2, 16]. Finally, flow-based com-
binations involve complex rules and many steps to perform the combination, like
in the MOMA method [22].

We have implemented simple and effective solutions for each one of the above
tasks, as described in the next section.

Entity Matching: A Case Study in the Medical Domain

59

3 Proposed Method

In this section, we describe our solution for the entity matching problem in the
medical domain. Our method relies on three specific attributes, name, specialty
and address, of which name plays a major role in the matching process. We start
by introducing the concept of name relevance that is central to our method.
Then, we describe our solution for the three main tasks involved in the match-
ing process discussed in the previous section: blocking, matcher selection and
matcher combination. Finally, we discuss some strategies to reduce the execu-
tion cost of the whole process.

Name Relevance. To define the concept of name relevance, we consider that
a person’s name consists of several components. For example, the name “luiz
fernando magalhaes carvalho” consists of four components: “luiz”, “fernando”,
“magalhaes” and “carvalho”. Informally, we can say that the relevance of a per-
son’s name depends on the discrimination power of each one of its components.
Thus, let D be the set of datasets being matched and N the set of all names
found in any dataset in D. For each name component c in N , its relevance is a
value between 0 and 1 given by the ratio of its frequency and the frequency of
the most frequent name component r in N , as expressed by:

relevance(c) = frequency(c)/frequency(r)

The relevance of a name C is given by the sum of the relevance of each of its
components ci. If the resulting value is greater than 1, it is set to 1, so that the
relevance of each name is also a value between 0 and 1, as expressed by:

relevance(C) =
∑

ci ∈ C

relevance(ci)

relevance(C) =

{
relevance(C), if relevance(C) < 1

1, otherwise

As we show next, the relevance of a name component is used to avoid un-
necessary comparisons within a block whereas the relevance of a (full) name is
used in the matcher combination.

Blocking. Blocking is a strategy to group records in blocks so that only records
in the same block are compared. The blocking strategy of our method consists
in creating one block for each name component found in any data source in D.
As each block B is associated with a name component c, B contains all records
that include a name with a name component c. Thus, this is a blocking strategy
that implements an overlapping scheme, as each record is assigned to all blocks
related to its name components, which means that each record is compared with
all records that have at least one name component in common. This strategy is
based on the assumption that if two records are related, they have at least one

Entity Matching: A Case Study in the Medical Domain

60

name component in common.

Matcher Selection. Having blocked all records, we need to use a matcher to
measure the similarity of each record pair. For each one of the three attributes
considered (name, specialty and address), we have implemented a matcher that
returns a score between 0 and 1. Thus, for each record pair, three specific scores
are produced: name similarity score, specialty similarity score and address sim-
ilarity score. These scores are then combined in order to define whether the
records are related or not. Since all three attributes are strings, their respec-
tive matchers are based on string comparison strategies empirically chosen for
this specific purpose. Considering that the matching strategy for the attributes
specialty and address are simpler, we describe them first.

Our matchers for the attributes address and specialty are based on the Leven-
shtein edit distance. Their returning scores have been defined as the complement
of this metric, which measures the rate of changes that must be performed in
two strings to make them identical. For example, given a pair of addresses A1
and A2, the corresponding address similarity score is computed as:

Levenshtein distance(A1, A2) = 1− Levenshtein distance(A1, A2)

Unlike the address and specialty matchers, the name matcher is more complex
and comprises four steps. Since names usually present typing errors, abbrevia-
tions, minor variations and missing components, we need a more sophisticated
strategy to be able to properly match them. In addition, the first and last names
are usually more reliable than the other names component and should be ac-
cordingly weighted. Thus, for our name matcher, we have developed a four step
heuristic algorithm based on the Fragment Comparison algorithm [18] that sat-
isfies all these conditions. The first three steps of the algorithm compare, respec-
tively, the first name, the last name and the other names components of each
pair of records, producing three similarity scores that range from 0 and 1. Then,
the last step combines the three scores.

The first name and last name scores are similarly computed based on the Lev-
enshtein edit distance. If the first (last) name in both records is not abbreviated,
the first (last) name score is the Levenshtein similarity between them. On the
other hand, if the first (last) name is abbreviated in one or both records, the first
(last) name score is 1 if the first letter in both name components is the same or 0
otherwise. The similarity score for the other names components is computed as
the rate of matched names among the remaining names. A match occurs when
either two of the remaining names have a Levenshtein similarity above 0.8 in
the case of non-abbreviated names or the first letters are the same in case of
abbreviations. As the priority is the matching of non-abbreviated names, it is
performed first, as shown in Algorithm 1.

Finally, after we have the individual scores for first name, last name and
other names, the full name similarity score is computed as a linear combination
of these three scores. We consider that the other names score is less relevant
than the first and last name scores and set its weight to a lower value. We

Entity Matching: A Case Study in the Medical Domain

61

Algorithm 1 Other names comparison step in the name comparison matcher.
numberRemaining ← size(name1) + size(name2)− 4
for all x ∈ otherNames(name1) do

for all y ∈ otherNames(name2) do
threshold ← 0.8
if (matched(x) == 0) and (matched(y) == 0) then

if (length(x) > 1) and (length(y) > 1) then
if Levenshtein(x, y) ≥ threshold then

matched(x) ← 1
matched(y) ← 1
matches ← matches + 2

for all x ∈ otherNames(name1) do
for all y ∈ otherNames(name2) do

if (matched(x) == 0) and (matched(y) == 0) then
if (length(x) == 1) or (length(y) == 1) then

if firstLetter(x) == firstLetter(y) then
matched(x) ← 1
matched(y) ← 1
matches ← matches + 2

other names score ← matches / numberRemaining

then use entropy to calibrate the weights of the first and last name scores, based
on the intuition that a name component with larger uncertainty is more relevant.

Matcher Combination. After we have compared each pair of records in each
block, we decide whether they are related or not based on the three similar-
ity scores computed by the matchers and on the relevance of the corresponding
full names. The solution proposed is a heuristic based on logical operations and
thresholds that have been empirically defined. In the next section we show the
details of the combination algorithm.

Pruning Comparisons. We also propose two heuristics for pruning unneces-
sary comparisons. The first heuristic consists in discarding blocks that are asso-
ciated with low relevance name components. A threshold B defines the number
of blocks to be discarded, i.e., the number of blocks for which no comparison
is performed between their records. As stated before, each block is associated
with a name component and for each such name we have computed its relevance.
The B skipped blocks are those associated with names with small relevance. If
a name is too popular, its respective block is large and the cost of comparing
all its record pairs is huge. In addition, a popular name presents very low dis-
crimination power, so it is likely that the matching rate within its block is very
low. The second heuristic does not compare two records if the similarity score
between two names is below a threshold S, that is, it does not compare the other
two attributes, specialty and address. If the name similarity score produced by
each matcher is smaller than S, it is very unlikely that the records are related, so
it is not necessary to proceed with the remaining comparisons and the matcher
combination. In the next section we describe how the values of B and S have
been chosen.

Entity Matching: A Case Study in the Medical Domain

62

4 Experimental Evaluation

4.1 Experimental Setup

Data Collected. We collected data about Brazilian healthcare professionals
from three data sources: Apontador, Doctorália and CNES. After collecting the
data, we extracted the attributes name, specialty and address. We selected only
records of professionals from the state of Minas Gerais in order to reduce the
data volume and make the calibration process easier. We believe that there is no
significant difference between the data distribution among Brazilian states and
our results should be closer to those from the whole country. Table 1 shows the
total number of records collected from each data source.

Table 1. Total number of records collected from each data source.

Data Source Apontador Doctorália CNES

Records Collected 14,060 10,324 382,180

Blocking Parameters. The ideal value of B should minimize the number of
comparisons but avoiding to separate related records that have in common only
names associated with the largest B blocks. Therefore, if the value of B is too
small, it does not avoid unnecessary comparisons. On the other hand, if the value
of B is too large, some similar pairs may not be compared, although several
comparisons are avoided. We then performed the following experiments.

First, we measured the amount of comparisons avoided by each value of
B. Fig. 1(a) shows the percentage of comparisons avoided as a function of B
considering that if B is equal to zero, no comparison is avoided, resulting in more
than 11.6 billion comparisons. The results show that the rate of comparisons
decreases fast initially, but the pace slows down in the range between B = 5 and
B = 14. As it is not clear the stabilizing value, we chose the value B = 5 that
avoids 76% of the original number of comparisons.

Next, we verified whether B = 5 was appropriate. Fig. 1(b) shows, for each
similarity name range, the percentage of record pairs pruned for B = 5 that were
also in another block and, therefore, are compared anyway. The results show that
the larger the name similarity, the larger the number of comparisons. Thus, we
can conclude that the threshold B = 5 prunes unnecessary comparisons and
guarantees that pairs with related names are compared in non-pruned blocks.

According to Fig. 2(a), which shows the similarity distribution for the at-
tribute name, the frequency of similar names decreases fast from 0.6, indicating
that this is a good threshold to separate the actual similar names from random
matches. Thus, S was set to 0.6.

Matchers and Combination Algorithm. As already described, for each pair
of records compared, the matcher combination algorithm returns a binary value

Entity Matching: A Case Study in the Medical Domain

63

(a) Rate of comparison avoided (b) Rate of skipped pairs compared in
other blocks

Fig. 1. Experiments results for choosing the value of B.

(a) Name similarity distribution (b) Specialty similarity distribution

(c) Adress similarity distribution (d) Full name relevance distribution

Fig. 2. Distribution of the scores considered in the algorithm for matchers combination.

indicating whether the two records match. Its implementation considers the sim-
ilarity scores of the attributes name, specialty and address, and the relevance of
the respective full names.

We start by defining the parameters for determining the matching score of
a name. As already mentioned, we consider the first and last name components
more relevant and thus set the weight of the other names component to 0.3.
We then measure the entropy of the first and last name components, and set
their weights based on the assumption that the higher their entropy, the higher
their weight should be. We have found an entropy of 1.15 for the first name
component and of 0.7 for the last name component. Thus, we proportionally set
their weights to 0.43 and 0.27 respectively, resulting in the following expression
for the name similarity score:

nameScore = ((0.43× scoreF irstName) + (0.27× scoreLastName)+

(0.3× scoreOtherNames))

Entity Matching: A Case Study in the Medical Domain

64

Fig. 2(a)-(c) show the distribution of the similarity scores of the three at-
tributes for a random sample of one million pairs. Note that for the attributes
specialty and address, the sample also present a name similarity above 0.6. We
also observe that the highest frequencies are associated with values smaller than
the similarity threshold, showing the effectiveness of our heuristic. We have also
measured the correlation between the matchers’ returned values, but the results
were smaller than 0.1, indicating that there was no correlation among them. As
a consequence, the thresholds for each attribute type may be independently de-
fined and set to a different value. We then present a histogram of the relevance
scores for the 406,564 full names (Fig. 2(d)) extracted from our datasets. We
can see that the threshold for name relevance should be lower to avoid missing
relevant pairs, but we still have a large number of irrelevant pairs associated
with lower scores.

Our heuristic strategy was empirically set by sampling the results. It is based
on logical operators and thresholds, and considered the following assumptions:

– We divided all full names in the dataset into two groups: relevant names and
non-relevant names. We consider a name as relevant if its relevance value is
equal or greater than 0.2. This threshold sets 15% of the names as relevant.

– We set a threshold for each one of the three matchers in order to separate
record pairs with similar attribute values.

– We set specific thresholds for the attribute name considering the cases in
which the names are relevant and not relevant. For relevant names, the
threshold is 0.8. Otherwise, it is set to 0.9.

– For the specialty and address attributes, the thresholds were set to 0.8 and
0.75, respectively.

– If the name similarity of a record pair is greater or equal than its threshold
and the similarity of one of the other two attributes (specialty or address)
also satisfies its respective threshold, the records are considered related, re-
gardless of the similarity score of the third attribute.

Based on the above assumptions, Algorithm 2 below describes our implemen-
tation for the matcher combination.

Algorithm 2 Algorithm for matcher combination.
if relevance(name1) ≥ 0.2 and relevance(name2) ≥ 0.2 then

if nameSimilarity > 0.8 and (specialtySimilarity > 0.8 or addressSimilarity > 0.75)
then

MATCH
else

if nameSimilarity > 0.9 and (specialtySimilarity > 0.8 or addressSimilarity > 0.75)
then

MATCH

Entity Matching: A Case Study in the Medical Domain

65

4.2 Experimental Results

In this subsection, we present a characterization of the records classified as
matches and assess the accuracy of our method by sampling the results. In
this execution of our method, with the thresholds B = 5 and S = 0.6, about
119.5 million comparisons have been performed, resulting in a total of 799,877
matched pairs, whereas approximately 118.6 million pairs have been classified
as not matched.

Table 2 shows the percentage of pairs found by our method that present exact
match for each attribute combination, i.e., they would be matched if an exact
match approach were employed. For example, 21.5% of the pairs matched by our
method present identical names and addresses, so they would be also matched by
an exact match solution that considered only the attributes name and address.
Moreover, only 2.1% of the related records have presented an exact match and
more than 16,500 records (2.1%) do not have even the same name. Thus, the
exact match approach would not be a good solution as many record pairs that
have been matched (and are likely to be related) would not be matched.

Table 2. Percentage of pairs of records matched by our algorithm that presents exact
match for each set of attributes.

Percentage of exact matches 97.9 71.3 21.6 69.7 21.5 2.2 2.1

Name X X X X

Specialty X X X X

Address X X X X

As we do not have a labeled dataset, we have sampled the dataset and labeled
it manually. Since the number of not matched pairs is huge, it is not feasible to
label a representative percentage of them. Thus, we have only labeled those
records most likely to be incorrectly classified, i.e., we selected the 300,000 most
similar pairs of unmatched records and manually labeled 1% of them. For the
set of matched records, we have also selected the 300,000 least similar matched
pairs and also manually labeled 1% of them. We have also assumed that the
importance order of the attributes is name, followed by specialty and then by
address. Thus, the similarity of a pair of records for the sample selection was
computed as the combination value of the name, specialty and address similarities
weighted by 5, 3 and 1, respectively. We notice that there are some pairs for which
we have not been able to decide whether they were related or not. We refer to
these pairs as unknown.

Table 3 shows the results evaluation considering the aforementioned sampling
of 1% of the records most likely to be incorrectly classified. As we cane see, the
results are quite good and, as the false negative rate is just 5%, our future efforts
should aim those records that although related are not matched by our method.

Entity Matching: A Case Study in the Medical Domain

66

Table 3. Results evaluation of the 6000 labeled pairs, 3000 from the matched set and
3000 from the not matched set.

Real value

Predicted value

Percentage of Related Not related Unknown Total

Matched 95.31 1.43 3.26 100

Not Matched 5.13 93.43 1.43 100

5 Conclusions

In this paper, we have proposed a simple and effective method for solving the
entity matching problem involving data records of healthcare professionals. Our
contributions are centered on the three main tasks involved in the matching pro-
cess: blocking, matcher selection and matcher combination. Our blocking strat-
egy adopts an overlapping mechanism for reducing the number of comparisons
between related records. Our matchers are based on existing string matching
functions especifically tuned for the problem at hand. Finally, our matcher com-
bination strategy is based on an empirically designed heuristic algorithm. We
have evaluated our method by conducting a case study involving data from
three Brazilian Web sources of healthcare professionals. Our results show that
our method has achieved a true positive rate of over than 95% and a true negative
rate of over 93%.

As future work, we aim to improve our matchers by hierarchically labeling
the medical specialties and splitting addresses into components such as street,
number, city and state. We also aim to investigate a graph-based approach as
an alternative to address the entity matching problem in the medical domain.
Furthermore, we want to investigate the problem of data fusion, i.e., as in many
situations the data related to a same entity might also present some conflict, it
is very important to apply a method for deciding which information is correct
and updated. Finally, we plan to compare our method with other existing entity
matching approaches.

Acknowledgements. This work is partially funded by InWeb (grant MCT-CNPq
573871/2008-6), and by the authors’ individual scholarships and grants from
CAPES, CNPq and FAPEMIG.

References

1. Agrawal, R., Ieong, S.: Aggregating Web Offers to Determine Product Prices. In:
Proc. of the 18th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining. pp. 435–443 (2012)

2. Arasu, A., Ganti, V., Kaushik, R.: Efficient Exact Set-similarity Joins. In: Proc.
of the 32nd Int’l Conf. on Very Large Data Bases. pp. 918–929 (2006)

3. Brizan, D.G., Tansel, A.U.: A Survey of Entity Resolution and Record Linkage
Methodologies. Communications of the IIMA 6(3), 41–50 (2006)

Entity Matching: A Case Study in the Medical Domain

67

4. de Carvalho, M.G., Laender, A.H.F., Gonçalves, M.A., da Silva, A.S.: A Genetic
Programming Approach to Record Deduplication. IEEE Trans. Knowl. Data Eng.
24(3), 399 – 412 (2012)

5. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer-Verlag (2012)

6. Cohen, W., Ravikumar, P., Fienberg, S.: A Comparison of String Metrics for
Matching Names and Records. In: Proc. of the KDD Workshop on Data Cleaning
and Object Consolidation. vol. 3, pp. 73–78 (2003)

7. Draisbach, U., Naumann, F.: A Generalization of Blocking and Windowing Algo-
rithms for Duplicate Detection. In: Proc. of the Int’l Conf. on Data and Knowledge
Engineering. pp. 18–24 (2011)

8. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate Record Detection: A Survey.
IEEE Trans. on Knowl. and Data Engineering 19(1), 1–16 (2007)

9. Ferreira, A.A., Gonçalves, M.A., Laender, A.H.F.: A Brief Survey of Automatic
Methods for Author Name Disambiguation. SIGMOD Record 41(2), 15 – 26 (2012)

10. Hassanzadeh, O., Chiang, F., Lee, H.C., Miller, R.J.: Framework for Evaluating
Clustering Algorithms in Duplicate Detection. Proc. of VLDB Endow. 2(1), 1282–
1293 (2009)

11. Hernández, M.A., Stolfo, S.J.: The Merge/Purge Problem for Large Databases.
SIGMOD Record 24(2), 127–138 (May 1995)

12. Kang, I.S., Na, S.H., Lee, S., Jung, H., Kim, P., Sung, W.K., Lee, J.H.: On co-
authorship for author disambiguation. Information Processing and Management
45(1), 84 – 97 (2009)

13. Kolb, L., Thor, A., Rahm, E.: Dedoop: Efficient Deduplication with Hadoop. Proc.
of VLDB Endow. 5(12), 545 – 550 (2012)

14. Köpcke, H., Thor, A., Thomas, S., Rahm, E.: Tailoring Entity Resolution for
Matching Product Offers. In: Proc. of the 15th Int’l Conf. on Extending Database
Technology. pp. 545–550 (2012)

15. Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison. Data and
Knowledge Engineering 69(2), 197 – 210 (2010)

16. Lee, M.L., Ling, T.W., Low, W.L.: IntelliClean: A Knowledge-based Intelligent
Data Cleaner. In: Proc. of the Sixth ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining. pp. 290–294 (2000)

17. McCallum, A., Nigam, K., Ungar, L.H.: Efficient Clustering of High-dimensional
Data Sets with Application to Reference Matching. In: Proc. of the Sixth ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. pp. 169–178 (2000)

18. Oliveira, J.W., Laender, A.H., Gonçalves, M.A.: Remoção de Ambiguidades na
Identificação de Autoria de Objetos Bibliográficos. In: Anais do XX Simpósio
Brasileiro de Banco de Dados. pp. 205–219 (2005), (In Portuguese)

19. Raad, E., Chbeir, R., Dipanda, A.: User Profile Matching in Social Networks. In:
Proc. of the 13th Int’l Conf. on Network-Based Information Systems. pp. 297–304
(2010)

20. Singla, P., Domingos, P.: Entity Resolution with Markov Logic. In: Proc. of the
Sixth Int’l Conf. on Data Mining. pp. 572–582 (2006)

21. Tan, Y.F., Kan, M.Y., Lee, D.: Search Engine Driven Author Disambiguation.
In: Proc. of the 6th ACM/IEEE-CS Joint Conf. on Digital Libraries. pp. 314–315
(2006)

22. Thor, A., Rahm, E.: MOMA - A Mapping-based Object Matching System. In: Proc.
of the Third Biennial Conference on Innovative Data Systems Research (2007)

Entity Matching: A Case Study in the Medical Domain

68

Using Statistics for Computing Joins with MapReduce

Theresa Csar1, Reinhard Pichler1, Emanuel Sallinger1, and Vadim Savenkov2

1 Vienna University of Technology
{csar, pichler, sallinger}@dbai.tuwien.ac.at

2 Vienna University of Economy and Business (WU)
vadim.savenkov@wu.ac.at

1 Introduction

The MapReduce model has been designed to cope with ever-growing amounts of data [4].
It has been successfully applied to various computational problems. In recent years,
multiple MapReduce algorithms have also been developed for computing joins – one of
the fundamental problems in managing and querying data.

The main optimization goals of these algorithms for distributing the computation
tasks to the available reducers are the replication rate and the maximum load of the
reducers. The HyperCube algorithm of Afrati and Ullman [1] minimizes the former by
considering only the size of the involved tables. This algorithm was later enhanced by
Beame et al. [3] to minimize the latter by taking into account also so-called “heavy
hitters” (i.e., attribute values that occur particularly often). However, in contrast to most
state-of-the-art database management systems, more elaborate statistics on the distribu-
tion of data values have not been used for optimization purposes so far.

Recently, several approaches for handling skew in the computation of joins have
been proposed, improving the partitioning of the data using histograms or varying a
cost model [6, 7], but there is still ample room for enhancements and optimization.
In [5] a survey of recent approaches for dealing with the weaknesses and limitations of
the MapReduce model can be found.

The goal of this paper is to study the potential benefit of using more fine-grained
statistics on the distribution of data values in MapReduce algorithms for join compu-
tation. To this end, we investigate the performance of known algorithms [1, 3] in the
presence of skewed data, and extend them by utilizing data statistics. We compare the
original algorithms with a modified one that makes use of additional statistical mea-
sures. Our initial study shows that our approach can indeed improve existing methods.

2 Preliminaries

A MapReduce join computation consists of three basic phases. First, in the Map-Phase,
a key-value is assigned to every tuple. In the Shuffle-Phase, the tuples are distributed
among the reduce tasks (also called reducers) according to their key-values. In the final
Reduce-Phase, each reducer performs the join on all its tuples. The theoretical founda-
tions of MapReduce query processing have been laid among others by [1–3], based on
the HyperCube algorithm outlined below.

69

The HyperCube Algorithm. Key-values for tuples are formed by concatenating the
hashes of the join attributes. Consider the triangle joinR(A,B) 1 S(B,C) 1 T (C,A)
in which all attributes A, B and C are join attributes. Key-values are triples (ai, bi, ci)
obtained by the respective hash functions ha, hb and hc. A tuple is sent to all reducers
that may have join candidates for it. For instance, the tuple R(a1, b1) is sent to the
reducers identified by keys of the form (ha(a1), hb(b1), ∗) where ∗ matches any value
in the range of hc. We take [1, a], [1, b] and [1, c] to be the ranges of the respective
hash functions ha, hb and hc. The size the range is called the share of the attribute. The
respective shares are thus a, b and c, and the total number of reducers equals the product
of the shares: k = abc.

An important measure for the performance of the HyperCube algorithm is the repli-
cation rate. For instance, each R-tuple R(ai, bi) is replicated c times, since it is sent to
the reducers responsible for the keys (h(ai), h(bi), 1), . . . , (h(ai), h(bi), c). The repli-
cation rate for the triangle join is rc+sa+tb, where r, s and t are the sizes of the tables.
In [1], shares are chosen in order to minimize the replication rate. The solution for the

shares for the triangle query in the model of [1] is a = 3

√
krt
s2 , b = 3

√
krs
t2 and c =

3

√
kst
r2 . For the four-atom chain query R(A,B) 1 S(B,C) 1 T (C,D) 1 U(D,E), the

solutions for the shares are b = d
√

rs
tu , c =

√
st
ru and d =

√
ku
s .

In [3], the shares are chosen to minimize the maximum load per reducer, that is,
the maximum number of tuples sent to a single reducer. The shares are calculated as
the solution to a linear program. In contrast to [1], the method in [3] also addresses
the problem of skew by treating heavy hitters separately. Also the expected load and
maximum load per server is analyzed in [3], and a lower bound for the maximum load
per server is given.

3 An Empirical Study and the Need for Statistics

The goal of our study is to compare the performance of HyperCube-based algorithms.
To this end, we investigate how the shares chosen by such methods influence the work-
load distributions among the reduce tasks, in particular the maximum load. The anal-
ysis was performed on two well-studied types of queries, namely the triangle query
(R(A,B) 1 S(B,C) 1 T (C,A)) and the chain query of length four (R(A,B) 1

S(B,C) 1 T (C,D) 1 U(D,E)). In both cases, there are three join attributes.

Methods. Apart from known methods for computing shares, namely [1] (which we
shall call AU) and [3] (which we shall call BKS), we next introduce baseline methods as
well as weighted variants of AU that take into account additional statistics. To facilitate
a fair comparison, the shares produced by each method are normalized in the following
way: they are rounded to integer values in such a way that the product of the shares is
as close as possible to the fixed number of reduce tasks k. Shares have to be at least 1
and at most k. For the naive method, we define shares naive = (3

√
k, 3
√
k, 3
√
k). The

worst-case we identified, worst = (k, 1, 1), will be omitted from charts to keep the
differences between other methods visible. The nearly-worst-case methods we consider
are defined as share1 = (2 3

√
k, 12

3
√
k, 3
√
k) and share2 = (

√
k,
√
k, 1), respectively.

Using Statistics for Computing Joins with MapReduce

70

Weigthed AU. The shares computed using AU (or BKS) depend only on the sizes of
the tables, but not on other statistics indicating, e.g., the degree of skew. A simple way
to detect a distribution with high variability is using the standard deviation. The more
elaborate gini-coefficient is a measure for the variability of a distribution. For an ob-
servation X with possible values x1, . . . , xn and relative frequencies p1, . . . , pn, the
gini-coefficient is

∑n
i=1 p

2
i . A gini-coefficient close to 1 means that the values are very

unevenly distributed.
We define our method SD as a variant of AU with the following modification: As-

sume that a table T has size t and attributes A and B. Instead of t, we give to AU the
weighted value t · sd(T.A) · sd(T.B), where sd denotes the standard deviation of the
attribute values. The Gini method is defined analogously. Finally, the variant SD2 of
SD is defined by normalizing the standard deviation relative to the maximum attribute
value, i.e., sd2 (T.A) := sd(T.A) /max (T.A). Note that standard deviation is only
defined for numeric values (and our test scenarios use only numeric values). We leave
the study of similar variations of BKS for future work.

Test Methodology. The experimental study was implemented using the programming
language R (http://cran.r-project.org/). The goal of our study is to compute
the work loads of all reducers, and derive in particular the maximum load and various
other statistics based on the loads. Thus, we only implement the Map-Phase of the
MapReduce process. To this end we compute the loads of the reducers and our presented
statistics.

As databases for our test scenarios, we use randomly generated data sets where at-
tributes are generated according to a variety of different distributions. For each such
database, all methods (AU, BKS, . . .) are applied 1000 times to the input tables to com-
pute the shares. In each round, other (randomly generated) hash functions are used.
Performing 1000 repetitions is done to be able to isolate the effect of the method (in
particular, the chosen shares) from the effect of the exact hash function that is used.

Fig. 1: Triangle query – maximum loads Fig. 2: Chain query – maximum loads

Using Statistics for Computing Joins with MapReduce

71

Triangle Query. For the triangle query, we first look at a sample database generated
using the methodology described above. The number of reduce tasks used is 150. The
resulting maximum load at the reduce tasks can be seen in Fig. 1, where it can be ob-
served that all reasonable methods (i.e., all methods besides the nearly-worst-case ones)
do not show any significant difference in the performance based on the the maximum
loads. When observing the variance and the gini-coefficient of the loads, a similar pic-
ture arises. This is surprising, since the assigned shares differ a lot (see Table 1a). As
expected, AU yields the lowest replication rate.

method a b c replication rate
AU 3 6 8 4.72
BKS 3 6 8 4.72
Naive 5 6 5 4.91
Gini 6 5 5 5.55
SD 3 5 10 4.82
SD2 2 6 11 4.73
share1 10 3 5 7.18
share2 8 9 2 7.18
worst 150 1 1 82.3

(a) First triangle query

method b c d replication rate
AU 8 3 6 13.3
BKS 11 2 7 13.5
Naive 5 6 5 14.5
Gini 48 1 3 25.9
SD 1 50 3 33.0
SD2 7 21 1 41.6
share1 10 3 5 14.4
share2 8 9 2 23.3
worst 150 1 1 75.6

(b) Chain query

Table 1: Shares and replication rates for the triangle and chain queries.

Triangle Query for Highly Skewed Data. For highly skewed data, we show that the AU
and BKS methods do not always yield optimal maximum load. Indeed, the maximum
load produced by AU and BKS exceeds the value obtained with the SD by more than
30%. We illustrate this by an example.

We consider the database instance D given in Fig. 3 and let the maximum number
of reducers be 64. Table R contains 1040 distinct tuples (ai, bi) and the tables S and T
contain groups of 16 ci,j values associated to the same ai or bj value, which sums up to
1040 values per table as well.

In total, few R tuples take part in triangles, but those that take part have 16 ci,j
values that form triangles with them. Such a situation would be typical in a company
where, say, few employees are department heads, but those who are department heads
have a number of employees they are responsible for.

We calculated the shares, the resulting replication rate and maximum load for the
discussed methods. Both AU and BKS yield shares (4, 4, 4). Applying the pigeonhole
principle, one can show that this leads to the load of 65+ 16+ 16 = 97 tuples for most
reducers as a lower bound. A much better maximum load (66 tuples for one reducer
and 33 for the rest) could have been obtained using shares (8, 8, 1). The suboptimal
result of AU and BKS is due to taking only table sizes into account, whereas the SD
method yields the solution (8, 8, 1). An important observation here is that the actual
performance of each method depends heavily on the concrete hash function and that
“usual” hash functions based on integer division may by far miss the optimum.

Using Statistics for Computing Joins with MapReduce

72

R
A B
a1 b1

...
...

a1040 b1040

S
A C
a1 c1,1
a1 c1,2
...

...
a1 c1,16
...

...
a65 c65,1
a65 c65,2

...
...

a65 c65,16

T
C B
c1,1 b1
c1,2 b1

...
...

c1,16 b1
...

...
c65,1 b65
c65,2 b65

...
...

c65,16 b65

Fig. 3: Database instance D.

Chain Query. For the chain query, a random database is constructed according to the
methodology outlined earlier. Again, our tests are performed for 150 reduce tasks. In-
terestingly, the resulting maximum loads are much higher for share2, Gini, SD, and
SD2 than for the other methods (see Fig. 2). The high maximum load in case of Gini,
SD, and SD2 suggests that some fine-tuning of the weights caused by the data statistics
is needed. On the positive side, it turns out that the loads resulting from the Gini, SD,
and SD2 methods are distributed more evenly among the reducers than with AU and
BKS, as can be seen in Fig. 5. The high variability in the median (Fig. 4), especially for
the Gini method, again underlines that the choice of the hash function is crucial.

Fig. 4: Chain query – median of loads Fig. 5: Chain query – gini of loads

Using Statistics for Computing Joins with MapReduce

73

4 Conclusion

We have initiated the comparative study of methods for computing joins using MapRe-
duce. We have seen that current methods perform relatively well compared to baseline
and adapted methods. However, we have also seen that data-dependent statistics pro-
vide much potential for further improvement of these algorithms, which needs to be
further explored. In particular, if we aim at a uniform distribution of computation tasks
among the available reducers, taking into account additional statistical measures such
as standard deviation or gini coefficient seems inevitable. Another important lesson
learned from our investigation is the importance and difficulty of choosing an optimal
hash function: even if the shares are – in theory – “optimal” for a certain criterion (such
as maximum load), it is highly non-trivial to actually attain this optimum by choosing
the “right” hash function. Current MapReduce research thus also has to be extended
towards optimizing the hash function. Beyond that, we want to investigate the tradeoff
between the cost of computing statistics and the gain provided by these statistics.
Acknowledgements. This work was supported by the Austrian Science Fund projects
(FWF):P25207-N23 and (FWF):Y698.

References

1. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-reduce environment. IEEE
Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)

2. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query processing. In: Proc.
PODS 2013. pp. 273–284. ACM (2013)

3. Beame, P., Koutris, P., Suciu, D.: Skew in parallel query processing. In: Proc. PODS 2014. pp.
212–223. ACM (2014)

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

5. Doulkeridis, C., Nørvåg, K.: A survey of large-scale analytical query processing in mapre-
duce. The VLDB Journal 23(3), 355–380 (2014)

6. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Load balancing in mapreduce based on scal-
able cardinality estimates. In: Proc. ICDE 2012. pp. 522–533 (2012)

7. Okcan, A., Riedewald, M.: Processing theta-joins using mapreduce. In: Proc. SIGMOD 2011.
pp. 949–960. ACM (2011)

Using Statistics for Computing Joins with MapReduce

74

TriAL-QL: Distributed Processing of
Navigational Queries?

Martin Przyjaciel-Zablocki1, Alexander Schätzle1, and Adrian Lange2

1 Department of Computer Science, University of Freiburg, Germany
zablocki|schaetzle@informatik.uni-freiburg.de
2 IIG Telematics, University of Freiburg, Germany

lange@iig.uni-freiburg.de

Abstract. Navigational queries are natural query patterns for RDF
data, but yet most existing RDF query languages fail to cover all the
varieties inherent to its triple-based model, including SPARQL 1.1 and
its derivatives. TriAL* is one of the most expressive approaches but not
supported by any existing RDF triplestore. In this paper, we propose
TriAL-QL, an easy to write and grasp language for TriAL*, preserv-
ing its procedural structure. To demonstrate its feasibility, we provide
a proof of concept implementation for Hadoop using Hive as execution
layer and give some preliminary experimental results.

1 Introduction

Graph databases and their respective graph query languages are commonly used
for RDF data querying. However, in contrast to the standard graph model, an
edge label in RDF (predicate) does not come from a finite alphabet and may also
appear as a source or destination (subject and object, respectively) of another
edge. Consequently, RDF query languages based on typical graph query lan-
guages like nested regular expressions (NRE) are not capable of such constructs
and lose important features, e.g. reasoning over predicates within a query [2].
To the best of our knowledge, there are only two RDF query languages that
enable expressive navigational capabilities with reasoning and can be evaluated
in polynomial time, namely Triple Query Language Lite (TriQ-Lite) [3] and
Triple Algebra with Recursion (TriAL*) [4]. TriQ-Lite is defined as a Datalog
extension that captures SPARQL queries enriched with the OWL 2 QL profile,
whereas TriAL* is a closed language that works directly with triples includ-
ing recursion over triple joins. Although, the steady growth of Semantic Web
data with its high degree of diversity in both, structure and vocabulary, justi-
fies such expressive RDF query languages, it also raises the need for solutions
that scale with the data size. In recent years, Hadoop has become the de-facto
standard for processing Big Data, with a recent trend on scalable, interactive
SQL-on-Hadoop solutions. The descent of TriAL* from relational algebra and
its inherent compositionality led us to the decision to build an implementation of

? A substantially extended version will appear in [5]

75

TriAL* based on Hadoop. While TriAL* is a neat approach for querying RDF,
its algebraic notation is inappropriate for practical usage. Thus, we propose the
TriAL* Query Language (TriAL-Ql) that keeps the procedural structure
of TriAL* by representing each algebra operation with a SQL-like statement.
This way, even complex navigational queries are easy to grasp and write.

Our major contributions can be summarized as follows: (1) We introduce
TriAL-QL, a query language for TriAL* with an intuitive mapping between
both. (2) Next, we provide an Hadoop-based implementation of TriAL-QL
using Hive. Optimizations include a precomputed 1-hop neighborhood, different
evaluation strategies and a carefully chosen storage layout. (3) Finally, we show
some preliminary experiments that demonstrate the scalability and feasibility of
our approach.

2 TriAL-QL: A Procedural Query Language for RDF

The Triple Algebra with Recursion (TriAL*) [4] is one of the most expressive
RDF query languages with polynomial complexity. In contrast to many other
approaches, TriAL* is a closed and hence compositional language, i.e. the out-
put is a set of triples rather than graphs or bindings. It works directly with
triples, which allows us to write queries that are not expressible using query lan-
guages based on the standard graph model (e.g. regular path queries and nested
regular expressions). TriAL* takes the relational algebra as its basis with some
restrictions to guarantee closure. The most important operator is a triple join
between two ternary relations E1 and E2 representing sets of triples, defined as:
E1 ./

i,j,k
θ,η E2, where i, j, k ∈ {s1, p1, o1, s2, p2, o2} indicate the implicit projection

on three fields to keep the operation closed with s1 referring to the subject of
E1, etc. θ represents the join conditions whereas η is a set of conditions be-
tween objects and data values. To express paths of arbitrary length, recursion
is added with the right (e ./i,j,kθ,η)∗ and left (./i,j,kθ,η e)∗ Kleene closure, where
e is a TriAL* expression. Thus, a reachability query that asks for pairs (x, z)

which follow the connection pattern corre-
sponds to the TriAL* expression (E ./ s1, p1, o2

o1=s2)∗ with E being a relation name
in a triplestore (cf. [4] for more details).

TriAL-QL. Next, we introduce the notation of TriAL-QL. The basic idea
is to flatten the algebra expressions of TriAL* to a sequence of interrelated
statements. A complete grammar can be found on our project website 1. Table 1
shows the algebra of TriAL* with the corresponding syntax in TriAL-QL.
Each algebra operation is represented by exactly one SQL-like statement. Ac-
cordingly, we can express the previously discussed reachability query by the
following TriAL-QL statement:

SELECT s1, p1, o2 FROM E ON o1 = s2 USING right

1 http://dbis.informatik.uni-freiburg.de/forschung/projekte/DiPoS/

TriAL-QL: Distributed Processing of Navigational Queries

76

Table 1. TriAL-QL Algebra & Syntax, where e, e1 and e2 correspond to a TriAL*
expression. (i, j, k, θ, η as previously defined, cf. [4].)

Algebra (TriAL*) Syntax (TriAL-QL)

σθ,η(e) SELECT i, j, k FROM e FILTER θ, η

e1 ./
i,j,k
θ,η e2 SELECT i, j, k FROM e1 JOIN e2 ON θ FILTER η

e1 ∪ e2 e1 UNION e2
e1 − e2 e1 MINUS e2

(e ./i,j,kθ,η)∗ SELECT i, j, k FROM e ON θ FILTER η USING right

(./i,j,kθ,η e)∗ SELECT i, j, k FROM e ON θ FILTER η USING left

Next, we consider a more complex reachability problem introduced in [4]
asking for pairs (x, z) which follow a connection pattern that requires reasoning
capabilities:

TriAL*:
e1 = (E ./ s1, o2, o1

p1=s2)∗

e2 = (e1 ./
s1, p1, o2
o1=s2, p1=p2)∗

⇓
TriAL-QL:
e1 = SELECT s1, o2, o1 FROM E

ON p1 = s2 USING left
e2 = SELECT s1, p1, o2 FROM e1

ON o1 = s2, p1 = p2 USING left

The inner expression e1 computes the transitive closure of the predicates from
E, while e2 computes the transitive closure of this resulting relation. Again, we
can see that TriAL-QL stays close to its TriAL* expression illustrating the
strength of a compositional language where the result of the first statement can
be used as input for the second. This makes TriAL-QL queries easy to write,
understand and modify.

Further, new operators can be added smoothly, meeting our requirements.
First, we extend the syntax of TriAL-QL with a STORE operation that enables
us to materialize the result of a TriAL* expression e as a new relation in a
triplestore. This way, not only the output but also intermediate results can be
stored for later processing, if desired. Next, as we focus on processing web-scale
RDF data, we have seen the need to introduce more control over the recursion
depth of the right and left Kleene operator. Therefore, we introduce a scalar
that replaces the Kleene Star and limits the number of join compositions. In
TriAL-QL this can be formulated within the USING clause by writing, e.g.,
left(4) for applying left Kleene four times.

3 A Distributed Execution Engine for TriAL-QL

We implemented our execution engine on top of Hadoop using Hive as intermedi-
ate layer rather than working directly with MapReduce. This makes us indepen-
dent of any Hadoop changes (e.g. Yarn) while taking advantage of continuously

TriAL-QL: Distributed Processing of Navigational Queries

77

optimized Hive versions or newer execution engines like Tez that come along
with the recent SQL-on-Hadoop trend. Due to very limited space restrictions,
we give only a brief introduction to our implementation. In short, a TriAL-QL
query is first parsed to generate an abstract syntax tree and next mapped to
TriAL* which is in turn translated into HiveQL queries. We investigated dif-
ferent evaluation strategies based on (1) linear and (2) nonlinear recursion as
introduced in [1] and performed exhaustive experiments with different storage
formats (e.g. RCFile, ORC, Parquet) and strategies (e.g. indices, partitions) to
identify best practices for storing RDF data in Hive. Further, a precomputed
1-hop neighborhood reduces the amount of required joins.

Experiments. Some preliminary results are illustrated in Figure 1. We used the
Social Intelligence Benchmark (SIB) data generator2 to create social networks
of different sizes. The left hand side (a) shows execution times and number of
resulting triples for an exemplary query with three joins and one set operation
using linear evaluation. Both series exhibit an almost linear scaling behavior.
The right hand side (b) compares the linear to the nonlinear evaluation on a
more complex query involving the Kleene Star. In this example, the nonlinear
evaluation is superior to the linear one with increasing data size as it reduces the
amount of required join iterations from 12 (linear) to 8 (nonlinear). Exhaustive
experiments that include more advanced evaluation strategies are needed for
more comprehensive conclusions and are part of ongoing work [5]. However, the
first preliminary results already demonstrate the scalability and feasibility of our
approach.

200 400 600 1000 2000
0

250

500

750

1,000

1,250

3
4
3 5

4
0 6

9
3

7
3
4

1
,0

3
6

R
u
n
ti

m
es

(i
n

s)

0

20

40

60

80

100

0
4
.8 1

2
.1 1
9
.5

3
4

7
1
.1

R
es

u
lt

s
(i

n
M

tr
ip

le
s)Runtimes

Results

200 400 600
0

2.5

5

7.5

10

12.5

15

2
.1

7

6
.3

3

1
1
.7

7

2
.4

9 5
.1

3

7
.9

9

R
u
n
ti

m
es

(i
n

1
0
0
0

s) linear

nonlinear

Fig. 1. (a) execution times vs. results (linear) (b) linear vs. nonlinear execution

References

1. Afrati, F.N., Borkar, V.R., Carey, M.J., Polyzotis, N., Ullman, J.D.: Map-reduce
extensions and recursive queries. In: EDBT 2011, Sweden, March 21-24 (2011)

2. Angles, R.: A comparison of current graph database models. In: 28th ICDE Work-
shops, 2012, Arlington, VA, USA, April 1-5 (2012)

3. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: PODS’14, Snowbird, UT, USA, June 22-27, 2014 (2014)

4. Libkin, L., Reutter, J.L., Vrgoc, D.: Trial for RDF: adapting graph query languages
for RDF data. In: PODS 2013, New York, NY, USA - June 22 - 27, 2013 (2013)

5. Przyjaciel-Zablocki, M., Schätzle, A., Lausen, G.: TriAL-QL: Distributed Processing
of Navigational Queries. In: 18th WebDB 2015, Melbourne, Australia (2015)

2 http://www.w3.org/wiki/Social_Network_Intelligence_BenchMark

TriAL-QL: Distributed Processing of Navigational Queries

78

On Axiomatization and Inference Complexity
over a Hierarchy of Functional Dependencies

Jaroslaw Szlichta1, Lukasz Golab2, and Divesh Srivastava3

1 University of Ontario Institute of Technology, Oshawa, Canada
jaroslaw.szlichta@uoit.ca

2 University of Waterloo, Waterloo, Canada
lgolab@uwaterloo.ca

3 AT&T Labs-Research, New Jersey, USA
divesh@research.att.com

Abstract. Functional dependencies (FDs) have recently been extended
for data quality purposes with various notions of similarity instead of
strict equality. We study these extensions in this paper. We begin by
constructing a hierarchy of dependencies, showing which dependencies
generalize others. We then focus on an extension of FDs that we call
Antecedent Metric Functional Dependencies (AMFDs). An AMFD as-
serts that if two tuples have similar but not necessarily equal values of
the antecedent attributes, then their consequent values must be equal.
We present a sound and complete axiomatization as well as an inference
algorithm for AMFDs. We compare the axiomatization of AMFDs to
those of the other dependencies, and we show that while the complexity
of inference for some FD extensions is quadratic or even co-NP complete,
the inference problem for AMFDs remains linear, as in traditional FDs.

1 Introduction

Poor data quality is a bottleneck to effective business decision-making. Big data
initiatives are likely to take longer, cost more, and deliver fewer benefits without
clean data. The ability to store data is no longer a problem: according to a survey
of 586 senior executives conducted in June 2011 by the Economist Intelligence
Unit (EIU) [1], less than 20% indicated data storage as a problem; however more
than 50% rated data management tasks such as cleaning as problematic.

With the interest in data analytics at an all-time high, data quality has be-
come a critical issue in research and practice. Integrity constraints, which specify
the intended semantics and attribute relationships, are commonly used to char-
acterize and ensure data quality [6, 20]. In particular, Functional Dependencies
(FDs), which have traditionally been used in schema design, have recently been
extended for data consistency purposes. An FD asserts that if two tuples agree
on the left-hand-side attributes, then they must also agree on the right-hand-
side attributes. The idea behind various extensions of FDs is to replace strict
equality with some notion of similarity, either on the left-hand-side (see, e.g,

79

Table 1: Movie Relation
source title length year director

A A Beautiful Mind 135 2001 Ridley Scott

B A Beaut. Mind 135 2001 Ridley Scott

C Beautiful Mind 135 2001 Ridley Scott

Matching Dependencies [7, 5, 9]), on the right-hand-side (see, e.g, Metric Func-
tional Dependencies [13] and Sequential Dependencies [11]), or on both sides of
the dependency (see, e.g., Differential Dependencies [16]).

In this paper, we study these generalizations of FDs. Our first objective is to
construct a hierarchy of dependencies, revealing which ones (strictly) generalize
others, and comparing their axiomatization and complexity of inference.

We then introduce a particular generalization of FDs that we call Antecedent
Metric FDs (AMFDs). An AMFD asserts that if two tuples have similar but not
necessarily equal values of the antecedent attributes, then their consequent values
must be equal; we will compare AMFDs with related dependencies in Section 2.

To illustrate the utility of AMFDs, consider the movie data set shown in
Table 1, which was put together from multiple data sources. In the process
of merging data from various sources, it is often the case that small variations
occur. For example, one source might report the movie A Beautiful Mind to have
a running time of 135 minutes, as shown in Table 1, while another source may
refer to the same movie as A Beaut. Mind and the third one as Beautiful Mind.
An AMFD {title, year, director} 7→ {length} indicates that movies with similar
titles, years, and directors (up to some distance threshold, as we will discuss in
Section 2) must have equal lengths. Of course, we assume that the semantics
are such that two similar movie titles, made in similar years, by similar director
names do in fact refer to the same movie.

An FD {title, year, director} → {length} would not require the three length
values in Table 1 to be equal, even though they refer to the same movie. Thus,
AMFDs generalize FDs and can express the additional semantics of similarity.

The inference problem is to determine whether a dependency is logically
entailed by a set of dependencies. For FDs, the inference problem has been well
studied in previous work [3, 4]. We prove that while AMFDs are more expressive
than FDs and have a more complex axiomatization, their complexity of inference
remains linear.

The contributions of this paper are as follows.

1. Hierarchy: we construct a hierarchy of dependencies, showing which ones
generalize others and comparing their complexity of reasoning. Our hierarchy
shows which dependencies are practical and which are hard to reason about,
and suggests further research on identifying tractable extensions of FDs.

2. FD extension: we introduce AMFDs, which describe integrity constraints on
tuples with similar attribute values and are useful in data cleaning.

3. Axiomatization: we present a sound and complete axiomatization for AMFDs.
Axiomatization is a first necessary step to designing an efficient inference
procedure. Our axiomatization reveals interesting insights about inference

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

80

Table 2: Notational Conventions

Relations

– A bold capital letter represents a relation schema: R. Italic capital letters
near the beginning of the alphabet represent single attributes: A and B.

– A small bold capital letter in italic represents a relation (a table): t.
– Small italic letters near the end of the alphabet denote tuples: s and t.
– Small italic letters near the beginning of the alphabet denote attribute val-

ues: a, b and c. A small italic letter m denotes a similarity metric.

Sets
– Italic capital letters near the end of alphabet stand for sets of attributes: X
– XY is shorthand for X ∪ Y . Likewise, AX or XA stand for X ∪ {A}.

rules over AMFDs. For instance, the Reflexivity and Augmentation axioms,
which hold for traditional FDs, are not necessary true for AMFDs.

4. Inference Procedure: we develop an inference procedure for AMFDs that
runs in linear time in the complexity of the schema4. We implemented the
inference algorithm and experimentally verified its efficiency.
The remainder of this paper is organized as follows. In Section 2, we review

previous work, formally define AMFDs, and present a hierarchy of dependencies.
In Sections 3 and 4, we present a sound and complete axiomatization and an in-
ference procedure for AMFDs, respectively, and we compare the axiomatization
to those of other related dependencies. We conclude the paper in Section 5.

2 Fundamentals

2.1 AMFDs

We provide notational conventions in Table 2. To accommodate small variations
in the attribute values on the left-hand-side of the dependency, we define AMFDs
(Definition 2). This is a departure from traditional FDs which enforce equality
on both sides. Before we define AMFDs, we first define a similarity operator
with a distance threshold.

Definition 1. (similarity) For every attribute A in a relational schema R, we
assume a binary similarity relation (≈m,θ) w.r.t. some similarity metric m and
a threshold parameter θ ≥ 0. Specifically, for two tuples s and t, s[A] ≈m,θ t[A]
iff m(s[A], t[A]) ≤ θ. Metric m satisfies standard properties; it is symmetric,
satisfies the triangle inequality and identity of indiscernibles, i.e., m(a, b) = 0
iff a = b. For two tuples s, t in relation t over R, we write s[X] ≈m, Θ t[X] to
mean s[A1] ≈m1,θ1 t[A1], ..., s[An] ≈mn,θn t[An], where X = {A1, ..., An}, m
= [m1, ..., mn] and Θ = [θ1, ..., θn].

4 Our inference procedure is efficient because it is done at the schema level, which is
much smaller than the size of the data.

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

81

Next, we define AMFDs. By definition, AMFDs generalize FDs.

Definition 2. (AMFD) Let X and Y be two sets of attributes, and let mX

and ΘX be metrics and thresholds for attributes X. Then, X 7→ Y denotes an
antecedent metric FD (AMFD), read as X metrically functionally determines
Y . Let R be a relation schema that contains the attributes that appear in X and
Y , and let t be a relation instance of R. Relation t satisfies X 7→ Y (t |= X 7→
Y), iff for all tuples s, t ∈ t, s[X] ≈mX ,ΘX

t[X] implies s[Y] = t[Y]. An AMFD
X 7→ Y is said to hold for R, written as R |= X 7→ Y , iff for each admissible
relational instance t of R, relation t satisfies X 7→ Y . An AMFD X 7→ Y is
trivial iff for all t, t |= X 7→ Y .

Example 1. (AMFD) Assume metrics mtitle and mdirector are edit distances with
thresholds θtitle = 6 and θdirector = 0, respectively, in Table 1 (movie relation).
Also assume that metric myear is an integer distance with a threshold θyear =
0. Therefore, Table 1 satisfies the AMFD {title, year, director} 7→ {length}.

2.2 Related Work

AMFDs and traditional FDs are specified over a single relation. However, AMFDs
replace strict equality on the left-hand-side of the dependency with similarity.
Dependencies defined over a single relation with similarity on the right-hand-
side, called Metric FDs, were proposed by Koudas et al. [13]. We call them
Consequent Metric FDs (CMFDs) to distinguish them from AMFDs. The ver-
ification problem over CMFDs was studied in [13], which is to decide whether
the instance satisfies a prescribed set of dependencies. However, axiomatization
and inference were not considered.5

Bertossi et al. [5], Fan [7] and Fan et al. [9] studied Matching Dependen-
cies (MDs), which are object-identification constraints across multiple relations.
MDs also enforce similarity rather than equality on the left-hand-side, but allow
arbitrary Boolean similarity functions. (These similarity functions only need to
satisfy reflexivity, symmetry and subsumption of equality.) On the other hand,
AMFDs are defined over a single relation and only allow a restricted notion of
similarity, namely thresholds over similarity metrics (recall Definition 1). Fan
et al. presented a sound and complete axiomatization6 and a quadratic-time
inference procedure for MDs.

Pointwise Order Dependencies (PODs) [10] consider order relationship rather
than equality of attribute values. A relation satisfies a POD X ↪→ Y if, for all
tuples s and t, for every attribute A in X, sA op tA implies that for every at-
tribute B in Y sB op tB , where op ε{<,>,≤,≥,=}. For example, in relation

5 Some of the authors of this paper solved the axiomatization and inference problems
for CMFDs in a paper currently under submission.

6 It is stated in Fan et al. [9] (without a proof of completeness) that a complete
axiomatization for MDs consists of 11 axioms, but only 9 sound axioms are presented.

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

82

Table 3: TimePolls Relation
sequential id timestamp date year month day

1 20140201142320 20140201 2014 02 01

2 20140201142325 20140202 2014 02 02

TimePolls (Table 3), the POD {date>} ↪→ {year=,month=, day>} holds; how-
ever, the POD {date>} ↪→ {year=,month=, day≤} does not hold. Ginsburg and
Hull [10] present a sound and complete axiomatization for PODs and show that
the inference problem for them is co-NP-complete.

PODs are defined over sets of attributes. On the other hand, Lexicographical
Order Dependencies (LODs) are defined over lists of attributes [17, 19]. LODs
describe the relationship among lexicographical orderings of sets of tuples. This
is the notion of order used in SQL and in query optimization, as per the order by
operator (nested sort). A relation satisfies a LOD X ↪→ Y if any list of its tuples
that satisfy order by X also satisfies order by Y; however, not necessarily vice
versa. (X and Y denote lists of attributes.) For instance, in relation TimePolls,
the LODs timestamp ↪→ date and [date] ↪→ [year, month, day] are true. The
default direction of the SQL order by is ascending. This can be generalized to
order-by’s that mix asc and desc directions, e.g., order by name asc, age desc.
For example, in relation TimePolls, the LOD [−sequential id desc] ↪→ [times-
tamp asc] holds. Szlichta et al. present a sound and complete axiomatization
for lexicographical order dependencies and show that the inference problem for
LODs is co-NP-complete [17, 19].

Another constraint for ordered data, sequential dependencies (SDs), was in-
troduced in Golab et al. [11]. For example, the SD sequential id ↪→[4,5] timestamp
means that after sorting the data by the attribute sequential id, the gaps be-
tween consecutive timestamps are between 4 and 5. This particular SD holds in
the TimePolls relation; however, the SD sequential id ↪→[6,7] timestamp does
not hold. Golab et al. present a framework for discovering which subsets of the
data obey a given SD, but axiomatization and inference were not considered.

SDs were generalized in Song and Chen [16] by introducing gaps (differential
functions) on both sides of the dependency and named Differential Dependen-
cies (DDs). For instance, in the relation TimePolls, the DDs sequential id[1,1]

↪→ timestamp[4,5] and {date[0,1]} ↪→ {year[0,0],month[0,0], day[0,1]} hold. How-
ever, the DD sequential id[1,1] ↪→ timestamp(5,6] does not hold. Song and Chen
present an axiomatization and show that inference problem for DDs is co-NP-
complete.

2.3 Hierarchy of Dependencies

Figure 1 illustrates a hierarchy of the dependencies we discussed above as well
as a new class: MDDs. MDDs strictly generalize MDs and DDs by allowing dif-
ferential functions (on the left hand side and the right hand side) with arbitrary
similarity functions and allowing multiple tables. Below each dependency name,
we point out the complexity of inference. Observe that for the “not studied”

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

83

dependencies, their complexity of inference is bookended by their immediate
ancestors and descendants in the hierarchy.

We say that a dependency class A generalizes dependency class B iff there
is a semantically preserving mapping of any dependency of class B into a set of
dependencies of class A. Class A strictly generalizes class B iff A generalizes B,
however, B does not generalize A. The hierarchy in Figure 1 shows which depen-
dencies strictly generalize others; due to space constraints, proofs will appear in
extended version of this paper.

 MDDs
(not studied)

DDs
(co-NP-complete)

MDs
(quadratic)

 AMFDs
(linear)

CMFDs
(linear - Footnote 5)

FDs
(linear)

PODs
(co-NP-complete)

SDs
(not studied)

LODs
(co-NP-complete)

Limited AMDs
(linear)

Fig. 1: Hierarchy of dependencies and their complexity of inference.

For example, DDs strictly generalize SDs. In our example involving Table 3,
with the SD sequential id ↪→[4,5] time, consecutive sequence numbers can be
simulated by using on the left-hand-side of the DD a similarity metric which
returns distance one if two numbers are consecutive and zero otherwise. Axiom-
atization and complexity of inference for SDs are open problems. However, since
our hierarchy indicates that DDs strictly generalize SDs, the upper bound on
the complexity of inference for SDs is co-NP complete.

Similarly, DDs strictly generalize PODs (which strictly generalize LODs [19]).
For instance, a POD A≥ ↪→ B≤ is equivalent to a DD A[0;+∞] ↪→ B[−∞;0]. This
suggests that the complexity results for PODs can be adapted to DDs and did
not have to be re-developed from scratch in [16]. AMFDs and CMFDs are also
subsumed by DDs, since DDs allow similarity both on the left-hand-side and
right-hand side. (Limited AMDs are introduced in Section 3.) Both AMFDs and
CMFDs strictly generalize FDs by replacing equality with similarity.

3 Axiomatization

3.1 Soundness and Completeness

We now present an axiomatization for AMFDs, analogous to Armstrong’s ax-
iomatization for FDs [3, 4]. This provides a formal framework for reasoning about

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

84

1. Void
X 7→ {}

2. Transitivity
If X 7→ Y

and Y 7→ Z
then X 7→ Z

3 Composition
If X 7→ Y and Z 7→ W

then XZ 7→ YW
4 Decomposition

If X 7→ Y and Z ⊆ Y
then X 7→ Z

5 Reduce
If XZ 7→ Y and X 7→ Z

then X 7→ Y
6 Limited Reflexivity

If Y ⊆ X and ΘY = 0
then X 7→ Y

Fig. 2: Axiomatization for AMFDs.

AMFDs. The axioms give insights into how AMFDs behave and reveal how de-
pendencies logically follow from others, which is not easily evident when reason-
ing from first principles. Also, a sound and complete axiomatization is necessary
for an efficient inference procedure (see Section 4).

The axioms for AMFDs are presented in Figure 2. Recall that {} denotes an
empty set. Two of the axioms generate trivial dependencies that are always true:
Void and Limited Reflexivity. Below we introduce additional inference rules that
follow from the axioms in Figure 2. These will be used throughout the paper,
particularly to prove that our AMFD axioms are complete.

Lemma 1. (Left Augmentation) If X 7→ Y , then XZ 7→ Y .

Proof. By Void and Composition it follows that XZ 7→ Y . ut

Lemma 2. (Union) If X 7→ Y and X 7→ Z, then X 7→ Y Z.

Proof. By Composition it follows that X 7→ Y Z. ut

Next, we define closure over AMFDs. The closure of a set of attributes X is
the set of attributes that X logically determines given a set of AMFDs F .

Definition 3. (Closure X+) The AMFD-closure of set of attributes X, denoted
X+, w.r.t. a set of AMFDs F using axioms I = {1–6} in Figure 2, is defined
as, X+ = {A | F ` X 7→ A}.

Lemma 3 tells us whether a dependency follows from F using our axioms.

Lemma 3. (Closure for AMFDs) F ` X 7→ Y , if and only if Y ⊆ X+.

Proof. Let Y = {A1, ..., An}. Assume Y ⊆ X+. By definition of X+, X 7→ Ai
for all i ∈ {1, ..., n}. Therefore, by the Union axiom, X 7→ Y . To prove the other
direction, suppose X 7→ Y follows from the axioms. For each i ∈ {1, ..., n}, X
7→ Ai by Decomposition, so Y ⊆ X+. ut

Theorem 1. (Completeness) AMFD axioms are sound and complete.

Proof. The soundness proof (if F ` X 7→ Y , then F |= X 7→ Y) is trivial. We
just have to show that each axiom is true. We present the completeness proof (if
F |= X 7→ Y , then F ` X 7→ Y). We consider a table t with two rows, whose
template is shown in Table 4. We divide the attributes of t into three subsets:
X+, the set N , consisting of attributes in X that are not in the closure of X7,

7 For a traditional FD X 7→ Y , by Reflexivity all the attributes in X are also in X+.
However, this is not true for AMFDs, as we will show in Example 2.

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

85

Table 4: Table template for AMFDs.
X+ N = {A | A ∈ X and A 6∈ X+} other attributes

a...a a...a a...a

a...a b...b c...c

and all the remaining attributes. All the attributes of the first row have the value
a, while for the second row, the attributes in X+ are a’s, the attributes in N are
b’s and the other attributes are c’s. Without loss of generality, assume that for
all the attributes A in N and other attributes over t we use the same metric m,
and that a and b are similar (a ≈m,θA b) but not equal. Also, assume that the
values a and c are not similar (a 6≈m,θA c), and hence not equal.

We first show that all dependencies in the set of AMFDs F are satisfied by
table t (t |= F). Since the AMFD axioms are sound, AMFDs inferred from F are
true. Note that by Void and Limited Reflexivity, all trivial AMFDs are satisfied
in table t. Assume V 7→ Z is in F but is not satisfied by table t. Therefore, V ⊆
{X+ ∪N} because otherwise two rows of t are not similar on some attribute of
V since a 6≈m,θA c, and consequently an AMFD V 7→ Z would not be violated.
Moreover, Z cannot be a subset of X+ (Z 6⊆ X+), or else V 7→ Z would be
satisfied by t. Let A be an attribute of Z not in X+. Since the dependency V
7→ Z is in F , by Decomposition, V 7→ A. Let V1 be a maximal set of attributes
such that V1 ⊆ V and V1 ⊆ X+. Let V2 be a maximal set of attributes such that
V2 ⊆ V and V2 ⊆ N . By Union and Definition 3 of closure, X 7→ X+. Therefore,
by Left Augmentation and Reduce, XV2 7→ A. Since N = {A | A ∈ X and
A 6∈ X+}, V2 ⊆ X. Hence, X 7→ A, which is a contradiction.

Our remaining proof obligation is to show that any AMFD not inferable from
the set of AMFDs F with our axioms (F 6` X 7→ Y) is not true (F 6|= X 7→
Y). Suppose it is satisfied (F |= X 7→ Y). It follows by the construction of table
t that Y ⊆ X+; otherwise, two rows of table t agree or are similar on X but
disagree on some attribute A from Y . Since Y ⊆ X+, by Lemma 3 it can be
inferred that X 7→ Y , which is a contradiction. Thus, whenever X 7→ Y does
not follow from F by the AMFD axioms, F does not logically imply X 7→ Y .
That is, the axiom system is complete over AMFDs, which ends the proof . ut

3.2 Discussion

The axiomatization for AMFDs is more involved than its FDs counterpart. A
sound and complete axiomatization for traditional FDs consists of only three
axioms: Reflexivity, Augmentation and Transitivity. Interestingly, Reflexivity (if
Y ⊆ X, then X 7→ Y) is not necessary true for AMFDs.

Example 2. (lack of Reflexivity) Consider table t (Table 4). Assume again that
the values a and b are not equal (a 6= b) but they are similar (a ≈m,θA b) for each
attribute A in N . Let attributes {BCD} ⊆ N . Therefore, the AMFDs BCD 7→
BCD and BCD 7→ BC are not satisfied in t because the values are similar on
the left hand side of the dependencies, but not equal on their right hand side.

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

86

Table 5: Comparison of Axiomatizations
Dependency Class Axioms

DDs [16] Extended Reflexivity, Extended Augmentation,
Extended Transitivity, Impropriety

SDs [11] N\A
PODs [10] Reflexivity, Augmentation, Transitivity, Reversal,

Disjunction, Total Order, Impropriety

LODs [17, 19] Reflexivity, Transitivity, Augmentation,
Suffix, Normalization, Chain

MDs [7, 5, 9] 9 sound axioms (out of 11) appear in [9]

limited AMDs [this paper] Void, Transitivity, Composition, Decomposition, Reduce

AMFDs [this paper] Void, Transitivity, Composition, Decomposition,
Reduce, Limited Reflexivity

CMFDs [13] Footnote 5

FDs [3, 4, 12] Reflexivity, Augmentation, Transitivity

Similarly, Augmentation, which is another axiom for FDs, does not necessary
hold for AMFDs. (Augmentation states that if X 7→ Y then XZ 7→ Y Z.)

We replaced Reflexivity with Void and Limited Reflexivity in the axioma-
tization for AMFDs. Lack of Augmentation forced us to add Composition and
Decomposition to the axiomatization. Note that Left Augmentation (Theorem
1) holds for AMFDs. Since Reflexivity does not hold for AMFDs, we had to add
Reduce. Only Transitivity (base axiom for FDs) was preserved in axiomatization.

We also studied an axiomatization for a simplified version of MDs over a
single table, rather than multiple tables as originally defined in [5, 7, 9]. We call
these limited AMDs. The main difference between limited AMDs and AMFDs
is that the former allow arbitrary similarity functions while the latter employ
thresholds on similarity metrics. A sound and complete axiomatization for lim-
ited AMDs consists of the following five axioms: Void, Transitivity, Composition,
Decomposition and Reduce. The proof will appear in the extended version of
this paper; it is a simplified version of the proof of Theorem 1. In comparison
to AMFDs, Limited Reflexivity does not hold for limited AMDs. A sound and
complete axiomatization for a full class of MDs is more complex (Footnote 6),
as it incorporates axioms that allow us to reason over multiple relations.

Table 5 compares the axiomatization of AMFDs and AMDs with other de-
pendency classes. We point out several interesting observations below.

In contrast to MDs and AMFDs, the distance (gap) functions for DDs are
defined at the dependency level for each attribute instead of the schema level.
Therefore, Transitivity for DDs additionally requires an order relation over dif-
ferential functions. For instance, if we have the dependency “if the date difference
for two tuples is ≤ 30 days, then price ≥ $50”, then the dependency “if the date
difference for two tuples is ≤ 30 days, then price ≥ $40” must also hold.

There is an extra axiom for DDs (Impropriety) that accommodates inconsis-
tencies between dependencies (this problem does not arise in AMFDs and MDs).
For example, the following two dependencies are inconsistent since it is not pos-

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

87

Algorithm 1 Inference procedure for AMFDs

Input: A set of AMFDs F, and a set of attributes X.
Output: The closure of X with respect to F.

1: Funused ← F ; n ← 0
2: X n ← W where W = {A | A ∈ X and θA = 0}
3: loop
4: if ∃ V 7→ Z ∈ Funused and V ⊆ {X n ∪ X } then
5: X n+1 ← X n ∪ Z
6: Funused ← Funused − {V 7→ Z}
7: n ← n+ 1
8: else
9: return X n

10: end if
11: end loop

sible to instantiate a relation that satisfies both of them: a) if the date difference
for two tuples is ≤ 30 days, then price = $50; and b) if the date difference for two
tuples is ≤ 30 days, then price > $50. Similarly, Augmentation and Reflexivity
have to be modified for DDs to accommodate different distance functions used
by different dependencies on the same attribute. For instance, different distance
functions for the same attribute may result in the same actual distance.

Interestingly, as we traverse the hierarchy of dependencies, the number of
axioms does not necessary decrease. There are 6 axioms for AMFDs, 7 for PODs
and 6 for LODs versus 4 for DDs; however, there are 3 axioms for FDs at
the bottom of hierarchy. There are two reasons for this. First, the axioms for
DDs are quite complex. Second, as we go down the hierarchy, the dependencies
become more specialized and therefore we may need more axioms to express
their restricted semantics, e.g., lack of Reflexivity. As the dependencies become
more generalized, some axioms must be weakened, e.g., Limited Reflexivity.

4 Inference Procedure

A goal of a dependency theory is to develop algorithms for the inference problem.
Inference for DDs is co-NP-complete [16] and for MDs it is quadratic [7]. Since
DDs and MDs generalize AMFDs, this sets an upper bound for the complexity of
inference for AMFDs. However, computing closure, X+, for AMFDs can be done
more efficiently. It takes time proportional to the length of the dependencies in
F , written out (linear time), which is as efficient as for FDs. (The complexity of
inference for limited AMDs is also linear; the proof will appear in the extended
version of this paper.) Algorithm 1 presents an inference procedure for AMFDs.
Our experiments have shown that it is efficient. For 10 AMFDs prescribed over
a dataset generated by the UIS Database [2], the algorithm runs in time ≤ 1ms.

Example 3. (inference) Let F = {AB 7→ C, ABC 7→ EG, EG 7→ H} denote the
set of AMFDs. Also, let θC = 0 and θD > 0 for all attributes D in ABEGH Let

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

88

us calculate the closure of set of attributes AB with Algorithm 1:
1) X 0 = {}; 2) X 1 = C; 3)X 2 = CEG; 4) X 3 = CEGH.

The closure of AB is CEGH. For traditional FDs, the closure of AB isABCEGH.

Theorem 2. (inference) Alg. 1 correctly computes the closure X+ over AMFDs.

Proof. First we show by induction on k that if Z is placed in X k in Algorithm
1, then Z is in X+.
Base case: k = 0. By Limited Reflexivity, X 7→ W , where W = {A | A ∈ X and
θA = 0}.
Induction step: k > 0. Assume that X k−1 only consists of the attributes in X+.
Suppose Z is placed in X k because VW 7→ Z ∈ Funused, such that V ⊆ X k−1

and W ⊆ X. Since V ⊆ X k−1, we know by the induction hypothesis that V ⊆
X+. Hence, by Lemma 3, X 7→ V . Therefore, since XV 7→ V Z by Composition,
then by Reduce and Decomposition X 7→ Z. Thus, Z is in X+.

Now we prove the opposite: if Z is in X+, then Z is in the set returned by
Algorithm 1. Suppose Z is in X+ but Z is not in the set returned by Algorithm
1. Consider table t similar to that in Table 4. Table t has two tuples that agree
on attributes in X n, are similar but not equal on attributes X that are not
subset of X n, and disagree on all other attributes. We claim that t satisfies F .
If not, let P 7→ Q be a dependency in F that is violated by t. Then P ⊆ X n

∪ X and Q cannot be a subset of X n ∪ X, if the violation happens. We used a
similar argument in the proof of Theorem 1. Thus, by Algorithm 1, Lines 4–7,
there exists X n+1, which is a contradiction. ut

5 Conclusions and Future Work

In this paper, we developed a hierarchy of dependency classes and laid out the
theoretical foundations for AMFDs, which generalize traditional FDs. In future
work, we plan to investigate the following problems.

– Determining whether a given AMFD holds on a given relation, and using
AMFDs for data cleaning, similarly to how FDs were employed in previous
data cleaning work [6, 7].

– Algorithms for automatic discovery of dependencies have been proposed for
some dependencies, such as FDs and CFDs [8]. Similarly, we plan to study
algorithms for discovering AMFDs.

– We plan to explore an inference framework for multiple dependencies. For
example, the following inference rules hold: a) if an AMFD X 7→ Y , then a
CMFD X 7→ Y ; b) if an AMFD X 7→ Y , then an FD X → Y ; c) if an FD X
→ Y , then a CMFD X 7→ Y . These rules along with the axioms for AMFDs
(Figure 2) and CMFDs (Footnote 5), are sound for the integrated inference
problem with FDs, AMFDs and CMFDs. However, an open question is if this
rule set is complete and what is the complexity of the inference problem.

– Integrity constraints have been widely used in query optimization. For in-
stance, FDs and LODs have been shown to be useful in simplifying queries

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

89

with group by and order by [14, 18, 17, 19] We believe that AMFDs can be
used in similar ways to simplify SQL queries with similarity operators [15].

References

1. Economist Intelligence Unit analysis, http://www.economistinsights.com/technology-
innovation/analysis/big-data.

2. UIS Data Generator, http://www.cs.utexas.edu/users/ml/riddle/data.html.
3. W. Armstrong. Dependency Structures of Database relationships. In Proceedings

of the IFIP Congress, pages 580–583, 1974.
4. C. Beeri and P. Bernstein. Computional Problems Related to the Design of Normal

Form Relational Schemas. TODS 4(1):, 4(1):30–59, 1979.
5. L. Bertossi, S. Kolahi, and V. Lakshmanan. Data cleaning and query answering

with matching dependencies and matching functions. In ICDT, pages 268–279,
2011.

6. G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs of functional depen-
dency violations under hard constraints. PVLDB, 3(1):197–207, 2010.

7. W. Fan. Dependencies Revisited for Improving Data Quality. In PODS, pages
159–170, 2008.

8. W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering Conditional Functional De-
pendencies. TKDE, 23(5):683–698, 2011.

9. W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about Record Matching Rules.
PVLDB, 2(1):407–418, 2009.

10. S. Ginsburg and R. Hull. Order dependency in the relational model. Theoretical
Computer Science, 26(1–2):149–195, 1983.

11. L. Golab, H. Karloff, F.Korn, A. Saha, and D. Srivastava. Sequential dependencies.
PVLDB, 2(1):574–585, 2009.

12. Y. Huhtala, J. Karkk, P. Porkka, and H. Toivonen. TANE: An Efficient Algorithm
for Discovering Functional and Approximate Dependencies. Computer Journal,
42(2):100–111, 1999.

13. N. Koudas, A. Saha, A. Srivastava, and S. Venkatasubramanian. Metric Functional
Dependencies. In ICDE, 1291-1294, 2009.

14. M. Malkemus, P. S., B. Bhattacharjee, L. Cranston, T. Lai, and F. Koo. Predicate
Derivation and Monotonicity Detection in DB2 UDB. In ICDE, 939-947, 2005.

15. Y. N. Silva and S. Pearson. Exploiting database similarity joins for metric spaces.
PVLDB, 5(12):1922–1925, 2012.

16. S. Song and L. Chen. Differential dependencies: Reasoning and discovery. TODS,
36(3):16, 2011.

17. J. Szlichta, P. Godfrey, and J. Gryz. Fundamentals of Order Dependencies.
PVLDB, 5(11):1220–1231, 2012.

18. J. Szlichta, P. Godfrey, J. Gryz, W. Ma, P. Pawluk, and C. Zuzarte. Queries on
dates: fast yet not blind. In EDBT 497-502, 2011.

19. J. Szlichta, P. Godfrey, J. Gryz, and C. Zuzarte. Expressiveness and Complexity
of Order Dependencies. PVLDB 6(14): 1858-1869, 2013.

20. M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller. Continuous data cleaning. In
ICDE, pages 244–255, 2014.

On Axiomatization and Inference Complexity over a Hierarchy of Functional
Dependencies

90

PPDL: Probabilistic Programming with Datalog

Balder ten Cate1, Benny Kimelfeld?2,1, and Dan Olteanu3,1

1 LogicBlox, Inc., USA 2 Technion, Israel 3 University of Oxford, UK

1 Introduction

There has been a substantial recent focus on the concept of probabilistic pro-
gramming [6] towards its positioning as a prominent paradigm for advancing and
facilitating the development of machine-learning applications.4 A probabilistic-
programming language typically consists of two components: a specification of
a stochastic process (the prior), and a specification of observations that re-
strict the probability space to a conditional subspace (the posterior). This paper
gives a brief overview of Probabilistic Programming DataLog (PPDL), a recently
proposed declarative framework for specifying statistical models on top of a
database, through an appropriate extension of Datalog [1]. By virtue of extend-
ing Datalog, PPDL offers a natural integration with the database, and has a ro-
bust declarative semantics, that is, semantic independence from the algorithmic
evaluation of rules, and semantic invariance under logical program transforma-
tions. It provides convenient mechanisms to allow common numerical probability
functions as first-class citizens in the language; in particular, conclusions of rules
may contain values drawn from such functions.

2 PPDL

The semantics of a PPDL program is a probability distribution over the possible
outcomes of the input database with respect to the program. These outcomes are
minimal solutions with respect to a related program that involves existentially
quantified variables in conclusions. Observations are incorporated by means of
logical integrity constraints. As argued in [1], the ability to express probabilis-
tic models concisely and declaratively in a Datalog extension, with probability
distributions as first-class citizens, is what sets PPDL apart from the wealth of
literature on probabilistic Datalog [3], probabilistic databases [8,11], and Markov
Logic Networks [4, 7, 10]. In the remaining of this section we introduce PPDL
using an example program, and show how to interpret it probabilistically.

Our example is inspired by the burglar example of Pearl that has been fre-
quently used for illustrating probabilistic programming. This example models a
statistical process of alarming due to burglaries and earthquakes, and the goal is

? Taub Fellow – supported by the Taub Foundation
4 An effort in this direction is led by DARPA’s Probabilistic Programming for Advanc-

ing Machine Learning (PPAML) program.

91

House

id city

NP1 Napa
NP2 Napa
YC1 Yucaipa

Business

id city

NP3 Napa
YC1 Yucaipa

City

name burglaryrate

Napa 0.03
Yucaipa 0.01

ObservedAlarm

unit

NP1
YC1
YC2

Fig. 1. Database instance in the running example.

to estimate the likelihood that a given collection of alarms indicates these alarm-
ing events. Consider a database consisting of the following relations: House(h, c)
represents houses h and their location cities c, Business(b, c) represents businesses
b and their location cities c, City(c, r) represents cities c and their associated bur-
glary rates r, and ObservedAlarm(x) represents units (houses or businesses) x
where the alarm went off. These are the EDB relations that are not changed
by the program. Figure 1 shows an instance over the schema. Now consider the
PPDL program P in Figure 2, where some rules use the Flip distribution in their
heads. The first rule states, intuitively, that for every fact of the form City(c, r),
there must be a fact Earthquake(c, y) where y is drawn from the Flip (Bernoulli)
distribution with the parameter 0.01. The fourth rule states that a burglary hap-
pens in a unit (house or business) with probability r, where r is a number that
represents the rate of burglaries in the city of the unit (note that we represent by
Burglary(x, c, 1) and Burglary(x, c, 0) the fact that a Burglary did, respectively,
did not happen at unit x in city c; likewise for Earthquake and Trig). Finally,
c1 is a constraint stating that Alarm and ObservedAlarm have the same tuples.

We now address the semantics of a program. What does it mean for a rule
head like Earthquake(c,Flip[0.01]) to be satisfied? What if this fact is derived
by multiple, or even equivalent, rules? Do we need to sample more than once?
The probabilistic semantics of the above PPDL program is established via an
extension to Datalog, named Datalog∃, where rule heads can have existential
quantifiers. Datalog∃ rules (a.k.a. existential rules, which are syntactically iso-
morphic to tuple-generating dependencies), have been used extensively in many
areas, including data exchange [5] and ontological reasoning [2, 9]. Our PPDL

1. Earthquake(c,Flip[0.01]) ← City(c, r)

2. Unit(h, c) ← Home(h, c)

3. Unit(b, c) ← Business(b, c)

4. Burglary(x, c,Flip[r]) ← Unit(x, c) , City(c, r)

5. Trig(x,Flip[0.6]) ← Unit(x, c) , Earthquake(c, 1)

6. Trig(x,Flip[0.9]) ← Burglary(x, c, 1)

7. Alarm(x) ← Trig(x, 1)

c1. Alarm(x)↔ ObservedAlarm(x)

Fig. 2. PPDL program P for Pearl’s burglar example

PPDL: Probabilistic Programming with Datalog

92

1. ∃y EarthquakeFlip2 (c, y, 0.01) ← City(c, r)

2. Unit(h, c) ← Home(h, c)

3. Unit(b, c) ← Business(b, c)

4. ∃y BurglaryFlip
3 (x, c, y, r) ← Unit(x, c) , City(c, r)

5. ∃y TrigFlip
2 (x, y, 0.6) ← Unit(x, c) , Earthquake(c, 1)

6. ∃y TrigFlip
2 (x, y, 0.9) ← Burglary(x, c, 1)

7. Alarm(x) ← Trig(x, 1)

8. Earthquake(c, d)← EarthquakeFlip2 (c, d, p)

9. Burglary(x, c, b)← BurglaryFlip
3 (x, c, b, p)

10. Trig(x, y)← TrigFlip
2 (x, y, p)

Fig. 3. The Datalog∃ program P̂ for the PPDL program P in Figure 2

program P gives rise to the Datalog∃ program P̂ in Figure 3. Note that this
program does not take into account the constraints. To illustrate the transla-
tion, note how rule 6 in P becomes rule 6 in P̂. A special, distributional relation
symbol TrigFlip

2 is created for Trig that captures the intention of the rule: when-
ever the premise holds (there is a Burglary at a unit x), then there exists a fact

TrigFlip
2 (x, y, 0.9) where y is drawn from a Bernoulli distribution with parameter

0.9. Rule 10 is implicitly added to update Trig with the content of TrigFlip
2 , where

the additional parameter (i.e., the above 0.9) is projected out.

In the absence of constraints, a possible outcome of an input database in-
stance I (a “possible world”) is a minimal super-instance of I that satisfies
the rules of the program. One possible outcome of the input instance in Fig-
ure 1 with respect to the rules of P is the database instance formed by the
input instance and the relations in Figure 4. Each tuple of a distributional rela-
tion has a weight, which is the probability of the random choice made for that
fact. For presentation’s sake, the sampled values are under the attribute name
draw . Ignoring the constraints (c1 in the example), the probability of this out-
come is the product of all of the numbers in the columns titled “w(f),” that is,
0.01× 0.99× 0.03× · · · × 0.4. Note that this multiplication is an instance of the
chain rule Pr(A1∧· · ·∧An) = Pr(A1)×Pr(A2|A1)× . . . , and does not reflect an
assumption of independence among the involved draws. One needs to show that
this formula gives a proper probability space (i.e., the probabilities of all possible
worlds sum up to 1). We do so via an adaptation of the chase procedure [1].

Constraints, such as c1 in our example, do not trigger generation of tuples,
but rather have the semantics of conditional probability: violating possible worlds
(where Alarm is different from ObservedAlarm) are eliminated, and the proba-
bility is normalized across the remaining worlds. Hence, we unify the concept of
observations in Bayesian statistics with that of integrity constraints in databases.

In summary, a PPDL program associates to every given input instance a prob-
ability distribution over possible outcomes. One can then, for example, ask for
the marginal probability of an event such as Burglary(NP1). Standard techniques

PPDL: Probabilistic Programming with Datalog

93

EarthquakeFlip2

city draw param w(f)

Napa 1 0.01 0.01
Yucaipa 0 0.01 0.99

Earthquake

city draw

Napa 1
Yucaipa 0

BurglaryFlip
3

unit city draw param w(f)

NP1 Napa 1 0.03 0.03
NP2 Napa 0 0.03 0.97
NP3 Napa 1 0.03 0.03
YU1 Yucaipa 0 0.01 0.99

Alarm

unit

NP1
NP2

Burglary

unit city draw

NP1 Napa 1
NP2 Napa 0
NP3 Napa 1
YU1 Yucaipa 0

Unit

id city

NP1 Napa
NP2 Napa
NP3 Napa
YU1 Yucaipa

TrigFlip
2

unit draw param w(f)

NP1 1 0.9 0.9
NP3 0 0.9 0.1
NP1 1 0.6 0.6
NP2 1 0.6 0.6
NP3 0 0.6 0.4

Trig

unit draw

NP1 1
NP2 1
NP3 0

Fig. 4. An outcome of the instance in Figure 1 with respect to the PPDL program P.

from the probabilistic programming literature (analytical, as lifted inference, or
sampling-based, as MCMC) can be used to answer such questions.

3 Discussion

Currently, PPDL semantics supports only discrete numerical distributions (e.g.,
Poisson). But even then, the space of possible outcomes may be uncountable (as
possible outcomes may be infinite). We have defined a probability measure over
possible outcomes by applying the known concept of cylinder sets to a probabilis-
tic chase procedure. We have also shown that the resulting semantics is robust
under different chases; moreover, we have identified conditions guaranteeing that
all possible outcomes are finite (and then the probability space is discrete) [1].
The framework has a natural extension to continuous distributions (e.g., Gaus-
sian or Pareto), though this requires a nontrivial generalization of our semantics.
Additional future directions include an investigation of semantic aspects of ex-
pressive power, tractability of inference, and a practical implementation (e.g.,
corresponding sampling techniques).

Acknowledgements

We are thankful to Molham Aref, Vince Bárány, Todd J. Green and Emir Pasalic
Zografoula Vagena for insightful discussions and feedback on this work. We
are grateful to Kathleen Fisher and Suresh Jagannathan for including us in
DARPA’s PPAML initiative; this work came from our efforts to design transla-
tions of probabilistic programs into statistical solvers.

PPDL: Probabilistic Programming with Datalog

94

References

1. V. Bárány, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena. Declarative
statistical modeling with Datalog. CoRR, abs/1412.2221, 2014.

2. A. Cal̀ı, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Datalog+/-: A
family of logical knowledge representation and query languages for new applica-
tions. In LICS, pages 228–242, 2010.

3. D. Deutch, C. Koch, and T. Milo. On probabilistic fixpoint and Markov chain
query languages. In PODS, pages 215–226, 2010.

4. P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial In-
telligence. Synthesis Lectures on AI and Machine Learning. Morgan & Claypool
Publishers, 2009.

5. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
query answering. In ICDT, volume 2572 of LNCS, pages 207–224. Springer, 2003.

6. N. D. Goodman. The principles and practice of probabilistic programming. In
POPL, pages 399–402, 2013.

7. G. Gottlob, T. Lukasiewicz, M. Martinez, and G. Simari. Query answering under
probabilistic uncertainty in Datalog+/ ontologies. Annals of Math.& AI, 69(1):37–
72, 2013.

8. B. Kimelfeld and P. Senellart. Probabilistic XML: models and complexity. In
Adv. in Probabl. Databases for Uncertain Information Management, volume 304 of
Studies in Fuzziness and Soft Computing, pages 39–66. 2013.

9. M. Krötzsch and S. Rudolph. Extending decidable existential rules by joining
acyclicity and guardedness. In IJCAI, pages 963–968, 2011.

10. F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling up statistical inference
in Markov Logic Networks using an RDBMS. PVLDB, 4(6):373–384, 2011.

11. D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

PPDL: Probabilistic Programming with Datalog

95

Implementing Graph Query Languages over
Compressed Data Structures: A Progress Report

Nicolás Lehmann1,2 and Jorge Pérez1,2

1 Department of Computer Science, Universidad de Chile
2 Chilean Center for Semantic Web Research
[nlehmann,jperez]@dcc.uchile.cl

Abstract. In this short paper we present our preliminary results on implementing
two-way regular-path queries (2RPQs) over a compressed representation of graph
data. We report on several experiments comparing our approach with state-of-
the-art graph database engines. Our results are encouraging; although we use a
naive implementation for 2RPQs, our system exhibits a competitive performance
compared with other engines.

1 Introduction
Graph databases have recently gained a lot of attention in theory and practice. This can
be explained by the current need of handling Web-related data, such as on-line social
networks, and RDF and Semantic Web data. One of the most important challenges
in this context, is the need of handling Web-scale amounts of data, while providing a
reasonable expressiveness for users that want to explore this data.

In this short paper we present our preliminary results on implementing two-way
regular-path queries (2RPQs) over a compressed representation of graph data. We use
2RPQs as they are an expressive language capable of navigating graphs by using paths
defined by regular expressions, using forward and backward edges while navigating the
graph. 2RPQs are in the core of recently proposed standards for handling RDF data [6].
To compress the graph data we use the k2-tree data structure [4]. Given a node v, a k2-
tree representation allows us to access the neighbors of v, as well as the nodes pointing
to v, in a very efficient way. This feature plus the compression ratio of k2-trees which
permits to maintain the structure of huge graphs in main memory, implied a critical
performance gain when implementing 2RPQs.

We implement a naive algorithm for 2RPQs based on the typical automata-theoretic
approach [8]. Even with this naive implementation, our system exhibits a competitive
performance compared with state-of-the-art commercial engines. We perform several
experiments with data generated by the GDBench tool [2], comparing our implemen-
tation with Sparksee [7] (formerly known as DEX) and Neo4j [9]. Our system and
Sparksee show a similar performance and Neo4j is considerably surpassed by both al-
ternatives. Our solution also exhibits a considerable advantage in a cold scenario where
the structures have just been loaded and the system is running for the first time.

2 Background and implementation details
Graph databases and query languages We consider a simple model of a graph
database as just a graph G = (V,E) in which every element in V is a node ID (or

96

just node for short), and each edge is a triple (v1, e, v2) where v1, v2 ∈ V and e is an
edge label from an alphabet Σ. We say that (v1, e, v2) is a forward e-edge from v1 to
v2. Symmetrically, (v1, e, v2) is a backward e-edge from v2 to v1. As a query language,
we consider two-way regular-path queries (2RPQs) which are essentially regular ex-
pressions over Σ ∪ Σ−, where Σ− = {e− | e ∈ Σ} is the alphabet of backward
edges. Given a 2RPQ r, a pair of nodes (v1, v2) is in the evaluation of r over G, if there
exists a path in G from v1 to v2 following forward and backward edges, such that the
sequence of labels of the path belongs to the regular expression defined by r consider-
ing each backward e-edge traversed as the symbol e−. For example, consider the 2RPQ
r = a/(b−)∗/c and a graph G with edges (v1, a, v2), (v3, b, v2), (v4, b, v3), (v4, c, v5).
Then we have that (v1, v5) is in the evaluation of r over G.

K2-trees A k2-tree [4] is a tree-shaped structure for representing graphs that exploits
sparseness and clustering features of the adjacency matrix associated to the graph.
Given an adjacency matrix, a k2-tree divides it into k2 submatrices of the same size.
Each submatrix is represented in the tree as a child of the root. For the submatrices
containing only 0’s the decomposition ends there, using a single 0-node to represent
the whole submatrix. The submatrices with at least one 1 are recursively decomposed
using the same strategy until an actual cell in the matrix is reached, which is stored as
a 0- or 1-node in the last level. The tree is then implemented in a highly compacted
way using bitstrings; every level of the tree is represented as a bitstring and the whole
tree as the concatenation of them. Given a node v, searching for the neighbors of v as
well as for the nodes pointing to v, can be achieved by just traversing the k2-tree [4].
The traversal of the tree can be simulated using rank queries over the bitstrings, which
can be implemented very efficiently [5]. Thus, the whole k2-tree can be represented
in a succinct manner while maintaining its traversal properties. Further optimizations
are possible, for example, using different values of k for different levels of the tree or
stopping the decomposition when the matrices reach size kL × kL and use DACs to
compress them [3].

Design and implementation details Let G = (V,E) be a graph database over al-
phabet Σ. To simplify the correspondence between node IDs and rows and columns in
an adjacency matrix representation, we first map every node ID in V and label in Σ
to an integer via a dictionary encoding3. After the encoding, our design continues by
vertically partitioning the data, reorganizing it into |Σ| independent graphs, each graph
containing only edges with a particular edge label. Then the whole graph is represented
as an array of k2-trees, each tree representing the graph induced by a particular edge
label. Given a node v and an edge label e, we compute the direct or inverse e-neighbors
of v by traversing the k2-tree corresponding to e. Following the configuration of similar
work [1], the k2-trees we use for evaluation follow a hybrid policy using k = 4 for the
first 5 levels and k = 2 for the rest. The decomposition stop when the submatrices reach
size 8× 8 and are encoded using DAC’s.

3 The implementation of the dictionary is orthogonal to our proposal and thus it is not considered
in our evaluation in Section 3.

Implementing Graph Query Languages over Compressed Data Structures: A Progress
Report

97

The evaluation of the 2RPQs follows a simple algorithm using the typical automata-
theoretic approach [8]. Given a 2RPQ r, we first build the Non-deterministic Finite Au-
tomaton (NFA) associated to r, considering labels in Σ and inverse labels. Then, the
graph is also considered as an NFA and the algorithm performs a breadth first search
over the product automaton. In practice the product automaton cannot be constructed,
but we perform the traversal implicitly. Thus the algorithm only needs to know neigh-
bors of a node by a single label (or an inverse label) at a time, which can be efficiently
computed with the k2-tree representation as explained above.

The code is implemented in C++ and available via Github.4

3 Experimental results

We compare our implementation with Sparksee [7] (version 5, February 2014) and
Neo4j [9] (version 2.1, July 2014), using a machine with the following configuration:
3.40 GHz Intel Core i7-2600k (4 cores), 8 GB RAM, Archlinux OS kernel version
3.18.4. We compare the running time for several 2RPQs considering two evaluation
scenarios: the warm and the cold scenarios. The warm scenario simulates the condi-
tions of an already running server: we first perform a warm-up run, and then report the
results for the second run (of the same query). The cold scenario reports the running
time of the first run. The idea is to analyze how caching influences the performance.
For every query tested, we run 10 000 experiments and report the average time.

In our experiments, we use the data generator provided by the graph database bench-
mark GDBench [2]. Graphs generated by GDBench have a simple social network struc-
ture with nodes representing persons and webpages, friend-edges between persons, and
like-edges from persons to webpages. We considered graphs of different size ranging
from 10 million to 40 million nodes.

Figs. 1-3 present a comparison for queries like, friend/friend, and like/like-

in the warm scenario. Our implementation is labelled as k2tdb in the figures. For these
queries, k2tdb and Sparksee show a similar performance (running times are in the same
order of magnitude), while Neo4j is considerably slower. Notice that for queries in-
volving only like-edges, k2tdb has a performance twice as good as Sparksee in a warm
scenario (Fig. 1 and 3). This is consistent with the characteristics of k2-trees which are
specially suited for sparse graphs, and the subgraph of like-edges enjoys this feature.

Our next experiment considers navigational path queries which are one of the most
important features of 2RPQs. Informally, we consider queries that goes from one person
to their set of friends, and the friends of its friends, and so on, for several steps. More for-
mally, we consider the queries friend, friend/friend, friend/friend/friend,. . .
until five copies of the friend-edge. These queries are denoted by f1, f2, f3, f4, f5, re-
spectively. We also test the query friend*, denoted by f*, which allows to navigate an
arbitrary number of friend-edges. We report on the results for a graph with 20 million
nodes (Fig. 4 and 5). In the warm scenario Sparksee slightly outperforms our imple-
mentation (Fig. 4), but both stays within the same order of magnitude. For the cold
scenario our implementation has a better performance (Fig. 5), and the difference is

4 https://github.com/nilehmann/libk2tree, https://github.com/nilehmann/k2tdb

Implementing Graph Query Languages over Compressed Data Structures: A Progress
Report

98

100
101
102
103
104
105
106

10M 20M 30M

Ti
m

e
(µ
s)

Size of the graph (nodes)

k2tdb
sparksee

neo4j

Fig. 1: Running time for query like

102

103

104

105

106

10M 20M 30M
Ti

m
e

(µ
s)

Size of the graph (nodes)

k2tdb
sparksee

neo4j

Fig. 2: Running time for friend/friend

101

102

103

104

105

106

10M 20M 30M

Ti
m

e
(µ
s)

Size of the graph (nodes)

k2tdb
sparksee

neo4j

Fig. 3: Running time for like/like-

100
101
102
103
104
105
106

f1 f2 f3 f4 f5 f*

Ti
m

e
(µ
s)

Query

k2tdb
sparksee

Fig. 4: Path queries in warm scenario

101
102
103
104
105
106
107

f1 f2 f3 f4 f5 f*

Ti
m

e
(µ
s)

Query

k2tdb
sparksee

Fig. 5: Path queries in cold scenario

0
100
200
300
400
500
600

10M 20M 30M 40M

Ti
m

e
(µ
s)

Size of the graph (nodes)

k2tdb
sparksee

Fig. 6: Scalability test for friend/friend

quite substantial for the simpler queries. This behavior can be explained by the caching
techniques used in Sparksee. As the portion of the graph being traversed gets larger,
the probability of using the cache increases. Our solution best suits a scenario where
the explored portion of the graph has not yet been visited. This presents an interesting
opportunity for improving our implementation by using similar ideas for caching, for
example, by decompressing and caching some portions of the graph as we traverse it.

Our last experiment is a scalability test for query friend/friend over graphs of
increasing size (Fig. 6). The Sparksee license that we use, allows graphs with at most 1
billion objects (nodes plus edges), which disallows the loading of the 40M-node graph.
Thus, we show the time up to 30M nodes for Sparksee. The growth in running time for
k2tdb is more pronounced compared with Sparksee, but it still shows a linear behavior.
Further experimentation with larger graphs is needed to obtain specific conclusions.

4 Conclusions and future work

Our naive implementation of 2RPQs over compressed graph structures shows a compet-
itive performance compared with highly-optimized graph database engines. This shows
the benefits of considering compressed data structures when querying graphs with ex-
pressive query languages. Our implementation shows a particularly good performance
in the cold scenario where no caching is permitted. This presents an interesting oppor-
tunity for optimizing our implementation with caching techniques. Our ongoing work
includes the implementation of 2RPQs in a less naive way, taking a more specific ad-
vantage of the way the graph is actually compressed.

Implementing Graph Query Languages over Compressed Data Structures: A Progress
Report

99

References

1. Álvarez-Garcı́a, S., Brisaboa, N., Fernández, J., Martı́nez-Prieto, M., Navarro, G.: Com-
pressed vertical partitioning for efficient RDF management. Knowledge and Information Sys-
tems (2014), to appear

2. Angles, R., Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.L.: Benchmarking database
systems for social network applications. In: GRADES. p. 15 (2013)

3. Brisaboa, N., Ladra, S., Navarro, G.: DACs: Bringing direct access to variable-length codes.
Information Processing and Management (IPM) 49(1), 392–404 (2013)

4. Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with extended
functionality. Inf. Syst. 39, 152–174 (2014)

5. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation of rank and
select queries. In: Wea 2005. pp. 27–38

6. Harris, S., Seaborne, A.: Sparql 1.1 query language. W3C Recommendation (2013)
7. Martı́nez-Bazan, N., Gómez-Villamor, S., Escale-Claveras, F.: DEX: A high-performance

graph database management system. In: ICDE Workshops 2011. pp. 124–127
8. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. In: VLDB

1989. pp. 185–193 (1989)
9. Webber, J.: A programmatic introduction to neo4j. In: SPLASH 2012. pp. 217–218

Implementing Graph Query Languages over Compressed Data Structures: A Progress
Report

100

Tractable Query Answering and Optimization

for Extensions of Weakly-Sticky Datalog±

Mostafa Milani and Leopoldo Bertossi

Carleton University, School of Computer Science, Ottawa, Canada
{mmilani,bertossi}@scs.carleton.ca

Summary. We consider a semantic class, weakly-chase-sticky (WChS), and a
syntactic subclass, jointly-weakly-sticky (JWS), of Datalog± programs. Both ex-
tend that of weakly-sticky (WS) programs, which appear in our applications to
data quality. For WChS programs we propose a practical, polynomial-time query
answering algorithm (QAA). We establish that the two classes are closed under
magic-sets rewritings. As a consequence, QAA can be applied to the optimized
programs. QAA takes as inputs the program (including the query) and seman-
tic information about the “finiteness” of predicate positions. For the syntactic
subclasses JWS and WS of WChS, this additional information is computable.

Datalog± . Datalog, a rule-based language for query and view-definition in
relational databases [5], is not expressive enough to logically represent interesting
and useful ontologies, at least of the kind needed to specify conceptual data
models. Datalog± extends Datalog by allowing existentially quantified variables
in rule heads (∃-variables), equality atoms in rule heads, and program constraints
[2]. Hence the “+” in Datalog± , while the “−” reflects syntactic restrictions on
programs, for better computational properties.

A typical Datalog± program, P , is a finite set of rules, Σ ∪ E ∪ N , and an
extensional database (finite set of facts), D. The rules in Σ are tuple-generating-
dependencies (tgds) of the form ∃x̄P (x̄, x̄′) ← P1(x̄1), . . . , Pn(x̄n), where x̄′ ⊆⋃

x̄i, and x̄ can be empty. E is a set of equality-generating-dependencies (egds) of
the form x = x′ ← P1(x̄1), . . . , Pn(x̄n), with {x, x′} ⊆ ⋃

x̄i. Finally, N contains
negative constraints of the form ⊥ ← P1(x̄1), . . . , Pn(x̄n), where ⊥ is false.

Example 1. The following Datalog± program shows a tgd, an egd, and a neg-
ative constraint, in this order: ∃x Assist(y, x) ← Doctor(y); x = x′ ←
Assist(y, x), Assist(y, x′); ⊥ ← Specialist(y, x, z), Nurse(y, z). �
Below, when we refer to a class of Datalog± programs, we consider only Σ, the
tgds. Due to different syntactic restrictions, Datalog± can be seen as a class
of sublanguages of Datalog∃ , which is the extension of Datalog with tgds with
∃-variables [10].

The rules of a Datalog± program can be seen as an ontology O on top of
D, which can be incomplete. O plays the role of: (a) a “query layer” for D,
providing ontology-based data access (OBDA) [9], and (b) the specification of a
completion of D, usually carried out through the chase mechanism that, starting
from D, iteratively enforces the rules in Σ, generating new tuples. This leads to
a possibly infinite instance extending D, denoted with chase(Σ, D).

101

The answers to a conjunctive query Q(x̄) from D wrt. Σ is a sequence of con-
stants ā, such that Σ∪D |= Q(ā) (or yes or no in caseQ is boolean). The answers
can be obtained by querying as usual the universal instance chase(Σ, D). The
chase may be infinite, which leads, in some cases, to undecidability of query an-
swering [8]. However, in some cases where the chase is infinite, query answering
(QA) is still computable (decidable), and even tractable in the size of D. Syn-
tactic classes of Datalog± programs with tractable QA have been identified and
investigated, among them: sticky [4, 7], and weakly-sticky [4] Datalog± programs.

Our Need for QA Optimization. In our work, we concentrate on the stick-
iness and weak-stickiness properties, because these programs appear in our ap-
plications to quality data specification and extraction [11], with the latter task
accomplished through QA, which becomes crucial.

Sticky programs [4] satisfy a syntactic restriction on the multiple occurrences
of variables (joins) in the body of a tgd. Weakly-sticky (WS) programs form a
class that extends that of sticky programs [4]. WS-Datalog± is more expressive
than sticky Datalog± , and results from applying the notion of weak-acyclicity
(WA) as found in data exchange [6], to relax acyclicity conditions on stickiness.
More precisely, in comparison with sticky programs, WS programs require a
milder condition on join variables, which is based on a program’s dependency
graph and the positions in it with finite rank [6].1

For QA, sticky programs enjoy first-order rewritability [7], i.e. a conjunctive
query Q posed to Σ ∪ D can be rewritten into a new first-order (FO) query
Q′, and correctly answered by posing Q′ to D, and answering as usual. For WS
programs, QA is PTIME -complete in data, but the polynomial-time algorithm
provided for the proof in [4] is not a practical one.

Stickiness of the Chase. In addition to (syntactic) stickiness, there is a
“semantic” property of programs, which is relative to the chase (and the data,
D), and is called “chase-stickiness” (ChS). Stickiness implies semantic stickiness
(but not necessarily the other way around) [4]. For chase-sticky programs, QA
is tractable [4].

Intuitively, a program has the chase-stickiness property if, due to the appli-
cation of a tgd σ: When a value replaces a repeated variable in the body of a
rule, then that value also appears in all the head atoms obtained through the
iterative enforcement of applicable rules that starts with σ. So, that value is
propagated all the way down through all the possible subsequent steps.

a

a

Fig. 1. The chase for a non-ChS program and the chase for a ChS program, resp.

1 A position refers to a predicate attribute, e.g. Nurse [2].

Tractable Query Answering and Optimization for Extensions of Weakly-Sticky Datalog±

102

Example 2. Consider D = {Assist(a, b),Assist(b, c)}, and the following set,
Σ1, of tgds: Nurse(y, z) ← Assist(x, y),Assist(y, z); ∃z Specialist(x, y, z) ←
Nurse(x, y); Doctor(y) ← Specialist(x, y, z). Σ1 is not ChS, as the chase
on the LHS of Figure1 shows: value b is not propagated all the way down to
Doctor(c). However, program Σ2, which is Σ1 without its third rule, is ChS, as
shown on the RHS of Figure1. �

Weak-Stickiness of the Chase. Weak-stickiness also has a semantic version,
called “weak-chase-stickiness” (WChS); which is implied by the former. So as
for chase-stickiness, weak-chase-sticky programs have a tractable QA problem,
even with a possibly infinite chase. This class is one of the two we introduce and
investigate. They appear in double-edged boxes in Figure 2, with dashed edges
indicating a semantic class.

By definition, weak-chase-stickiness is obtained by relaxing the condition
for ChS: it applies only to values for repeated variables in the body of σ that
appear in so-called infinite positions, which are semantically defined. A position
is infinite if there is an instance D for which an unlimited number of different
values appear in Chase(Σ, D).

Given a program, deciding if a position is infinite is unsolvable, so as de-
ciding in general if the chase terminates. Consequently, it is also undecidable if
a program is WChS. However, there are syntactic conditions on programs [6,
12] that determine some (but not necessarily all) the finite positions. For exam-
ple, the notion of position rank, based on the program’s dependency graph, are
used in [6, 4] to identify a (sound) set of finite positions, those with finite rank.
Furthermore, finite-rank positions are used in [4] to define weakly-sticky (WS)
programs as a syntactic subclass of WChS.

Finite Positions and Program Classes. In principle, any set-valued function
S that, given a program, returns a subset of the program’s finite positions can
be used to define a subclass WChS(S) of WChS. This is done by applying the
definition of WChS above with “infinite positions” replaced by “non-S-finite
positions”. Every class WChS(S) has a tractable QA problem.

S could be computable on the basis of the program syntax or not. In the
former case, it would be a “syntactic class”. Class WChS (S) grows monotoni-
cally with S in the sense that if S1 ⊆ S2 (i.e. S1 always returns a subset of the
positions returned by S2), then WChS (S1) ⊆ WChS (S2). In general, the more
finite positions are (correctly) identified (and the consequently, the less finite
positions are treated as infinite), the more general the subclass of WChS that is
identified or characterized.

For example, the function S⊥ that always returns an empty set of finite po-
sitions, WChS (S⊥) is the class of sticky programs, because stickiness must hold
no matter what the (in)finite positions are. At the other extreme, for function
S⊤ that returns all the (semantically) finite positions, WChS (S⊤) becomes the
class WChS. (As mentioned above, S⊤ is in general uncomputable.) Now, if
Srank returns the set of finite-rank positions (for a program P , usually denoted
by ΠF (P) [6]), WChS (Srank) is the class of WS programs.

Tractable Query Answering and Optimization for Extensions of Weakly-Sticky Datalog±

103

Joint-Weakly-Stickiness. The joint-weakly-sticky (JWS) programs we intro-
duce form a syntactic class strictly between WS and WChS. Its definition appeals
to the notions of joint-acyclicity and existential dependency graphs introduced
in [12]. Figure 2 shows this syntactic class, and the inclusion relationships be-
tween classes of Datalog± programs.2

If Sext denotes the function that specifies finite positions on the basis of the
existential dependency graphs (EDG), implicitly defined in [12], the JWS class is,
by definition, the class WChS (Sext). EDGs provide a finer mechanism for cap-
turing (in)finite positions in comparison with positions ranks (defined through
dependency graphs): Srank ⊆ Sext . Consequently, the class of JWS programs,
i.e. WChS (Sext), is a strict superclass of WS programs, i.e. WChS (Srank).3

QAA for WChS. Our query answering algorithm for WChS programs is pa-
rameterized by a (sound) finite-position function S as above. It is denoted with
ALS , and takes as input Σ, D, query Q, and S(Σ), which is a subset of the
program’s finite positions (the other are treated as infinite by default).

The customized algorithm ALS is guaranteed to be sound and complete only
when applied to programs in WChS (S): ALS(Σ, D,Q) returns all and only the
query answers. (Actually, ALS is still sound for any program in WChS.) ALS

runs in polynomial-time in data; and can be applied to both the WS and the
JWS syntactic classes. For them the finite-position functions are computable.

ALS is based on the concepts of parsimonious chase (pChase) and freezing
nulls, as used for QA with shy Datalog, a fragment of Datalog∃ [10]. At a pChase
step, a new atom is added only if a homomorphic atom is not already in the
chase. Freezing a null is promoting it to a constant (and keeping it as such in
subsequent chase steps). So, it cannot take (other) values under homomorphisms,
which may create new pChase steps. Resumption of the pChase means freezing
all nulls, and continuing pChase until no more pChase steps are applicable.

Query answering with shy programs has a first phase where the pChase runs
until termination (which it does). In a second phase, the pChase iteratively re-
sumes for a number of times that depends on the number of distinct ∃-variables in
the query. This second phase is required to properly deal with joins in the query.
Our QAA for WChS programs (AL) is similar, it has the same two phases, but a
pChase step is modified: after every application of a pChase step that generates
nulls, the latter that appear in S-finite positions are immediately frozen.

Magic-Sets Rewriting. It turns out that JWS, as opposed to WS, is closed
under the quite general magic-set rewriting method [5] introduced in [1]. As a

2 Rectangles with dotted-edges show semantic classes, and double-edged rectangles
show the classes introduced in this work. Notice that programs in semantic classes
include the instance D, but syntactic classes are data-independent (for any instance
as long as the syntactic conditions apply).

3 The JWS class is different from (and incomparable with) the class of weakly-sticky-
join programs (WSJ) introduced in [3], which extends the one of WS programs with
consideration that are different from those used for JWS programs. WSJ generalizes
WS on the basis of the weakly-sticky-join property of the chase [3, 4] and is related
to repeated variables in single atoms.

Tractable Query Answering and Optimization for Extensions of Weakly-Sticky Datalog±

104

joint-acyclic
(JA)

weakly-sticky
(WS)

terminating
chase

non-terminating
chase

weakly-acyclic
(WA)

joint-weakly-
sticky (JWS)

weakly-chase-
sticky (WChS)

sticky-chase

sticky

weakly-sticky-
join (WSJ)

Fig. 2. Generalization relationships among program classes.

consequence, AL can be applied to both the original JWS program and its magic
rewriting. (Actually, this also holds for the superclass WChS.)

It can be proved that (our modification of) the magic-sets rewriting method
in [1] does not change the character of the original finite or infinite positions.
The specification of (in)finiteness character of positions in magic predicates is not
required by AL, because no new nulls appear in them during the AL execution.
As consequence, the MS method rewriting can be perfectly integrated with our
QAA, introducing additional efficiency.

Acknowledgments: We are very grateful to Mario Alviano and the DLV team for
providing us with information and support in relation to existential Datalog. We also
appreciate useful conversations with Andrea Cali and Andreas Pieris on Datalog±, and
important comments from Andrea Cali on an earlier version of this paper.

References
1. M. Alviano, N. Leone, M. Manna, G. Terracina and P. Veltri. Magic-Sets for

Datalog with Existential Quantifiers. Proc. Datalog 2.0, 2012, pp. 31-43.
2. A. Cali, G. Gottlob, and T. Lukasiewicz. Datalog±: A Unified Approach to On-

tologies and Integrity Constraints. Proc. ICDT, 2009, pp. 14-30.
3. A. Cali, G. Gottlob and A. Pieris. Query Answering under Non-Guarded Rules in

Datalog+/-. Proc. RR, 2010, pp. 1-17.
4. A. Cali, G. Gottlob, and A. Pieris. Towards more Expressive Ontology Languages:

The Query Answering Problem. Artificial Intelligence, 2012, 193:87-128.
5. S. Ceri, G. Gottlob and L. Tanca. Logic Programming and Databases. Springer,

1990.
6. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and

Query Answering. Theoretical Computer Science, 2005, 336:89-124.
7. G. Gottlob, G. Orsi, and A. Pieris. Query Rewriting and Optimization for Onto-

logical Databases. ACM TODS, 2014, 39(3):25.
8. D. S. Johnson, and A. Klug. Testing Containment of Conjunctive Queries under

Functional and Inclusion Dependencies. Proc. PODS, 1984, pp. 164-169.
9. M. Lenzerini. Ontology-Based Data Management. Proc. AMW 2012, CEUR Pro-

ceedings, Vol. 866, pp. 12-15.
10. N. Leone, M. Manna, G. Terracina, and P. Veltri. Efficiently Computable Datalog∃

Programs. Proc. KR, 2012, pp. 13-23.
11. M. Milani, L. Bertossi and S. Ariyan. Extending Contexts with Ontologies for

Multi-dimensional Data Quality Assessment. Proc. DESWeb, 2014, pp. 242-247.
12. S. Rudolph, and M. Krötzsch. Extending Decidable Existential Rules by Joining

Acyclicity and Guardedness. Proc. IJCAI, 2011, pp. 963-968.

Tractable Query Answering and Optimization for Extensions of Weakly-Sticky Datalog±

105

Saturation, Definability, and Separation for
XPath on Data Trees

Sergio Abriola1, Maŕıa Emilia Descotte1, and Santiago Figueira1,2

1 University of Buenos Aires, Argentina
2 CONICET, Argentina

Abstract. We study the expressive power of some fragments of XPath
equipped with (in)equality tests over data trees.
Our main results are the definability theorems, which give necessary and
sufficient conditions under which a class of data trees can be defined by a
node expression or set of node expressions, and our separation theorems,
which give sufficient conditions under which two disjoint classes of data
trees can be separated by a class of data trees definable in XPath.

Keywords: XPath · data tree · bisimulation · definability · first-order logic ·
ultraproduct · saturation · separation.

1 Introduction

The abstraction of an XML document is a data tree, i.e. a tree whose every
node contains a tag or label (such as LastName) from a finite domain, and a
data value (such as Smith) from an infinite domain. XPath is the most widely
used query language for XML documents; it is an open standard and consti-
tutes a World Wide Web Consortium (W3C) Recommendation [3]. XPath= has
syntactic operators to navigate the tree using the ‘child’, ‘parent’, ‘sibling’, etc.
accessibility relations, and can make tests on intermediate nodes. It can express
properties of the underlying tree structure of the XML document, such as “the
root of the tree has a child labeled a and a child labeled b”, and it can express
conditions on the actual data contained in the attributes, such as “the root of
the tree has two children with same tag a but different data value”.

First, we provide notions of saturation and ultraproducts that are adequate
for XPath=, and show that bisimulation coincides with logical equivalence over
saturated data trees. Using these tools, we show definability theorems, giving
necessary and sufficient conditions under which a class of data trees can be
defined by a node expression or set of node expressions of XPath=. Finally we
give separation results, providing sufficient conditions under which two disjoint
classes of data trees can be separated by a class of data trees definable in XPath=.

While on this work we will only show results for the fragment of XPath that
can only navigate via the ‘child’ accessibility relation, similar results hold for the
vertical fragment having both the ‘child’ and ‘parent’ navigational operators.

The results on definability of this paper appeared originally in [1].

106

2 Preliminaries

Data trees. We say that T is a data tree if it is a tree from Trees(A×D), where
A is a finite set of labels and D is an infinite set of data values. The data of
a node x is denoted data(x), and its label is label(x). The set of nodes of a data
tree T is denoted T .

Downward XPath with data tests. We consider a fragment of XPath that corre-
sponds to the navigational part of XPath 1.0 with data equality and inequality.
XPath= is a two-sorted language, with path expressions (that we write α, β, γ)
and node expressions (that we write ϕ,ψ, η). The downward XPath, no-
tated XPath↓= is defined by mutual recursion as follows:

α, β ::= o | [ϕ] | αβ | α ∪ β o ∈ {ε, ↓}
ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A

Node expressions represent properties on nodes. They are evaluated in nodes,
and, intuitively, 〈α = β〉 is true at x if there are two paths starting in x, one
satisfying the property α, and the other satisfying the property β, which end
in nodes with equal data value. On the other hand, path expressions represent
properties on paths. They are evaluated in pairs of nodes. For instance ↓ is true
at (x, y) if y is a child of x, and [ϕ] is true at x, y if x = y and x satisfies ϕ.

Let T and T ′ be data trees, and let u ∈ T , u′ ∈ T ′. We say that T , u and
T ′, u′ are logically equivalent for XPath↓= if no XPath↓= can distinguish node
u from u′.

Bisimulations. Notions of bisimulation present a way to determine whether two
pointed data trees can be distinguished by a series of moves in XPath. We do
not reproduce them here, but it is worth mentioning that they are forms of
back-and-forth conditions over two data trees.

The main previous result in the literature establishing the connection between
bisimulation and equivalence is the following:

Theorem 1. [4] If T , u is bisimilar to T ′, u′, then they are logically equivalent.
If T and T ′ are finitely branching, the other implication also holds.

3 Saturation and quasi-ultraproducts

We introduce a notion of saturation for the downward fragment of XPath, and
show that the reverse implication of Theorem 1 is true over saturated data trees.
Saturation is the key ingredient to show the Definability theorems, but their use
lays hidden in the proof.

Saturation. Let 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 be tuples of sets of XPath↓=-
formulas. Given a data tree T and u ∈ T , we say that 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉
are =↓n,m-satisfiable [resp. 6=↓n,m-satisfiable] at T , u if there exist v0 → v1 →
· · · → vn ∈ T and w0 → w1 → · · · → wm ∈ T such that u = v0 = w0 and

Saturation, Definability, and Separation for XPath on Data Trees

107

1. for all i ∈ {1, . . . , n}, T , vi |= Σi;
2. for all j ∈ {1, . . . ,m}, T , wj |= Γj ; and
3. data(vn) = data(wm) [resp. data(vn) 6= data(wm)].

We say that 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓n,m-finitely satisfiable [resp.

6=↓n,m-finitely satisfiable] at T , u if for every finite Σ′i ⊆ Σi and finite Γ ′j ⊆ Γj ,

we have that 〈Σ′1, . . . , Σ′n〉 and 〈Γ ′1, . . . , Γ ′m〉 are =↓n,m-satisfiable [resp. 6=↓n,m-
satisfiable] at T , u.

Definition 2. We say that a data tree T is ↓-saturated if for every n,m ∈ N,
every pair of tuples 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 of sets of XPath↓=-formulas,
every u ∈ T , and ? ∈ {=, 6=}, the following is true:

if 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are ?↓n,m-finitely satisfiable at T , u then

〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are ?↓n,m-satisfiable at T , u.

Proposition 3. For ↓-saturated data trees, bisimulation coincides with logical
equivalence.

Quasi-ultraproducts We introduce the notion of quasi-ultraproduct, a variant
of the usual notion of first-order model theory, which will be needed for the
definability theorems. Some of our results for quasi-ultraproducts make use of
the fundamental theorem of ultraproducts (see e.g. [2, Thm. 4.1.9]).

Definition 4. Suppose (Ti, ui)i∈I is a family of pointed data trees, U is an ul-
trafilter over I, T ∗ is the ultraproduct of (Ti, ui)i∈I , and u∗ is the ultralimit of
(ui)i∈I . The ↓-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pointed data
tree (T ∗|u∗, u∗), where T ∗|u∗ denotes the subtree of T ∗ induced by al the descen-
dants of u∗. As a particular case one has the notion of ↓-quasi ultrapower.

4 Definability

Definability theorems address the question of which properties of models can be
defined via formulas of the logic. If K is a class of pointed data trees, we denote
its complement by K.

Theorem 5. Let K be a class of pointed data trees. Then K is definable by a
set of XPath↓=-formulas iff K is closed under ↓-bisimulations and ↓-quasi ultra-
products, and K is closed under ↓-quasi ultrapowers.

Theorem 6. Let K be a class of pointed data trees. Then K is definable by an
XPath↓=-formula iff both K and K are closed under ↓-bisimulations and ↓-quasi
ultraproducts.

The notion of `-bisimulation is a restricted version of ↓-bisimulations. It has
been shown to coincide with the notion of `-equivalence, which informally means
indistinguishable by XPath↓= formulas that cannot “see” beyond ` ‘child’-steps
from the current point of evaluation.

Theorem 7. Let K be a class of pointed data trees. Then K is definable by a
formula of XPath↓= iff K is closed by `-bisimulations for XPath↓= for some `.

Saturation, Definability, and Separation for XPath on Data Trees

108

5 Separation

Separation theorem provide conditions under which two disjoint classes of pointed
models can be separated by a class definable in the logic.

Theorem 8. Let K1 and K2 be two disjoint classes of pointed data trees such
that K1 is closed under ↓-bisimulations and ↓-quasi ultraproducts and K2 is
closed under ↓-bisimulations and ↓-quasi ultrapowers. Then there exists a third
class K which is definable by a set of XPath↓=-formulas, contains K1 and is
disjoint from K2.

Theorem 9. Let K1 and K2 be two disjoint classes of pointed data trees closed
under ↓-bisimulations and ↓-quasi ultraproducts. Then there exists a third class
K which is definable by an XPath↓=-formula, contains K1 and is disjoint from
K2.

References

1. Sergio Abriola, Maŕıa Emilia Descotte, and Santiago Figueira. Definability for down-
ward and vertical Xpath on data trees. In Logic, Language, Information, and Com-
putation - 21st International Workshop, WoLLIC 2014, Valparáıso, Chile, Septem-
ber 1-4, 2014. Proceedings, pages 20–35, 2014.

2. C.C. Chang and H.J. Keisler. Model theory. Studies in logic and the foundations of
mathematics. North-Holland, 1990.

3. J. Clark and S. DeRose. XML path language (XPath). Website, 1999. W3C
Recommendation. http://www.w3.org/TR/xpath.

4. D. Figueira, S. Figueira, and C. Areces. Basic model theory of XPath on data trees.
In ICDT, pages 50–60, 2014.

Saturation, Definability, and Separation for XPath on Data Trees

109

Random-Walk Closeness Centrality
Satisfies Boldi-Vigna Axioms

Ricardo Mora1 and Claudio Gutierrez2

Center for Semantic Web Research, Dept. Computer Science, Universidad de Chile
{rmora,cgutierr}@dcc.uchile.cl

Abstract. Recently Boldi and Vigna proposed axioms that would char-
acterize good notions of centrality. We study a random-walk version of
closeness centrality and prove that is satisfies Boldi-Vigna axioms for
non-directed graphs.

Keywords: Random Walks, RDF, Centrality

1 Introduction

Consider the Euclidean plane and a set of n points: Which one is the most
central? An intuitive selection would be the point p that minimizes the sum of
the distances from the other points to p. Consider now a set of n cities: In which
one (abstracting social constraints) would you install a delivery store? Clearly
in one that minimizes the sum of distances of each city to it (here distance
is not Euclidean, but highways). A similar problem can be found inside a city
(where distance is something close to Manhattan’s). In this paper we address this
problem in the general case of undirected graphs, motivated by its application
to semantic networks (particularly RDF graphs).

This is not only a nice theoretical problem. One of the big challenges that
the web offers today has to do with the huge quantity of data that it contains. In
particular, in the case of large knowledge networks in the form of RDF graphs,
it is highly relevant to understand which ones are the “essential” concepts they
represent.

What is the “good” distance in this case? There is some evidence [1, 2] that
using a distance based on random walks might be a fruitful idea. It turns out, as
we will show, that the idea of selecting a node v that minimizes the sum of the
random walk distances from each other node u to v works really well in RDF
graphs [3]. In this paper we study this notion and test it with the Boldi Vigna
axioms.

The problem of detecting central nodes in a graph has been extensively in-
vestigated [4] and centrality indicators like degree and others based on shortest
distances between elements such as betweenness centrality and closeness have
been successfully employed on a variety of networks. By trying to unify these
manifold centrality measures, recently Boldi and Vigna [5] proposed a set of ax-
ioms that would capture the essential properties that underlie all of them. They

110

show that classic notions such as closeness, degree, betweenness centrality do
not satisfy these demanding axioms. In this paper we apply a Bodi Vigna test to
random walk closeness centrality. We prove that this centrality notion satisfies
these axioms for non-directed graphs.

2 Preliminaries

2.1 Basic Graph Theoretical Notions

An undirected and simple graph (from now on we will work only with this kind
of graph) is a pair G = (V,E) where E ⊆ [V]2, and [V]2 is the set of all 2-
elements subsets from V . The elements of V are the vertices of G, and the ones
from E are its edges. When necessary, we will use the notation V (G) and E(G)
for those sets. From now on, an element {u, v} ∈ E will be denoted simply by
uv. An important family of graphs are cliques: for n ≥ 1 a n–clique is a graph
Kn := (V,E) with |V | = n, such that E = [V]2.

A vertex u is said to be a neighbor of another vertex v, when uv ∈ E. Note
that the definition of E implies that v is also a neighbor of u. The set of neighbors
of v will be denoted by NG(v). The degree of v, dG(v) is the size of NG(v). Should
the reference be clear, they will simply be denoted by N(v) and d(v).

Let G = (V,E) and G′ = (V ′, E′) be two graphs such that V ⊆ V ′ and
E ⊆ E′, then G′ is said to be a subgraph of G (it is also said that G contains
G′). For a subset S ⊆ V , G[S] := (S, {uv ∈ E : u, v ∈ S}) and G−S := G[V \S].
Analogously, for F ⊆ E, G− F := (V,E \ F).

A graph Pn =
(
{v0, v1, ..., vn}, {v0v1, v1v2, ..., vn−1vn}

)
with n ≥ 0, where all

vi are distinct is called a path, and the number of edges in it is its length. A cycle
is a special type of path such that v0 = vn. We will call a cycle of length n a
n–cycle.

Let G = (V,E) be a graph and u, v ∈ V two distinct vertices. A path Pn in
G, with n ≥ 1 such that v0 = u and vn = v, is called a u–v path. Also G is said
to be connected if for all distinct u, v ∈ V a u–v path exists in G. A connected
component of G is a maximally connected subgraph H. Note that a connected
graph has only one connected component. An edge uv of G is said to be a bridge
if the graph G− uv contains at least one more connected component than G.

2.2 Random Walks

The next definitions come from the work of Lovász in random walk theory [6].
Let G = (V,E) be a connected graph such that |V | = n and |E| = m, where

n,m ∈ N. Formally, a random walk is a sequence of vertices obtained as follows:
it starts at a vertex v0, and if at the t-th step it is at a vertex vt = u, it moves
to a neighbor v of u with probability puv = 1/d(u). Note that the sequence of
random vertices (vt : t = 0, 1, ...) is a Markov chain.

Pt will denote the distribution of vt: Pt(v) = P(vt = v). The vertex v0 may
be fixed, but may also be drawn from an initial distribution P0. This initial

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

111

distribution is said to be stationary if P1 = P0 (which will imply that Pt =
P0 ∀t ≥ 0, because of the construction of the random walk). It can be easily
proved that the distribution π(v) := d(v)/2m is stationary for every graph G.
From now on π will be referred simply as the stationary distribution (it is not
difficult to prove that this distribution is unique, which makes this reference
valid).

Definition 1. The hitting time H(u, v) is the expected number of steps that a
random walk starting at vertex u takes to reach vertex v for the first time.

Definition 2. Let S be a subset from V . The hitting time for a set H(u, S) is
the expected number of steps that a random walk starting at vertex u takes to
reach some vertex in S for the first time.

When talking about H(S, u), a distribution (based on S) for the starting vertex
of the random walk has to be specified. Therefore, if P is that distribution,
HP(S, u) will be the expected number of steps that a random walk starting at a
vertex of S (selected according to P) takes to reach vertex u for the first time.
Note that for every pair of vertices u, v

H(u, v) = H(u, {v}) = HP({u}, v) .

because the only starting distribution P in {u} is the trivial one.

3 Random Walk Closeness Centrality

We are now in a position to formalize our notion of random walk centrality. The
definition is motivated by several insights coming from different sources, but
mainly from actual semantics graphs (RDF graphs). From a formal point of view
–and this is the motivation of this paper– it satisfies (as it will be proven later)
the three axioms of centrality proposed by Boldi and Vigna [5]. It is important
to note that most centrality measures do not satisfy them all, thus making this
notion of centrality interesting.

Definition 3. [cf. [3]] Given a connected graph G = (V,E) and a vertex v ∈ V ,
the Random Walk Closeness Centrality of v is the real number

h↙(v) =
∑

w∈V
w 6=v

H(w, v).

The smaller h↙(v) is, the more central v is. A similar notion of centrality based
on random walks was proposed by Noh and Rieger [7]. In fact, the definition
proposed here is a particular case of a more general notion that includes both,
Noh and Rieger’s and ours, but that will not be studied in this paper.

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

112

4 General Properties

To prove that random walk closeness centrality satisfies Boldi and Vigna axioms,
first we will need some properties.

Proposition 4. Let u,v be distinct vertices of a connected graph G, and S ⊆
V \ {u, v} be such that every u–v path contains some vertex from S. Then

H(u, v) = H(u, S) +HPu,S
(S, v),

where Pu,S is the distribution for random walks that start in S, such that for all
w in that set, Pu,S(w) is the probability that w is the first vertex from S that a
random walk starting in u reaches.

Proof. Let Ωu be the sample space containing all possible outcomes associated
to random walks that start in u and occur in G. Similarly, let ΩS be the one
associated to random walks that start in any vertex w of S for which Pu,S(w) > 0.
Consider the random variables TuS : Ωu → R, TSv : ΩS → R and Tuv : Ωu → R
defined as follows

TuS(ω) := # of steps that ω takes in order to reach some vertex in S for the

first time.

TSv(ω) := # of steps that ω takes in order to reach vertex v for the first time.

Tuv(ω) := # of steps that ω takes in order to reach vertex v for the first time.

Define X(ω) := Tuv(ω) − TuS(ω). Namely, X is also a random variable that
satisfies X : Ωu → R and

X(w) = # of steps that ω takes (after reaching S for the first time) in order

to reach vertex v for the first time.

For ω ∈ Ωu write ω = (u, v1, v2...) and define iS(ω) := mini>0{vi ∈ S} and
iv(ω) := mini>0{vi = v}. Also, define ωS := (viS , viS+1, ...) and j(ωS) :=
mini>0{vi+iS = v}. Note that j(ωS) = iv(ω) − iS(ω) and that ωS is an ele-
ment of ΩS , because random walk are Markov process. Then, for n ∈ N

P(X(ω) = n) =
∑

w∈S
P(viS(ω) = w)P(iv(ω)− iS(ω) = n)

=
∑

w∈S
Pu,S(w)P(j(ωS) = n) = P(TSv(ωS) = n) .

Therefore, X and TSv are random variables with the same expected value. Fi-
nally, by using this

H(u, v) = E(Tuv) = E(TuS +X) = E(TuS) + E(X)

= E(TuS) + E(TSv) = H(u, S) +HPu,S
(S, v) .

ut

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

113

Corollary 5. Let u,w,v be three distinct vertices of a connected graph G such
that every u–v path contains w. Then

H(u, v) = H(u,w) +H(w, v) .

Proof. It follows directly from proposition 4 by considering S = {w}. ut

Before stating the next theorem, we need the following result from Lovász [6]
and one more definition.

Lemma 6 (Lovász [6]). The probability that a random walk starting at u visits
v before returning to u is

1

(H(u, v) +H(v, u))π(u)

Definition 7. For a bridge uv of a connected graph G = (V,E), define Gu as

Gu := G[{w ∈ V : ∀ w–v path in G, u ∈ w–v}],

that is, Gu and Gv are the connected components of G− uv (see Fig. 1 below).

. . .

. . .

. . .

u v

. . .

. . .

Fig. 1. An example of a graph G with a bridge uv. To the left of the dashed line is Gu

and to the right of the dash-dotted line is Gv. Note that u ∈ Gu.

Theorem 8. Let uv be a bridge of a connected graph G. Then

H(u, v) = 2|E(Gu)|+ 1 .

Proof. First note that any random walk starting at u has to go through v before
stepping into another vertex of Gv, therefore H(u, v) does not depend on Gv.
Because of this, for simplicity, we can assume that Gv = (v, ∅). Then, H(v, u) = 1

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

114

and |E(G)| = |E(Gu)|+ 1. Now, the probability that a random walk starting at
u reaches v before returning to u is 1/d(u). Then, it follows from lemma 6 that

d(u) = (H(u, v) +H(v, u))π(u) = (H(u, v) + 1)
d(u)

2|E(G)|

= (H(u, v) + 1)
d(u)

2|E(Gu)|+ 2
,

which is equivalent to H(u, v) = 2|E(Gu)|+ 1, that is what we wanted to prove.
ut

Finally, using these properties we can prove the following result that will allow
us to compare the centrality of different vertices, under certain conditions.

Proposition 9. Let uv be a bridge of a connected graph G. Then

h↙(u) < h↙(v)⇐⇒ (2|E(Gu)|+ 1)|V (Gu)| > (2|E(Gv)|+ 1)|V (Gv)| .

Proof. The proof is straightforward and is included in the appendix.

5 Boldi and Vigna Axioms

We can now prove what was previously promised.
Boldi and Vigna [5] seek to define certain axioms that provide a formal and

provable piece of information about a centrality measure so it can be assured
that it correctly captures the intuitive notion of centrality. To this end, they
propose to study the behavior of the measure when making changes of size, local
edge density and addition of edges in the graph. It is important to note that
the axioms were designed primarily for measures that work with directed, and
not necessarily connected graphs. For graphs representing semantic networks,
direction is not relevant because the predicate represented by the directed edge
represents at the same time the inverse predicate. Therefore, we work with a
version of the original axioms adapted for connected and undirected graphs.

First is the Size Axiom. The idea is to compare the centrality of vertices from
a clique and a cycle joined through a path of large enough size. When fixing the
size of one of them, and letting the other grow as much as wanted, one would
expect the vertices of the latter to become more central. This is formalized as
follows:

Axiom 1: (Size axiom) Consider the graph Sk,p made by a k-clique and a
p-cycle connected by a path of length l (see Fig. 2). A centrality measure satis-
fies the size axiom if for every k there are two constants Pk, Lk such that for all
p ≥ Pk, l ≥ Lk, the centrality of any vertex of the p-cycle is strictly better than
the centrality of any vertex in the k-clique, and the same holds when inverting
the situation (that is, fixing p and letting k be as big as desired).

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

115

Proof. We will prove it for the first case as for the inverted situation the proof
is analogous. For simplicity of notation we will use the labels proposed on Fig.
2 when referring to the nodes of Sk,p. Also, we will denote by K the subgraph of
Sk,p that corresponds to the clique.

cp

cp−1

. . .

c1

l

. . .

1 . . . l − 1k 0

Fig. 2. An example of graph Sk,p.

First note that it is not difficult to prove that vertex 0 is the most central
vertex of the clique, and that cp is the one from the cycle with worst centrality.
Therefore, if we prove that cp is more central than 0, we will have proved the
result. Indeed, we have that

h↙(0) =
∑

w∈V (K)
w 6=0

H(w, 0) +

l∑

j=1

H(j, 0) + 2

p−1∑

j=1

H(cj , 0) +H(cp, 0)

= (k − 1)2 +

l−1∑

j=1

H(j, 0) + 2

p−1∑

j=1

H(cj , l) +H(cp, l) + 2pH(l, 0) .

On the other hand, the value of h↙(cp) is

=
∑

w∈V (K)
w 6=0

H(w, cp) +H(0, cp) +

l∑

j=1

H(j, cp) + 2

p−1∑

j=1

H(cj , cp)

=
∑

w∈V (K)
w 6=0

H(w, 0) + kH(0, cp) +H(l, cp) +

l−1∑

j=1

H(j, cp) + 2

p−1∑

j=1

H(cj , cp)

= (k − 1)2 + kH(0, l) +H(l, cp)(k + l) +

l−1∑

j=1

H(j, l) + 2

p−1∑

j=1

H(cj , cp) .

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

116

Therefore, h↙(0)− h↙(cp) equals

= 2

p−1∑

j=1

[H(cj , l)−H(cj , cp)] +

l−1∑

j=1

[H(j, 0)−H(j, l)] +H(cp, l) + 2pH(l, 0)

(1)

− kH(0, l)−H(l, cp)(k + l) .

Now, fix l ∈ N so that l >

⌈
k(k + 1)

12

⌉
. Then

l >
k(k + 1)

12
⇐⇒ 6l > k +

k(k − 1)

2
. (2)

Note that for k, l fixed, we can make p big enough so that the second sum of (1)
is strictly greater than 0. Also, we have the following

= 2

p−1∑

j=1

[H(cj , l)−H(cj , cp)]

= 2

p−1∑

j=1

[
j(2p− j)− (p− j)

(
j +

k(k − 1)

2
+ l + p

)]

= 2

p−1∑

j=1

[
j

(
k(k − 1)

2
+ l + 2p

)
− p

(
k(k − 1)

2
+ l + p

)]

= p(p− 1)

(
k(k − 1)

2
+ l + 2p

)
− p(p− 1)(k(k − 1) + 2l + 2p)

= p(p− 1)

(
−k(k − 1)

2
− l
)

.

Using these two facts and (1), we have that h↙(0) − h↙(cp) is strictly greater
than

> H(cp, l) + 2pH(l, 0)− kH(0, l)−H(l, cp)(k + l)− p(p− 1)

(
k(k − 1)

2
+ l

)

> 2pH(0, l)− kH(0, l)−H(l, cp)(k + l)− p(p− 1)

(
k(k − 1)

2
+ l

)

= 2pl(4p+ l)− kl(k(k − 1) + 1)− p
(
p+

k(k − 1)

2
+ l

)
(k + l)

− p(p− 1)

(
k(k − 1)

2
+ l

)

> p2
(

6l − k − k(k − 1)

2

)
+ p

(
k(k − 1)

2
+ l

)
(1− k − l)− kl(k(k − 1) + 1) .

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

117

Finally, note that the second and third therm have order O(p) and O(1) respec-
tively. Therefore, because of (2) we have that for p large enough

h↙(0)− h↙(cp) > 0,

that is, cp is more central than vertex 0. ut
Second is the Density Axiom. For this case two cycles of the same size are

connected through a bridge. By symmetry both end points of the bridge have
the same centrality. What should happen if we increase the number of edges of
one of the cycles until it becomes a clique? Well, the centrality of the endpoint
connected to the cycle that is becoming a clique should also increase. Formally
stated:

Axiom 2: (Density axiom) Consider the graph Dk,p made by a k-clique and
a p-cycle (p, k > 3) connected by a bridge uv, where u is a vertex of the clique
and v one from the cycle. A centrality measure satisfies the density axiom if for
k = p, u is strictly more central than v.

Proof. First, remember definition 7 made for bridges and note that in this case
Gu corresponds to the k-clique and Gv to the p-cycle. Also, note that a k-clique
has exactly k(k− 1)/2 edges, while a p-cycle has p. Therefore, by using this fact
and proposition 9 we have that

k > 3 ∧ k = p =⇒ k3 − 3k2 > 0

⇐⇒ k3 − k2 + k > 2k2 + k

⇐⇒ k(k(k − 1) + 1) > k(2k + 1)

⇐⇒ k

(
2
k(k − 1)

2
+ 1

)
> p(2p+ 1)

⇐⇒ |V (Gu)|(2|E(Gu)|+ 1) > |V (Gv)|(2|E(Gv)|+ 1)

⇐⇒ h↙(u) < h↙(v)

that is, u is strictly more central than v. ut
Finally, there is the Monotonicity Axiom. It states that when adding an edge

to a graph that originally did not have it, the centrality of both endpoints should
increase.

Axiom 3: (Monotonicity axiom) Consider an arbitrary graph G = (V,E)
(with |V | ≥ 2) and a pair of vertices u, v of G such that uv /∈ E. A centrality
measure satisfies the monotonicity axiom if when we add uv to G, the centrality
of both vertices improves.

Proof. Note that is enough to prove it for vertex u. Write e = uv and define
G′ := (V,E ∪ e). Also, we will use the notation HG(u, v) and HG′(u, v) for the

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

118

old and new hitting times respectively, and we will do similarly for the centrality
values h↙

G′(u) and h↙G (u). Note that because we are only adding an edge, the set
of vertices remain the same for both graphs, and therefore, we can refer to it
simply by V .

We have that ∀ w ∈ V \ {u}, HG(w, u) > H ′G(w, u). Indeed, whenever a
random walk steps into v, in G′ has the opportunity of going through e to reach
u in only one more step, whereas in G it has to neccesarily take one more step
into a neighbor of v, and then in the best case scenario, another one to reach u.
Therefore, by using this we have that

h↙
G′(u) =

∑

w∈V
w 6=u

HG′(w, u) <
∑

w∈V
w 6=u

HG(w, u) = h↙G (u)

that is, u has strictly better centrality in G′ than in G. ut

6 Conclusions

We studied a notion of centrality based on random walks over non-directed
graphs. Besides experimental evidence (that we do not show in this article) this
notion has nice theoretical properties.

Although in this paper we concentrated in proving that it satisfies the recently
introduced axioms of centrality by Boldi-Vigna, the techniques used give an
insight of their potential. In fact, it can be proved that our notion of centrality
captures fine properties of central nodes in undirected graphs. In a future paper
we will present these results.

Acknowledgments. The authors thank funding to Millennium Nucleus Center
for Semantic Web Research under Grant NC120004.

References

1. Thad Huges & Daniel Ramge (2007). Lexical semantics relatedness with random
graph walks. In Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning,
pp.581-589.

2. Joshua T. Abbott, Joseph L. Austerweil, Thomas L. Griffiths (2012). Human mem-
ory search as a random walk in a semantic network. In Advances in Neural Infor-
mation Processing Systems 25, pp.3050-3058.

3. Camilo Garrido Garćıa (2013). Resúmenes Semiautomáticos de Conocimiento:
caso de RDF. In Memoria para optar al t́ıtulo de Ingeniero Civil en Computación,
http://repositorio.uchile.cl/bitstream/handle/2250/113509/cf-garrido_

cg.pdf?sequence=1&isAllowed=y.
4. Linton C. Freeman (1978/79). Centrality in Social Networks Conceptual Clarifica-

tion. In Social Networks 1, pp.2125-239.
5. Paolo Boldi, Sebastiano Vigna (2013). Axioms for Centrality. In CoRR, vol.

abs/ 1308.2140.

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

119

6. L.Lovász (1993). Random Walks on Graphs; A Survey. In Boltai Soc., Math. Stud-
ies 2, pp.1-46.

7. Joe Dong Noh, Heiko Rieger (2004). Random Walks on Complex Networks. In
Physical Review Letters, Volume 92, Number 11.

8. Shravas K Rao, Finding Hitting Times in Various Graphs.
9. M.E.J. Newman (2005). A measure of betweenness centrality based on random

walks. In Social Networks 27, pp.39-54.

7 Appendix

Proposition 9. Let uv be a bridge of a connected graph G. Then

h↙(u) < h↙(v)⇐⇒ (2|E(Gu)|+ 1)|V (Gu)| > (2|E(Gv)|+ 1)|V (Gv)|
Proof. Note that h↙(u) is equal to

=
∑

w∈V (G)
w 6=u

H(w, u)

=
∑

w∈V (Gu)
w 6=u

H(w, u) +
∑

w∈V (Gv)
w 6=v

H(w, u) +H(v, u)

=
∑

w∈V (Gu)
w 6=u

H(w, u) +
∑

w∈V (Gv)
w 6=v

[H(w, v) +H(v, u)] +H(v, u)

=
∑

w∈V (Gu)
w 6=u

H(w, u) +
∑

w∈V (Gv)
w 6=v

H(w, v) + |V (Gv)|H(v, u)

=
∑

w∈V (Gu)
w 6=u

H(w, u) +
∑

w∈V (Gv)
w 6=v

H(w, v) + |V (Gv)|(2|E(Gv)|+ 1)

<
∑

w∈V (Gu)
w 6=u

H(w, u) +
∑

w∈V (Gv)
w 6=v

H(w, v) + |V (Gu)|(2|E(Gu)|+ 1)

=
∑

w∈V (Gu)
w 6=u

H(w, u) +
∑

w∈V (Gv)
w 6=v

H(w, v) + |V (Gu)|H(u, v)

=
∑

w∈V (Gu)
w 6=u

[H(w, u) +H(u, v)] +
∑

w∈V (Gv)
w 6=v

H(w, v) +H(u, v)

=
∑

w∈V (Gu)
w 6=u

H(w, v) +
∑

w∈V (Gv)
w 6=v

H(w, v) +H(u, v)

=
∑

w∈V (G)
w 6=v

H(w, v)

= h↙(v) .ut

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

120

Exploiting Semantics to Predict Potential Novel Links
from Dense Subgraphs

Alejandro Flores, Maria-Esther Vidal, Guillermo Palma

Universidad Simón Bolı́var, Caracas, Venezuela
{aflores, mvidal, gpalma}@ldc.usb.ve

Abstract. Knowledge graphs encode semantic knowledge that can be exploited
to enhance different data management tasks, e.g., query answering, ranking, or
data mining. We tackle the problem of predicting interactions between drugs and
targets, and propose esDSG, an unsupervised approach able to predict links from
subgraphs that are not only highly dense, but that comprise both similar drugs and
targets. The esDSG approach extends a state-of-the-art approximate densest sub-
graph algorithm with knowledge about the semantic similarity of the nodes in the
original graph, and then predicts potential novel interactions from the computed
dense subgraph. We have conducted an initial experimental study on a benchmark
of drug-target interactions. Our observed results suggest that esDSG is able to
identify interactions in graphs where existing approaches cannot perform equality
well. Further, a large number of esDSG predictions can be validated using exter-
nal databases as STITCH1 and Kegg2. These results, although initial, reveal how
semantics in conjunction with topological information of the knowledge graph
may have a great impact on pattern discovery tasks.

1 Introduction

Knowledge graphs are networks of semantically related concepts, described in terms
of attributes, types, and relationships. For example, biomedical knowledge graphs rep-
resent relationships among drugs, targets, side effects, and so on. Exploring these se-
mantically rich networks can lead to novel discoveries [3], e.g., interactions between
drugs and targets, or drug side effects. We focus on the problem of suggesting novel as-
sociations between concepts from knowledge graphs where concepts of the same type
are characterized by similarity measures. We apply our approach to predict drug-target
interactions; however, the approach is general enough to be used in other domains.

Different approaches have been proposed to predict interactions in networks [1, 4,
5, 10, 14, 15]; these approaches have been applied to drug-target graphs, where edges
between drugs and targets represent drug-target interactions, and drug-drug and target-
target similarity functions are defined. The prediction hypothesis is that similar drugs
interact with the same targets, and similar targets interact with the same drugs [4]. The
main challenge addressed by existing approaches is the development of strategies that
allow for detecting portions of the network where novel predictions can be suggested.
To illustrate the problem of suggesting drug-target interactions, consider Figures 1(a),

1 http://stitch.embl.de/
2 http://www.genome.jp/kegg/

121

(a) Drug-target interactions

(b) Dense Subgraph

(c) Edge-Similarity Dense Sub-
graph

Fig. 1: Ion Channel dataset, representing known interactions between targets (yellow)
and drugs (green). Predicted interactions are shown in red-dashed lines.

(b), and (c). Figure 1(a) visualizes the network of drug-target interactions of Ion Chan-
nels in the dataset studied by Ding et al. [3]; drug-drug and target-target relationships
are not drawn. To avoid the pair-wise comparison of all the drugs and targets in the
graph, existing approaches limit the search to dense portions of the graph that com-
prise both similar drugs and similar targets. For example, the semEP [10] approach
represents the network of drug-target interactions as a bipartite graph, and partitions
the edges (interactions) of the graph according to a density function that measures how
similar are the drugs and targets that are placed in one partition. Further, the number
of interactions between drugs and targets in each partition are taken into account by
this measure. semEP is able to explore portions of the search space and suggest pre-
dictions that other state-of-the-art approaches do not discover. However, in graphs such
as the one reported in Figure 1(a), semEP and state-of-the-art approaches do not ex-
hibit as good behavior as in other networks. The Ion Channel graph is composed of 414
nodes and 1,476 edges. It also has three connected components; two of these compo-
nents are comprised of five nodes and three edges. The rest of the nodes are part on
the main connected component, from which the dense subgraph of the original network
can be computed; this dense subgraph is presented in Figure 1(b). We hypothesize that
in graphs with this topology, limiting the search to highly dense components could lead
to better predictions. However, dissimilar drugs or targets may comprise these highly
connected components. We address the problem of identifying subgraphs that are not
only dense, but are composed of highly similar drugs and targets. We name these graphs
edge-similarity dense subgraphs; Figure 1(c) shows an edge-similarity dense subgraph
for the Ion Channel dataset. Evaluating the prediction hypothesis in this subgraph al-
lows for suggesting seven predictions shown in red-dashed lines.

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs

122

We propose a novel technique named esDSG, that is able to produce edge-similarity
dense subgraphs and to suggest novel associations from these subgraphs. We have con-
ducted an experimental study on the benchmark of drug-target interactions studied by
Ding et al. [3]. Interactions suggested by semEP and five state-of-the-art machine learn-
ing based techniques are compared to the interactions produced by esDSG. The ob-
served results suggest that the search spaces explored by all these approaches are dif-
ferent. Further, esDSG identifies interactions in graphs where existing approaches can-
not perform equality well. More importantly, a large number of the esDSG predictions
can be validated using the external databases STITCH and Kegg. These results suggest
that considering the topology in conjunction with semantics encoded in the graph, e.g.,
similarity values, can have a positive impact on the effectiveness of discovery tasks.

The rest of the paper is as follows: Section 2 describes the esDSG approach and
Section 3 summarizes related approaches. Experimental results are presented in Section
4. Finally, we conclude in Section 5 with an outlook to future work.

2 Edge-Similarity Densest Subgraph Problem

Our goal is to discover novel drug-target interactions by exploiting relationships among
existing interactions and values of similarity between both drugs and targets. However,
to effectively suggest such interactions, the prediction hypothesis should be evaluated in
graphs that maximize: i) graph density, and ii) drug-drug and target-target similarities.
We cast the problem of generating these graphs into a single-objective optimization
problem, called the edge-similarity Densest Subgraph (esDSG) problem.

Let D = {d1, d2, . . . , dn} be a set of drugs, and let sd(di, dj) ∈ [0 . . . 1] be the
similarity score function defined between every two drugs in D. Similarly, let T =
{t1, t2, . . . , tm} be a set of targets, and let st(ti, tj) ∈ [0 . . . 1] be the similarity score
function defined between every two targets in T . Given the sets T and D, we call E the
set of interactions between targets and drugs, where E ⊆ T × D. These interactions
can be naturally represented as a bipartite graph G = (T,D,E).

For each node v in the subgraph, the goal is to maximize not only the number of
interactions (i.e., the degree), but also the average of the pair-wise similarity values of v
with respect to the rest of the nodes in the subgraph. To do this, we define the similarity
measure of a single node v as follows:

Definition 1 (Single-node similarity). Consider a bipartite graph G = (T,D,E) of
drug-target interactions. The single-node similarity of v ∈ T (resp., v ∈ D) corre-
sponds to the arithmetic mean of the similarity measure values of v with every node
v′ ∈ T (resp., v′ ∈ D). This is denoted as sn(v).

sn(v) =

1
|T |
∑
t∈T

st(v, t) if v ∈ T
1
|D|

∑
d∈D

sd(v, d) if v ∈ D (1)

Figure 2(a) presents a subgraph of the Ion Channel dataset. Similarity values allow
for computing the single-node similarity of each node. For example, the drug D00332

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs

123

is dissimilar to the rest of the drugs in the subgraph. This is represented with low values
of the single-node similarity, i.e., sn(D00332) = 1

3

(
1 + 0.16 + 0.17

)
. On the other

hand, the drug D05077 is highly similar to the rest of the drugs in this subgraph; thus,
a higher value of single-node similarity is assigned to D05077, i.e., sn(D05077) =
1
3

(
1 + 0.97 + 0.17

)
. Note that single-node similarity values depend on the context in

which they are computed, i.e., only the nodes in a particular subgraph are considered.

(a) (b)

Fig. 2: Subgraphs of drug-target interactions of the Ion Channel dataset, where (b) is
subgraph of (a). Drug-Drug and Target-Target similarities in yellow, single-node simi-
larities in blue, and edge similarities in red.

We can characterize edges in a graph based on the single-node similarity values of
the nodes that connect each edge. For example, because D00332 is less similar than
D05077 to the rest of the drugs in the subgraph of Figure 2(a), the interaction that
relates D00332 with the target SCN5A is not as important in terms of similarity as the
interaction between D05077 the same target SCN5A. We model the importance of an
interaction in terms of similarity as a function named edge similarity, that averages the
single node similarities of the target and the drug that are related with this interaction.

Definition 2 (Edge similarity). Consider a bipartite graph G = (T,D,E) of drug-
target interactions, and the single-node similarity value of every drug and target in
the graph. The edge similarity score of an interaction (t, d) ∈ E, denoted as se(t, d),
corresponds to the arithmetic mean of the single-node similarity values of t and d.

se(t, d) =
1

2

(
sn(t) + sn(d)

)
(2)

Based on this definition, the edge similarity of the interaction between D00332
and SCN5A is 0.63, while the edge similarity of the interaction between D05077 and
SCN5A is 0.76. These values of the edge similarity function indicate the importance of
these two interactions in terms of the similarity of the drugs and targets that they relate,
with respect to the rest of the drugs and targets in the subgraph.

Normally, the definition of density for a bipartite graph, denoted as D(G), is given
by D(G) = |E|√

|T ||D|
. Using this definition, each edge of the graph is equally relevant

in terms of the density of the graph. Our approach relies on the importance of edges in
terms of similarity, i.e., the edge similarity, to compute a similarity-based density.

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs

124

Definition 3 (Edge-Similarity Density). Consider a bipartite graph G = (T,D,E),
where T represents the set of targets, D the set of drugs, and E the set of drug-target
interactions. Let se(t, d), for (t, d) ∈ E, be the edge similarity value for every edge in
the graph. The Edge-Similarity Density of G can be defined as:

Des(G) =

∑
(t,d)∈E

se(t, d)

√
|T ||D|

(3)

Using the edge similarity values computed for every edge in the subgraph in Figure
2(a), the edge-similarity density is equal to 1.19, while the graph density for this sub-
graph is 1.63. Removing the drug D00332 from this subgraph results in the subgraph
G′ in Figure 2(b) with a decreased density value of 1.50. However, the edge-similarity
density in this new graph is higher, i.e., Des(G

′) = 1.35. Applying the prediction hy-
pothesis to this subgraph would result in the prediction of an interaction between the
target SCN2A and the drug D05077; this interaction can be validated in Kegg.

Based on the definition of the edge-similarity density, we define the Edge-Similarity
Densest Subgraph problem (esDSG) as follows:

Definition 4 (Edge-Similarity Densest Subgraph problem (esDSG)). Given a bipar-
tite graph G = (T,D,E) as described above, representing the set of interactions be-
tween targets and drugs, esDSG identifies the subgraph G∗ ⊆ G such that the edge-
similarity density of G∗, Des(G

∗), is maximized.

2.1 A greedy approximate algorithm for esDSG

We propose a greedy approximate algorithm to the esDSG problem. The resulting sub-
graphs are both highly dense and similar, and they will be used to predict novel interac-
tions between targets and drugs. The edge-similarity density is used to guide the greedy
algorithm into spaces of dense and similar subgraphs.

The greedy decision of removing the nodes that contribute the least to the edge-
similarity density may result in higher values of the measure. For example, as shown
in Figure 2, removing the drug D00332 with both minimum single-node similarity
and degree values, as well as removing the interaction between this drug and the target
SCN5A, leads to an increase of the edge-similarity density from 1.19 to 1.35.

After applying the definition of edge similarity and some algebraic manipulation,
the edge-similarity density can be reformulated as a function of the degree values and
the single-node similarity of each node in a graph G, as follows:

Des(G) =

∑
v∈T∪D

degree(v) · sn(v)

2
√
|T ||D|

(4)

We propose a modification of the densest subgraph 2-approximation algorithm pro-
posed by Khuller and Barna [7]. In our algorithm, the greedy decision will be made
not only in terms of the degree, but also the single-node similarity of the nodes of the
graph. Along with the use of the edge-similarity density, this constitutes the most impor-
tant difference with Khuller & Barna’s algorithm, where the greedy strategy indicates

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs

125

the removal of nodes, according only to the degree.

Algorithm 1: Edge-Similarity Dense Subgraph
Input: A bipartite graph G = (T,D,E)
Output: A subgraph H∗ ⊆ G

1 i← |T |+ |D|, Hi ← G
2 while Hi 6= ∅ do
3 Let v be a vertex with minimum value degree(v) · sn(v) in Hi

4 Delete all incident edges in v
5 Delete all nodes with no incident edges
6 Update single-node similarity values of all nodes
7 Call the new graph Hi−1, i← i− 1

8 return H∗, a graph with maximum edge-similarity density, Des(H
∗), from all the Hi’s

Algorithm 1 performs an ordered removal of the nodes of a bipartite graph, remov-
ing a node v with minimum product of the single-node similarity and degree values,
i.e., a node such that degree(v) · sn(v) is the minimum value. Further, the incident
edges on v are removed from the graph. The algorithm iteratively performs this greedy
decision until no more edges can be removed. In each iteration i of the algorithm (while
loop in lines 2 to 7), a subgraph Hi is created; the algorithm outputs the subgraph H∗

with the maximum value of Des(H
∗). Predictions correspond to the missing edges in

H∗. For example, consider the subgraph in Figure 1(c), this is a dense graph produced
by Algorithm 1 for the Ion Channel dataset; seven red-dashed lines represent missing
edges in this subgraph and correspond to the interactions predicted by our approach. It
is important to highlight that four out of the seven predicted interactions could be vali-
dated in STITCH with prediction score greater than 0.16; only two of these interactions
were among the top-10 predictions of semEP.

Finally, for a bipartite graph G = (T,D,E), Khuller’s algorithm requires O(|E|+
|T ∪ D|) time, while the time complexity of Algorithm 1 is O(|T |2 + |D|2). The in-
creased complexity is a consequence of the need to compute the single-node similarity
values. i.e., after each removal the sets of drugs and targets changes, thus, the single-
node similarity values of the nodes in the graph need to be updated.

3 Related Work

We briefly describe existing approaches for graph data mining and link prediction.
Graph mining approaches focus on the problem of detecting patterns in graphs by
conducting clustering and ranking methods on knowledge graphs [6, 9, 12]. RankClus
[12], GNetMine [6], and JointCluster [9] apply clustering techniques to place multi-
typed concepts in the same cluster. RankClus exploits link analysis-based ranking with
clustering to assign highly ranked entities to highly ranked clusters. GNetMine applies
learning based methods on different graph properties, e.g., graph topology, type at-
tributes, or edge labels, to classify and partition nodes in a graph. Finally, JointCluster
[9] is a simultaneous clustering such that nodes within each cluster in the partition are
highly connected, and the number of inter-cluster edges is minimized. These clustering

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs

126

methods have shown to be effective, but they cluster nodes instead of edges. Further,
they mainly focus on the topology of the graph and do not exploit any semantics, con-
straints, or similarity information between the nodes to enhance the quality of the clus-
tering. Dissimilar nodes may be placed in a cluster, reducing thus the chances to predict
edges whenever the prediction hypothesis is evaluated.

Several approaches have been proposed for link prediction, and particularly, to sug-
gest annotations for genes [11, 13] and interactions between drugs and targets [1, 4, 5,
10, 14, 15]. Techniques to identify dense subgraphs [11] and graph summarization [13]
have been extended to predict Gene Ontology annotations of genes that comprise a
clique or from super nodes in a summary of a graph, respectively. These approaches
have shown to successfully analyze patterns in graphs. However, because they do not
consider semantics encoded in the graph or similarity between the graph concepts, they
may be grouping dissimilar concepts in a dense graph or a summary of a graph. Thus,
applying the prediction hypothesis graphs produced by these approaches may lead to a
small dataset of predictions or just to produce no predictions at all.

Machine learning methods [1, 4, 5, 14, 15] have been exploited to identify the por-
tions of the knowledge graph where the application of the prediction hypothesis can lead
to the discovery of drug-target interactions; a detailed evaluation of all these approaches
can be found at [3]. Additionally, semEP [10] implements an unsupervised method able
to partition edges that represent drug-target interactions; the prediction hypothesis is
applied to each component of the partition to predict new interactions. Components of
a partition maximize the graph density and pair-wise similarity of the drugs and the
targets. Although all these approaches are able to suggest drug-target interactions that
can be validated, they may not exhibit the same good performance in graphs as the one
illustrated in Figure 1(a). We hypothesize that because esDSG reduces the prediction
search to the space of edge-similarity dense graphs, the overlap between the esDSG pre-
dictions and the ones suggested by the other approaches will be small; further, esDSG
may be able to exhibit better performance from this type of graphs.

4 Evaluation of esDSG and State-of-the-Art Methods

Dataset: We use the dataset created by Bleakley et al. [1] to evaluate esDSG quality.
This dataset is used in the comparison of existing interaction prediction methods [3,
10]. The dataset comprises 900 drugs, 1,000 targets, and 5,000 interactions from KEGG
BRITE3, BRENDA4, SuperTarget5, and DrugBank6. The dataset provides a drug-drug
chemical similarity score based on the hashed fingerprints from the SMILES resource,
and a target-target similarity score based on the normalized Smith-Waterman sequence
similarity score. Data is divided into four groups: Nuclear receptors (NR), Gprotein-
coupled receptors (GPCR), Ion channels (IC) and Enzymes (E); details in Table 1.
State-of-the-art Methods: We use semEP [10] and the following machine learning
methods reported in [3] to evaluate the quality of the esDSG predictions: i) BLM:

3 http://www.genome.jp/kegg/brite.html
4 http://www.brenda-enzymes.de/
5 http://bioinf-apache.charite.de/supertarget_v2/
6 http://www.drugbank.ca/

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs

127

Table 1: Statistics for the Drug-Target Interaction Dataset [1].
Statistics NR GPCR IC E
Number of drugs 54 223 210 445
Number of targets 26 95 204 664
Interactions 90 635 1,476 2,926
Average interaction count per target 3.46 6.68 7.23 4.4
Average interaction count per drug 1.66 2.84 7.02 6.57
Density 2.40 4.36 7.13 5.38

Bipartite Local Method [2]; ii) LapRLS: Laplacian Regularized Least Squares [15];
iii) GIP: Gaussian Interaction Profile [14]; iv) KBMF2K: Kernelized Bayesian Matrix
Factorization with twin Kernels [5]; and v) NBI: Network-Based Inference [2]. Addi-
tionally, Khuller & Barna’s algorithm is used as baseline.

4.1 Dense Subgraphs and Edge-Similarity Dense Subgraphs

We compare the dense subgraphs, DSG and esDGS, produced by Khuller & Barna’s
algorithm and our approach, respectively. Table 2 describes these subgraphs in terms
of number of drugs, targets, interactions, density, and average similarities. We can ob-
serve that DSGs are larger than esDSGs and also have greater values of the standard
density. For datasets NR, IC, and E, the esDGS graphs are denser in terms of edge-
similarity density, and result on less interactions but all predicted from similar drugs
or targets. However, although the DSG approximation algorithm does not maximize

Table 2: Statistics of the Dense Subgraphs and Edge-Similarity Dense Subgraphs com-
puted for each graph in the Drug-Target Interaction Dataset [1].

Statistics NR GPCR IC E
DSG esDSG DSG esDSG DSG esDSG DSG esDSG

Targets 6 5 9 9 74 8 61 13
Drugs 3 3 16 13 53 20 37 13
Interactions 18 15 107 87 815 153 994 168
Predictions 0 0 37 30 3107 7 1263 1
Density 4.24 3.87 8.91 8.04 13.01 12.09 20.92 12.9
Edge-Similarity Density 1.94 2.01 2.66 2.65 1.79 6.88 3.47 5.53
Average Target Similarity 0.40 0.52 0.33 0.33 0.06 0.69 0.10 0.54
Average Drug Similarity 0.50 0.50 0.25 0.32 0.21 0.43 0.23 0.31

edge-similarity density, DSG has higher values of this measure than esDSG on GPCR.
Further, DSG and esDSG have 24 common predicted interactions. This suggests that
GPCR regions that are dense or similar are the same, i.e., the search spaces of the ap-
proximation algorithms for DSG and esDSG overlap.

4.2 Validation using STITCH and Kegg

We evaluate the quality of esDSG predictions in terms of the number of interactions
that can be validated. We use the latest online version of STITCH [8] and Kegg to

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs

128

validate each drug-target interaction predicted by esDSG. Table 3(a) reports on both the
number of esDSG validated drug-target interactions, and the total number of predicted
interactions. We can observe that esDSG predicted 12 out of 30 predictions that could
be validated in STITCH and Kegg; while the 57% of the esDSG predicted interactions
in the Ion Channel dataset can be also validated. As observed in Table 2, the IC esDSG
is the one with the highest values of edge-similarity density, and average target and drug
similarities. Furthermore, Table 3(b) reports on the number of validated interactions out
of the top-5 novel predicted interactions of all methods; novel interactions are not in
the original datasets and have the highest prediction score; these scores are computed
by each prediction method. It is clear that esDSG outperforms existing approaches in
the Ion Channel dataset. This supports our hypothesis that novel interactions can be
predicted from highly dense graphs composed of similar drugs and targets.

Table 3: (a) Number of esDSG predicted interactions and the number of those interac-
tions that can be manually validated with STITCH and Kegg. (b) Top-5 novel interac-
tions manually validated with STITCH; entries highlighted in bold correspond to the
largest number of novel validations

(a) esDSG Validated Predictions

Dataset Number of
predictions

Validation
STITCH Kegg Total

NR 0 - - -
GPCR 30 11 3 12
IC 7 4 0 4
E 1 0 0 0

(b) Validated Predictions of State-of-
the Prediction Methods

Method NR GPCR IC E
semEP 4 5 1 4
BLM 2 1 0 0
NBI 1 1 1 2
GIP 3 3 1 1
LapRLS 5 3 2 2
KBMF2K 3 4 2 2

4.3 Effectiveness of esDSG Predictions

Effectiveness of esDSG is also measured as the overlap between the esDSG predicted
interactions and the top-10 interactions predicted by semEP [10], and the machine learn-
ing methods: BLM, NBI, GIP, LapRLS, and KBMF2K [3]. Top-10 predictions corre-
spond to the interactions with the highest prediction score. Table 4 compares esDSG and
the corresponding prediction method in terms of both: i) the number of interactions that
both methods predicted, labelled as Equal, and ii) the number of interactions predicted
by esDSG and that are not part of the top-10 predictions of the corresponding method,
labelled as Diff. We can observe that esDSG predicts interactions that are not predicted
by any of the other methods. These results suggest that the edge-similarity subgraphs
from where esDSG generates the predicted interactions, correspond to portions of the
search space that none of the other approaches is able to explore.

5 Conclusions

We defined the edge-similarity densest subgraph problem to predict drug-target inter-
actions. We extended Kuller & Barna’s algorithm with the greedy decision of removing
the nodes that contribute less to the edge-similarity density values. Experimental results
suggest our approach is able to predict novel drug-target interactions from highly dense

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs

129

Table 4: Overlap of esDSG predictions and the top-10 predictions generated by existing
methods [3, 10]. Entries in bold indicate that all esDSG predictions are different

Method NR GPCR IC E
Equal Diff. Equal Diff. Equal Diff. Equal Diff.

semEP 0 0 0 30 3 4 0 1
BLM 0 0 0 30 0 7 0 1
NBI 0 0 4 26 0 7 1 0
GIP 0 0 2 28 4 3 1 0
LapRLS 0 0 0 30 3 4 1 0
KBMF2K 0 0 0 30 0 7 0 1

subgraphs composed of both similar drugs and targets. We plan to extend esDSG to
traverse the different connected components and identify esDSGs from each one.

References

1. K. Bleakley and Y. Yamanishi. Supervised prediction of drug–target interactions using bi-
partite local models. Bioinformatics, 25(18):2397–2403, 2009.

2. F. Cheng, C. Liu, J. Jiang, W. Lu, W. Li, G. Liu, W. Zhou, J. Huang, and Y. Tang. Predic-
tion of drug-target interactions and drug repositioning via network-based inference. PLoS
computational biology, 8(5):e1002503, 2012.

3. H. Ding, I. Takigawa, H. Mamitsuka, and S. Zhu. Similarity-based machine learning methods
for predicting drug-target interactions: A brief review. Briefings in Bioinformatics, 2013.

4. S. Fakhraei, B. Huang, L. Raschid, and L. Getoor. Network-based drug-target interaction
prediction with probabilistic soft logic. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2014.

5. M. Gönen. Predicting drug–target interactions from chemical and genomic kernels using
bayesian matrix factorization. Bioinformatics, 28(18):2304–2310, 2012.

6. M. Ji, Y. Sun, M. Danilevsky, J. Han, and J. Gao. Graph regularized transductive clas-
sification on heterogeneous information networks. In Machine Learning and Knowledge
Discovery in Databases, pages 570–586. Springer, 2010.

7. S. Khuller and B. Saha. On finding dense subgraphs. In Automata, Languages and Program-
ming, pages 597–608. Springer, 2009.

8. M. Kuhn, D. Szklarczyk, A. Franceschini, C. von Mering, L. J. Jensen, and P. Bork. Stitch
3: zooming in on protein–chemical interactions. Nucleic acids research, 40(D1), 2012.

9. M. Narayanan, A. Vetta, E. E. Schadt, and J. Zhu. Simultaneous clustering of multiple gene
expression and physical interaction datasets. PLoS Computational Biology, 6(4), 2010.

10. G. Palma, M. Vidal, and L. Raschid. Drug-target interaction prediction using semantic sim-
ilarity and edge partitioning. In ISWC, 2014.

11. B. Saha, A. Hoch, S. Khuller, L. Raschid, and X. Zhang. Dense subgraphs with restrictions
and applications to gene annotation graphs. In RECOMB, 2010.

12. Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. Rankclus: integrating clustering with
ranking for heterogeneous information network analysis. In EDBT, 2009.

13. A. Thor, P. Anderson, L. Raschid, S. Navlakha, B. Saha, S. Khuller, and X. Zhang. Link
prediction for annotation graphs using graph summarization. In ISWC, 2011.

14. T. van Laarhoven, S. B. Nabuurs, and E. Marchiori. Gaussian interaction profile kernels for
predicting drug–target interaction. Bioinformatics, 27(21), 2011.

15. Z. Xia, L.-Y. Wu, X. Zhou, and S. T. Wong. Semi-supervised drug-protein interaction pre-
diction from heterogeneous biological spaces. BMC systems biology, 4(Suppl 2):S6, 2010.

Exploiting Semantics to Predict Potential Novel Links from Dense Subgraphs

130

On the CALM Principle for BSP Computation

Matteo Interlandi 1 and Letizia Tanca 2

1 University of California, Los Angeles
minterlandi@cs.ucla.edu

2 Politecnico di Milano,
letizia.tanca@polimi.it

Abstract. In recent times, considerable emphasis has been given to two appar-
ently disjoint research topics: data-parallel and eventually consistent, distributed
systems. In this paper we propose a study on an eventually consistent, data-
parallel computational model, the keystone of which is provided by the recent
finding that a class of programs exists that can be computed in an eventually
consistent, coordination-free way: monotonic programs. This principle is called
CALM and has been proven by Ameloot et al. for distributed, asynchronous set-
tings. We advocate that CALM should be employed as a basic theoretical tool also
for data-parallel systems, wherein computation usually proceeds synchronously
in rounds and where communication is assumed to be reliable. We deem this
problem relevant and interesting, especially for what concerns parallel workflow
optimization, and make the case that CALM does not hold in general for data-
parallel systems if the techniques developed by Ameloot et al. are directly used.
In this paper we sketch how, using novel techniques, the satisfiability of the if di-
rection of the CALM principle can still be obtained, although just for a subclass
of monotonic queries.

1 Introduction

Recent research has explored ways to exploit different levels of consistency in order to
improve the performance of distributed systems w.r.t. specific tasks and network con-
figurations, while maintaining correctness [18]. A topic strictly related to consistency
is coordination, usually informally interpreted as a mechanism to accomplish a dis-
tributed agreement on some system property [8]. Indeed, coordination can be used to
enforce consistency when, in the natural execution of a system, this is not guaranteed
in general. In this paper we sketch some theoretical problems springing from the use of
eventually consistent, coordination-free computation over synchronous systems with re-
liable communication (rsync). Informally, such systems have the following properties:
(i) a global clock is defined and accessible by every node; (ii) the relative difference
between the time clock values of any two nodes is bounded; and (iii) the results emit-
ted by a node arrive at destination at most after a certain bounded physical time (the
so-called bounded delay guarantee).

Rsync is a common setting in modern data-parallel frameworks - such as MapRe-
duce - in which computation is usually performed in rounds, where each task is blocked
and cannot start the new round until a synchronization barrier is reached, i.e., every

131

other task has completed its local computation. In this work we consider synchroniza-
tion (barrier) and coordination as two different, although related entities: the former is
a mechanism enforcing the rsync model, the latter a property of executions. Identify-
ing under what circumstances eventually consistent, coordination-free computation can
be employed over rsync systems would enable us to “stretch” the declarativeness of
parallel programs, freeing execution plans of the restriction to follow predefined (syn-
chronous) patterns. In fact, all recent high-level data-parallel languages suffer from this
limitation, for instance both Hive [16] and Pig [15] sacrifice pipelining in order to fit
query plans into MapReduce workflows. Our aim is then to understand when a syn-
chronous “blocking” computation is actually required by the program semantics – and
therefore must be strictly enforced by the system – and when, instead, a pipelined ex-
ecution can be performed as optimization. For batch parallel processing, the benefits
of understanding where the former can be replaced by the latter are considerable [7]:
thanks to the fact that data is processed as soon as it is produced, online computation is
possible, i.e., the final result can be refined during the execution; as a consequence, new
data can be incrementally added to the input, making continuous computation possible.
Overall, pipelining is highly desirable in the Big Data context, where full materializa-
tion is often problematic.

Recently, a class of programs that can be computed in an eventually consistent,
coordination-free way has been identified: monotonic programs [9]; this principle is
called CALM (Consistency and Logical Monotonicity) and has been proven in [4].
While CALM was originally proposed to simplify the specification of distributed (asyn-
chronous) data management systems, in this paper we advocate that CALM should be
employed as a basic theoretical tool also for the declarative specification of data-parallel
(synchronous) systems. As a matter of fact, CALM permits to link a property of the ex-
ecution (coordination-freedom) with a class of programs (monotonic queries). But to
which extent CALM can be applied over data-parallel systems? Surprisingly enough,
the demonstration of the CALM principle in rsync systems is not trivial and, with the
communication model and the notion of coordination as defined in [4], the CALM
principle does not hold in general in rsync settings (cf. Example 3). Thus, in order
to extend CALM over data-parallel synchronous computation, in this paper we sketch
a new generic parallel computation model leveraging previous works on synchronous
Datalog [10,12] and transducer networks [4], and grounding rsync computation on the
well-known Bulk Synchronous Parallel (BSP) model [17] equipped with content-based
addressing. With BSP, computation proceeds as a series of global rounds, each com-
posed by three phases: (i) a computation phase, in which nodes parallely perform local
computations; (ii) a communication phase, where data are exchanged among the nodes;
and (iii) the synchronization barrier. Exploiting this new type of transducer network,
we will then show that the CALM principle is satisfied for synchronous and reliable
systems under a new definition of coordination-freedom, although, surprisingly enough,
just for a subclass of monotonic queries, i.e., the chained monotonic queries (cf. Defini-
tion 5.7). When defining coordination-freedom we will take advantage of recent results
describing how knowledge can be acquired in synchronous systems [5, 6].

Organization: The paper is organized as follows: Section 2 introduces some prelimi-
nary notation. Section 3 defines our model of synchronous and reliable parallel system,

On the CALM Principle for BSP Computation

132

and shows that the CALM principle is not satisfied for systems of this type. Section
3.2 proposes a new computational model based on hashing, while Section 4 introduces
the new definition of coordination. Finally, Section 5 discusses CALM under the new
setting. The paper ends with some concluding remarks. We refer the reader to [11] for
proofs and more detailed discussions.

2 Relational Transducers

In this paper we expect the reader to be familiar with the basic notions of database
theory and relational transducer (networks). In this section we use some example to set
forth our notation, which is close to that of [1] and [4].

We employ a transducer (resp. a transducer network) as an abstraction modeling the
behavior of a single computing node (resp. a network of computing nodes): this abstract
computational model permits us to make our results as general as possible without
having to rely on a particular framework, since transducers and transducer networks
can be easily imposed over any modern data-parallel system. We consider each node
to be equipped with an immutable database and a memory used to store useful data
between any two consecutive computation steps. In addition, a node can produce an
output for the user and can also communicate some data to other nodes (the concept of
data communication in a transducer network will appear clearer in Section 3). Finally,
an internal time, and system data are kept mainly for configuration purposes. Every
node executes a program that operates on (input) instances of the database, the memory
and the communication channel, and produces new instances that are either saved in
memory, or directly output to the user, or addressed to other nodes.

Example 1. A first example of relational transducer is the following UCQ-transducer
T , with schema Υ , that computes the ternary relation Q as the join between two binary
relations R and T :

Schema: Υdb = {R(2), T (2)}, Υmem = ∅, Υcom = ∅, Υout = {Q(3)}
Program: Qout(u, v, w)← R(u, v), T (v, w).

Let I be an initial instance over which we want to compute the join. Then, let us define
Idb = I as an instance over the database schema Υdb. A transition I → J for T is
such that I = I ∪ Isys, Ircv and Jsnd are empty (no communication query exists), and
J = I ∪ Iout ∪ Isys, where Iout is the result of the query Qout, i.e., the join between
R and T . Note that the subscript in Qout means that this is an output query, that is, it
specifies the final result of the whole computation.

3 Computation in rsync

In order to allow query evaluation in parallel settings, we will sketch a novel transducer
network [4], where computation is synchronous, and communication is reliable. This
permits us to define how a set of relational transducers can be assembled to obtain an
abstract computational model for distributed data-parallel systems. To be consistent
with [4], we will assume broadcasting as the addressing model.

On the CALM Principle for BSP Computation

133

Example 2. Assume we want to compute a distributed version of the join of Example 1.
We can implement it using a broadcasting synchronous transducer network which emits
one of the two relations, say T , and then joins R with the received facts over T . Note
that the sent facts will be used just starting from the successive round, and the program
will then employ two rounds to compute the distributed join. UCQ is again expressive
enough. The transducer network can be written as follows – where Ssnd denotes a
communication query and this time schema Υcom is non-empty because communication
is needed:

Schema: Υdb = {R(2), T (2)}, Υcom = {S(2)}, Υout = {Q(3)}
Program: Ssnd(u, v)← T (u, v).

Qout(u, v, w)← R(u, v), S(u,w).

Synchronous specifications have the required expressive power:

Lemma 1 Let L be a language containing UCQ and contained in DATALOG¬. Every
query expressible in L can be distributively computed in 2 rounds by a broadcasting
L-transducer network.

The above lemma permits us to draw the following conclusion: under the rsync se-
mantics, monotonic and non-monotonic queries behave in the same way: two rounds
are needed in both cases. This is due to the fact that, contrary to what happens in the
asynchronous case of [4], starting from the second round we are guaranteed – by the
reliability of the communication and the synchronous assumption – that every node will
compute the query over every emitted instance. Conversely, in the asynchronous case,
as a result of the non-determinism of the communication, we are never guaranteed,
without coordination, that every sent fact will be actually received.

3.1 The CALM Conjecture

The CALM conjecture [9] specifies that a well-defined class of programs can be dis-
tributively computed in an eventually consistent, coordination-free way: monotonic pro-
grams. CALM has been proven in this (revisited) form for asynchronous systems [4]:

Conjecture 1 A query can be distributively computed by a coordination-free trans-
ducer network if and only if it is monotonic.

The concept of coordination suggests that all the nodes in a network must exchange in-
formation and wait until an agreement is reached about a common property of interest.
Following this intuition, Ameloot et al. established that a specification is coordination-
free if communication is not strictly necessary to obtain a consistent final result. Sur-
prisingly enough, under this definition of coordination-freedom, CALM does not hold
in rsync settings under the broadcasting communication model:

On the CALM Principle for BSP Computation

134

Example 3. LetQout be the “emptiness” query of [4]: given a nullary database relation
R(0) and a nullary output relation T (0), Qout outputs true (i.e., a nullary fact over T)
iff IR is empty. The query is non-monotonic: if IR is initially empty, then T is pro-
duced, but if just one fact is added to R, T is not derived, i.e., IT must be empty. A
FO-transducer network N can be easily generated to distributively compute Qout: first
every node emits R if its local partition is not empty, and then each node locally evalu-
ates the emptiness ofR. Since the whole initial instance is installed on every node when
R is checked for emptiness, T is true only if R is actually empty on the initial instance.
The complete specification follows.

Schema: Υdb = {R(0)}, Υmem = {Ready(0)}, Υcom = {S(0)}, Υout = {T (0)}.
Program: Ssnd()← R().

Readyins()← ¬Ready().
Tout()← ¬S(),Ready().

One can show [11] that, if communication is switched off, the above transducer is still
able to obtain the correct result if, for example, I is installed on every node. That is,
a partitioning exists, making communication not strictly necessary to reach the proper
result. Note that the same query requires coordination in asynchronous settings: since
emitted facts are non-deterministically received, the only way to compute the correct
result is that nodes coordinate to understand if the input instance is globally empty.

The result we have is indeed interesting although expected: when we move from the
general asynchronous model to the more restrictive rsync setting, we no longer have a
complete understanding of which queries can be computed without coordination, and
which ones, instead, do require coordination. It turns out that both the communication
model and the definition of coordination proposed in [4] are not strong enough to work
in general for synchronous systems. As the reader may have realized, this is due to the
fact that, in broadcasting synchronous systems, coordination – as defined by Ameloot
et al. – is already “baked” into the model. In the next sections we will see that our defi-
nition of coordination-freedom guarantees eventually consistent computation for those
queries that do not rely on broadcasting in order to progress. That is, the discriminat-
ing condition for eventual consistency is not monotonicity, but the fact that it is not
necessary to send a fact to all the nodes composing a network.

3.2 Hashing Transducer Networks

Broadcasting specifications are not really convenient from a practical perspective. Fol-
lowing other parallel programming models such as MapReduce, in this section we are
going to introduce hashing transducer networks: i.e., synchronous networks of rela-
tional transducers equipped with a content-based communication model founded on
hashing. Under this new model, the node to which an emitted fact must be addressed is
derived using a hash function applied to a subset of its terms called keys.

Example 4. This program is the hashed version of Example 2, where every tuple emit-
ted over S and U is hashed on the first term (this is specified by the schema definition

On the CALM Principle for BSP Computation

135

S(1,2) and U (1,2), where the pair (1, 2) means that the related relation has arity 2 and
the first term is the key-term). In this way we are assured that, for each pair of joining
tuples, at least a node exists containing the pair. This because S and U are joined over
their key-terms, and hence the joining tuples are addressed to the same node.

Schema: Υdb = {R(2), T (2)}, Υcom = {S(1,2), U (1,2)}, Υout = {J (3)}
Program: Ssnd(u, v)← R(u, v).

Usnd(u, v)← T (u, v).

Jout(u, v, w)← S(u, v), U(u,w).

4 Coordination-freedom Refined

We have seen in Section 3.1 that, for rsynch systems, a particular notion of coordination-
freedom is needed. In fact we have shown that, under such model, certain non-
monotonic queries – Example 3 – requiring coordination under the asynchronous model
can be computed in a coordination-free way. The key-point is that, as observed in [4],
in asynchronous systems coordination-freedom is directly related to communication-
freedom under ideal partitioning. That is, if the partitioning is correct, no communi-
cation is required to correctly compute a coordination-free query because (i) no data
must be sent (the partition is correct), and (ii) no “control message” is required to ob-
tain a consistent result (the query is coordination-free). However, due to its synchronous
nature, in rsync settings non-monotonic queries can be computed in general without re-
sorting to coordination because coordination is already “baked” into the rsync model:
each node is synchronized with every other one, hence “control messages” are somehow
implicitly assumed. In this section we introduce a novel knowledge-oriented perspec-
tive linking coordination with the way in which explicit and implicit information flows
in the network. Under this perspective, we will see that coordination is needed if, to
maintain consistency, a node must have some form of information exchange with all
the other nodes.

4.1 Syncausality

Achieving coordination in asynchronous systems is a costly task. A necessary condition
for coordination in such systems is the existence of primitives that enforce some con-
trol over the ordering of events. In a seminal paper [13], Lamport proposed a synchro-
nization algorithm based on the relation of potential causality (→) over asynchronous
events. According to Lamport, given two events e, e′, we have that e → e′ if e hap-
pens before e′ and e might have caused e′. From a high-level perspective, the poten-
tial causality relation models how information flows among processes, and therefore
can be employed as a tool to reason on the patterns which cause coordination in asyn-
chronous systems. A question now arises: what is the counterpart of the potential causal-
ity relation for synchronous systems? Synchronous potential causality (syncausality in

On the CALM Principle for BSP Computation

136

short) has been recently proposed [5] to generalize Lamport’s potential causality to
synchronous systems. Using syncausality we are able to model how information flows
among nodes with the passing of time. Consider a parallel execution trace ρ – called a
run – and two points in this execution (ρi, t), (ρj , t′) for (possibly not distinct) nodes
i, j, identifying the local state for i, j at time t and t′ respectively. We say that (ρj , t′)
causally depends on (ρi, t) if either i = j and t ≤ t′ – i.e., a local state depends on the
previous one – or a tuple has been emitted by node i at time t, addressed to node j, with
t < t′1. We refer to these two types of dependencies as direct.

Definition 4.1. Given a run ρ, we say that two points (ρi, t), (ρj , t′) are related by a
direct potential causality relation→, if one of the following is true:
1. t′ = t+ 1 and i = j;
2. t′ ≥ t+ 1 and node i sent a tuple at time t addressed to j;
3. there is a point (ρk, t′′) s.t. (ρi, t)→ (ρk, t′′) and (ρk, t′′)→ (ρj , t′).

Note that direct dependencies define precisely Lamport’s happen-before relation – and
hence we maintain the same signature→.

Differently from asynchronous systems, we however have that a point on node j
can occasionally indirectly depend on another point on node i even if no fact addressed
to j is actually sent by i. This is because j can still draw some conclusion simply
as a consequence of the bounded delay guarantee of synchronous systems. That is,
each node can use the common knowledge that every sent tuple is received at most
after a certain bounded delay to reason about the state of the system. The bounded
delay guarantee can be modelled as an imaginary NULL fact, like in [14]. Under this
perspective, indirect dependencies appear the same as the direct ones, although, instead
of a flow generated by “informative” facts, with the indirect relationship we model the
flow of “non-informative”, NULL facts.

Definition 4.2. Given a run ρ, we say that two points (ρi, t), (ρj , t′) are related by
an indirect potential causality relation 99K, if i 6= j, t′ ≥ t + 1 and a NULLi

R fact
addressed to node j has been (virtually) sent by node i at round t.

An interesting fact about the bounded delay guarantee is that it can be employed to
specify when negation can be safely applied to a predicate. In general, negation can be
applied to a literal R(ū) when the content of R is sealed for what concerns the current
round. In local settings, we have that such condition holds for a predicate at round t′ if
its content has been completely generated at round t, with t′ > t. In distributed settings,
we have that if R is a communication relation, being in a new round t′ is not enough,
in general, for establishing that its content is sealed. This is because tuples can still
be floating, and therefore, until we are assured that every tuple has been delivered, the
above condition does not hold. The result is that negation cannot be applied safely. We
can reason in the same way also for every other negative literal depending onR. We will
then model the fact that the content of a communication relation R is stable because
of the bounded delay guarantee, by having every node i emit a fact NULLi

R at round t,
for every communication relation R, which will be delivered at node j exactly by the

1 Note that a point in a synchronous system is what Lamport defines as an event in an asyn-
chronous system.

On the CALM Principle for BSP Computation

137

next round. We then have that the content of R is stable once j has received a NULLi
R

fact from every node i contained in the set N of nodes composing the network. The
sealing of a communication relation at a certain round is then ascertained only when
|N | NULLR facts have been counted. Recall that not necessarily the NULLi

R facts
must be physically sent. This in particular is true under our rsync model, where the
strike of a new round automatically seals all the communication relations. Example 5
shows one situation in which this applies.

Example 5. Consider the hashing version of the program of Example 3. Let I be an
initial instance. At round t+ 1 we have that the relation S is stable, and hence negation
can be applied. Note that if R is empty in the initial instance, no fact is sent. Despite
this, every node can still conclude at round t + 1 that the content of S is stable. In this
situation we clearly have an indirect potential causality relation.

We are now able to introduce the definition of syncausality: a generalization of
Lamport’s happen-before relation which considers not only the direct information flow,
but also the flow generated by indirect dependencies.

Definition 4.3. Let ρ be a run. The syncausality relation ; is the smallest relation s.t.:

1. if (ρi, t)→ (ρj , t′), then (ρi, t) ; (ρj , t′);
2. if (ρi, t) 99K (ρj , t′), then (ρi, t) ; (ρj , t′); and
3. if (ρi, t) ; (ρj , t′) and (ρj , t′) ; (ρk, t′′), then (ρi, t) ; (ρk, t′′).

4.2 From Syncausality to Coordination

We next propose the predicate-level syncausality relationship, modeling causal relations
at the predicate level. That is, instead of considering how (direct and indirect) informa-
tion flows between nodes, we introduce a more fine-grained relationship modelling the
flows between predicates and nodes.

Definition 4.4. Given a run ρ, we say that two points (ρi, t), (ρj , t′) are linked by a

relation of predicate-level syncausality R
;, if any of the following holds:

1. i = j, t′ = t + 1 and a tuple over R ∈ Υmem ∪ Υout has been derived by a query
in Qins ∪Qout at time t′;

2. R ∈ Υcom and node i sends a tuple over R at time t addressed to node j, with
t′ ≥ t+ 1;

3. R ∈ Υcom and node i (virtually) sends a NULLi
R fact at time t addressed to node

j, with t′ ≥ t+ 1;
4. there is a point (ρk, t′′) s.t. (ρi, t)

R
; (ρk, t′′) and (ρk, t′′)

R
; (ρj , t′).

We are now able to specify a condition for achieving coordination. Informally, we have
that coordination exists when all the nodes of a network reach a common agreement
that some event happened. But the only way to reach such an agreement is that a (direct
or indirect) information flow exists between the node in which the event actually oc-
curs, and every other node. This is a sufficient and necessary condition because of the
reliability and bounded-delay guarantee of rsync systems. Formalizing this intuition by
means of the (predicate level) syncausality relationship we have that:

On the CALM Principle for BSP Computation

138

Definition 4.5. Let N be a set of nodes. We say that a synchronous relational trans-
ducer network manifests the coordination pattern if, for all possible initial instances
I ∈ inst(Υdb), whichever run we select, a point (ρi, t) and a communication rela-
tion R exist so that ∀j ∈ N there is a predicate-level syncausality relation such that
(ρi, t)

R
; (ρj , t′).

We call node i the coordination master. A pattern with a similar role has been named
broom in [6].

Remark: The reader can now appreciate to which extent coordination was already
“baked” inside the broadcasting synchronous specifications of Section 3. Note that
broadcasting, in rsync, brings coordination. This is not true in asynchronous systems.

Intuitively, the coordination master is where the event occurs. If a broadcasting of (in-
formative or non-informative) fact occurs, then such event will become common knowl-
edge [8] among the nodes. On the contrary, if broadcasting is not occurring, common
knowledge cannot be obtained and therefore, if the correct final outcome is still reached,
this is obtained without coordination. That is, if at least a non-trivial configuration ex-
ists s.t. the coordination pattern doesn’t manifest itself, we have coordination-freedom.

5 CALM in rsync Systems

The original version of the CALM principle is not satisfiable in rsync systems because
a monotonic class of queries exists—i.e., unchained queries, introduced next—which
is not coordination-free. Informally, a query is chained if every relation is connected
through a join-path with every other relation composing the same query.

Definition 5.6. Let body(qR) be a conjunction of literals defining the body of a query
qR. We say that two different positive litteral occurrences Ri(ūi), Rj(ūj) ∈ body(qR)
are chained in qR if either:

– ūi ∩ ūj 6= ∅; or
– a third relation Rk ∈ qR different from Ri, Rj exists such that Ri is chained with
Rk, and Rk is chained with Rj .

Definition 5.7. A query Qout is said chained if, for every rule qR ∈ Qout, each re-
lation occurrence Ri ∈ body(qR) is chained with every other relation occurrence
Rj ∈ body(qR).

Remark: Nullary relations are not chained by definition.

Example 6. Assume two relations R(2) and T (1), and the following queryQout return-
ing the full R-instance if T is nonempty.

Q(u, v)← R(u, v), T ().

The query is clearly monotonic. Let T be the following broadcasting UCQ-transducer
program computing Qout.

On the CALM Principle for BSP Computation

139

Schema: Υdb = {R(2), T (1)}, Υcom = {S(2), U (1)}, Υout = {Q(2)}
Program: Ssnd(u, v)← R(u, v).

Usnd(u)← T (u).

Qout(u, v)← S(u, v), U().

Assume now we want to make the above transducer a hashing one. We have that,
whichever key we chose, the related specification might be no more consistent. Indeed,
consider an initial instance I and a set of keys spanning all the terms of S and U . As-
sume I such that adom(IR) ⊃ adom(IT), and a network composed by a large number
of nodes. In this situation, it may happen that a nonempty set of facts over R is hashed
to a certain node i, while no fact over T is hashed to i. This because a constant may
exist in adom(IR) that is not in adom(IT) and for which the hashing function returns a
node i not returned by hashing any constant in adom(IT). Hence no tuple emitted to i
will ever appear in the output, although they do appear inQout(I). Thus this transducer
is not eventually consistent.

From the above example we can intuitively see that, for rsync, a final consistent
result can be obtained without coordination only for queries that are chained and mono-
tonic. That is, the following restricted version of the CALM conjecture holds for rsync
systems:

Theorem 1 A query can be parallelly computed by a coordination-free transducer net-
work if it is chained and monotonic [11].

We will leave for future works the investigation on whether every monotone and chained
query is also coordination-free.

Remark: For the readers familiar with the works [2, 3] our result state that under the
rsync model, a query is computable in a coordination-free way if monotonic and dis-
tributing over components.

6 Conclusions

In this paper the CALM principle is analyzed under synchronous and reliable settings.
By exploiting CALM, in fact, we would be able to break the synchronous cage of mod-
ern parallel computation models, and provide pipelined coordination-free executions
when allowed by the program logic. In order to reach our goal, we have introduced a
new abstract model emulating BSP computation, and a novel interpretation of coordina-
tion with sound logical foundations in distributed knowledge reasoning. By exploiting
such techniques, we have shown that the if direction of the CALM principle indeed
holds also in rsync settings, but just for the subclass of monotonic queries defined as
chained.

On the CALM Principle for BSP Computation

140

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[2] T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Weaker forms of monotonicity for

declarative networking: a more fine-grained answer to the calm-conjecture. In PODS, pages
64–75. ACM, 2014.

[3] T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Datalog queries distributing over com-
ponents. In ICDT. ACM, 2015.

[4] T. J. Ameloot, F. Neven, and J. Van Den Bussche. Relational transducers for declarative
networking. J. ACM, 60(2):15:1–15:38, May 2013.

[5] I. Ben-Zvi and Y. Moses. Beyond lamport’s happened-before: On the role of time bounds in
synchronous systems. In N. A. Lynch and A. A. Shvartsman, editors, DISC, volume 6343
of Lecture Notes in Computer Science, pages 421–436. Springer, 2010.

[6] I. Ben-Zvi and Y. Moses. On interactive knowledge with bounded communication. Journal
of Applied Non-Classical Logics, 21(3-4):323–354, 2011.

[7] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears. Mapreduce
online. In Proceedings of the 7th USENIX conference on Networked systems design and
implementation, NSDI’10, pages 21–21, Berkeley, CA, USA, 2010. USENIX Association.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT
Press, Cambridge, MA, USA, 2003.

[9] J. M. Hellerstein. The declarative imperative: experiences and conjectures in distributed
logic. SIGMOD Rec., 39:5–19, September 2010.

[10] M. Interlandi. Reasoning about knowledge in distributed systems using datalog. In Datalog,
pages 99–110, 2012.

[11] M. Interlandi and L. Tanca. On the calm principle for bulk synchronous parallel computa-
tion. arXiv:1405.7264.

[12] M. Interlandi, L. Tanca, and S. Bergamaschi. Datalog in time and space, synchronously. In
L. Bravo and M. Lenzerini, editors, AMW, volume 1087 of CEUR Workshop Proceedings.
CEUR-WS.org, 2013.

[13] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978.

[14] L. Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM
Trans. Program. Lang. Syst., 6(2):254–280, Apr. 1984.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign
language for data processing. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08, pages 1099–1110, New York, NY, USA,
2008. ACM.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy. Hive: A warehousing solution over a map-reduce framework. Proc. VLDB
Endow., 2(2):1626–1629, Aug. 2009.

[17] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,
Aug. 1990.

[18] W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, Jan. 2009.

On the CALM Principle for BSP Computation

141

Chase Termination for Guarded Existential Rules

Marco Calautti1, Georg Gottlob2, and Andreas Pieris3

1 DIMES, University of Calabria, Italy calautti@dimes.unical.it
2 Department of Computer Science, University of Oxford, UK

georg.gottlob@cs.ox.ac.uk
3 Institute of Information Systems, Vienna University of Technology, Austria

pieris@dbai.tuwien.ac.at

Abstract. The chase procedure is considered as one of the most fundamental al-
gorithmic tools in database theory. It has been successfully applied to different
database problems such as data exchange, and query answering and containment
under constraints, to name a few. One of the central problems regarding the chase
procedure is all-instance termination, that is, given a set of tuple-generating de-
pendencies (TGDs) (a.k.a. existential rules), decide whether the chase under that
set terminates, for every input database. It is well-known that this problem is un-
decidable, no matter which version of the chase we consider. The crucial question
that comes up is whether existing restricted classes of TGDs, proposed in differ-
ent contexts such as ontological reasoning, make the above problem decidable. In
this work, we focus our attention on the oblivious and the semi-oblivious versions
of the chase procedure, and we give a positive answer for classes of TGDs that
are based on the notion of guardedness.

1 Introduction

The chase procedure (or simply chase) is considered as one of the most fundamental
algorithmic tools in databases — it accepts as input a database D and a set Σ of con-
straints and, if it terminates (which is not guaranteed), its result is a finite instance DΣ

that enjoys two crucial properties:

1. DΣ is a model of D and Σ, i.e., it contains D and satisfies the constraints of Σ;
and

2. DΣ is universal, i.e., it can be homomorphically embedded into every other model
of D and Σ.

In other words, the chase is an algorithmic tool for computing universal models of D
and Σ, which can be conceived as representatives of all the other models of D and Σ.
This is precisely the reason for the ubiquity of the chase in database theory. Indeed,
many key database problems can be solved by simply exhibiting a universal model.

A central class of constraints, which can be treated by the chase procedure and
is of special interest for this work, are the well-known tuple-generating dependencies
(TGDs) (a.k.a. existential rules) of the form ∀X∀Y(φ(X,Y) → ∃Z(ψ(Y,Z))), where
φ and ψ are conjunctions of atoms. Given a database D and a set Σ of TGDs, the chase
adds new atoms to D (possibly involving nulls) until the final result satisfies Σ.

142

Example 1. Consider the database D = {person(Bob)}, and the TGD

∀X(person(X) → ∃Y hasFather(X,Y) ∧ person(Y)),

which asserts that each person has a father who is also a person. The database atom
triggers the TGD, and the chase will add in D the atoms hasFather(Bob, z1) and
person(z1) in order to satisfy it, where z1 is a (labeled) null representing some un-
known value. However, the new atom person(z1) triggers again the TGD, and the chase
is forced to add the atoms hasFather(z1, z2), person(z2), where z2 is a new null. The
result of the chase is the instance

{person(Bob), hasFather(Bob, z1)} ∪
∪

i>0

{person(zi), hasFather(zi, zi+1)},

where z1, z2, . . . are nulls.

As shown by the above example, the chase procedure may run forever, even for ex-
tremely simple databases and constraints. In the light of this fact, there has been a long
line of research on identifying syntactic properties on TGDs such that, for every input
database, the termination of the chase is guaranteed; see, e.g., [4, 8, 10, 12, 13] — this
list is by no means exhaustive, and we refer to [9] for a comprehensive survey. With so
much effort spent on identifying sufficient conditions for the termination of the chase
procedure, the question that comes up is whether a sufficient condition that is also nec-
essary exists. In other words, given a setΣ of TGDs, is it possible to determine whether,
for every database D, the chase on D and Σ terminates? This interesting question has
been recently addressed in [6], and unfortunately the answer is negative for all the ver-
sions of the chase that are usually used in database applications, namely the oblivious,
semi-oblivious and restricted chase. In fact, the problem remains undecidable even if
the database is known. This has been established in [4] for the restricted chase, and it
was observed in [12] that the same proof shows undecidability also for the oblivious
and the semi-oblivious chase.

Although the chase termination problem is undecidable in general, the proof given
in [6] does not show the undecidability of the problem for TGDs that enjoy some struc-
tural conditions, which in turn guarantee favorable model-theoretic properties. Such a
key condition is guardedness, a well-accepted paradigm that gives rise to robust rule-
based languages that capture important databases constraints and lightweight descrip-
tion logics. A TGD is guarded if it has an atom in the left-hand side that contains (or
guards) all the universally quantified variables [2]. Guardedness guarantees the tree-
likeness of the underlying models, and thus the decidability of central database prob-
lems. The question that comes up is whether guardedness has the same positive impact
on chase termination.

We focus on the (semi-)oblivious versions of the chase, and we show that the prob-
lem of deciding the termination of the chase for guarded TGDs is decidable, and we
establish precise complexity results. Surprisingly, the present work is to our knowledge
the first one that establishes positive results for the (semi-)oblivious chase termination
problem. For more details, we refer the reader to [1].

Chase Termination for Guarded Existential Rules

143

2 The Chase Termination Problem

The TGD chase procedure (or simply chase) takes as input an instance I and a set Σ of
TGDs, and constructs a universal model of I and Σ. The chase works on I by applying
the so-called trigger for a set of TGDs on I . The trigger for a set Σ of TGDs on an
instance I is a pair (σ, h), where σ = φ → ψ ∈ Σ and h is a homomorphism that
maps φ to I . An application of (σ, h) to I returns J = I ∪ h′(ψ), where h′ ⊇ h maps
each existentially quantified variable in ψ to a new null value. Such a trigger application
is written I⟨σ, h⟩J . The choice of the type of the next trigger to be applied is crucial
since it gives rise to different versions of the chase procedure. In this work, we focus
our attention on the oblivious [2] and semi-oblivious [7, 12] chase.

A finite sequence I0, I1, . . . , In, where n > 0, is said to be a terminating oblivious
chase sequence of I0 w.r.t. a set Σ of TGDs if: (i) for each 0 6 i < n, there exists
a trigger (σ, h) for Σ on Ii such that Ii⟨σ, h⟩Ii+1; (ii) for each 0 6 i < j < n,
assuming that Ii⟨σi, hi⟩Ii+1 and Ij⟨σj , hj⟩Ij+1, σi = σj = σ implies hi ̸= hj , i.e.,
hi and hj are different homomorphisms; and (iii) there is no trigger (σ, h) for Σ on In
such that (σ, h) ̸∈ {(σi, hi)}06i6n−1. In this case, the result of the chase is the (finite)
instance In. An infinite sequence I0, I1, . . . of instances is said to be a non-terminating
oblivious chase sequence of I0 w.r.t.Σ if: (i) for each i > 0, there exists a trigger (σ, h)
for Σ on Ii such that Ii⟨σ, h⟩Ii+1; (ii) for each i, j > 0 such that i ̸= j, assuming that
Ii⟨σi, hi⟩Ii+1 and Ij⟨σj , hj⟩Ij+1, σi = σj = σ implies hi ̸= hj ; and (iii) for each
i > 0, and for every trigger (σ, h) forΣ on Ii, there exists j > i such that Ij⟨σ, h⟩Ij+1;
this is known as the fairness condition, and guarantees that all the triggers eventually
will be applied. The result of the chase is defined as the infinite instance ∪i>0Ii.

The semi-oblivious chase is a refined version of the oblivious chase, which avoids
the application of some superfluous triggers. Roughly speaking, given a TGD σ of the
form φ → ψ, for the semi-oblivious chase, two homomorphisms h and g that agree on
the universally quantified variables of σ occurring in ψ are indistinguishable.

Henceforth, we write o-chase and so-chase for oblivious and semi-oblivious chase,
respectively. A ⋆-chase sequence, where ⋆ ∈ {o, so}, may be infinite.

Example 2. Let D = {p(a, b)}, and Σ = {∀X∀Y (p(X,Y) → ∃Z(p(Y,Z)))}.
There exists only one ⋆-chase sequence of D w.r.t. Σ, where ⋆ ∈ {o, so}, which is
non-terminating, i.e., I0, I1, . . . with

I0 = {p(a, b)} I1 = {p(a, b), p(b, z1)} Ii = Ii−1 ∪{p(zi−1, zi)}, for i > 2,

where z1, z2, . . . are nulls of N.

For a set of TGDs, a key question is whether all or some ⋆-chase sequences are
terminating on all databases. Before formalizing the above decision problems, let us
recall the following key classes of TGDs:

CT⋆
∀ = {Σ | ∀D, all ⋆ -chase sequences of D w.r.t. Σ are terminating}

CT⋆
∃ = {Σ | ∀D, there exists a terminating ⋆ -chase sequence of D w.r.t. Σ}.

The decision problems tackled in this work are as follows: for q ∈ {∀,∃}:

Chase Termination for Guarded Existential Rules

144

q-SEQUENCE ⋆-CHASE TERMINATION:
Instance: A set Σ of TGDs.
Question: Does Σ ∈ CT⋆

q?

We recall that CTo
∀ = CTo

∃ ⊂ CTso
∀ = CTso

∃ [7]. This implies that the preceding
decision problems coincide for the (semi-)oblivious chase. Henceforth, we refer to the
⋆-chase termination problem, and we write CT⋆ for CT⋆

∀ and CT⋆
∃, where ⋆ ∈ {o, so}.

3 The Complexity of Chase Termination

We focus on the class of guarded TGDs [2], and two key subclasses of it, namely simple
linear and linear TGDs [3], and we investigate the complexity of the (semi-)oblivious
chase termination problem. Recall that linear TGDs are TGDs with just one atom in the
body, while simple linear TGDs forbid the repetition of variables in the body. Notice
that, despite their simplicity, simple linear TGDs are powerful enough for capturing
prominent database dependencies, and in particular inclusion dependencies, as well as
key description logics such as DL-Lite. In the sequel, we denote by G the class of
guarded TGDs, which is defined as the family of all possible sets of guarded TGDs.
Analogously, we denote by SL and L the classes of simple linear and linear TGDs,
respectively; clearly, SL ⊂ L ⊂ G. Let us first consider the less expressive classes.

3.1 Linearity

By exploiting syntactic conditions that ensure the termination of each (semi-)oblivious
chase sequence on all databases, we syntactically characterize the classes (CT⋆ ∩ SL)
and (CT⋆∩L), where ⋆ ∈ {o, so}. We rely on weak-acyclicity [5] and rich-acyclicity [11].
Both weak- and rich-acyclicity are defined by posing an acyclicity condition on a
graph, which encodes how terms are propagated among the positions of the underlying
schema during the chase. In fact, weak-acyclicity forbids the existence of dangerous
cycles (which involve the generation of new null values) in the dependency graph [5],
while rich-acyclicity pose the same condition on the so-called extended dependency
graph [11]. Let WA and RA be the classes of weakly- and richly-acyclic TGDs, respec-
tively; notice that RA ⊂ WA. For simple linear TGDs we show that:

Theorem 1. (CTo ∩ SL) = (RA ∩ SL) and (CTso ∩ SL) = (WA ∩ SL).

In simple words, the above theorem states that, given a set Σ ∈ SL: Σ ∈ CTo iff
Σ is richly-acyclic, and Σ ∈ CTso iff Σ is weakly-acyclic. This result is established by
showing that a dangerous cycle in the extended dependency graph (resp., dependency
graph) necessarily gives rise to a non-terminating o-chase (resp., so-chase) sequence.

Let us now focus on (non-simple) linear TGDs. It is possible to show, by exhibit-
ing a counterexample, that a dangerous cycle does not necessarily correspond to an
infinite chase derivation. Thus, rich- and weak-acyclicity are not powerful enough for
syntactically characterize the fragment of linear TGDs that guarantees the termination
of the oblivious and semi-oblivious chase, respectively. Interestingly, it is possible to
extend rich- and weak-acyclicity, focussing on linear TGDs, in such a way that the

Chase Termination for Guarded Existential Rules

145

above key property holds. The obtained formalisms are dubbed critical-rich-acyclicity
and critical-weak-acyclicity, and the corresponding classes are denoted as LCriticalRA
and LCriticalWA, respectively. We show that:

Theorem 2. (CTo ∩ L) = LCriticalRA and (CTso ∩ L) = LCriticalWA.

The above syntactic characterizations, apart from being interesting in their own
right, allow us to obtain optimal upper bounds for the ⋆-chase termination problem for
(S)L — we simply need to analyze the complexity of deciding whether a set of (simple)
linear TGDs enjoys the above acyclicity-based conditions, which can be formulated as
a reachability problem on a graph. In particular, we obtain the following results:

Theorem 3. Consider a set Σ of TGDs. The problem of deciding whether Σ ∈ CT⋆,
where ⋆ ∈ {o, so}, is

1. NL-complete, even for unary and binary predicates, if Σ ∈ SL; and
2. PSPACE-complete, and NL-complete for predicates of bounded arity, if Σ ∈ L.

For the hardness results, a generic technique, called the looping operator, is pro-
posed, which allows us to obtain lower bounds for the chase termination problem in a
uniform way. In fact, the goal of the looping operator is to provide a generic reduction
from propositional atom entailment to the complement of chase termination.

3.2 Guardedness

We proceed to investigate the (semi-)oblivious chase termination problem for guarded
TGDs. Although there is no way (at least no obvious one) to syntactically characterize
the classes (CT⋆ ∩ G), where ⋆ ∈ {o, so}, via rich- and weak-acyclicity, as we did
for (simple) linear TGDs, it is possible to show that the problem of recognizing the
above classes is decidable. For technical reasons, we focus on standard databases, that
is, databases that have two constants, let say 0 and 1, that are available via the unary
predicates 0(·) and 1(·), respectively. In particular, we show the following:

Theorem 4. Consider a set Σ ∈ G. The problem of deciding whether Σ ∈ CT⋆, where
⋆ ∈ {o, so}, focussing on standard databases, is 2EXPTIME-complete, and EXPTIME-
complete for predicates of bounded arity.

The upper bounds are obtained by exhibiting an alternating algorithm that runs in
exponential space, in general, and in polynomial space in case of predicates of bounded
arity. The lower bounds are obtained by reductions from the acceptance problem of al-
ternating exponential (resp., polynomial) space clocked Turing machines, i.e., Turing
machines equipped with a counter. These reductions are obtained by modifying sig-
nificantly existing reductions for the problem of propositional atom entailment under
guarded TGDs, and then exploiting the looping operator mentioned above. The fact
that the database is standard, is crucial for establishing the above lower bounds; the
upper bounds hold even for non-standard databases.

Chase Termination for Guarded Existential Rules

146

4 Future Work

Our next step is to perform similar analysis focussing on the restricted version of the
chase. We already have some preliminary positive results. In particular, if we focus on
single-head linear TGDs, where each predicate appears in the head of at most one TGD,
then we can syntactically characterize, via a careful extension of weak-acyclicity, the
fragment that guarantees the termination of the restricted chase, and obtain a polynomial
time upper bound. We are currently working towards the full settlement of the problem.

Acknowledgements. M. Calautti was supported by the European Commission, Eu-
ropean Social Fund and Region Calabria. G. Gottlob was supported by the EPSRC
Programme Grant EP/M025268/ “VADA: Value Added Data Systems – Principles and
Architecture”, and the Grant ERC-POC-2014 Nr. 641222 “ExtraLytics: Big Data for
Real Estate”. A. Pieris was supported by the Austrian Science Fund (FWF), projects
P25207-N23 and Y698, and Vienna Science and Technology Fund (WWTF), project
ICT12-015.

References

1. Calautti, M., Gottlob, G., Pieris, A.: Chase termination for guarded existential rules. In:
PODS (2015), to appear

2. Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive
relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

3. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable
query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

4. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisisted. In: PODS. pp. 149–158 (2008)
5. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answer-

ing. Theor. Comput. Sci. 336(1), 89–124 (2005)
6. Gogacz, T., Marcinkowski, J.: All-instances termination of chase is undecidable. In: ICALP.

pp. 293–304 (2014)
7. Grahne, G., Onet, A.: Anatomy of the chase. CoRR abs/1303.6682 (2013),

http://arxiv.org/abs/1303.6682
8. Grau, B.C., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.: Acyclic-

ity conditions and their application to query answering in description logics. In: KR (2012)
9. Greco, S., Molinaro, C., Spezzano, F.: Incomplete Data and Data Dependencies in Relational

Databases. Morgan & Claypool Publishers (2012)
10. Greco, S., Spezzano, F., Trubitsyna, I.: Stratification criteria and rewriting techniques for

checking chase termination. PVLDB 4(11), 1158–1168 (2011)
11. Hernich, A., Schweikardt, N.: CWA-solutions for data exchange settings with target depen-

dencies. In: PODS. pp. 113–122 (2007)
12. Marnette, B.: Generalized schema-mappings: From termination to tractability. In: PODS. pp.

13–22 (2009)
13. Meier, M., Schmidt, M., Lausen, G.: On chase termination beyond stratification. PVLDB

2(1), 970–981 (2009)

Chase Termination for Guarded Existential Rules

147

Data integration with many heterogeneous
sources and dynamic target schemas

(extended abstract)

Luigi Bellomarini, Paolo Atzeni, Luca Cabibbo

Università Roma Tre, Italy

1 Introduction and motivation

Information integration is the general problem that arises in applications that
need to consolidate (in a virtual or materialized way) data coming from different
sources [9, Ch.21]. In this paper, we consider a scenario for data integration,
very common in practice, for which existing solutions are not effective. We re-
fer to those applications where there are many (dozens or hundreds or even
more) sources, in the same domain, that have to contribute to one, single global
(“target”) system. A common case is that of “central” organizations that re-
ceive data from a large set of “local” companies or administrations; a specific
case is that of a national central bank that receives data from all the banks
in the country. This scenario is often handled by imposing to all local sources
an exchange format, so that data are transferred to the central institution in a
standardized form. In some cases, this solution is just inapplicable, as companies
might refuse the adoption of the standard unless forced by regulations. Moreover,
exchange formats (especially for statistics and finance) are inherently flexible,
versatile and unstable, allowing a number of different source schemas. Finally,
due to the complexity of exchange formats, their adoption is often partial or
incorrect. In particular, a diverging interpretation of the exchange format can
be even accepted in case the central institution realizes that the various sources
have specific features that, though not general, are nevertheless interesting and
deserve to appear in the target.

An approach based on the theory of mappings [6] can be interesting in this
case, but the large quantity of source schemas would render the classical tech-
niques not much effective, as it would require the specification of many different
mappings, between each of the various sources and the target. Also, the sources
are not completely known beforehand (and there are often new ones, also simi-
lar, but with additional differences) and therefore mappings cannot be directly
specified in advance. Finally, given the interest in considering specific features of
sources, it turns out that even the target schema should not be fixed in advance,
as some portions depend on sources (their schema and even their data). All these
three aspects are not addressed by current mapping-based approaches.

We also have an observation that mitigates the difficulties: in many cases the
sources are indeed different from one another, but they do share similarities that
can be exploited.

148

On the basis of the above requirements we propose a new approach, where
there is one source schema S0, used as a reference, and the other source schemas
can be seen as variations of S0. Then, we consider variations on the target
schema, induced by specific features of the source schemas, including their data,
in order to support “schematic transformations” [11], that is, the possibility to
generate schema elements in the final target schema G, given data and schema
elements in S0.

G

RepositoryOfBalances
Bank IoBName Amount
1005 Asset 8
1005 Liability 19
1006 Asset -42
1006 Liability 21

G′

RepositoryOfBalancesAlt
Bank Asset Liability
1005 8 19
1006 -42 21

Fig. 1. Sample target data

For example, Figure 1 represents two desired global schemas, each of which
is able to store summaries of balance sheets of banks. The relation Reposito-
riesOfBalances stores the Amount (that is, the difference between credits
and debits) aggregated by Bank and IoBName (item of balance name). Repos-
itoriesOfBalancesAlt (“Alt” stands for “alternate”) stores the same items
for each bank with the difference that Asset and Liabilities are attributes.

Figure 2 represents the data as they are collected from the sources. S0 is
the established exchange format, where BalSheetTemplate prescribes the
local institution to structure its balance in relations (one or many) having the
attributes Year , Bank , IoBName, IoBCred , the amount of credit for the item of
balance, IoBDeb, the amount of debit for the item of balance.

In the example, S1 is identical to S0 and reports the balance sheet as a
single relation. In S2 the balance sheet is (horizontally) partitioned into two
relations, with the same attributes as S0: tuples having Year preceding 2012
are stored in BalSheet2010-2011, the others in BalSheet2013. In S3, the
balance is (vertically) decomposed into credits and debits, with a coarser level of
granularity, as data are reported and grouped by Bank , disregarding the years.

In the rest of the paper we study the data integration scenario we have just
sketched. In Section 2 we show how we handle a large number of heterogeneous
but similar sources and in Section 3 we discuss how we cope with the issue of
generating new features in target schemas on the basis of source schemas and
data. Finally, in Section 4 we draw our conclusions and briefly discuss related
work.

Data integration with many heterogeneous sources and dynamic target schemas (extended
abstract)

149

S0
BalSheetTemplate

Year Bank IoBName IoBCred IoBDeb

S1

BalSheet
Year Bank IoBName IoBCred IoBDeb
2010 1005 Asset 35 27
2011 1005 Liability 29 10
2010 1006 Asset 41 30
2010 1006 Liability 31 30
2013 1006 Asset 0 53
2013 1006 Liability 33 13

S2

BalSheet2010-2011
Year Bank IoBName IoBCred IoBDeb
2010 1005 Asset 35 27
2011 1005 Liability 29 10
2010 1006 Asset 41 30
2010 1006 Liability 31 30

BalSheet2013
Year Bank IoBName IoBCred IoBDeb
2013 1006 Asset 0 53
2013 1006 Liability 33 13

S3

BalSheetCredit
Bank IoBName IoBCred
1005 Asset 35
1005 Liability 29
1006 Asset 41
1006 Liability 64

BalSheetDebit
Bank IoBName IoBDeb
1005 Asset 27
1005 Liability 10
1006 Asset 83
1006 Liability 43

Fig. 2. Sample source data

2 Handling many sources

Let us first concentrate on cases in which the global schema is completely defined
beforehand (and so coinciding with the baseline global schema G0), while in
Section 3, we give some insights about how we handle dynamic global schemas.

We recognize that each source schema Si can be considered as a variation
of S0. In this, we notice an analogy with the schema evolution problem [3, 8],
where schemas are derived from one another through the application of simple
and standardized operations, namely schema evolution operators.

Thus, we propose a new approach where each Si is described as an evolution
of S0, that is, as if it were the result of a “virtual” application of one or more
schema evolution operators to S0. In the remainder of the paper we will concen-
trate only on transformations involving a single operation. We consider a small
set of operators, which is however sufficiently expressive and general for most
common real scenarios: addition/deletion of attributes, partition of tuples into
separate relations, union of relations into a single relation, projection decompo-
sition of a relation into multiple ones, join of multiple relations into a single one,
attribute dereferencing (that is extracting an attribute into a foreign key-related
relation).

Data integration with many heterogeneous sources and dynamic target schemas (extended
abstract)

150

Fig. 3. Mappings for the scenario of variations

2.1 Transformations

Transformations could be modeled in various ways, procedural or declarative. We
adopt the notion of schema mapping [4], where the relationships between source
and target schemas are described in terms of first-order s-t tgd (source-to-target
tuple generating dependencies). 1

Hence, each transformation relating the reference schema S0 to any Si can
be associated with a schema mapping Ei. In the example, S1 is identical to S0

(so we have the identity mapping), while S2 is obtained with a partition on the
basis of Year values and S3 with decomposition by projection.

Then, in our example, the mappings between S0, S2 and S3 would be repre-
sented as follows:

E2: BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id), y < 2012
→ BalSheet2010-2011(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id);

BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id), y ≥ 2012
→ BalSheet2013(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id)

E3: BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id)

→ BalSheetCredit(Bank: b, IoBName: in, IoBCred: sum(ic, groupBy(b, in))),

BalSheetDebit(Bank: b, IoBName: in, IoBDeb: sum(id, groupBy(b, in)))

The idea we have just discussed, that the various source schemas are varia-
tions of a reference one S0, allows us to concentrate on the mapping between S0

and the target schema G0. This is summarized in Figure 3, where M relates S0 to
G0 and Ei is the representation of the transformation between S0 and a specific
source Si. Then, with our approach, the user should focus just on the reference
source schema S0 and describe its mapping M to the global schema. Indeed, we
are interested in mappings between the various Si’s and G. Intuitively, this can
be obtained by composing the inverse of each Ei with M . Let us go back to our
example; with respect to G in Figure 1, we have:

1 Our tgd’s are indeed a bit more complex than those usually found in data exchange
settings [4], but their semantics can be defined as an extension of the classical one.
Specifically they contain scalar operations (for example a difference of values) and
aggregations (like sum with group by in E3) in the rhs [2].

Data integration with many heterogeneous sources and dynamic target schemas (extended
abstract)

151

M : BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id)

→ RepoOfBalances(Bank: b, IoBName: in, Amount: sum(ic − id, groupBy(b, in)))

where for each Bank and IoBName, the Amount is calculated by subtracting
debits from credits. The aggregation then sums the contributions from different
Years. In order to make M work also for S2, we should “undo” the transfor-
mations from S0 to S2 (E2) and then apply the original mapping M , as sum-
marized in Figure 3. In other words, the goal would be to find a new mapping
M∗2 = E−12 ◦M and similarly for every other possible source Si. In most cases, the
various results would need to be consolidated, usually by means of a merge op-
erator [3], for which there can be various versions whose details are not relevant
here.

2.2 Technical issues

Let us now discuss the technical issues. Indeed, our goal is to find a mapping M∗i
between Si and G0, given the mappings Ei between S0 and Si and M between S0

and G0. For this kind of problems, solutions have been discussed in the literature,
based on composition and inversion operators [6, 7]2. However, such solutions
are not sufficient for our case as they would require the existence of an “exact
inverse” (a maximum recovery [1]) for Ei.

One major problem is that rarely do schema mappings have such an exact
inverse, as they may involve information loss; in such cases, source instances
cannot be rebuilt from target ones. This is also the case for our transformations:
E3, for instance, is lossy, since it decomposes a relation into two other relations
where aggregations are applied. This causes loss of information and the original
relation cannot be reconstructed with a join. Vice versa, E2 is lossless, because
the partition (which, by definition, forbids overlapping) can be reversed with
a union. However, let us consider, in this case, a relaxed notion of inverse, for
example quasi-inverses of schema mappings [7] 3. It does not exactly rebuild the
original instance, but another one, affected by information loss. For example a
quasi-inverse of E3 is

E−1
3 : BalSheetCredit(Bank: b, IoBName: in, IoBCred: ic),

BalSheetDebit(Bank: b, IoBName: in, IoBDeb: id)

→ ∃y (BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id))

Notice that E−13 is far from being an exact inverse because the aggregated con-
tributions of different Years have not been decomposed; moreover Year is exis-
tentially quantified and its original values have not been restored. Nevertheless,
we deem that this inverse is sufficient for our purpose since, in this case, E3 loses
less information than M . In facts, with a simple substitution, the composition

2 The inverse M−1 of a schema mapping M is such that M−1 ◦M = Id, where Id is
the identity mapping, transforming each instance into itself.

3 Notice that the original definition does not foresee aggregations, which however we
support here.

Data integration with many heterogeneous sources and dynamic target schemas (extended
abstract)

152

with M yields:

E−1
3 ◦M : BalSheetCredit(Bank: b, IoBName: in, IoBCred: ic),

BalSheetDebit(Bank: b, IoBName: in, IoBDeb: id)

→ RepoOfBalances(Bank: b, IoBName: in, Amount: sum(ic − id, groupBy(b, in)))

An interesting idea is the definition of some kind of order relation �s, based
on the amount of “transferred information” [1]: M �S0

Ei holds if M transfers
less information than Ei when applied to the same source S0. In this case we
observe that M �S0

E3; indeed it is possible to verify this by observing that the
instances of G can be generated from the ones of S3.

Our result is that whenever the order relation M �S0
Ei holds for every Si, it

is possible to integrate all the differing sources, also in presence of aggregations,
calculating M∗i through a suitable notion of inverse, for example quasi-inverses.
An intuitive proof for this consists in verifying that the order relation guarantees
the presence of some mappings from Si to G (since Ei transfers more information
than M) and one of them, M∗i , can be calculated by suitably inverting Ei and
composing with M .

3 Dynamic target schemas

Let us now consider the more general case, where the global schema is not de-
fined in advance, but it may depend on the specific sources. Different scenarios
are indeed possible and the global schema may depend on source data or meta-
data (names of relations and attributes) or both. Here we concentrate on the
most interesting case, which is the one where attributes of the global schema
derive from values in the sources. This is also the most relevant condition in real
contexts, as it can be the consequence of a common practice in exchange for-
mats between a local and a central organization, that of embedding “schematic”
information into data.

An example appears in Figure 2, where the values of IoBName (“Asset”
and “Liability”) are schematic elements as they qualify the other two attributes
IoBCred and IoBDeb: a credit or a debit, in facts, is meaningful only if referred
to a specific item of balance. An alternative representation would have four
attributes, for expressing credits and debits for each of the two possible item
names. In this latter representation, the introduction of a new item of balance,
for instance “Equity”, would require to alter the schema giving rise to a new
variant and so on.

Here we sketch a novel technique to handle such situations. Basically, it
consists in the definition of template tgd’s, an extended version of usual tgd’s
that allow metadata-data correspondences. They are intended to be used for
expressing correspondences between S0 and the baseline global schema G0, in
the mapping M . We allow quantified variables not only to denote values, but
also attribute names. Indeed, the baseline global schema referred to in the rhs of
template tgd’s is somehow polymorphic, as it contains variables for the attributes

Data integration with many heterogeneous sources and dynamic target schemas (extended
abstract)

153

that are not known in advance, but their presence and name depend on the source
data.

A key feature of our approach is a rewriting algorithm, generating usual tgd’s
out of the template ones, given the source data. For each tuple matching the lhs
of a template tgd, the algorithm generates one or more attributes in the schema
of the rhs, eventually specifying the global schema G, where all the attributes
have been made explicit. The tgd’s generated in this way respond to the usual
definition and can be then enforced with the common chase procedure [5].

An example of template tgd is the following mapping M ′ between S0 and G0:

M ′: BalSheet(Year: y, Bank: b, IoBName: in, IoBCred: ic, IoBDeb: id)

→ RepoOfBalancesAlt(Bank: b, in: sum(ic − id, groupBy(b)))

The rhs describes the baseline global schema G0, with an attribute variable, in,
used for unknown attributes. For its value, the expression sum(ic−id, groupBy(b))
specifies that in RepositoryOfBalancesAlt, Asset and Liability are all cal-
culated as aggregations (an aggregation each), grouping by the only disaggre-
gated attribute, which is Bank .

Initially G′ contains all the attributes that are fully specified in G0 (only
Bank in this case). In the rewriting phase, for each tuple in the lhs, an attribute
named after the value bound to in (“Asset” or “Liability”) is added. 4 At the
end, the rewritten tgd, which can be chased and enforced in the usual way, is:

cM ′: BalSheet(Year: ya, Bank: b, IoBName: “Asset”, IoBCred: ica, IoBDeb: ida),

BalSheet(Year: yl, Bank: b, IoBName: “Liability” , IoBCred: icl, IoBDeb: idl)

→ RepoOfBalancesAlt(Bank: b, Asset: sum(ica − ida, groupBy(b)),

Liability: sum(icl − idl, groupBy(b)))

4 Conclusions and related work

We provided a solution to the problem of data integration in contexts where there
are a large number of different sources whose schema is not completely known
beforehand and the global schema can depend on the source data. We consider
a single data source as a reference and map it, with schema mappings, into the
global schema. All the other sources are described as if they were obtained as a
schema evolution of the reference.

While data integration has been studied in a variety of theoretical and prac-
tical contexts [12], approaches to handling differences between schemas and rep-
resenting transformations with mappings are more typically studied at higher
level in the model management literature, for example in [3]. More recently,
the schema evolution problem has been pursued in [8, 1], however without any
connection to the data integration problem or adoption of a declarative relaxed

4 Some variable renamings are also needed to avoid unwanted matches.

Data integration with many heterogeneous sources and dynamic target schemas (extended
abstract)

154

notion of inverse. Theoretical details about inversion and composition are pre-
sented in [6], while a formal definition of quasi-inverse schema mappings can be
found in [7].

Dynamic global schemas rely on the notion of “schematic transformation”,
introduced in [11]. Some known approaches are specifically oriented to query
answering and concentrate on defining appropriate extensions to SQL or rela-
tional algebra to have result sets with a schema that varies depending on input
data [11, 14]. Others use schematic information to provide a certain degree of
schema independence to queries [13]. Since our specific target is data integra-
tion, we proposed an extension to the common language of mappings. A similar
operation has also been done in [10], with an approach more oriented towards
data exchange and the goal of solving specific issues such as nesting.

References

1. M. Arenas, J. Perez, J. L. Reutter, and C. Riveros. Foundations of schema map-
ping management. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2010, June 6-11,
2010, Indianapolis, Indiana, USA, pages 227–238, 2010.

2. P. Atzeni, L. Bellomarini, and F. Bugiotti. Exlengine: Executable schema mappings
for statistical data processing. In Proceedings of the 16th International Conference
on Extending Database Technology, EDBT ’13, pages 672–682, New York, NY,
USA, 2013. ACM.

3. P. A. Bernstein. Applying model management to classical meta data problems. In
CIDR Conference, pages 209–220, 2003.

4. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: Semantics and query
answering. In ICDT, pages 207–224, 2003.

5. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

6. R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing schema mappings:
Second-order dependencies to the rescue. ACM Trans. Database Syst., 30(4):994–
1055, 2005.

7. R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Quasi-inverses of schema map-
pings. ACM Trans. Database Syst., 33(2), 2008.

8. R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Schema mapping evolution
through composition and inversion. In Schema Matching and Mapping, pages 191–
222. 2011.

9. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete
Book. Prentice-Hall, Englewood Cliffs, New Jersey, second edition, 2008.

10. M. A. Hernández, P. Papotti, and W. C. Tan. Data exchange with data-metadata
translations. PVLDB, 1(1):260–273, 2008.

11. L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. Schemasql: An extension
to sql for multidatabase interoperability. pages 476–519, 2001.

12. M. Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–
246, 2002.

13. U. Masermann and G. Vossen. Sisql: Schema-independent database querying (on
and off the web). In IDEAS, pages 55–64, 2000.

14. C. M. Wyss and E. L. Robertson. Relational languages for metadata integration.
ACM Trans. Database Syst., 30(2):624–660, 2005.

Data integration with many heterogeneous sources and dynamic target schemas (extended
abstract)

155

Rewriting-based Check of Chase Termination

Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Trubitsyna
{calautti,greco,cmolinaro,trubitsyna}@dimes.unical.it

DIMES, Università della Calabria, 87036 Rende (CS), Italy

Keywords: Chase, Data Dependencies, Data Exchange, Data Integration.

1 Introduction

The Chase is a fixpoint algorithm enforcing satisfaction of data dependencies
(also called constraints) in databases. It has been proposed more than thirty
years ago [2,18] and has seen a revival of interest in recent years in both database
theory and practical applications. Indeed, the availability of data coming from
different sources easily results in inconsistent or incomplete data (i.e., data not
satisfying data dependencies) and, therefore, techniques for fixing inconsistencies
are crucial [1,3,5,7,8,13,17].

The chase algorithm is used, directly or indirectly, on an everyday basis by
people who design databases, and it is used in commercial systems to reason
about the consistency and correctness of a data design. New applications of
the chase in meta-data management, ontological reasoning, data exchange, data
cleaning, and query optimization have been proposed as well [6,9].

The chase algorithm solves possible violations of constraints by inserting new
tuples, possibly containing null values [4]. The following example shows a case
where a given database does not satisfy a set of tuple generating dependencies
(TGDs) and the application of the chase algorithm produces a new consistent
database by adding tuples with nulls.

Example 1. Consider the following set of constraints Σ1 describing departments
and their employees:

∀x ∀y Department(x) ∧Managed(x, y)→ Employee(y)
∀x Employee(x)→ ∃ y WorksFor(x, y)
∀x ∀y WorksFor(x, y)→ ∃ z Managed(y, z)

Consider the database D = {Department(d),Managed(d,m)}. Since the first
constraint is not satisfied, the tuple Employee(m) is inserted. This update oper-
ation fires the second constraint to insert the tuple WorksFor(m, η1), which in
turn fires the third constraint so that the tuple Managed(η1, η2) is added to the
database (η1 and η2 are new labeled nulls). At this point, the chase terminates
since the database is consistent, that is, all dependencies are satisfied. 2

Unfortunately, the chase algorithm may not terminate. For instance, in Exam-
ple 1 if we delete from the first constraint the atom Department(x), the chase
never terminates and adds an infinite number of tuples to the database. It has

156

been formally proved in [12] that the problem of deciding whether the chase
procedure terminates is semi-decidable. The first and basic effort concerning the
formalization of a (decidable) sufficient condition guaranteeing chase termina-
tion is weak acyclicity [11]. Informally, it checks whether the constraints do not
allow for nulls to cyclically propagate inside predicates’ positions. Considering
the example above, we have that a value in the second position of predicate
Managed is copied to Employee (denoted by M2 → E1). This forces the in-
troduction of a new null value in the second position of WorksFor, (denoted
as E1 →∗ WF2); this value is then copied in the first position of Managed
(WF2 → M1) and it also forces the introduction of a new null value in the se-
cond position of Managed (WF2 →∗ M2). Since it is possible to reach position
M2 from itself through a connection of the form →∗ , an infinite number of nulls
could be introduced during the chase procedure.

Different extensions of weak acyclicity have been proposed. Safety [20] and
super-weak acyclicity [19] identify the positions in which null values can be prop-
agated. Stratification-based approaches [10,20,16] analyse whether dependencies
may fire each other and thus propagate null values from one to another. See
[14] for a comprehensive survey on this topic. Nevertheless, despite the previ-
ously mentioned results, there are still important classes of terminating data
dependencies which are not identified by any of the previously mentioned cri-
teria: Example 1 showed one such a case. To overcome such limitations, rewrit-
ing techniques have been proposed [15,16]. In the following section we give an
overview on them and show how the constraints of Example 1 can be rewritten
by using predicate adornments in order to allow simple termination conditions
(even the simplest one, weak-acyclicity) to understand that the chase procedure
terminates. Issues regarding the extension of these techniques to managing also
equality generating dependencies (EGDs) are discussed in Section 3.

2 Constraint Rewriting

We start by introducing the basic idea of the Adn technique [15], which can
be used in conjunction with current termination criteria, enabling us to detect
more sets of constraints as terminating. The technique consists of rewriting a set
of TGDs Σ into a new set Σα which is “better” than the original one for the
purpose of checking termination. Rather than applying a termination criterion to
Σ, the new set Σα is used and if Σα satisfies the criterion then chase termination
for Σ is guaranteed. This allows us to recognize larger classes of constraints for
which chase termination is guaranteed: if Σ satisfies chase termination criterion
C, then the rewritten set Σα satisfies C as well, but the vice versa is not true,
that is, there are significant classes of constraints for which Σα satisfies C and
Σ does not.

Example 2. Consider again the set of TGDs Σ1. The Adn technique first rewrites
TGDs by associating strings of b symbols to body atoms and to head positions
containing universally quantified variables. Then, f symbols are associated for
existentially quantified variables. This new set of TGDs is denoted by Base(Σ1):

Rewriting-based Check of Chase Termination

157

∀x∀y Departmentb(x) ∧Managedbb(x, y)→ Employeeb(y)
∀x Employeeb(x)→ ∃ y WorksForbf (x, y)
∀x∀y WorksForbb(x, y)→ ∃ z Managedbf (y, z)

Subsequently, because of the presence of atomsWorksForbf (x, y) andManagedbf (x, y)
in Base(Σ1), the rewriting continues by producing the following set of TGDs
Derived(Σ1):

∀x∀y WorksForbf (x, y)→ ∃ z Managedff (y, z)
∀x∀y Departmentb(x) ∧Managedbf (x, y)→ Employeef (y)
∀x Employeef (x)→ ∃ y WorksForff (x, y)
∀x∀y WorksForff (x, y)→ ∃ z Managedff (y, z)

At this point, the generation of Derived(Σ1) terminates, since the atom
Departmentb(x) cannot be joined with Managedff (x, y) to produce a new ador-
ned TGD. The rewritten set of TGDs Adn(Σ1) is weakly-acyclic, whereas the
original set Σ1 is not recognized by any chase termination criteria. 2

Rewriting Algorithm Improvement. The rewriting algorithm Adn has been fur-
ther improved into the Adn+ algorithm [16] by using different adornments for
each existentially quantified variable and by considering how TGDs may fire each
other in the generation of adorned atoms. During the rewriting process, this al-
gorithm also performs a basic cyclicity check, allowing to eventually determine
the termination of the chase, without necessarily relying on other criteria. The
new criterion is called Acyclicity. To the best of our knowledge, the class of
TGDs recognized by this criterion is the most general class known so far.

3 Adding EGDs

In the previous sections, we have considered the case where all constraints are
TGDs. In this section, we show how the chase termination problem radically
changes when we allow also EGDs.

Given a set of TGDs Σ for which the chase does not terminate, we can show
that the addition of EGDs to Σ may allow to have a terminating chase sequence.
On the other hand, if the chase always terminates for Σ, adding EGDs to Σ may
make the chase of Σ non-terminating.

Example 3. Consider the following two sets of constraints Σ3 (left) and Σ′3
(right):

r1 : ∀x A(x)→ ∃y N(y) r′1 : ∀x N(x)→ ∃y ∃z S(x, y, z)
r2 : ∀x N(x)→ ∃y E(x, y) r′2 : ∀x ∀y ∀z S(x, y, y)→ N(y)
r3 : ∀x∀y E(x, y)→ N(y) r′3 : ∀x ∀y ∀z S(x, y, z)→ T (x, y, z)
r4 : ∀x∀y E(x, y)→ x = y r′4 : ∀x ∀y ∀z T (x, y, z)→ y = z

and the database D = {N(a)}. The chase applied to the database D and the sub-
set of TGDs {r1, r2} of Σ3 is not terminating as it introduces an infinite number

Rewriting-based Check of Chase Termination

158

of tuples E(η1, η2), E(η3, η1), ... The introduction of the EGD r3 allows to have
a terminating sequence, which produces the universal solution {N(a), E(a, a)}.

The subset of TGDs {r′1, r′2, r′3} of Σ′3 is terminating for all database in-
stances as recognized by several criteria (e.g., super-weak acyclicity). However,
the chase fixpoint applied to Σ′3 and the database D is non-terminating as it intro-
duces an infinite number of tuples S(a, η1, η1), T (a, η1, η1), N(η1), S(η1, η2, η2),
T (η1, η2, η2), N(η2), 2

As shown in the previous example, when for a set of dependencies it is not
the case that every chase sequence is terminating, the existence of at least one
terminating chase sequence, for every database, might still be guaranteed. Thus,
one could extend rewriting techniques such as Adn+ to sets of TGDs and EGDs,
in order to find whether there exists, for every database, at least one terminating
chase sequence. In order to cope with the aforementioned issues, algorithm Adn+

can be extended in such a way that some adornments generated by rewriting
TGDs are changed in order to satisfy the head equalities of EGDs. Specifically,
the algorithm first tries to adorn as many EGDs as possible, and then consider
the rewriting of a single TGD. The basic idea is illustrated in the following
example.

Example 4. Consider the set of dependencies Σ3 of Example 3. As initially EGD
r4 cannot be adorned, TGD r1 is rewritten into:

∀x Ab(x)→ ∃y Nf1(y)

and r2 is rewritten into:

∀x N b(x)→ ∃y Ebf2(x, y)

Now, EGD r4 can be used to “merge” distinct symbols. This is accomplished
by constructing the following adorned version of r4 using the atom Ebf2(x, y):

∀x ∀y Ebf2(x, y)→ x = y

This indicates that every occurrence of the symbol f2 in the obtained adorned
dependencies has to be replaced with b, thereby obtaining:

∀x Ab(x)→ ∃y Nf1(y)
∀x ∀y N b(x)→ ∃y Ebb(x, y)
∀x ∀y Ebb(x, y)→ x = y

Then, TGD r3 is adorned, obtaining:

∀x∀y Ebb(x, y)→ N b(y)

Then, TGD r2 is adorned using atom Nf1(x), obtaining:

∀x∀y Nf1(x)→ ∃y Ef1f3(x, y)

Rewriting-based Check of Chase Termination

159

Again, EGD r4 is used, getting:

∀x∀y Ef1f3(x, y)→ x = y

Consequently, f3 is replaced with f1 and we get:

∀x Ab(x)→ ∃y Nf1(y)
∀x∀y N b(x)→ ∃y Ebb(x, y)
∀x∀y Ebb(x, y)→ N b(y)
∀x∀y Nf1(x)→ ∃y Ef1f1(x, y)
∀x∀y Ebb(x, y)→ x = y
∀x∀y Ef1f1(x, y)→ x = y

Finally, atom Ef1f1(x, y) is used to adorn r3, obtaining:

∀x∀y Ef1f1(x, y)→ Nf1(y)

At this point, the rewriting stops, since no new adorned dependency can be con-
structed. Intuitively, the algorithm identifies the existence of a terminating chase
sequence because symbols f1, f2, f3, which represent nulls constructed w.r.t. the
symbols occurring in the body of the TGD, are not “cyclic” in the following
sense. Symbol f1 “depends on” symbol b in body(r1), f2 depends on symbol b
in body(r2), and f3 depends on symbol f1. Since no pair of symbols fi, fj in the
final set of dependency is such that fi depends on fj and vice versa, the set Σ3

has a terminating chase sequence. 2

References

1. F. N. Afrati and P. G. Kolaitis. Repair checking in inconsistent databases: algo-
rithms and complexity. In ICDT, pages 31–41, 2009.

2. A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases.
ACM Trans. Database Syst., 4(3):297–314, 1979.

3. M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsis-
tent databases. In PODS, pages 68–79, 1999.

4. C. Beeri and M. Y. Vardi. Formal systems for tuple and equality generating
dependencies. SIAM J. Comput., 13(1):76–98, 1984.

5. L. E. Bertossi. Consistent query answering in databases. SIGMOD Record,
35(2):68–76, 2006.

6. A. Cali, G. Gottlob, and A. Pieris. Advanced processing for ontological queries.
PVLDB, 3(1):554–565, 2010.

7. L. Caroprese, S. Greco, and E. Zumpano. Active integrity constraints for database
consistency maintenance. IEEE Trans. Knowl. Data Eng., 21(7):1042–1058, 2009.

8. J. Chomicki. Consistent query answering: Five easy pieces. In ICDT, pages 1–17,
2007.

9. G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. On reconciling data
exchange, data integration, and peer data management. In PODS, pages 133–142,
2007.

10. A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited. In PODS, pages
149–158, 2008.

Rewriting-based Check of Chase Termination

160

11. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Th. Comp. Sc., 336(1):89–124, 2005.

12. T. Gogacz and J. Marcinkowski. All-instances termination of chase is undecidable.
In ICALP, pages 293–304, 2014.

13. G. Greco, S. Greco, and E. Zumpano. A logical framework for querying and re-
pairing inconsistent databases. TKDE, 15(6):1389–1408, 2003.

14. S. Greco, C. Molinaro, and F. Spezzano. Incomplete Data and Data Dependencies
in Relational Databases. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2012.

15. S. Greco and F. Spezzano. Chase termination: A constraints rewriting approach.
PVLDB, 3(1):93–104, 2010.

16. S. Greco, F. Spezzano, and I. Trubitsyna. Stratification criteria and rewriting
techniques for checking chase termination. PVLDB, 4(11):1158–1168, 2011.

17. M. Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–
246, 2002.

18. D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependen-
cies. ACM Trans. Database Syst., 4(4):455–469, 1979.

19. B. Marnette. Generalized schema-mappings: from termination to tractability. In
PODS, pages 13–22, 2009.

20. M. Meier, M. Schmidt, and G. Lausen. On chase termination beyond stratification.
CoRR, abs/0906.4228, 2009.

Rewriting-based Check of Chase Termination

161

Navigational Queries Based on
Frontier-Guarded Datalog: Preliminary Results?

Meghyn Bienvenu1, Magdalena Ortiz2, and Mantas Šimkus2

1 LRI - CNRS & Université Paris Sud
2 Institute of Information Systems, Vienna University of Technology

Abstract. In this paper, we introduce a navigational query language that ex-
tends binary frontier-guarded Datalog by allowing regular expressions in rule
bodies and a limited use of higher-arity intensional predicates. Our query lan-
guage strictly extends conjunctive two-way regular path queries (C2RPQs) and
captures some of the key features advocated in recent works aimed at extending
C2RPQs. We compare our language to existing proposals and establish decidabil-
ity with elementary complexity of query evaluation in the presence of ontologies.

1 Introduction

The current importance of graph databases has led to renewed interest in navigational
query languages that ask for nodes connected by paths that satisfy given patterns. Con-
junctive two-way regular path queries (C2RPQs) and their unions (UC2RPQs), which
simultaneously extend both the well-known conjunctive queries (CQs) and two-way
regular path queries (RPQs), have established themselves as fundamental query lan-
guages for accessing graph databases. However, recent works have argued that such
queries are lacking important features, which has motivated several extensions. For ex-
ample, C2RPQs have been extended with path variables to support naming, comparing,
and outputting paths [2]. Other extensions are motivated by the fact that C2RPQs and
similar languages can only describe patterns over graphs labeled with a finite alphabet,
and aim to overcome this by allowing values from possibly infinite datasets [11]. A third
direction aims at increasing the navigational power of C2RPQs and related languages,
that is, allowing queries to express more complex patterns that cannot be expressed
using regular languages. This paper pursues the latter direction.

A very natural way to increase the navigational power of C2RPQs is to use nested
regular expressions (NREs), that can enforce that at some points along a path there exists
an outgoing path, which is itself described by a (nested) regular expression. (Conjunc-
tive) nested 2RPQs ((C)N2RPQs), which extend (C)2RPQs by allowing NREs in the
place of plain regular expressions, have received significant attention recently [4,3,14],
due to their improved navigational capabilities. For example, consider a graph database
of academic relationships between researchers that contains advisor and co-author rela-
tionships, as well as the fields of expertise of the researchers. With (conjunctive) regular
path queries, one can find pairs of people that are connected by an arbitrary long chain
of advisor or co-author relations, or find three researchers from different fields that are
? This work has been supported by ANR project PAGODA (ANR-12-JS02-007-01) and the

Austrian Science Fund (FWF) projects T515 and P25207-N23.

162

pairwise connected by such a chain. However, we cannot find pairs connected by an ar-
bitrary long chain of advisor or co-author relations, where additionally each node must,
for example, have an academic ancestor that is a biologist. The latter can be easily done
using nested regular expressions. However, neither C2RPQs nor CN2RPQs can express
the query that requires that all people along such a chain have the same biologist as
academic ancestor. Another query that cannot be expressed is to find pairs connected
by an arbitrary chain where all nodes are connected by both the co-author and the advi-
sor relationship. These examples illustrate two shortcomings of UCN2RPQs that have
been pointed out in the literature, namely, the inability to express transitive closure over
complex relations defined using UCN2RPQs and the impossibility of joining objects
inside a nested expression.

Recent works have aimed at overcoming these limitations. A query language that
tackles the first issue was introduced by Bourhis et al. [5] with the name of nested
positive 2RPQs, and further studied more recently (using a different syntax) by Reut-
ter et al. [13] under the name of regular queries. Essentially, this language allows full
UCN2RPQs to be nested inside the regular expressions of UCN2RPQs, allowing one
to define relations such as the pair of all researchers that are connected by a chain of
parallel advisor and coauthor relation. This language strictly increases the expressive
power of UC2NRPQs at little or no computational cost: its query evaluation problem
over plain graph databases remains complete for NL in data complexity and for NP
complete in combined complexity, while its query containment problem is complete
for 2EXPSPACE, and even in EXPSPACE for a less succinct version of equal expressive
power [13]. A way to overcome the second limitation can be found in monadically de-
fined queries (MODEQs) [15], which extend monadic Datalog by using some special
‘flag’ constants, that are then instantiated with a given tuple of ordinary constants that
behave as ‘parameters’. These queries can easily express relations like pairs connected
by a chain of coauthors where all of them have the same biologist academic ancestor,
using one flag constant as a ‘placeholder’ for this common object. However, they can-
not express even the simple nested patterns in CN2RPQs. This limitation is overcome
by nested MODEQs [15]. Some variations and generalizations of MODEQs and nested
MODEQs, under the generic name of (nested) flag-and-check queries were studied re-
cently in [6]. Many of these languages strictly generalize regular queries and nested
MODEQs, and can express all of the example queries we have mentioned. However,
query evaluation becomes P-complete for data complexity, and PSPACE-complete for
combined complexity, and query containment becomes non-elementary.

In this paper, we introduce a navigational query language that extends binary frontier-
guarded Datalog by allowing regular expressions in rule bodies. It also allows the use
of intensional predicates of higher arity, but the additional positions are designated as
‘parameter positions’ and subjected to special syntactic restrictions. These parameter
positions can simulate the use of flag constants in flag-and-check queries and allow
our query language to refer to common points inside nested subqueries as in the exam-
ples discussed above. They cannot fully simulate the power of the flag-and-check spe-
cial constants in the nested versions of the query languages though, but this restriction
seems to play a crucial role in avoiding the non-elementary increase in the complexity
of reasoning. Our query language also allows for nesting subqueries inside regular ex-

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results

163

pressions, and can in fact express all the examples discuss so far. However, in terms of
nesting, our language is orthogonal to regular queries and to the nested flag-and-check
queries, since they only allow for acyclic nesting, by considering only non-recursive
Datalog or by allowing to nest only queries of a strictly lower nesting level. By con-
trast, our query language naturally supports recursive nesting: that is, an intensional
predicate can occur in the C2RPQ defining it. In exchange for this recursiveness, our
queries impose a ‘guardedness’ requirement that only allows to define complex nested
relations for pairs of objects that are guaranteed to be related by an extensional relation
in the input database. The resulting language seems to provide an interesting trade-off
between expressiveness and complexity. As mentioned earlier, it can express all of the
queries mentioned above, and the complexity of query evaluation is similar to that of
nested MODEQs: P-complete for data complexity, NP-complete for combined com-
plexity if the number of parameters is bounded, and PSPACE-hard and in EXPTIME for
the full language (without arity restrictions). We do not study query containment in this
preliminary note, but consider instead another challenging problem: query evaluation
in the presence of ontological knowledge.

In the paradigm of ontology-mediated query answering, (graph) databases are en-
riched with an ontology that captures domain knowledge and defines additional rela-
tions for querying. These ontologies are usually expressed in description logics (DLs)
[1] or in closely related formalisms based on existential rules. In general, these lan-
guages support recursion and can imply the existence of additional objects (unnamed
constants or nulls). In the presence of such ontologies, the query answering problem
consists in computing the certain answers to the queries over the set of all the poten-
tially infinitely databases that extend the input data and satisfy all the formulas in the
ontology. Hence, query answering is algorithmically much harder than the usual query
evaluation over databases. In fact, for most query languages studied so far in this set-
ting, query evaluation in the presence of ontologies formulated using expressive DLs
is at least as hard as query containment. Query evaluation in the presence of rich on-
tologies has been studied for plain CN2RPQs [4], but not for any of the extensions
mentioned above. Bourhis et al. provided tight non-elementary bounds for a closely re-
lated language, positive first order logic with a parametrized unary transitive closure
operator (PFO+TC1), which falls strictly between regular queries and nested MODEQs
[5], thus implying non-elementary hardness of query answering for other variations of
nested flag-and-check queries that generalize nested MODEQs. The language we con-
sider here, in contrast, allows for elementary query answering even for very expressive
DLs, strongly suggesting that its containment problem may also remain elementary.

2 Guarded Regular Queries

In frontier-guarded rules, all variables in a rule head must occur together in a body atom.
We extend such rules by allowing regular expressions in the rule bodies. We allow the
use of intensional predicates of arbitrary arity, but we distinguish two different kinds of
positions: each predicate has one or two main positions and any number of parameter
positions. Inside the regular expressions, and with respect to frontier-guardedness, we
consider only the main positions and the intensional predicates behave as unary and

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results

164

binary. The additional parameter positions are not subjected to guardedness, but an
additional syntactic requirement that ensures they are not ‘forgotten’.

Syntax Let NP, NV, and NI be countably infinite sets of predicate names, variable
names, and individual names, respectively. The set NV is the disjoint union of the set
NoV of ordinary variables and the set NpV of parameter variables. We assume that there is
a subset NAns ⊆ NP that consists of a single distinguished k-ary answer predicate ansk

for every k ≥ 0; when convenient, we will omit the arity and use ans in place of ansk.
Each predicate p ∈ NP \ NAns has a main arity of either 1 or 2, and a parameter

arity that can be any natural number; we will write arity(p) = (k, n) to indicate that
p has main arity k and parameter arity n. Note that usual unary and binary predicates
correspond to predicates having parameter arity 0.

We define unary and binary alphabets, Σ1 and Σ2, as follows:

Σ1 ={pz | p ∈ NP \ NAns, arity(p) = (1, n), z ∈ (NpV ∪ NI)
n} ∪ {{a} | a ∈ NI}

Σ2 ={pz, p−z | p ∈ NP \ NAns, arity(p) = (2, n), z ∈ (NpV ∪ NI)
n} ∪ {U? | U ∈ Σ1}

We consider regular languages over Σ2, which are defined in the usual way and repre-
sented as regular expressions or non-deterministic finite automata (NFAs).

There are three kinds of atoms: unary atoms E1(x) with E1 ∈ Σ1 and x ∈ NV∪NI,
binary atoms E2(x, y) with E2 a regular language over Σ2 and x, y ∈ NV ∪ NI, and
answer atoms ansk(z) with z ∈ (NV ∪NI)

k. We use the term base atom to mean unary
atoms, answer atoms, and binary atoms E2(x, y) with E2 ∈ Σ2. For a unary or binary
atom α, its set mvars(α) of main variables is defined as follows: mvars(E1(x)) = {x}∩
NV and mvars(E2(x, y)) = {x, y} ∩ NV. We also define the set pvars(α) of parameter
variables of α: pvars({a}(x)) = ∅, pvars(pz(x)) = z ∩ NV, and pvars(E2(x, y)) =
{z ∈ NV | pz appears in E2 and z ∈ z}.

A rule ρ is an expression of the form h← b1, . . . , bn, where every bi is an atom and
h is a base atom. We call h the head of ρ and b1, . . . , bn the body. As usual, we require
that every head variable also appears in the body.

A query is a set Q of rules such that exactly one predicate ansk from NAns occurs,
and this predicate only appears in rule heads. If Q contains ansk, then the arity of Q
is k. We will distinguish two types of predicates relative to Q: intensional predicates
that occur in some rule head in Q, and extensional predicates that do not appear in any
rule head. We denote by int(Q) (resp. ext(Q)) the set of intensional (resp. extensional)
predicates relative to Q. Observe that ext(Q) = NP \ int(Q).

In this paper, we will mainly focus on guarded regular queries, in which the follow-
ing conditions hold for every rule h← b1, . . . , bn with head predicate p from NP\NAns:

1. mvars(h) ⊆ mvars(bi) for some basic atom bi, 1 ≤ i ≤ n,
2. pvars(bi) ⊆ pvars(h) for all 1 ≤ i ≤ n.

Note that Condition 1 imposes frontier-guardedness w.r.t. the main variables, and Con-
dition 2 ensures that parameter variables occurring in the body of a rule occur also its
head, hence they are not ‘forgotten’, in a similar spirit to the stickiness property consid-
ered for existential rules [7].

Semantics The queries we have defined are a special class of Datalog programs. In-
deed, an atom pz(x, y) provides an alternative syntax for the standard Datalog atom

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results

165

p(x, y,z), and regular expressions can be naturally expressed in Datalog. Hence, the
semantics of our queries is readily obtained from the semantics of Datalog, where rules
are viewed as Horn clauses in first-order logic. However, for our purposes, it will prove
more convenient to have a direct semantics for our queries, which we introduce next.

A (predicate) signature is any set Σ of predicate names. A Σ-interpretation I is a
tuple (∆I , ·I), where ∆I is a non-empty set of domain elements and ·I is a function
that assigns (i) to each individual c an element cI ∈ ∆I , and (ii) to each p ∈ Σ a
relation pI ⊆ (∆I)k+n where arity(p) = (k, n). If Σ is irrelevant, we simply call
I an interpretation. For Σ ⊆ Σ′, we say that a Σ′-interpretation I ′ extends a Σ-
interpretation I if the following conditions hold: (i) ∆I = ∆I

′
, (ii) cI = cI

′
for every

individual name c, and (iii) pI = pI
′

for all p ∈ Σ.
Consider a Σ-interpretation I, a predicate p ∈ Σ, and a function µ : NpV → ∆I .

The interpretation of symbols from Σ1 ∪Σ2 in I under µ is defined as follows:

{a}I,µ = aI for {a} ∈ Σ1

(pz)
I,µ = {e ∈ ∆I | (e, µ(zI)) ∈ pI)} for pz ∈ Σ1

(pz)
I,µ = {(e, e′) ∈ ∆I ×∆I | (e, e′, µ(zI)) ∈ pI)} for pz ∈ Σ2

(p−z)
I,µ = {(e, e′) ∈ ∆I ×∆I | (e′, e) ∈ (pz)

I,µ} for p−z ∈ Σ2

(U?)I,µ = {(e, e) ∈ ∆I ×∆I | e ∈ UI,µ} for U? ∈ Σ2

where zI denotes the result of replacing every individual c in z by cI and µ(z) denotes
the result of replacing every v ∈ NpV in zI by µ(v). For a general regular expression
E built over Σ2, the binary relation EI,µ is obtained using the composition, union and
transitive closure of the base relations above.

Next suppose that in addition to I and µ, we have a function π : NoV → ∆I . We
define the following satisfaction and entailment relations:

I, µ, π |= α(t) iff π(µ(tI)) ∈ αI,µ
I, µ, π |= h← b1, . . . , bn iff I, µ, π |= h or I, µ, π 6|= bi for some i

I, µ |= ρ iff I, µ, π |= ρ for all π : NoV → ∆I

I |= ρ iff I, µ |= ρ for all µ : NpV → ∆I

I |= Q iff I |= ρ for all rules ρ ∈ Q
Now consider a k-ary query Q, and let ΣQ be the set of predicate names that occur

inQ. We call aΣ-interpretation I relevant forQ ifΣ∩ int(Q) = ∅ and ext(Q)∩ΣQ ⊆
Σ. If I is aΣ-interpretation that is relevant forQ, then we denote byQ(I) the set of all
k-tuples c such that I ′ |= ans(c) for every Σ ∪ int(Q)-interpretation I ′ with I ′ |= Q
which extends I.
Examples We now illustrate the expressiveness of our query language with some exam-
ples. Consider a graph database with the following relationships between researchers:
was PhD advisor of (ad), is a coauthor of (ca), is a collaborator of (cl), and shares
research topic (srt). The following query Q1 finds pairs connected by an arbitrarily
long chain of parallel ad and ca relations.

ans(x, y)← ac∗(x, y) ac (x, y)← ad ∪ ad−(x, y), ca(x, y)

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results

166

This simple query cannot be expressed as a CN2RPQ; this is proven for an analogous
query in [5]. The next query Q2 finds all pairs that are connected by a chain of potential
collaborators, where potential collaborators are people that either are collaborators, or
they share a research topic and are connected by a chain of coauthors.

ans(x, y)← pcl∗(x, y) pcl(x, y)← cl(x, y)

pcl(x, y)← srt(x, y), ca∗(x, y)

This query is very similar to the regular query given in Example 2 of [13]. It can also
be shown along the lines of [5] that this query is not expressible as a plain CN2RPQ.
The next query Q3 finds pairs of individuals who are connected by a chain of srt who
are all connected to some z by a coauthorship chain.

ans(x, y)← cca∗z(x, y) ccaz(x, y)← srt(x, y), ca∗(x, z), ca∗(y, z)

This query is not expressible as a regular query; again, this can be shown as in [5].
Finally, we give an example query Q4 that nests over guarded recursion. It builds a

preferred collaborator relation that contains any pair of coauthors that have coauthored
papers with a shared advisor, as well as pairs of x and y that can respectively reach
researchers x′ and y′ via a chain of both srt and cl, where x′ and y′ are themselves
preferred collaborators:

prefcl(x, y)← ca(x, y), ca(x, z), ca(y, z), ad(x, z), ad(y, z)

prefcl(x, y)← ca(x, y), srt∗(x, x′), cl∗(x, x′), srt∗(y, y′), cl∗(y, y′), prefcl(x′, y′)

Note that Q4 does not conform to the syntax of regular queries, and we conjecture that
it is expressible neither as a regular query, nor as a nested flag-and-check query.

3 Related Query Languages

In this section, we compare in more detail guarded regular queries with related lan-
guages that also extend the navigational capabilities of C2RPQs. First, it is easy to see
that any nested CN2RPQ can be easily rewritten as a guarded regular query, by sim-
ply replacing exhaustively each nested expression 〈E〉 by pE? for a fresh intensional
predicate pE with arity(pE) = (1, 0), and adding a rule pE(x)← E(x, y).

Now we compare guarded regular queries with other extensions of CN2RPQs that
are closer in terms of expressiveness.
Regular queries were introduced in [13] as non-recursive binary Datalog programs that
additionally allow for transitive closure rules of the form P (x, y) ← R+(x, y). An
alternative definition, that is equivalent but exponentially less succinct, is given by tak-
ing non-recursive binary Datalog rules and allowing in the body regular expressions
over extensional predicates and expressions of the form R+(x, y) (for arbitrary pred-
icates), but restricting intensional predicates to occur only once in rule bodies. The
query containment problem for regular queries is complete for 2EXPSPACE, but only
EXPSPACE-complete (like for plain C2RPQs) if the alternative syntax is considered.
The query evaluation problem is also not harder than for C2RPQs: NL-complete in
data complexity and NP-complete complete in combined complexity.

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results

167

Regular queries and guarded regular queries are closely related, but there are some
significant differences. We have already shown above that their expressive power is
orthogonal. Regular queries have no parameters and nesting is not recursive. On the
other hand, their nesting is not subject to a guardedness restriction.
Nested positive 2RPQs [6] allow for positive Boolean combinations of 2RPQs, where
the regular expressions may use queries of strictly lower nesting degree as binary pred-
icates. This language is in fact equivalent to the regular queries from [13].
PFO+TC1 is another extension of CN2RPQs studied by Bourhis et. al. that extends pos-
itive first-order logic with a parameterized unary transitive closure operator. This lan-
guage is strictly more expressive than regular queries, and it can fully support the ‘pa-
rameters’ (restricted higher arities) that we allow in guarded regular queries. However,
guarded regular queries and PFO+TC1 are incomparable. On the one hand, PFO+TC1

has NL-data complexity, while guarded regular queries are complete for P, as we show
in Section 4. This implies that some guarded regular queries cannot be expressed in
PFO+TC1. On the other hand, PFO+TC1 has been shown to have non-elementary time
complexity for query containment [6] and for query answering in the presence of some
DL ontologies [5]. We argue below that the latter problem is elementary for guarded reg-
ular queries,3, which implies that not all PFO+TC1 queries are expressible as guarded
regular queries without a non-elementary blow-up in the formula size.
Expressive Datalog fragments having a decidable containment problem have been re-
cently studied by Bourhis et al. [6]. They consider well-known languages like linear,
monadic, and frontier-guarded Datalog and extend them with special ‘flag’ constants
that behave analogously to the parameter positions of guarded regular queries (this
had already been done for monadic Datalog [15]); they also consider nested versions
of these languages. These nested flag-and-check queries are in general more expres-
sive than regular queries and even generalize PFO+TC1 [5]. However, similarly as for
PFO+TC1, this has a high computational cost and the containment problem becomes
non-elementary [6]. Also, in contrast to guarded regular queries, all these nested queries
allow only for acyclic nesting, while we allow for cyclic but guarded nesting.

One of the considered languages, GQ+, is obtained by taking frontier guarded flag-
and-check programs (that is, frontier guarded Datalog programs with special parameter
constants), and allowing to nest into their bodies analogous programs of lower nesting
level. Note that, in contrast, we have a (linear) Datalog fragment (that captures C2RPQs)
at the inner query level, and use frontier-guardedness to do cyclic nesting of queries.

4 Evaluating Guarded Regular Queries

In this section, we study the complexity of query evaluation over graph databases and
then outline an algorithm for query answering in the presence of DL ontologies.
Query Evaluation over Graph Databases The following proposition summarizes
what we know about the complexity of evaluating guarded regular queries.

Proposition 1. Evaluation of guarded regular queries over graph databases is:
3 We have not yet studied containment of guarded regular queries, but we believe it may be

elementary as well.

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results

168

– P-complete for data complexity;
– PSPACE-hard and in EXPTIME for combined complexity;
– NP-complete for combined complexity, when the parameter arity of predicates is

bounded by a fixed constant.

Proof. For Statement 1, observe that guarded regular queries fall between binary monadic
Datalog and full Datalog (cf. Section 2), and for both of these languages, the query eval-
uation problem is P-complete in data complexity.

Membership in EXPTIME for combined complexity is a direct consequence of the
EXPTIME-completeness of query evaluation in Datalog. To obtain the PSPACE lower
bound, we modify the Datalog program that was used in [10] to show PSPACE-hardness
of evaluating linear sirups, in order to ensure that the resulting query satisfies the ‘stick-
iness’ requirement (Condition 2).

For Statement 3, the lower bound comes from the NP-hardness of CQ evaluation,
and the upper bound is obtained by guessing a sequence of polynomial number of rule
applications (along with the required homomorphisms) that leads to deriving ans(c).

Query Answering with DL KBs We sketch an algorithm for answering guarded reg-
ular queries over DL KBs. We do not give the details of particular DLs, but instead
present the forest model property that many DLs have and on which our method relies.

Each DL KB K is defined over some set Σ of unary and binary relations with
parameter arity 0. The semantics of K is given as a set M(K) of Σ-interpretations.
Given a k-ary query Q, we let Q(K) be the set of k-tuples c of individuals such that
c ∈ Q(I) for all I ∈ M(K). The set Q(K) is called the certain answer to Q over K.

Let N be the set of natural numbers and denote by w ∈ N+ the set of all non-empty
words over N. A Σ- interpretation I is forest-shaped if the following conditions hold:
(i) ∆I ⊆ N+ is prefix-closed, i.e., if w · n ∈ ∆I and w 6= ε, then w ∈ ∆I ;

(ii) if (e, e′,d) ∈ pI for some p ∈ Σ, then one of the following holds: (a) e = e′, (b)
|e| = 1 and |e′| = 1, or (c) e′ = e · n or e = e′ · n for some n ∈ N.

A KB K is said to possess the forest model property if for any I ∈ M(K) there exists
a forest-shaped interpretation I ′ ∈M(K) such that:
(i) there exists a homomorphism from I ′ to I, and

(ii) ∆I ⊆ {0, . . . , r(|K|)}∗, where r is a polynomial and |K| denotes the size of K.
The forest-shaped I ∈ M(K) that satisfy the condition ∆I ⊆ {0, . . . , r(|K|)}∗ are the
forest models of K. It is well known that KBs written in many popular DLs have this
property (cf. [8]).

Consider a KBK with the forest model property, a query Q of arity k, and a k-tuple
c of individuals. Since our query language is monotone, it follows that for such a KBK,
c 6∈ Q(K) implies c 6∈ Q(I) for some forest model I ∈ M(K). IfK is in a standard DL
likeALCHIQ, one can define a tree automaton that recognizes (an encoding of) forest-
shaped I ∈ M(K). However, due to the semantics of the query language, deciding
c 6∈ Q(I) involves checking the existence of an extension I ′ of I such that I ′ |= Q
and I ′ 6|= ans(c), and such I ′ need not be forest-shaped. In fact, unrestricted queries
are undecidable and thus can enforce interpretations that are not tree-shaped and which
cannot be coded into forest-shaped interpretations in a meaningful way.

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results

169

To obtain decidability for guarded regular queries, we show that it is sufficient
to consider only certain forest-shaped extensions. Given a Σ-interpretation I, we let
pdom(I) denote the domain elements that appear as parameter values in I, i.e. those
e ∈ ∆I for which there exists a predicate name p ∈ Σ and a tuple 〈e1, . . . , ek+n〉 ∈ pI
with e = ei and i > k, where arity(p) = (k, n). We can prove the following:

Proposition 2. Consider a KB K with the forest model property, a guarded regular
query Q of arity k, and a k-tuple c of individuals. Let m be the maximal number of
parameter variables over all rules of Q. Then c 6∈ Q(K) iff (†) there exists a forest-
shaped I ∈ M(K) such that for any set g ⊆ ∆I with |g| ≤ m there exists aΣ∪int(Q)-
interpretation I ′ such that: (i) I ′ is forest-shaped, (ii) I ′ extends I, (iii) I ′, µ |= ρ for
every ρ ∈ Q and every µ with ran(µ) ⊆ g, (iv) I ′ 6|= ans(c), and (v) pdom(I ′) ⊆ g.

We next argue that condition (†) from Proposition 2 can be decided by employing
tree automata. It is standard to represent forest-shaped interpretations of a DL KB as la-
beled trees upon which a tree automaton can operate (see e.g. [9]). In such an encoding,
‘roots’ of the original forest-shaped interpretation correspond to children of a dummy
root in the tree representation. It is a bit more involved to obtain a tree representation of
forest-shaped Σ-interpretations when Σ contains predicates with non-zero parameter
arities. However, if the input interpretation I is such that |pdom(I)| ≤ k for a finite k,
then we can essentially employ the standard representation, except that we may need to
increase the alphabet exponentially in the parameter arity of original relations.

The automata algorithm to check (†) can be briefly described as follows:

1. If K is in a standard DL like ALCHIQ, we can build a nondeterministic tree
automaton (NTA) A1 that recognizes (the tree encoding of) tuples (I, g, I ′) such
that I is a forest-shaped model of K, g ⊆ ∆I is such that |g| ≤ m, and I ′ is
a Σ ∪ int(Q)-interpretation that satisfies conditions (i)-(v) of Proposition 2. The
naı̈ve construction of A1 requires a triple-exponential number of states and can be
done by adapting the construction in [9].

2. We build an NTA A2 that recognizes tuples (I, g) such that some triple of the form
(I, g, I ′) is recognized by A1. Technically, this is done by performing a projection
operation on A1, that projects away the third component of recognized triples.

3. We complement A2 to obtain A3. Intuitively, A3 accepts tuples (I, g) that A2 re-
jects, i.e. for which there is no triple (I, g, I ′) that satisfies conditions (i)-(v). This
step causes an exponential blowup in the number of states.

4. By projecting away the second component, we can obtain from A3 an NTA A4 that
accepts forest interpretations I for which there exists g such that we cannot find an
I ′ that satisfies conditions (i)-(v).

5. By complementing A4, we obtain an NTA that checks condition (†) in Proposi-
tion 2. This step also causes an exponential blowup in the number of states.

Due to the complexity results on testing nonemptiness of NTAs in [12], the above
construction leads to an 5EXPTIME upper bound. For standard Horn DLs like Horn-
SHIQ, EL or DL-Lite, we can improve the upper bound to 4EXPTIME; these DLs have
the so-called canonical model property and thus the last automata complementation step
in the above construction is not necessary.

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results

170

5 Future Work

In this paper, we proposed guarded regular queries as a new navigational query lan-
guage and provided some first results regarding its relation to related proposals and the
complexity and decidability of query evaluation, in particular in the presence of DL
ontologies. There are number of questions that we plan to tackle in future work. First,
we will complete our formal comparison of the expressive power of guarded regular
queries, with the aim of showing that they are indeed incomparable to related existing
formalisms. Second, we will pursue our study of the computational properties of the
language by pinpointing the precise complexity of query answering in the presence of
DL ontologies and by investigating the query containment problem. Finally, extending
guarded regular queries by relaxing the use of parameters and frontier-guardedness is
another challenging but interesting problem.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003.

2. P. Barceló, L. Libkin, A. W. Lin, and P. T. Wood. Expressive languages for path queries over
graph-structured data. ACM TODS, 37(4):31, 2012.

3. P. Barceló, J. Pérez, and J. L. Reutter. Relative expressiveness of nested regular expressions.
In Proc. of AMW’12, CEUR Workshop Proceedings 866, pages 180–195, 2012.

4. M. Bienvenu, D. Calvanese, M. Ortiz, and M. Šimkus. Nested regular path queries in de-
scription logics. In Proc. of KR 2014. AAAI Press, 2014.

5. P. Bourhis, M. Krötzsch, and S. Rudolph. How to best nest regular path queries. In Proc. of
DL’14, volume 1193, pages 404–415. CEUR-WS.org, 2014.

6. P. Bourhis, M. Krötzsch, and S. Rudolph. Query containment for highly expressive datalog
fragments. CoRR, abs/1406.7801, 2014.

7. A. Calı̀, G. Gottlob, and A. Pieris. Advanced processing for ontological queries. Proc. VLDB
Endow., 3(1-2):554–565, Sept. 2010.

8. D. Calvanese, T. Eiter, and M. Ortiz. Regular path queries in expressive description logics
with nominals. In Proc. of IJCAI 2009, pages 714–720, 2009.

9. D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in expressive descrip-
tion logics via alternating tree-automata. Inf. Comput., 237:12–55, 2014.

10. G. Gottlob and C. Papadimitriou. On the complexity of single-rule datalog queries. Infor-
mation and Computation, 183(1):104 – 122, 2003.

11. L. Libkin and D. Vrgoc. Regular path queries on graphs with data. In A. Deutsch, editor,
Proc. of ICDT’12, pages 74–85. ACM, 2012.

12. D. E. Muller and P. E. Schupp. Simulating alternating tree automata by nondeterministic
automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra.
Theoretical Computer Science, 141(12):69 – 107, 1995.

13. J. Reutter, M. Romero, and M. Y. Vardi. Regular queries on graph databases. In M. Arenas
and M. Ugarte, editors, Proc. of ICDT’15, 2015. To appear.

14. J. L. Reutter. Containment of nested regular expressions. CoRR Technical Report
arXiv:1304.2637, arXiv.org e-Print archive, 2013.

15. S. Rudolph and M. Krötzsch. Flag & check: Data access with monadically defined queries.
In Proc. of PODS’13, pages 151–162. ACM, 2013.

Navigational Queries Based on Frontier-Guarded Datalog: Preliminary Results

171

LDQL: A Language for Linked Data Queries

Olaf Hartig

http://olafhartig.de

Abstract In this paper, we propose LDQL, that is, a language to query Linked
Data on the Web. The novelty of LDQL is that it enables a user to express sepa-
rately (i) patterns that describe the expected query result, and (ii) Web navigation
paths that select the data sources to be used for computing the result. As a down-
side of this expressiveness, we find that for some LDQL queries, a complete exe-
cution is not possible in practice. To address this issue, we show a syntactic prop-
erty based on which systems can identify queries that do not have this limitation.

1 Introduction

In recent years an increasing amount of structured data has been published and in-
terlinked on the World Wide Web (WWW) in adherence to the Linked Data princi-
ples [2,3]. These principles are based on standard Web technologies. In particular, (i) the
Hypertext Transfer Protocol (HTTP) is used to access data, (ii) HTTP-based Uniform
Resource Identifiers (URIs) are used as identifiers for entities described in the data,
and (iii) the Resource Description Framework (RDF) is used as data model. Then, any
HTTP URI in an RDF triple presents a data link that enables software clients to retrieve
more data by looking up the URI with an HTTP request. The adoption of these princi-
ples has lead to the creation of a globally distributed dataspace: the Web of Linked Data.

From a graph database perspective the Web of Linked Data can be conceived of as
two graphs of different types: First, the (virtual) union of all RDF triples in the Web of
Linked Data represents an RDF graph [6]; this graph is distributed over the documents
in the Web of Linked Data. Second, these documents constitute the nodes of a link graph
whose edges represent the aforementioned data links that connect the documents.

The emergence of the Web of Linked Data makes possible an online execution of
declarative queries over up-to-date data from a virtually unbounded set of data sources,
each of which is readily accessible without any need for implementing source-specific
APIs or wrappers. This possibility has spawned research interest in approaches to query
Linked Data on the WWW as if it was a single (distributed) database. For an overview
on query execution techniques proposed in this context refer to [12].

While there does not exist a standard language for expressing such queries, a few
options have been proposed. In particular, a first strand of research focuses on extending
the scope of SPARQL—which is the standard query language for centralized collections
of RDF data [9]—such that an evaluation of SPARQL queries over Linked Data on
the WWW has a well-defined semantics [4,10,11,14,16]. A second strand of research
focuses on navigational languages (e.g., NautiLOD [8]). A commonality of all these
proposals is that querying the aforementioned two graphs that comprise the Web of
Linked Data (i.e., the link graph and the RDF data graph) is inherently entangled in each

172

of the proposed query formalisms. That is, for any query expressed in such a formalism,
the definition of query-relevant regions of the link graph and the definition of query-rel-
evant data from the RDF graph within the specified regions depend on one another.

In this paper, we study the alternative approach of avoiding such an inherent de-
pendency. To this end, we propose a novel query language for Linked Data which we
call LDQL. In contrast to the aforementioned query formalisms, LDQL separates query
components for selecting regions of the link graph from components for specifying the
query result that has to be constructed from the data in the selected regions. For the for-
mer, LDQL introduces the notion of a link path expression, which is a form of nested
regular expression, and for the latter we use SPARQL. More precisely, the most basic
type of LDQL queries consists of a link path expression and a SPARQL graph pattern.
Additionally, such queries can be combined using conjunctions and disjunctions, where
some subqueries may provide the starting points of navigation for other subqueries.

The downside of the expressiveness provided by LDQL are queries for which a
complete execution is not possible in practice (because of the lack of a complete, up-
to-date data catalog that is inherent to the WWW). To capture this issue formally, we
define a notion of Web-safeness for LDQL queries. Then, the obvious question that
arises is how to identify those LDQL queries that are Web-safe. Our contribution to
answer this question is to show a sufficient syntactic condition for Web-safeness.

The paper is structured as follows: Section 2 introduces a data model that provides
the basis for defining the semantics of LDQL formally. In Section 3 we define LDQL
and show simple algebraic properties. Thereafter, in Section 4 we focus on Web-safe-
ness. Section 5 concludes the paper and sketches future work. For proofs of the formal
results in this paper we refer to the extended version of this paper [13].

2 Data Model

In this section we introduce a structural data model that captures the concept of a Web
of Linked Data formally. As usual [4,8,10,11,14,16], for the definitions and analysis in
this paper, we assume that the Web is fixed during the execution of any single query.

We use the RDF data model [6] as a basis for our model of a Web of Linked Data.
That is, we assume three pairwise disjoint, infinite sets U (URIs), B (blank nodes), and
L (literals). Then, an RDF triple is a tuple 〈s, p, o〉 ∈ (U ∪ B)× U × (U ∪ B ∪ L). For
any RDF triple t = 〈s, p, o〉 we write uris(t) to denote the set of all URIs in t.

Additionally, we assume another infinite set D that is disjoint from U , B, and L,
respectively. We refer to elements in this set as Linked Data documents, or documents
for short, and use them to represent the concept of Web documents from which Linked
Data can be extracted. Hence, we assume a function, say data, that maps each document
d ∈ D to a finite set of RDF triples data(d) ⊆ (U ∪ B) × U × (U ∪ B ∪ L) such that
the data of each document uses a unique set of blank nodes; i.e., for any pair of distinct
documents d, d′ ∈ D, and any two RDF triples t = 〈s, p, o〉 and t′ = 〈s′, p′, o′〉 with
t ∈ data(d) and t′ ∈ data(d′), it holds that {s, p, o} ∩ {s′, p′, o′} ∩ B = ∅.

Given these preliminaries, we are ready to define a Web of Linked Data.

Definition 1. A Web of Linked Data is a tuple W = 〈D, adoc〉 that consists of a set
of documents D ⊂ D and a partial function adoc : U → D that is surjective.

LDQL: A Language for Linked Data Queries

173

Function adoc of a Web of Linked Data W = 〈D, adoc〉 captures the relationship
between the URIs that can be looked up in this Web and the documents that can be
retrieved by such lookups. Since not every URI can be looked up, the function is par-
tial. For any URI u ∈ U with u ∈ dom(adoc) (i.e., any URI that can be looked up
in W), document d = adoc(u) can be considered the authoritative source of data for u
in W (hence, the name adoc). To accommodate for documents that are authoritative
for multiple URIs, we do not require injectivity for function adoc. However, we require
surjectivity because we conceive documents as irrelevant for a Web of Linked Data if
they cannot be retrieved by any URI lookup in this Web.

In this paper, we assume that the set of documents D in any Web of Linked Data
W = 〈D, adoc〉 is finite, in which case we say W is finite [11]. Moreover, given a
Web of Linked Data W = 〈D, adoc〉, we say that a URI u ∈ uris(t) in an RDF triple
t = 〈s, p, o〉 establishes a data link to a document d ∈ D if adoc(u) = d.

As a final concept, our data model formalizes the aforementioned notion of a link
graph in which directed edges represent data links between documents. In the following
formal definition of this graph, each edge is associated with a label that identifies both
the particular RDF triple and the URI in this triple that establishes the corresponding
data link. These labels shall provide the basis for defining the navigational component
of our query language (cf. Section 3.1).

Definition 2. The link graph of a Web of Linked Data W = 〈D, adoc〉 is a directed,
edge-labeled multigraph 〈D,E〉 whose vertices are all documents in W, and which has
a directed edge 〈dsrc, t, u, dtgt〉 ∈ E from document dsrc ∈ D to document dtgt ∈ D if
the data of dsrc contains an RDF triple t with a URI u ∈ uris(t) that establishes a data
link to dtgt; the edge is labeled with both the triple t and the URI u. Hence, the set of
edges E ⊆ D × T × U ×D is defined as follows:

E =
{
〈dsrc, t, u, dtgt〉

∣∣ t ∈ data(dsrc) such that u ∈ uris(t) and adoc(u) = dtgt
}
.

Example 1. As a running example for this paper assume a simple Web of Linked Data
Wex = 〈Dex, adocex〉 with three documents, dA, dB and dC (i.e., Dex = {dA, dB, dC}).
The data in these documents are the following sets of RDF triples:

data(dA) = {〈uA, p1, uB〉, data(dB) = {〈uB, p1, uC〉};
〈uB, p2, uC〉}; data(dC) = {〈uA, p2, uC〉};

and function adocex is given as follows: adocex(uA) = dA, adocex(uB) = dB, and
adocex(uC) = dC (i.e., dom(adocex) = {uA, uB, uC}). This Web contains 8 data links.
For instance, URI uA in the RDF triple in data(dC) establishes a data link to document
dA. Hence, the corresponding edge in the link graph ofWex is

〈
dC, 〈uA, p2, uC〉, uA, dA

〉
.

Figure 1 illustrates this link graph with all 8 edges.

3 Definition of LDQL

This section defines our Linked Data query language, LDQL. LDQL queries are meant
to be evaluated over a Web of Linked Data and each such query is built from two types

LDQL: A Language for Linked Data Queries

174

Figure 1. The link graph of our example Web of Linked Data Wex.

of components: First, there are link path expressions for selecting query-relevant doc-
uments of the queried Web of Linked Data; second, there are SPARQL graph patterns
for specifying the query result that has to be constructed from the data in the selected
documents. For this paper, we assume that the reader is familiar with the definition of
SPARQL [9], including the algebraic formalization introduced by Pérez et al. [15].

In the following, we first formalize our notion of link path expressions. Thereafter,
we define a syntax and semantics of LDQL queries and show simple algebraic proper-
ties of such queries. For brevity, we introduce LDQL also based on an algebraic syntax.

3.1 Link Path Expressions

Link Path Expressions (LPEs) are a form of nested regular expressions for navigation
over the link graph of a Web of Linked Data. The base case for LPEs is to select single
link graph edges in the context of a designated URI. To this end, we introduce link pat-
terns, that is, tuples 〈s, p, o〉 ∈

(
U ∪ { ,+}

)
×
(
U ∪ { ,+}

)
×
(
U ∪ L ∪ { ,+}

)
,

where is a special symbol that denotes a wildcard and + is another special symbol
that denotes a placeholder for the context URI. Then, a link graph edge 〈dsrc, t, u, dtgt〉
with t = 〈x1, x2, x3〉 matches a link pattern lp = 〈y1, y2, y3〉 in the context of a
URI uctx if for each i ∈ {1, 2, 3}, any of the following three properties holds:

1. yi = , or
2. yi = + and xi = uctx, or
3. yi = xi.

Example 2. Consider the link pattern lpex = 〈 , p2, 〉. The link graph of our example
Web Wex (cf. Example 1) contains two edges that match lpex in the context of URI uA,
namely, the edges

〈
dA, 〈uB, p2, uC〉, uB, dB

〉
and

〈
dA, 〈uB, p2, uC〉, uC, dC

〉
.

The rationale for adopting the notion of a designated context URI in our definition
of link patterns is to support cases in which link graph navigation has to be focused
solely on data links that are authoritative, where we call a data link authoritative if it
is established by an RDF triple in a document dsrc such that dsrc is the authoritative
document for some URI in the triple. Formally, in terms of link graph edges, an edge

LDQL: A Language for Linked Data Queries

175

〈dsrc, t, u, dtgt〉 ∈ E in the link graph 〈D,E〉 of a Web of Linked Data W = 〈D, adoc〉
represents an authoritative data link if adoc(u′) = dsrc for some URI u′ ∈ uris(t).

Example 3. Consider the link pattern lp′ex = 〈 , p2,+〉, which is a more restrictive
variation of the link pattern discussed in the previous example. In contrast to lpex, there
does not exist any edge in the link graph of Wex that matches lp′ex in the context of
URI uA. Any such edge would have to represent an authoritative data link; more pre-
cisely, the RDF triple of such a data link must have the context URI (i.e., uA) in the ob-
ject position, which is not the case for the two edges that match the less restrictive link
pattern lpex. Notice also that, if we use URI uC as context instead, there exists an edge
that matches link pattern lp′ex in the context of uC, namely

〈
dC, 〈uA, p2, uC〉, uA, dA

〉
.

Given the notion of a link pattern, we define LPEs as nested regular expressions over
the alphabet that consists of all possible link patterns. Hence, an LPE is an expression
defined by the following grammar (where lp is an arbitrary link pattern):

lpe = ε | lp | lpe/lpe | lpe|lpe | lpe∗ | [lpe]

Note that our notion of LPEs does not provide an operator for navigating paths
in their inverse direction. The reason for omitting such an operator is that traversing
arbitrary data links backwards is impossible on the WWW.

The semantics of LPEs is based on a designated context URI (similar to our notion
of matching edges for link patterns). In particular, the semantics requires that each path
of link graph edges that satisfies an LPE starts from the document that is authoritative
for the given context URI. Then, the result of evaluating an LPE represents the end
nodes of all such paths. More precisely, the result is a set of URIs where, informally,
the lookup of each such URI returns the document that constitutes the end node of the
corresponding path. The following definition captures the semantics of LPEs formally.

Definition 3. Let lpe be an LPE, letW = 〈D, adoc〉 be a Web of Linked Data with link
graph 〈D,E〉, and let uctx be a URI. The uctx-based evaluation of lpe over W, denoted
by [[lpe]]uctx

W , is a set of URIs that is empty if uctx /∈ dom(adoc); if uctx ∈ dom(adoc),
then the set is defined recursively as follows (where dctx = adoc(uctx), lp is a link
pattern, and lpe , lpe1, lpe2 are arbitrary LPEs):

[[ε]]uctx

W = {uctx}
[[lp]]uctx

W = {u | 〈dctx, t, u, d〉 ∈ E that matches lp in the context of uctx}
[[lpe1/lpe2]]

uctx

W = {u ∈ [[lpe2]]
u′
W |u′ ∈ [[lpe1]]

uctx

W }
[[lpe1|lpe2]]uctx

W = [[lpe1]]
uctx

W ∪ [[lpe2]]
uctx

W

[[lpe∗]]uctx

W = {uctx} ∪ [[lpe]]uctx

W ∪ [[lpe/lpe]]uctx

W ∪ [[lpe/lpe/lpe]]uctx

W ∪ ...
[[[lpe]]]uctx

W = {uctx | [[lpe]]uctx

W 6= ∅}.

Example 4. Let lpeex be the LPE 〈 , p2, 〉 (i.e., the link pattern discussed in Ex-
ample 2). For our example Web Wex and context URI uA, we know by Example 2 that
the link graph edges

〈
dA, 〈uB, p2, uC〉, uB, dB

〉
and

〈
dA, 〈uB, p2, uC〉, uC, dC

〉
match the

pattern in the context of URI uA. Hence, the LPE selects documents dB = adocex(uB)
and dC = adocex(uC). More precisely, we have [[lpeex]]

uA

Wex
= {uB, uC}.

LDQL: A Language for Linked Data Queries

176

Example 5. As another example consider the slightly more complex LPE lpe ′ex which is
of the form 〈 , p1, 〉∗/[〈 , p2, 〉]. This LPE selects documents that can be reached
via arbitrarily long paths of data links with predicate p1 and, additionally, have some
outgoing data link with predicate p2. For our example Web Wex and context URI uA,
all three documents, dA, dB and dC, can be reached via a p1-path from URI uA, but only
dA and dC pass the p2-related test. Hence, we have [[lpe ′ex]]

uA

Wex
= {uA, uC}.

While LPEs allows users to select documents from the queried Web of Linked Data,
in the context of LDQL these documents are used to form an RDF dataset for evaluating
a given SPARQL graph pattern. Formally, we specify this dataset as follows.

Definition 4. Let uctx be a URI, let lpe be an LPE, and let W = 〈D, adoc〉 be a Web of
Linked Data. The uctx-lpe-selected dataset overW is an RDF dataset D = 〈G0,N〉 (as
per [9,1]) whose default graph G0 is the union of all Named Graphs of the dataset, and
that contains a Named Graph 〈u,G〉 ∈ N for every URI u ∈ [[lpe]]uctx

W whose lookup (in
W) results in retrieving a document; hence,

G0 =
⋃
〈u,G〉∈N G, and

N = {〈u,G〉 |u ∈ [[lpe]]uctx

W and u ∈ dom(adoc) and G = data(adoc(u))}.

Example 6. Consider context URI uA and the aforementioned example LPE lpe ′ex for
which we have [[lpe ′ex]]

uA

Wex
= {uA, uC} (cf. Example 5). Then, the uA-lpe ′ex-selected

dataset over Wex is Dex = 〈Gex,Nex〉 with Nex = {〈uA,data(dA)〉, 〈uC,data(dC)〉}
and, thus, Gex = {〈uA, p1, uB〉, 〈uB, p2, uC〉, 〈uA, p2, uC〉} (cf. Example 1).

3.2 LDQL Queries

We are now ready to define LDQL queries formally.

Definition 5. An LDQL query is defined recursively as follows:

1. Any tuple q = 〈u, lpe, P 〉 consisting of a URI u, an LPE lpe , and a SPARQL graph
pattern P is an LDQL query—hereafter, referred to as a basic LDQL query;

2. Any tuple q = 〈?v, lpe, P 〉 consisting of a variable ?v, an LPE lpe, and a SPARQL
graph pattern P is an LDQL query;

3. If q1 and q2 are LDQL queries, then (q1AND q2) and (q1UNION q2) are LDQL queries.

Before introducing the formal semantics of LDQL queries, we provide some in-
tuition about it. As per Definition 5, the most basic type of an LDQL query consists
of a URI, an LPE, and a SPARQL graph pattern. Informally, the result of such a
query q = 〈u, lpe, P 〉 is the set of SPARQL solution mappings that can be obtained
by evaluating the SPARQL pattern P over the u-lpe-selected dataset.

Example 7. Consider a basic LDQL query 〈uA, lpe ′ex, Bex〉 whose LPE is the afore-
mentioned example LPE lpe ′ex (cf. Example 5) and whose SPARQL graph pattern is a
basic graph pattern that contains two triple patterns, Bex = {〈?x, p1, ?y〉, 〈?x, p2, ?z〉}.
According to the semantics outlined above (and defined formally below), the result of

LDQL: A Language for Linked Data Queries

177

this query over our example Web Wex consists of a single solution mapping, namely
µ = {?x 7→ uA, ?y 7→ uB, ?z 7→ uC}. To see why we obtain this result, recall
from Example 6 that the default graph of the uA-lpe ′ex-selected dataset over Wex is
Gex = {〈uA, p1, uB〉, 〈uB, p2, uC〉, 〈uA, p2, uC〉}. Then, by the standard (set) semantics
of SPARQL [1], the result of evaluating basic graph pattern Bex over this graph Gex is
a singleton set that contains solution mapping µ.

The other types of LDQL queries also have a set of solution mappings as their result:
Operators AND and UNION represent conjunctions and disjunctions, respectively. The sec-
ond base type of LDQL queries, tuples with a variable instead of a fixed (context) URI,
is similar to basic LDQL queries with the difference that the variable can range over al-
ternative context URIs; this type of query is meant to be used in conjunctions in which
the other conjunct is used to select context URIs at query execution time (e.g., see query
q′′ex in Example 8 below). The following definition formalizes the query semantics.

Definition 6. The evaluation of an LDQL query q over a Web of Linked Data W,
denoted by [[q]]W , is defined recursively as follows (where u is a URI, ?v is a variable,
lpe is an LPE, P is a SPARQL graph pattern, [[P]]DG0

denotes the evaluation of P over
an RDF graph G0 in an RDF dataset D = 〈G0,N〉 [1, Definition 13.3], and q1 and q2
are arbitrary LDQL queries):

[[〈u, lpe, P 〉]]W = [[P]]DG0
(D = 〈G0,N〉 is the u-lpe-selected dataset over W),

[[〈?v, lpe, P 〉]]W =
⋃

u∈U
(
[[〈u, lpe, P 〉]]W on {µu}

)
(where µu = {?v 7→ u}),

[[(q1 AND q2)]]W = [[q1]]W on [[q2]]W ,

[[(q1 UNION q2)]]W = [[q1]]W ∪ [[q2]]W .

Example 8. Consider an LDQL query qex =
〈
?x, ε, 〈?x, p1, ?z〉

〉
, which is of the sec-

ond base type in Definition 5 (with the SPARQL graph pattern being a single triple
pattern). Additionally, let q′ex =

〈
uA, lpe

′
ex, {〈?x, p1, ?y〉, 〈?x, p2, ?z〉}

〉
be the basic

LDQL query introduced in Example 7, and let q′′ex be the conjunction of these two
queries; i.e., q′′ex = (qex AND q′ex). By Example 7 we know that [[q′ex]]Wex = {µ} (with
solution mapping µ as given in Example 7). Furthermore, based on the data given in
Example 1, it is easy to see that [[qex]]Wex = {µ1, µ2} with µ1 = {?x 7→ uA, ?z 7→ uB}
and µ2 = {?x 7→ uB, ?z 7→ uC}. For the evaluation of query q′′ex over Wex, the result
sets [[qex]]Wex and [[q′ex]]Wex have to be joined. While for µ1 ∈ [[qex]]Wex , there does not
exist a compatible join candidate in [[q′ex]]Wex , solution mapping µ2 ∈ [[qex]]Wex is com-
patible with µ ∈ [[q′ex]]Wex . Consequently, we have [[q′′ex]]Wex = {µ′} with µ′ = µ ∪ µ2.

3.3 Algebraic Properties of LDQL Queries

As a basis for the discussion in the next section, we show simple algebraic properties.

Lemma 1. The operators AND and UNION are associative and commutative, respec-
tively, and the operator AND distributes over UNION . That is, if q1, q2, and q3 are LDQL
queries, then the following semantic equivalences hold:

– (q1 AND q2) ≡ (q2 AND q1);

LDQL: A Language for Linked Data Queries

178

– (q1 UNION q2) ≡ (q2 UNION q1);
–
(
q1 AND (q2 AND q3)

)
≡
(
(q1 AND q2) AND q3

)
;

–
(
q1 UNION (q2 UNION q3)

)
≡
(
(q1 UNION q2) UNION q3

)
;

–
(
q1 AND (q2 UNION q3)

)
≡
(
(q1 AND q2) UNION (q1 AND q3)

)
.

Proof. Since the definition of LDQL operators AND and UNION is equivalent to their
SPARQL counterparts, the semantic equivalences in Lemma 1 follow from correspond-
ing equivalences for SPARQL graph patterns as shown by Pérez et al. [15, Lemma 2.5].

Lemma 1 allows us to write sequences of either AND or UNION without parentheses.
Hereafter, we assume that every UNION-free LDQL query is represented as an LDQL
query of the form (q1 AND q2 AND ... AND qm) where each subquery qi (1 ≤ i ≤ m) is
either of the form 〈u, lpe, P 〉 (i.e., a basic LDQL query) or of the form 〈?v, lpe, P 〉.
Moreover, we say that an LDQL query is in UNION normal form if it is of the form
(q1 UNION q2 UNION ... UNION qn) such that each subquery qi (1 ≤ i ≤ n) is a UNION-free
LDQL query. The following result is an immediate consequence of Lemma 1.

Corollary 1. For every LDQL query, there exists a semantically equivalent LDQL query
that is in UNION normal form.

4 Web-Safeness of LDQL Queries

In this section we study the “Web-safeness” of LDQL queries, where, informally, we
call a query Web-safe if a complete execution of the query over the WWW is possible
in practice (which is not the case for all LDQL queries as we shall see).

To provide a more formal definition of this notion of Web-safeness we make the fol-
lowing observations. While the mathematical structures introduced by our data model
capture the notion of Linked Data on the WWW formally (and, thus, allow us to provide
a formal semantics for LDQL queries), in practice, these structures are not available
completely for the WWW. For instance, given that an infinite number of strings can be
used as HTTP URIs [7], we cannot assume complete information about which URIs are
in the domain of the partial function adoc (i.e., can be looked up to retrieve some doc-
ument) and which are not; in fact, disclosing this information would require a process
that systematically tries to look up every possible HTTP URI and, thus, would never
terminate because of the aforementioned infiniteness. Therefore, it is also impossible to
guarantee the discovery of every document in the set D (without looking up an infinite
number of URIs). Consequently, any query whose execution requires a complete enu-
meration of this set is not feasible in practice. Based on these observations, we define
Web-safeness of LDQL queries as follows.

Definition 7. An LDQL query q is Web-safe if there exists an algorithm that, for any
finite Web of Linked Data W = 〈D, adoc〉, computes [[q]]W by looking up only a finite
number of URIs without assuming an a priori availability of any information about the
sets D and dom(adoc).

LDQL: A Language for Linked Data Queries

179

Example 9. Recall our example queries qex, q′ex, and q′′ex (cf. Example 8). For query
qex =

〈
?x, ε, 〈?x, p1, ?z〉

〉
, any URI u ∈ U may be used to obtain a nonempty subset

of the query result as long as a lookup of u retrieves a document whose data includes
RDF triples that match 〈u, p1, ?z〉. Therefore, without access to D or dom(adoc) of the
queried Web W = 〈D, adoc〉, the completeness of the computed query result can be
guaranteed only by checking each of the infinitely many possible HTTP URIs. Hence,
query qex is not Web-safe. In contrast, although it contains qex as a subquery, query
q′′ex = (qex AND q′ex) is Web-safe, and so is q′ex = 〈uA, lpe ′ex, Bex〉. A possible execution
algorithm for q′ex may first compute [[lpe ′ex]]

uA

W by traversing the queried Web W based
on the given LPE lpe ′ex. Thereafter, the algorithm retrieves documents by looking up all
URIs u ∈ [[lpe ′ex]]

uA

W (or simply keeps these documents after the traversal); and, finally,
the algorithm evaluates pattern Bex over the union of the RDF triples in the retrieved
documents. If W is finite (i.e., contains a finite number of documents) the traversal
process requires a finite number of URI lookups only, and so does the retrieval of doc-
uments in the second step; the final step does not look up any URI. To see that q′′ex is
also Web-safe we note that after executing subquery q′ex (e.g., by using the algorithm as
outlined before), the execution of the other (non-Web-safe) subquery qex can be reduced
to a finite number of URI lookups, namely the URIs bound to variable ?x in solution
mappings obtained for subquery q′ex. Although any other URI may also be used to ob-
tain solution mappings for qex, such solution mappings cannot be joined with any of the
solution mappings for q′ex and, thus, are irrelevant for the result of q′′ex.

The example illustrates that there exists an LDQL query that is not Web-safe. In
fact, it is not difficult to see that the argument for the non-Web-safeness of query qex as
made in the example can be applied to any LDQL query of the form 〈?v, lpe, P 〉; that is,
none of these queries is Web-safe. However, the example also shows that more complex
queries that contain such non-Web-safe subqueries may still be Web-safe. Therefore, we
now introduce properties to identify LDQL queries that are Web-safe (even if some of
their subqueries are not). As a basis for the discussion, we first observe that the Web-
safeness of an LDQL query carries over to any semantically equivalent LDQL query.

Fact 1. An LDQL query q is Web-safe if there exists an LDQL query q′ such that q and
q′ are semantically equivalent and q′ is Web-safe.

In conjunction with Corollary 1, Fact 1 allows us to focus our discussion on LDQL
queries in UNION normal form without losing generality. It is easy to show that such
queries are Web-safe if all of their (top-level) subqueries are Web-safe:

Proposition 1. An LDQL query of the form (q1 UNION q2 UNION ... UNION qn) is Web-
safe if each subquery qi (1 ≤ i ≤ n) is Web-safe.

Proof. Assume each subquery qi is Web-safe. Hence, for each qi, there exists an al-
gorithm that satisfies the conditions in Definition 7. Then, the Web-safeness of LDQL
query (q1 UNION q2 UNION ... UNION qn) is easily shown by specifying another algorithm
that calls the algorithms of the subqueries sequentially and unions their results.

By Proposition 1, we can show that an LDQL query in UNION normal form is Web-
safe by showing that each of its UNION-free subqueries is Web-safe. Therefore, in the
remainder of this section we focus the Web-safeness of UNION-free LDQL queries.

LDQL: A Language for Linked Data Queries

180

Our discussion of the (UNION-free) query q′′ex = (qex AND q′ex) in Example 9 suggests
that UNION -free LDQL queries can be shown to be Web-safe if it is possible to execute
any non-Web-safe subquery by using variable bindings obtained from other subqueries.
A necessary condition for such an execution strategy is that the variable in question (i.e.,
variable ?x in the case of non-Web-safe subquery qex =

〈
?x, ε, 〈?x, p1, ?z〉

〉
) is guaran-

teed to be bound in every possible solution mapping obtained from the other subqueries.
To allow for an automated verification of this condition we adopt Buil-Aranda et

al.’s notion of strongly bound variables [5].1 To this end, for any SPARQL graph pat-
tern P , let sbvars(P) denote the set of strongly bound variables in P as defined by
Buil-Aranda et al. [5]. For the sake of space, we do not repeat the definition here. How-
ever, we emphasize that sbvars(P) can be constructed recursively, and each variable in
sbvars(P) is guaranteed to be bound in every possible solution for P [5, Proposition 1].
To carry over these properties to LDQL queries, we use the notion of strongly bound
variables in SPARQL patterns to define the following notion of strongly bound variables
in LDQL queries; thereafter, in Lemma 2, we show the desired boundedness guarantee.

Definition 8. The set of strongly bound variables in a LDQL query q, denoted by
sbvars(q), is defined recursively as follows:

1. If q is of the form 〈u, lpe, P 〉, then sbvars(q) = sbvars(P).
2. If q is of the form 〈?v, lpe, P 〉, then sbvars(q) = sbvars(P) ∪ {?v}.
3. If q is of the form (q1 AND q2), then sbvars(q) = sbvars(q1) ∪ sbvars(q2).
4. If q is of the form (q1 UNION q2), then sbvars(q) = sbvars(q1) ∩ sbvars(q2).

Lemma 2. Let q be an LDQL query. For every Web of Linked Data W and every solu-
tion mapping µ ∈ [[q]]W , it holds that sbvars(q) ⊆ dom(µ).

Proof. Lemma 2 follows trivially from Definition 8 and [5, Proposition 1].

We are now ready to show the following result.

Theorem 1. A UNION-free LDQL query (q1 AND q2 AND ... AND qm) is Web-safe if there
exists a total order ≺ over the set of subqueries {q1, q2, ... , qm} such that for each
subquery qi (1 ≤ i ≤ m), it holds that either (i) qi is a basic LDQL query or (ii) qi is
of the form 〈?v, lpe, P 〉 and ?v ∈ ⋃qj≺qi sbvars(qj).

Proof (Sketch). We prove Theorem 1 based on an iterative algorithm that generalizes
the execution strategy outlined for query q′′ex in Example 9. That is, the algorithm exe-
cutes the subqueries q1, q2, ... , qm sequentially in the order ≺ such that each iteration
step executes one of the subqueries by using the solution mappings computed during
the previous step. By the conditions in Theorem 1, the first subquery (according to ≺)

1 While we may also adopt Buil-Aranda et al.’s notion of bound variables (not to be confused
with their notion of strongly bound variables), a definition of bound variables in LDQL queries
would be based directly on the boundedness of variables in SPARQL patterns. Then, it is not
difficult to see that the undecidability of verifying whether a given variable is bound in a given
SPARQL pattern [5] would also carry over to LDQL queries. Due to space limitations, we omit
discussing boundedness and use directly the decidable alternative (i.e., strong boundedness).

LDQL: A Language for Linked Data Queries

181

cannot be of the form 〈?v, lpe, P 〉; hence, the first step of the iteration is guaranteed to
execute a basic LDQL query. This execution resembles the execution strategy as out-
lined for the (basic) query q′ex in Example 9. For any subsequent iteration step, if the
subquery executed by that step is of the form 〈?v, lpe, P 〉, then the corresponding con-
dition in Theorem 1 (in conjunction with Lemma 2) guarantees that ?v ∈ dom(µ) for
every solution mapping µ obtained from the previous step. These mappings are finitely
many (for a finite Web of Linked Data). Then, the algorithm uses the URIs bound to
variable ?v in these mappings as the only possible context URIs for the execution of
the subquery (instead of using all URIs), which is sufficient because solution mappings
computed for the subquery by using some other context URI would not be join compati-
ble with any of the solution mappings obtained from the previous step. For a full formal
proof and the complete algorithm we refer to the extended version of this paper [13].

To recapitulate, we summarize our proposed procedure to test a given LDQL query q
for Web-safeness based on our results in this paper: First, by using the algebraic prop-
erties in Lemma 1, the query has to be rewritten into a semantically equivalent LDQL
query qnf = (q1 UNION q2 UNION ... UNION qn) that is in UNION normal form, which is pos-
sible for any LDQL query (cf. Corollary 1). Thereafter, the following Web-safeness test
has to repeated for every subquery qi (1 ≤ i ≤ n); recall that each of these subqueries
is a UNION-free LDQL query qi = (qi1 AND qi2 AND ... AND qimi

). The test is to find an or-
der for their subqueries qi1, q

i
2, ... , q

i
mi

that satisfies the conditions in Theorem 1. Every
top-level subquery qi (1 ≤ i ≤ n) for which such an order exists, is Web-safe (cf. The-
orem 1). If all top-level subqueries are identified to be Web-safe by this test, then qnf is
Web-safe (cf. Proposition 1), and so is q (cf. Fact 1).

We conclude the section by pointing out the following limitation of our results: Even
if the given conditions are sufficient to show that an LDQL query is Web-safe, they are
not sufficient for showing the opposite. It remains an open question whether there exists
a (decidable) property of all Web-safe LDQL queries that is sufficient and necessary.

5 Concluding Remarks and Future Work

LDQL, the query language that we introduce in this paper, allows users to express
queries over Linked Data on the WWW. We defined LDQL such that navigational fea-
tures for selecting the query-relevant documents on the Web are separate from patterns
that are meant to be evaluated over the data in the selected documents. This separation
distinguishes LDQL from other approaches to express queries over Linked Data. For
instance, neither any of the existing SPARQL-based approaches [4,10,11,14,16] nor
NautiLOD [8] can be used to express queries such as our example queries q′ex and q′′ex.

Given that our analysis of LDQL in this paper focuses primarily on Web-safeness,
in future work the language may be studied with respect to the complexity of query
evaluation and the problem of query containment. A formal study of the expressive
power of LDQL would also be interesting. A more practical direction for future research
on LDQL is the development of approaches to execute LDQL queries efficiently.

LDQL: A Language for Linked Data Queries

182

References

1. M. Arenas, C. Gutierrez, and J. Pérez. On the Semantics of SPARQL. In Semantic Web
Information Management - A Model-Based Perspective, chapter 13. Springer, 2009.

2. T. Berners-Lee. Linked Data. Online at http://www.w3.org/DesignIssues/
LinkedData.html, 2006.

3. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data – The Story So Far. Semantic Web and
Information Systems, 5(3):1–22, 2009.

4. P. Bouquet, C. Ghidini, and L. Serafini. Querying The Web Of Data: A Formal Approach.
In Proceedings of the 4th Asian Semantic Web Conference, 2009.

5. C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics and Optimization of the SPARQL 1.1
Federation Extension. In Proceedings of the 8th Extended Semantic Web Conference, 2011.

6. R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, and B. McBride. RDF 1.1 Con-
cepts and Abstract Syntax. W3C Recommendation, Online at http://www.w3.org/
TR/rdf11-concepts/, Feb. 2014.

7. R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. J. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, Online at http://tools.ietf.
org/html/rfc2616, June 1999.

8. V. Fionda, G. Pirrò, and C. Gutierrez. NautiLOD: A Formal Language for the Web of Data
Graph. ACM Transactions on the Web, 9(1):1–43, 2015.

9. S. Harris, A. Seaborne, and E. Prud’hommeaux. SPARQL 1.1 Query Language. W3C Rec-
ommendation, Online at http://www.w3.org/TR/sparql11-query/, Mar. 2013.

10. A. Harth and S. Speiser. On Completeness Classes for Query Evaluation on Linked Data. In
Proceedings of the 26th AAAI Conference, 2012.

11. O. Hartig. SPARQL for a Web of Linked Data: Semantics and Computability. In Proceedings
of the 9th Extended Semantic Web Conference, 2012.

12. O. Hartig. An Overview on Execution Strategies for Linked Data Queries. Datenbank-
Spektrum, 13(2), 2013.

13. O. Hartig. LDQL: A Language for Linked Data Queries (Extended Version). Online at
http://olafhartig.de/files/LDQL-ext.pdf, 2015.

14. O. Hartig and G. Pirrò. A Context-Based Semantics for SPARQL Property Paths over the
Web. In Proceedings of the 12th Extended Semantic Web Conference, 2015.

15. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. ACM Trans-
actions on Database Systems, 34, 2009.

16. J. Umbrich, A. Hogan, A. Polleres, and S. Decker. Link Traversal Querying for a Diverse
Web of Data. Semantic Web Journal, 2014.

LDQL: A Language for Linked Data Queries

183

Intuitionistic Data Exchange

Gösta Grahne, Ali Moallemi, and Adrian Onet

Concordia University, Montreal, Canada
grahne@cs.concordia.ca,moa_ali@encs.concordia.ca,adrian_onet@yahoo.com

Abstract. The field of Data Exchange has overcome many obstacles,
but when it comes to negation in rule bodies combined with existentially
quantified variables in rule heads, to unequalities ≠, as well as to incon-
sistency management, the same intractability barriers that plague the
area of incomplete information arise.

In this paper we develop an intuitionistic relevance-logic based semantics
that allows us to extend the polynomial time “naive evaluation” tech-
nique to Data Exchange dependencies (TGDs and EGDs) with negated
atoms and unequalities, and to Data Exchange Target Queries consist-
ing of unions of conjunctive queries with negation and unequalities. The
semantics is also paraconsistent, and avoids the intractability barriers
encountered in inconsistency management as well.

1 Introduction

The problem of data exchange poses one of the major challenges in distributed
information processing environments. A connection in such an environment can
be viewed as a labeled directed edge from a node representing a source database to
a node representing a target database. The edge-label denotes a schema mapping
that guides the middle-ware in restructuring the data from the source database
to fit the requirements of the target database. Since its inception in 2003 by
Fagin et al. in [8], the field of data exchange has been intensely investigated, and
many functionalities are mature for technology transfer. In this paper we focus
on the problems of

– computing and materializing target instances when the schema mapping is
expressed as a set of embedded dependencies (TGDs and EGDs), and

– computing certain answers to unions of conjunctive queries expressed on the
target schema (target UCQs).

These problems have been shown to admit efficient implementation, based
on a property colloquially called the naive evaluation property. The property
roughly says that the incompleteness of some domain values can be ignored, as
long as these values are distinguished from each other, and from the “ordinary”
domain values that denote named and known objects. The price to pay is that we
have to restrict the schema-mappings and target queries to be monotone. Most
attempts to include non-monotone features, such as negation (¬) and unequality

184

(≠), soon run into intractability barriers, due to the underlying issues of incom-
plete information. For a comparison between different closed world semantics
the reader should consult [22].

We recall (see [1]) that a tuple generating dependency (TGD) is a first order
formula of the form ∀XY (Φ(XY)→ ∃Z Ψ(XZ)), where Φ and Ψ are conjunc-
tions of relational atoms, and X, Y, and Z are sequences of variables. We refer to
Φ as the body of the dependency, and to Ψ as the head. In an equality generating
dependency (EGD), there is no existential quantification, and Ψ is an equality
X1 =X2, where X1 and X2 are variables from XY.

When it comes to dependencies with negation in the body, the main pro-
posals are the stratified model the stable model and the well-founded model (for
definitions, see [1]). We argue that these semantics are not well suited for data
exchange, mainly because they “favor” negative information. Sometimes this is
desirable, as for example in the classical Tweety-example:

∀X (BIRD(X),¬PENGUIN(X)→ FLY (X)).
If the source database is {BIRD(tweety)} it might be desirable to “defeasibly”
conclude FLY (tweety). However, if we use the same semantics for

∀X (COUNTRY (X),¬NUKES(X)→ FRIEND(X)),
and the source database is {COUNTRY (sylvania)}, it might not be prudent
to conclude FRIEND(sylvania).

Intuitionistic logic rejects the law of the excluded middle and non-constructive
existence proofs. The motivation is usually epistemological, but it can also be
computational, as in Kleene’s intuitionistic logic based on recursive predicates
[20]. In an intuitionistic approach we would assign both FLY (tweety) and
FRIEND(sylvania) the value unknown or undetermined. This does not pre-
clude the truth-value to later change, as was for example the case with (the
knowledge of) the truth-value of the statement expressing Fermat’s Last Theo-
rem, that changed from unknown to true in 1994.

If non-constructive existence proofs are epistemologically susceptible, what
can one say about defeasible reasoning? We contend that negative facts should
be explicitly derived, just as the positive ones are. In other words, only if we
have explicitly decided the fact ¬PENGUIN(tweety) can we draw the conclu-
sion FLY (tweety). In this spirit we propose to use Nuel Belnap’s four-valued
relevance logic R [5] as foundation for negation in data exchange. This allows
us to derive efficient algorithms for:

– computing and materializing target instances when the schema mapping is
expressed as a set of TGDs with negated atoms in the body and in the head,
and EGDs with negation in the body, and

– computing certain answers to target unions of conjunctive queries with nega-
tion and unequality (≠).

Intuitionistic Data Exchange

185

Belnap’s logic also is paraconsistent, meaning that “if we have inconsistent
information about ducks, it is possible that our information about decimals can
still be trusted” (see Fitting [10], page 10). This feature allows efficient incon-
sistency management, which is not in general possible in the repair-approach
of [3].

The rest of this paper is organized as follows. The next section introduces the
notions used throughout the paper. This is followed by the section dedicated to
Belnap’s Logic FOUR that plays a central role in this paper. Section 4 describes
the “naive evaluation” of conjunctive queries with negation, and Section 5 adds
negation to the bodies of tuple generating dependencies, in a way that allows us
to extend the “naive chase” (i.e. the standard chase [8]). In Section 6 we study
how our techniques affect the termination of the chase procedure. We end with
conclusions in Section 7.

2 Preliminaries

For basic definitions and concepts we refer to [1]. Let a = a1, a2, . . . , an and
b = b1, b2, . . . , bm be sequences of elements from a semigroup (a set with a
binary associative operation ⋅). Then ab denotes the concatenation sequence
a1, a2, . . . , an, b1, b2, . . . , bm, and if n = m we can form the product sequence
a ⋅ b = a1 ⋅ b1, a2 ⋅ b2, . . . , an ⋅ bn. The length of a sequence a = a1, a2, . . . , an,
denoted ∣a∣, is n. The empty sequence is denoted ε. Let X =X1,X2, . . . ,Xn be a
sequence and A a set. Then a mapping f ∶ X → An, where f(Xi) = ai, is listed
as f = {X1/a1,X2/a2, . . . ,Xn/an}.
Signatures, schemas, languages etc. A signature σ consists of a finite set
R = {R,S, . . .} of relation symbols (called the schema), a countably infinite set
Vars = {X,Y,Z, . . .} of variables, a countably infinite set Nulls = {x, y, z, . . .} of
nulls, and a countably infinite set Cons = {a, b, c, . . .} of constants. We assume
that Nulls and Cons are semigroups under the ⋅ operation. Each relational symbol
R ∈ R has an associated natural number ar(R), called the arity of R.

Let σ be a signature. The set of well-formed formulas (wff’s) of the languageLσ is defined inductively by stating that each atom R(X), where R ∈ R and
X ∈ (Vars ∪ Cons)ar(R), is a wff, and then closing the set under ∨,∧,¬,∃, and∀. If Φ(X) is a Lσ-formula, then vars(Φ) denotes its variables, the sequence X
denotes the free variables, and cons(Φ) the constants in Φ. If Φ(X) is a formula
and v is the mapping X ↦ a, then Φ(a) denotes the sentence Φ(v(X)). If a wff
Φ does not have any free variables, it is called a sentence.

Boolean valued instances. In algebraic semantics (see e.g. [23]) an interpreta-
tion of sentences in the object language is obtained through a homomorphism h
into a structure (A, ϕ), where A is an algebra, and ϕ is a subset of the carrier set
A of A. The elements in ϕ represent “truth.” The homomorphism maps atomic
sentences to elements in A, and the connectives and quantifiers are mapped into
operators in the algebra. Under interpretation h, a sentence Φ is then “true”
in A, if h(Φ) ∈ ϕ.

Intuitionistic Data Exchange

186

The well known Boolean valued models [19] are obtained by taking the algebra
to be a Boolean algebra B = (B,∨,∧,¬,0,1), and ϕ to be an ultrafilter of B.
Recall that an ultrafilter is a subset ϕ of B, such that 1 ∈ ϕ; for all b1, b2 ∈ B,
b1 ∧ b2 ∈ ϕ iff b1 ∈ ϕ and b2 ∈ ϕ; and for all b ∈ B either b ∈ ϕ or ¬ b ∈ ϕ, but{b,¬ b} /⊆ ϕ. Adapting this approach to database instances (models), we get the
following definitions.

Definition 1. Let σ = (R, Vars, Nulls, Cons) be a database signature, and let
B = (B,∨,∧,¬,0,1) be a Boolean algebra. A B-instance I consists of the follow-
ing parts:

1. A finite set of elements dom(I) ⊆ Cons ∪Nulls, the domain of I,
2. cons(I) = dom(I) ∩ Cons, the constants of I,
3. The set nulls(I) = dom(I) ∩Nulls, the nulls of I, and
4. For each R ∈ R and a ∈ dom(I)ar(R), an interpretation R(a)I ∈ B.

Definition 2. Let Φ be an L-sentence, B a Boolean algebra, ϕ ⊂ B an ultrafilter
in B, and I a B-interpretation. Then the satisfaction relation I ⊧B,ϕΦ is defined
inductively as follows.

1. I ⊧B,ϕ R(a), if R(a)I ∈ ϕ,
2. I ⊧B,ϕ Φ ∧ Ψ , if ΦI ∧ ΨI ∈ ϕ,
3. I ⊧B,ϕ ¬Φ, if ¬(ΦI) ∈ ϕ,
4. I ⊧B,ϕ ∀XΦ(X), if ⋀ a∈dom(I)ar(R)(Φ(a)I) ∈ ϕ,

5. I ⊧B,ϕ Φ→ Ψ , if ΦI ∈ ϕ entails that ΨI ∈ ϕ.

The natural partial order ≤ in B is defined as α≤β iff α∨β = β. The partial
order can be lifted to (B, ϕ)-instances I and J by stipulating that I ≤J if
cons(I) ⊆ cons(J), and there is a mapping h ∶ dom(I)→ dom(J), identity on
the constants, such that R(a)I ≤ R(h(a))J , for all R ∈ R and a ∈ dom(I)ar(R).
Such a mapping h is said to be a homomorphism from I to J . It is easily shown
that ≤ is a partial order on the equivalence classes generated by the relationI ≃ J , defined to hold iff I ≤J and J ≤I.

Going back to the satisfaction relation ⊧B,ϕ, note that if B = {0,1}, then
B = 2 (the two-element Boolean algebra), and the unique ultrafilter is {1}. Thus
we can write simply ⊧2, and I ⊧2 Φ becomes the standard two-valued semantics
in which → behaves as material implication. Thus I ⊧2 Φ → Ψ if and only if
ΦI ≤ ΨI . Here ≤ is the natural order, i.e. 0≤1, and I ≤J means that there is a
classical database homomorphism [1] from I to J , and I ≃ J means that I andJ are homomorphically equivalent (in the classical database sense).

Conjunctive queries and certain answers. A conjunctive query (CQ) is a
first order formula of the form q = ∃YΦ(XY), where Φ is a conjunction of
atoms of Lσ. For an atom R of arity k in Φ, for notational convenience we write
R(XY) instead of R(xi1 , . . . , xik), where xi1 , . . . , xik is a subsequence of XY.
The free variables of Φ are those in X. If X = ε, the expression denotes a Boolean
CQ. A query q is called a union of conjunctive queries (UCQ) if it is of the form
q = ∃Y(Φ1(XY)∨ . . .∨Φm(XY)), where each Φi is a conjunction of atoms. It is

Intuitionistic Data Exchange

187

a well known fact that UCQs are monotonic in the 0≤1 partial order, meaning
that if I ≤J , then q(I)≤ q(J), for all UCQs q. It has further been shown in [14]
that I ≃J if and only if q(I)≃ q(J), for all UCQs q. Thus, if a user only has
UCQs as query language, then the user cannot distinguish between ≃-equivalent
(homomorphically equivalent) instances. This leads to the important notion of
incomplete instances and certain answers, instrumental in data exchange [8].
Conceptually, an incomplete database instance is a set X of ordinary instances I.
The information that is certain is the information that holds in all possible
instances (possible worlds). This leads to the definition of the certain answer to
a UCQ q on an incomplete instance X as ⋀q(X) = ⋀{q(I) ∶ I ∈ X}. Here ⋀
denotes the ≤-greatest lower-bound (modulo ≃) of a set of ordinary instances.
Likewise, ⋁ denotes the ≤-least upper-bound (modulo ≃). The least upper-bound
is clearly given by the disjoint (rename nulls apart) union. The lower bound ⋀
has been shown to exist by Hell and Nesetril [16], whose results were generalized
by Libkin in [21]. In particular, Libkin showed that if X is a finite set of instances,
then ⋀(X) can always be represented as a finite instance (up to ≃-equivalence).

Usually the certain answer is further restricted to only the named domain
values (the constants). For an instance I, define I↾ as function I restricted to
sequences of objects in cons(I). Thus, the usual certain answer is

C ert(q,X) = (⋀{q(I) ∶ I ∈ X})↾ . (1)

Note that q(X) is what Libkin [21] calls answers as knowledge, while (1) is
his answers as objects. Since an instance I can contain nulls, it can be viewed
as a “naive table” [18], that represents the set of complete (ground) instancesXI = {J ∶ I ≤ J and dom(J) ⊆ Cons}. Consider now an instance I as a naive
table representing the set XI of possible worlds. Then the “naive evaluation
theorem” says that ⋀q(XI) ≃ q(I). Consequently for a UCQ q, we have [18, 8]:

C ert(q,XI) = (q(I))↾ . (2)

3 Belnap’s logic FOUR
We are interested in Belnap’s intuitionistic logic FOUR. This logic has a sound
and complete axiomatization in terms of a system R of relevance logic, and
Φ→ Ψ becomes relevant entailment of first degree (see [2, 5]).

The logic FOUR is a generalization of Kleene’s strong three-valued logic.
FOUR has four truth-values ∅,{f},{t}, and {f , t}. Intuitively, assigning a sen-
tence Φ the value {t} means that “the computer has been told that Φ is true,”
(see [5], page 11) and assigning the value {f} means that “the computer has been
told that Φ is false.” Furthermore, the value {f , t} means that “the computer
has been told that Φ is false, and the computer has been told that Φ is true.” In
other words, Φ is inconsistent. Finally, assigning Φ the value ∅ means that “the
computer has not been told anything about the truth-value of Φ,” that is, the
truth-value of Φ is unknown.

Intuitionistic Data Exchange

188

Since truth-values are sets, they are naturally ordered by set-inclusion. The
more elements the set contains, the more information the computer has about
the truth. This gives rise to the information ordering, which we in the sequel
will denote t. We can still retain the ≤-order, which is called the truth order, by
stipulating that {f}≤{t}, and that ∅ and {f , t} are incomparable and both lie
strictly between {f} and {t}. We shall use the following symbols: 0 for {f}, 1
for {t}, � for ∅, and ⊺ for {f , t}. Furthermore, ⊺ and � are incomparable wrt≤, and 0 and 1 are incomparable in t. All of this can be put together into a
structure 4 = (4,∨,∧,/,.,¬,0,1,�,⊺), where 4 = {�,⊺,0,1}. Here ∨ is the least
upper bound in the ≤-order, and ∧ the greatest lower bound (i.e. ⊺∨� = 1, and⊺∧� = 0, etc). The least upper bound in the t-order is /, and the greatest lower
bound is . (e.g. 0/1 = ⊺, and 0.1 = �, etc). For negation, ¬1 = 0,¬0 = 1,¬⊺ = ⊺,
and ¬� = �. Consequently, (4,∨,∧,¬,0,1) is a Boolean algebra.

Belnap’s structure 4 has subsequently been generalized by Ginsberg and
Fitting to so called bilattices [12, 9]. The simplest non-trivial bilattice is 4, just
as 2 is the simplest non-trivial Boolean algebra. Bilattices have been thoroughly
investigated by Fitting and Avron, among others (see e.g. [9, ?,?,?]). The algebra
4 has been shown to provide a principled and uniform account of various non-
monotonic semantics of logic programming with negation, including the stable
models and the well-founded model.

Since 4 is an algebra, it can be used to give meaning to Lσ sentences, by
choosing the designated values ϕ. Arieli and Avron [4] have argued that ϕ should
be a ultrabifilter1 and they have shown that ϕ = {⊺,1} is the unique ultrabifilter
in 4. We shall thus work with the algebraic semantics (4,{⊺,1}).

A 4-instance is then a B-interpretation of Definition 1, where B = 4, and
by noticing that (4,∨,∧,¬,0,1) is a Boolean algebra, I ⊧4 Ψ can be read from
Definition 2 of ⊧(B,ϕ), by choosing B = 4, and ϕ = {⊺,1}.

Let I and J be 4-instances, such that cons(I) ⊆ cons(J) and let h be a
mapping from dom(I) to dom(J), such that h is identity on the constants.
The mapping h is said to be a homomorphism from I to J , provided that
R(a)I t R(h(a))J , for all R ∈ R and a ∈ dom(I)ar(R). The partial order t of 4
is lifted to 4-instances in the following definition.

Definition 3. Let I and J be 4-instances such that cons(I) ⊆ cons(J). We
say that J is more informative than I, denoted I t J , if there is a homomor-
phism from I to J . Furthermore, if both I t J and J t I, we say that I andJ are information equivalent, and denote it I ≐ J . Let I denote the set of all
instances over σ. Then I /≐ denotes the set of equivalence classes of instances
induced by ≐.

Clearly t is a partial order on I /≐. Due to space limitation, the definitions
for relations . and / are omitted, they can be found in the full version [13]. We
need to verify that . and / indeed are the meet and join in the lattice induced
by t.

1 For a technical definition, see [4]

Intuitionistic Data Exchange

189

Lemma 1. Let I and J be 4-instances. Then I t J if and only if I . J ≐ I.
and I t J if and only if I /J ≐ J .

Reducing FOUR to TWO. We now losslessy represent a 4-instance as a two-
valued instance as follows.

Definition 4. 1. Let I be a 4-instance over schema R. The 2 -projection of I,
denoted I↓2, is a two-valued Boolean instance over schema ⋃R∈R{R+,R−},
where

(a) cons(I↓2) = cons(I), nulls(I↓2) = nulls(I), and dom(I↓2) = dom(I).
(b) For all relations R ∈ R and a = a1, . . . , aα(R), where ai ∈ dom(I) for all

i ∈ {1, . . . , α(R)}, R+(a)I↓2 = 1 if R(a)I u 1, and 0 otherwise; and

R−(a)I↓2 = 1 if R(a)I u 0, and 0 otherwise.

2. Let I be a 2-instance. Then the 4-instance corresponding to I is I↑4, where

(a) cons(I↑4) = cons(I), nulls(I↑4) = nulls(I), and dom(I↑4) = dom(I).
(b) For all R ∈ R and a = a1, . . . , aα(R), for all i ∈ {1, . . . , α(R)},

R(a)I↑4 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⊺ if R+(a)I = 1 and R−(a)I = 1� if R+(a)I = 0 and R−(a)I = 0
1 if R+(a)I = 1 and R−(a)I = 0
0 if R+(a)I = 0 and R−(a)I = 1

4 UCQs with negation

The intuitionistic semantics (4,{⊺,1}) allows us to extend the (polynomial time)
“naive evaluation” from unions of conjunctive queries to unions of conjunctive
queries with negation. We next define CQs with negation. UCQs with negation
is defined similarly.

A literal is an expression of the form R(X) or ¬R(X), where R(X) is an
atom in Lσ. A conjunctive query with negation (NCQ) is a first order formula of
the form q = ∃YΦ(XY), where Φ is a conjunction of literals. Consider now an
NCQ

q = ∃Y (n⋀
i=1Ri(XY) ∧ n+m⋀

i=n+1¬Ri(XY)). (3)

The NCQ q, when applied on an instance I, extends the interpretation I to also
include the relation Q, defined as follows.

Definition 5. Let I be a 4-instance and q = ∃YΦ(XY) an NCQ of the form
(3). Let v range over all mappings from XY to dom(I). Then

Q(a)I = ⋁{v ∶v(X)=a}(⋀n

i=1Ri(v(XY))I ∧ ⋀n+m
i=n+1¬ (Ri(v(XY))I)),

for each a ∈ dom(I)∣X∣.

Intuitionistic Data Exchange

190

We next show that NCQs are monotonic in the information order t. By a
recent result of Gheerbrant et al. [11], such monotonicity is a necessary and
sufficient condition for a class of queries to admit naive evaluation. Indeed, the
following holds.

Theorem 1. Let q be an NCQ, and let I and J be 4-instances, such that I t J
by homomorphism h. Then Q(a)I t Q(h(a))J , for all a ∈ dom(I)ar(Q).

Furthermore, the naive evaluation property of CQs on 2-instances can now be
extended to NCQs on 4-instances. It turns out that an NCQ q can be evaluated
naively on I↓2 by turning q into a UCQs, denoted q↓2. Assume q is of the form
(3). Then

q↓2 = ∃Y((n⋀
i=1R

+
i (XY) ∧ n+m⋀

i=n+1R
−
i (XY)) ∨ n⋁

i=1R
−
i (XY) ∨ m⋁

j=n+1R
+
j (XY)). (4)

In the next theorem we view an NCQ query q as mapping an instanceI to the instance q(I), where q(I) is a 4-instance over schema {Q}, with
Q(a)q(I) = Q(a)I .

Theorem 2. Let q be an NCQ and I a 4-instance. Then q(I) ≐ (q↓2(I↓2))↑4.
Similarly to the two-valued case, we can regard a 4-instance I as a naive table
defining the set XI = {J ∶ I t J and dom(J) ⊆ Cons} of possible worlds.
We can now extended the naive evaluation property to NCQs on 4-instances, by
using the result (proved in the full version) that � q(XI) ≐ q(I). In analogue
with (1) we define the certain answer as C ert4(q,X) = (�{q(I) ∶ I ∈ X})↾ . To
wrap this section up formally, we conclude

Corollary 1. Let q be an NCQ and I a 4-instance. Then C ert4(q,XI) =((q↓2(I↓2)↑4)↾ .
Note that all the previous results hold as well for the larger class NUCQ of

unions of conjunctive queries with negation. We have only presented the trans-
formation of NCQs q into UCQs q↓2. In a very similar fashion we can transform
any NUCQ query into a UCQ, while preserving all theorems of this section, and
in particular Corollary 1.

5 Data Exchange in TWO and FOUR
A tuple generating dependency (TGD) is a first order formula having the form∀XY(Φ(XY) → ∃Z R(XZ)). An equality generating dependency (EGD) is a
first order formula of the form ∀X(Φ(X) → X1 = X2), where X1 and X2 are
variables in X. A TGD with negation and unequality (NTGD/≈) is a TDG that
can have atomic negations in the body and in the head, and that also includes
a special equality symbol ≈, possibly negated (denoted /≈). Note that NTGD≈s
include the EGDs. Also, the notion of a 4-instance has to be extended to account

Intuitionistic Data Exchange

191

for the explicit equality. Details appear in the full paper [13]. The salient point
is that an atom a ≈ b can have truth-values in 4, meaning that (a ≈ b)I can be
inconsistent or unknown, in addition to true or false. Let n ∈ {2,4}. A depen-
dency ξ is said to be satisfied in an n-instance I if I ⊧n ξ. A set of dependencies
is denoted Σ, and I ⊧n Σ, if I ⊧n ξ for all ξ ∈ Σ. The following is a central
concept in data exchange.

Definition 6. Let I be a 2-instance (a 4-instance) and Σ a set of TGDs and
EGDs (a set of NTGD≈s). A 2-universal model (a 4-universal model) of (I,Σ)
is a 2-instance J (a 4-instance J), such that

1. I ≤J (I t J),
2. J ⊧2 Σ (J ⊧4 Σ), and
3. for all instances K, if I ≤ K and K ⊧2 Σ, then J ≤K

(if I t K and K ⊧4 Σ, then J t K).

Let I be a 2-instance and Σ a set of dependencies. The definition of the
procedure Chase(I,Σ) can be found in [8, 7]. The chase procedure is said to
successfully terminate (or simply terminate) [8], if it does not fail due to some
EGD and it stops after a finite number of steps. In this case Chase(I,Σ) de-
notes the instance returned by the chase procedure. It is known (see [8, 7]) that
Chase(I,Σ) is a 2-universal model of (I,Σ).
Data Exchange. A data exchange schema is a schema of the form S∪T, where
S ∩T = ∅. The schema S is called the source schema, and T is called the target
schema. Let S∪T be a data exchange schema. A source-to-target TGD (st-TGD)
is a TGD where the relation symbols in the body come from S and the relation
symbols in the head come from T. Source-to-target NTGD≈s (s-t NTGD≈s) are
defined similarly. A target EGD (t-EGD) is an EGD where all relation symbols
come from T. A data exchange setting is a pair (S∪T,Σ), where S∪T is a data
exchange schema, and Σ is a set of s-t TGDs (or s-t NTGD≈s) and t-EGDs.

A 2-instance of a data exchange setting is a pair (I,Σ), such that nulls(I) =∅, R(a)I = 0, for all R ∈ T and a ∈ dom(I)ar(R), and Σ = Σst ∪Σt, where Σst
is a set of s-t TGDs and Σt is a set of t-EGDs.

A 4-instance of a data exchange setting is like a 2-instance, except that Σst
can contain NTGD≈’s, and that R(a)I = �, for all R ∈ T and a ∈ dom(I)ar(R).

Let n ∈ {2,4} and ≼ ∈ {≤,t}. An n-solution for an n-instance (I,Σ) of a data
exchange setting (S ∪T,Σ), is an n-instance J , such that I ≼ J , J ⊧n Σ, andJ↾S= I↾S. The notation J↾S stands for the instance J restricted to the relation
symbols in S, and similarly for I↾S. The set of all n-solutions to an n-instanceI in setting (S ∪T,Σ) is denoted Soln(I,Σ). A n-solution J ∈ Soln(I,Σ) is
said to be an n-universal solution if J ≼ K, for all K ∈ Soln(I,Σ).

Let I be a 2 instance of a data exchange setting (S ∪ T,Σ), and let q =∃YΦ(XY) be a target UCQ, i.e. such that all relation symbols in Φ come from T.
Then the certain answer [8] to q on (I,Σ) is defined as

C ert2(q,I,Σ) = (⋀{q(J) ∶ J ∈ Sol2(I,Σ)})↾ . (5)

Intuitionistic Data Exchange

192

In other words, C ert2(q,I,Σ) is the greatest lower bound in the partial order≤ of the set {q(J) ∶ J ∈ Sol2(I,Σ)}, restricted to the constants. The following
result is at the foundation of data exchange.

Theorem 3. [8] Let (I,Σ) be a data exchange setting, such that the chase with
Σ of I terminates, and let q be a target UCQ. Then

1. J = Chase(I,Σ) is a 2-universal solution for (I,Σ).
2. C ert(q,I,Σ) = (q(J))↾.

In the full paper [13] we show that by a suitable reduction, any set Σ of
NTGD≈s can be transformed into a set Σ↓2 of TGDs, such that for all 4-instancesI, I ⊧4 Σ if and only if I↓2 ⊧2 Σ↓2. The following theorem makes the connection
between the data exchange solutions, as defined in [8], and solutions for the
intuitionistic data exchange problem.

Theorem 4. Let (S ∪ T,Σ) be a data exchange setting where Σ consists of
st-NTGD≈s and t-EGDs, and let I be a 4-instance. Then

Sol4(I,Σ) = Sol2(I↓2,Σ↓2)↑4.
Armed with this result we now show that we can use the chase process defined

in [8] to find a 4-universal model. As the next theorem shows, a 4-universal
solution is a good candidate to be materialized and used to compute the certain
answer for any NUCQ-query.

Theorem 5. Let (I,Σ) be a 4-instance of a data exchange setting, where Σ
consists of st-NTGD≈s and t-EGDs, Then (Chase(I↓2,Σ↓2))↑4 is a 4-universal
solution for (I,Σ). Moreover, for every NUCQ query q we have

C ert4(q,I,Σ) = (q↓2((Chase(I↓2,Σ↓2))))↾↑4 .

6 On Universal Solution Existence

In the previous sections we have shown that for a given 4-instance I and a
set of NTGDs Σ, (or NTGD/≈s), the 4-universal solution is the best candidate
for target materialization in data exchange, and that as such it can be used to
efficiently compute certain answers to target UNCQ queries (or UNCQ≈ queries).
The question then arises whether a 4-universal solution exists. Since our results
include the lossless decomposition Sol4(I,Σ) = Sol2(I↓2,Σ↓2)↑4, the answer
follows directly from from [7] and [15]. Formally, we have

Theorem 6. 1. The problem of testing if there exists a 4-universal solution
for a given 4-instance and a set of NTGD≈s is RE-complete.

2. The problem of testing if a set of NTGD≈s has a 4-universal solution for
every 4-instance is coRE-complete.

Intuitionistic Data Exchange

193

The definition of the core-chase procedure can be found in [7], from which the
next theorem follows.

Theorem 7. The core chase procedure is complete for finding 4-universal solu-
tions for 4-instances I and NTGD≈s

One of the important classes for which universal solutions are guaranteed
to exist, is the guarded dependencies of [6]. Applying the definition from [6],
we say that an NTGD≈ is guarded if the body has an atom that contains all
the universally quantified variables. It can easily be shown that if Σ is a set of
guarded NTGD≈s, then Σ↓2 is a set of guarded TGDs as well. From this and
from the elegant result of [17] it follows that

Theorem 8. A 4-universal solution always exists for a set of guarded NTGD≈s.

In the literature one can find many classes of TGDs that are known to en-
sure uniform chase termination, and thus guaranteeing the existence of universal
solutions for all instances (for an overview, see e.g. [22]). Let C be such a class.
We then have

Corollary 2. Let Σ be a set of NTGD≈s. If Σ↓2 ∈ C, then a 4-universal solution
for (I,Σ) exists, for all 4-instances I.

We note that most of the known classes guaranteeing uniform termination have
a tractable membership problem.

7 Conclusions

In this paper we have put forth a new approach to Data Exchange based on
Belnap’s logic FOUR. We showed that moving to a four-valued logic comes with
the benefit of naturally extending the mapping language to NTGD≈s and the
query language to NUCQ≈s, thus allowing negation over atoms, including equal-
ity atoms a ≈ b. We also showed that well-known techniques from Data exchange
(chase, universal solution, naive evaluation, etc) can be used in FOUR as well.
Furthermore, the core of a 4-instance I (minimal instance in size that is ≃ equiv-
alent with I) is the same as core(I↓2)↑4. Thus the core chase [7] is complete in
finding 4-universal solutions as well. In the special case where the instances
are two-valued, the mappings are TGDs and EGDs, and the target queries are
UCQs, the semantics reduces to the classical one [8].

There is still more work to be done as we haven’t touched on for instance
meta-data management problems, such as composition and inverse. Another
aspect that needs to be further investigated is the chase termination problem in
TWO for a set of TGDs corresponding to a set of NTGD≈s in FOUR. Note that
the set of TGDs in this case is special in the sense that it always contain the set
of full TGDs expressed by Σ.

We believe that ⊧4 is a semantics with natural appeal, and one that can be
practically implemented over existing DBMSs.

Intuitionistic Data Exchange

194

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

2. Alan Anderson, Belnap R., D. Nuel, and J. Michael Dunn. Entailment: The Logic
of Relevance and Necessity, Vol. I. Princeton University Press, 1992.

3. Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query an-
swers in inconsistent databases. In Victor Vianu and Christos H. Papadimitriou,
editors, PODS, pages 68–79. ACM Press, 1999.

4. Ofer Arieli and Arnon Avron. The value of the four values. Artif. Intell., 102(1):97–
141, 1998.

5. Jr. Belnap, Nuel D. A useful four-valued logic. In J.M̃ichael Dunn and George
Epstein, editors, Modern Uses of Multiple-Valued Logic, volume 2 of Episteme,
pages 5–37. Springer Netherlands, 1977.

6. Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query
answering under expressive relational constraints. In KR, pages 70–80, 2008.

7. Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In PODS,
pages 149–158, 2008.

8. Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data ex-
change: Semantics and query answering. In ICDT, pages 207–224, 2003.

9. Melvin Fitting. Bilattices and the semantics of logic programming. J. Log. Pro-
gram., 11(1&2):91–116, 1991.

10. Melvin Fitting. The family of stable models. J. Log. Program., 17(2/3&4):197–225,
1993.

11. Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. When is naive evalua-
tion possible? In PODS, pages 75–86, 2013.

12. Matthew L. Ginsberg. Bilattices and modal operators. In Rohit Parikh, editor,
TARK, pages 273–287. Morgan Kaufmann, 1990.

13. Gösta Grahne, Ali Moallemi, and Adrian Onet. Intuitionistic data exchange. Tech-
nical report, http://arxiv.org/.

14. Gösta Grahne and Adrian Onet. Representation systems for data exchange. In
ICDT, pages 208–221, 2012.

15. Gösta Grahne and Adrian Onet. The data-exchange chase under the microscope.
CoRR, abs/1407.2279, 2014.

16. Pavol Hell and Jaroslav Neŝetr̈il. Graphs And Homomorphisms. Oxford University
Press, 2004.

17. André Hernich. Computing universal models under guarded tgds. In ICDT, pages
222–235, 2012.

18. Tomasz Imielinski and Witold Lipski Jr. Incomplete information in relational
databases. J. ACM, 31(4):761–791, 1984.

19. Thomas Jech. Boolean valued models. In Handbook of Boolean Algebras, pages
1197–1211, 1989.

20. Stephen Cole Kleene. Introduction to metamathematics. D. Van Norstrand, 1952.
21. Leonid Libkin. Incomplete data: what went wrong, and how to fix it. In PODS,

pages 1–13, 2014.
22. Adrian Onet. The chase procedure and its applications. PhD thesis, Concordia

University, 2012.
23. Alasdair Urquhart. Basic many-valued logic. In D.M. Gabbay and F. Guenth-

ner, editors, Handbook of philosophical logic, volume 2, pages 249–295. Springer
Netherlands, 2001.

Intuitionistic Data Exchange

195

A preliminary investigation into SPARQL query
complexity and federation in Bio2RDF

Carlos Buil-Aranda1, Martı́n Ugarte1, Marcelo Arenas1, and Michel Dumontier2

1 Department of Computer Science, Pontificia Universidad Católica, Chile
{cbuil, marenas}@ing.puc.cl

martinugarte@puc.cl
2 Stanford Center for Biomedical Informatics Research

Stanford University, Stanford, CA, USA
michel.dumontier@stanford.edu

Abstract When users query a SPARQL endpoint, they normally face an empty
text box in which they have to write the desired queries. This obstructs the process
of obtaining the data they want, since users rarely have any assistance in query-
ing a (possibly huge) RDF database. In this paper we report a deep analysis of the
server log files that record the queries that users send to the SPARQL endpoints,
focusing in the Bio2RDF cluster. This log analysis reveals the large number of
repeated queries that users submit, and how they pursue a trial and error process
by adding and removing operations from the submitted queries to obtain the de-
sired results. We also show how users try to connect to other RDF datasets in the
Linked Open Data cloud. Our results offer insight into the interaction between
users and a schema-light RDF dataset, and secondly, suggest improvements to
SPARQL server optimizations in terms of optimization and results caching.

1 Introduction

Querying Semantic Web data is a difficult task. Normally the databases are publicly
available and they can be accessed via a web service called SPARQL endpoint. This
service is made available through a web application with a single text box, allowing
users to enter arbitrary SPARQL queries. That text box generally contains an exam-
ple query, which is the only assistance that users have for accessing the data stored in
the RDF database. That default query may point them to some useful data but most
probably the results obtained will be meaningless for specific tasks. This situation is
more problematic if instead of a single RDF database, users wants to access a cluster
of databases like in the Bio2RDF [9,3] project. Bio2RDF is an open source project that
provides over 30 biomedical datasets as Linked Data. Each dataset is made available for
download and is available for querying in a dataset-specific SPARQL endpoint. In this
case users not only face the difficulty of accessing the data in every dataset separately,
but they also face the difficulty of combining results from several databases.

In this paper we propose to analyze the server log files from the datasets in the
Bio2RDF project. This log analysis shows that there is a large amount of repeated
queries, and that users follow a trial and error process, varying the complexity of the
queries for obtaining the results they want. We also show how users try to connect to

196

external RDF datasets in the Linked Open Data cloud, and we try to understand and
explain the users’ intentions when they query a SPARQL endpoint. The log analysis we
show in this paper is driven by two goals: first to help users in obtaining useful results
from a semi-unknown RDF database and second, improve the performance of SPARQL
servers by looking in detail how users access them.

Related Work There have been several attempts to obtain useful research results from
SPARQL endpoints query logs. Most of them have been published in the workshop
series Usage Analysis and the Web of Data (USEWOD) [5,4,6,7], which is the leading
initiative for encouraging research in SPARQL endpoints log analysis. These research
works vary from analyzing the usage frequency of the main SPARQL operators [2],
characterizing machine agents [15] or identifying browsing and query patterns by using
Description Logics ontologies [10]. Further research works include a more in-detail
analysis of the FILTER operator usage [1], a log analysis towards caching and pre-
fetching SPARQL query results for improving performance [11], and a work that used
the USEDOWD dataset to differentiate queries generated by software applications from
those generated by users [16]. Other works outside the USEWOD workshop include an
analysis of the SPARQL queries submitted to DBpedia [14], statistics about the access
to RDF datasets in the Linked Data Cloud in 2010 [13] and a method to detect errors or
weaknesses within ontologies used for Linked Data population based on statistics and
network visualizations [12].

2 Log Processing

We analyzed the log files generated by the Bio2RDF servers maintained by the Dumon-
tier Lab over an 18 month period (from May 12th 2013 until September 28th 2014).
These logs included every valid HTTP GET/POST request that was received by each
Bio2RDF endpoint. The total amount of requests received was 115,119,540. We first
parsed these log files generating, for each request, a tuple containing the user’s IP ad-
dress (used as user ID), the time and date in which the HTTP request was received, the
string in the HTTP request unquoted, the user agent which submitted the request, the
Bio2RDF server targeted, the HTTP response code, and the size of that response. Out
of the 115,119,540 valid HTTP requests received, 90,938,804 of them corresponded
to SPARQL queries. This is natural since the studied servers also serve websites and
further services. The queries were characterized as SELECT, ASK, CONSTRUCT and
DESCRIBE queries. The next step was to remove duplicate queries. We parsed the tu-
ples generated in the previous file and we obtained that (surprisingly) only 6,538,280
queries were unique, having thus a total of 84,400,524 repetitions. As our log study is
intended to analyze the users’ behavior, repetitions were only counted under the same
user, meaning that the same query issued by two different users is not considered as a
repetition. Next, we transformed the 6,538,280 queries into an algebraic representation,
using the SPARQL Syntax Expressions1 format from Apache Jena. This transformation
facilitated a detailed analysis of the queries. For the generation of the SSE expressions

1 https://jena.apache.org/documentation/notes/sse.html

A preliminary investigation into SPARQL query complexity and federation in Bio2RDF

197

we used the Ruby library Ruby-RDF2, which was unable to parse 174,011 of the queries
(possibly due to syntax errors). For 1,289,134 of the remaining 6,364,269, we were un-
able to generate the corresponding algebraic expression, in some cases due to syntax
errors that were not captured by the SSE parser (e.g. not using <> for URIs). Finally
this process generated a total of 4,901,124 unique queries for analysis.

3 Complexity Analysis

To gain insight into what users formulate against Bio2RDF SPARQL endpoints, we
tabulated combinations of operators mentioned in the queries. We first decomposed
each query into its operators, number of triple patterns, and expressions used in FILTER
clauses.

Our results, summarized in Table 1, show that the most submitted query pattern
is a SELECT query with a single triple pattern, scoring more than 820,000 submis-
sions out of the 4,901,124 unique queries. The second most submitted query pattern is
a CONSTRUCT query with a single triple pattern and a FILTER expression (rep-
resenting more than 540,000 unique queries) followed by a DESCRIBE query (which
represent about 440,000 unique queries). The three patterns mentioned above charac-
terize a 36.8% of the analyzed queries. This shows that the general usage of SPARQL is
very basic and the patterns in the body of the queries are rather simple, but users know
about the language given they use distinct query forms (SELECT, CONSTRUCT and
DESCRIBE). We can conclude that there is a fair understanding of the query language,
but the datasets are not known by the users. Hence, they issue basic queries to gain some
insight on how data is structured.

Figure 1 represents the previous situation in more detail, showing how the decreas-
ing amount of queries submitted is directly related with the increasing amount of oper-
ators in the queries. The less common query patterns contained several operators (e.g.
3 OPTs, 3 joins and 7 triples), which is by no means surprising. We can also see how
only the first 20 query patterns represent a 90% of the queries submitted, which can be
an interesting fact to consider when optimizing a SPARQL endpoint. Figure 1 contains
the first 50 query patterns, with labels for some of them. In total there are almost 1,000
different query pattern types. The data used to generate Figure 1 and a more detailed
figure is available at https://plot.ly/%7Ecbuil/31.

4 Iterative Analysis

Next, we examined the behavior of users in terms of how they increased/decreased the
amount of operators and triple patterns in SPARQL queries over time. We hypothesized
that if an initial query returned a large set of results, users might then refine the query
with additional SPARQL operators to reduce the result size. In contrast, if a user ob-
tains too few results, she might generalize the query by removing some operations in
order to increase the number of results. To evaluate this we defined a query complex-
ity measure which assigns a weight of 1 to each operator and each triple pattern. For

2 https://github.com/ruby-rdf/sparql

A preliminary investigation into SPARQL query complexity and federation in Bio2RDF

198

TR
IP

LE
: 1

SE
LE

C
T:

1
A

N
D

: 1
TR

IP
LE

: 3
LI

M
IT

: 1
TR

IP
LE

: 1

A
N

D
: 1

LI
M

IT
: 1

TR
IP

LE
: 3

SE
LE

C
T:

1

TR
IP

LE
: 1

SE
LE

C
T:

1
FI

LT
ER

: 1

A
N

D
: 1

TR
IP

LE
: 4

SE
LE

C
T:

1
FI

LT
ER

: 1
TR

IP
LE

: 1
A

SK
: 1

A
N

D
: 1

TR
IP

LE
: 2

A
N

D
: 1

TR
IP

LE
: 5

SE
LE

C
T:

1

0

2

4

6

8

·105

Query Pattern

N
um

be
ro

fR
ep

et
iti

on
s

Figure 1. Query patterns ordered by number of repetitions. The most common pattern is
SELECT v WHERE t, being v a set of variables (or the symbol ∗) and t a triple pattern.

instance, a query of the form DESCRIBEu (where u is a URI) has complexity 1 bea-
cause of the DESCRIBE operator, while a SELECT query joining 3 triple patterns has
a complexity of 5; 1 for the SELECT operator, 1 for the join (bgp) and 1 for each triple
pattern.

We measured the HTTP request response size as a proxy for the size of the result
set returned to the user. Then, we computed the number of consecutive complexity
increases/decreases (referred to as a streak) for each user. Table 4 shows the amount
of complexity-increasing streaks we found in the Bio2RDF log files. The first column
shows the length of each streak. For example length 2 means that a user issued three
queries, being the second more complex than the first and the third more complex than
de second. The second column shows the times we found streaks of that length. The
third column show how many of the streaks stopped when the result size of the last
query was larger than the result size of the second last query. Conversely, the fourth
column shows the same but when the result size of the last query was smaller than the
result size of the second last query. The last two columns are intended to understand
the intention of a user when he issues a streak of increasing queries: did the user stop

A preliminary investigation into SPARQL query complexity and federation in Bio2RDF

199

Table 1. Query Pattern Repetitions. The most repeated query pattern has a SELECT and a single
triple, followed by a CONSTRUCT query and a DESCRIBE query.

Number of Query Pattern Repetitions Query Pattern
821046 TRIPLE PATTERNS: 1, SELECT: 1
544341 TRIPLE PATTERNS: 1, CONSTRUCT: 1,FILTER: 1
443125 DESCRIBE 1
389011 LIMIT: 1, TRIPLE PATTERNS: 1, SELECT: 1
381351 TRIPLE PATTERNS: 1
319708 AND: 1, TRIPLE PATTERNS: 3

adding operators when he got less results? or was it when he got more results than
before? Conversely, Table 4 shows the same statistics for decreasing streaks.

As opposed to what we originally hypothesis, the results show that users who add
new operators in their query workflow will generally obtain more results than in their
previous query, as depicted in Table 4. Similarly, users who remove operators stop re-
moving them generally when the result size is smaller than that of the previous query
(4). Our interpretation of the statistics is that users will add operators once they un-
derstand the dataset structure, and hence they will issue correct queries that will return
more results. On the other side, when users issue a query with less operators they might
be looking to understand new portions of the data, but in general they obtain less results
due to a limited knowledge of the data structure. The only situation in which this is
not the case is when users issue decreasing streaks of size 3. Here users stop removing
operators once they get larger result. A preliminary interpretation of this could be that
users who know the dataset are obtaining to few results, and hence they start removing
restrictive parts of the query (like joins or filters) in order to obtain more information.
We believe this is something worth investigating in more detail. In summary, the results
show that when users add operations they generally are obtaining more results, and
when users remove operations they are obtaining less results. This might have an in-
teresting impact in terms of server optimization, as a static analysis on two consecutive
queries and the answer to the first of them could already give insight on what will be the
size of the result to the second query. Of course this requires a more refined definition
of increasing/decreasing streaks, which is left as future work.

Table 2. Amount of increasing streaks, streak sizes and relation with amount of results from the
previous query results.

Streak length # of increasing streaks Ended with larger result Ended with smaller result
1 286,684 259,148 26,083
2 21,903 21,334 464
3 157 60 88

A preliminary investigation into SPARQL query complexity and federation in Bio2RDF

200

Table 3. Amount of decreasing streaks, streak sizes and relation with amount of results from the
previous query results.

Streak length # of decreasing streaks Ended with larger result Ended with smaller result
1 283,474 23,007 258,655
2 6,905 1,602 5,187
3 10,005 9,854 129

5 Dataset Federation Analysis

Finally, we used our analysis platform to examine which datasets were being queried
both inside and outside the Bio2RDF network. To do so, we first tabulated the queries
sent to specific Bio2RDF endpoints (Figure 2), as well as the queries that used the SER-
VICE keyword to query SPARQL endpoints that were outside of the Bio2RDF network
(Figure 3). Our results show that i) the top 5 Bio2RDF datasets are (in decreasing num-
ber of queries posed): Pubmed (with more than 11,000 SERVICE calls), Gene (with al-
most 1,000 SERVICE calls), Pharmgkb, Drugbank and Bioportal (recently added to the
Bio2RDF network); and ii) the top 5 SPARQL endpoints used to complement Bio2RDF
queries are: the Gene Expression Atlas (with more than 500 SERVICE requests), Beta
Uniprot (a development version of the Uniprot dataset), DBpedia, the Chemical Biol-
ogy Group and Reactome: a knowledge base of biologic pathways and processes. It is
important to notice that 4 of these datasets are funded by the European Bioinformatics
Institute. More detailed figures and the data used to generate Figures 2 and 3 can be
found at https://plot.ly/%7Ecbuil/77 and https://plot.ly/%7Ecbuil/78 respectively. The
results we present in this section show that SPARQL 1.1 federation features are being
used to connect to a surprisingly large number of endpoints. In total, there were 5,470
SERVICE calls in the final log files processed, 4,462 of them were directed to Bio2RDF
server while 1008 were directed to other endpoints in the LOD Cloud.

6 Conclusions

In this paper we performed an analysis of the queries received at the Bio2RDF servers.
This analysis showed first that the amount of repeated SPARQL queries received by
these servers is huge (about a 7% of queries are unique), which of course can be used
to optimize how servers are caching previously computed answers. Once the duplicate
queries were removed, we found that around 50% of the queries contain just a single
triple pattern, and that triple pattern is generally under of a SELECT or a CONSTRUCT.
Furthermore, 20 query patterns represent 90% of the queries received by the servers,
and this can have a high impact on terms of how servers should be optimized to answer
queries. It is also interesting to notice that the second most used SPARQL query is
DESCRIBE, which is marked as an “Informative” query form in the SPARQL 1.1
recommendation document (i.e. its implementation is not mandatory). This indicates
that a large portion of the users are trying to understand the shape of the data before
querying for information.

A more in detail analysis of the query patterns showed that a significant number of
users add operators once they understand the data structure, and hence they obtain more

A preliminary investigation into SPARQL query complexity and federation in Bio2RDF

201

pu
bm

ed
ge

ne
ph

ar
m

gk
b

dr
ug

ba
nk

bi
op

or
ta

l
ke

gg ct
d

hg
nc sg
d

si
de

r
om

im
af

fy
m

et
rix

ire
fin

de
x

nc
bi

ge
ne

nc
bo

bi
om

od
el

s
ta

xo
no

m
y

go
a

m
gi

ot
he

r

0

500

1,000

Bio2RDF SPARQL Endpoint

SE
RV

IC
E

Q
ue

ri
es

R
ec

ei
ve

d
(f

ro
m

a
B

io
2R

D
F

se
rv

er
)

Figure 2. Bio2RDF servers queried using SPARQL Federation. The most Bio2RDF endpoint
queried, by large, is Pubmed (http://pubmed.bio2rdf.org/sparql).

results. On the contrary, users remove operators looking for new portions of the data,
and their lack of knowledge on the dataset leads to less results. Finally, a brief analysis
of the SPARQL Federation queries showed a surprising amount of users that try to link
the Bio2RDF data in one endpoint to other Bio2RDF datasets or to other datasets in the
LOD cloud using the SERVICE keyword.

Limitations of the experiments. The experiments performed in this work present several
limitations. First of all, we did not analyze the URIs in the SPARQL queries and the
result sizes may be related to these URIs. It is important no notice that URIs in the
queries may exist in the dataset or not, affecting positively or negatively to the queries
result sizes and thus to our results. Similarly we did not analyze the effect of the LIMIT
solution modifier not the effect of FILTERs, affecting as well to the query’s result sizes.
However, our results can still provide a useful insight of what Bio2RDF users want to
obtain when querying the endopints.

Future work. This work is just a starting point for a more complete and detailed analysis
of the Bio2RDF users and queries. A first next step is to overcome the experiments
limitations to produce more accurate statistics about the use of Bio2RDF datasets. Once
we overcome the limitations, our results can also provide a base line in which we can
assess the capability of users to generate more complex queries with guided query tools
(e.g. SPARQLED3, YASGUI4, etc). The statistics gathered about query patterns and

3 http://sindice.com/sparqled/
4 http://yasgui.org/

A preliminary investigation into SPARQL query complexity and federation in Bio2RDF

202

w
w

w.
eb

i.a
c.

uk
.a

tla
s

be
ta

.sp
ar

ql
.u

ni
pr

ot
.o

rg
db

pe
di

a.
or

g

w
w

w.
eb

i.a
c.

uk
.c

he
m

bl

w
w

w.
eb

i.a
c.

uk
.re

ac
to

m
e

ag
ra

ph
.b

io
se

m
an

tic
s.o

rg
.te

st
.lo

vd

ag
ra

ph
.b

io
se

m
an

tic
s.o

rg
.g

en
e.

di
ff.

ex
p

w
w

w.
eb

i.a
c.

uk
.z

oo
m

a
bi

oo
nt

ol
og

y

ch
em

in
fo

v.
in

fo
rm

at
ic

s.i
nd

ia
na

.e
du

hc
ls

.d
er

i.o
rg

.d
ru

gb
an

k
at

te
d.

jp

da
ta

.li
nk

ed
m

db
.o

rg
lin

ke
dl

ife
da

ta
.c

om
ot

he
r

0

200

400

External SPARQL Endpoint

SE
RV

IC
E

Q
ue

ri
es

R
ec

ei
ve

d
(f

ro
m

a
B

io
2R

D
F

se
rv

er
)

Figure 3. External servers to Bio2RDF queried, using SPARQL Federation. The most queried
external endpoint are those from the European Bioinformatics Institute. That suggest that the
researchers from that institute try to link the Bio2RDF data with theirs. Endpoints with less than
6 SERVICE queries are grouped in the “Other”.

complexity may be of great help for these type of applications in order to help formulate
effective SPARQL queries. Another well know problem in the Linked Data community
is that SPARQL endpoints suffer from a performance problem due to the many requests
received [8]. As mentioned before, our results be largely used to address this problem
by guiding the optimization of software and result caching. Finally, our analysis only
targeted the Bio2RDF endpoints. Our final goal would be to generalize our results to
more SPARQL endpoints in the LOD Cloud. It is worth noting that our framework is not
particular to Bio2RDF and can be applied to arbitrary (clusters of) SPARQL endpoints.

7 Acknowledgments

Carlos Buil-Aranda has been supported by the CONICYT/FONDECYT project 3130617
and by the Millennium Nucleus Center for Semantic Web Research under Grant NC120004.
Marcelo Arenas and Martı́n Ugarte have been supported also by the Millennium Nu-
cleus Center for Semantic Web Research under Grant NC120004

A preliminary investigation into SPARQL query complexity and federation in Bio2RDF

203

References

1. S. Aljaloud, M. Luczak-Rösch, T. Chown, and N. Gibbins. Get All, Filter Details - On the
Use of Regular Expressions in SPARQL queries. In Proceedings of the ESWC2014 workshop
on Usage Analysis and the Web of Data (USEWOD 2014), 2014.

2. M. Arias, J. D. Fernández, M. A. Martı́nez-Prieto, and P. de la Fuente. An empirical study
of real-world sparql queries. CoRR, abs/1103.5043, 2011.

3. F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, and J. Morissette. Bio2rdf: Towards
a mashup to build bioinformatics knowledge systems. J. of Biomedical Informatics,
41(5):706–716, Oct. 2008.

4. B. Berendt, V. Hollink, K. M. Markus Luczak-Rösch, and D. Vallet. 2nd international work-
shop on usage analysis and the web of data. in 21st eswc. In In 21st International World
Wide Web Conference (WWW2012).

5. B. Berendt, V. Hollink, K. M. Markus Luczak-Rösch, and D. Vallet. 1st international work-
shop on usage analysis and the web of data. In In 20th International World Wide Web Con-
ference (WWW2011), 2011.

6. B. Berendt, V. Hollink, K. M. Markus Luczak-Rösch, and D. Vallet. 3rd international work-
shop on usage analysis and the web of data. in 10th eswc. In In 10th ESWC Semantics and
Big Data, Montpellier, France., 2013.

7. B. Berendt, V. Hollink, K. M. Markus Luczak-Rösch, and D. Vallet. 4th international work-
shop on usage analysis and the web of data. in 11th eswc. In In 11th ESWC Semantics and
Big Data., 2014.

8. C. Buil-Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche. SPARQL web-querying
infrastructure: Ready for action? In ISWC, pages 277–293, 2013.

9. A. Callahan, J. Cruz-Toledo, P. Ansell, and M. Dumontier. Bio2rdf release 2: Improved
coverage, interoperability and provenance of life science linked data. In The Semantic Web:
Semantics and Big Data, 10th International Conference, ESWC 2013, Montpellier, France,
May 26-30, 2013. Proceedings, pages 200–212, 2013.

10. J. Hoxha, M. Junghans, and S. Agarwal. Enabling semantic analysis of user browsing pat-
terns in the web of data. CoRR, abs/1204.2713, 2012.

11. J. Lorey and F. Naumann. Caching and prefetching strategies for sparql queries. In Proceed-
ings of the 3rd International Workshop on Usage Analysis and the Web of Data (USEWOD),
Montpellier, France, 0 2013. Best Workshop Paper.

12. M. Luczak-Rösch and M. Bischoff. Statistical analysis of web of data usage. In Joint Work-
shop on Knowledge Evolution and Ontology Dynamics (EvoDyn2011), CEUR WS, 2014.

13. K. Mller, M. Hausenblas, R. Cyganiak, and S. Handschuh. Learning from linked open data
usage: Patterns and metrics. In Web Science, 2010.

14. F. Picalausa and S. Vansummeren. What are real sparql queries like? In Proceedings of
the International Workshop on Semantic Web Information Management, SWIM ’11, pages
7:1–7:6, New York, NY, USA, 2011. ACM.

15. M. Raghuveer. Characterizing machine agent behavior through sparql query mining. CoRR.
16. L. Rietveld and R. Hoekstra. Man vs. Machine Dierences in SPARQL Queries. In Proceed-

ings of the ESWC2014 workshop on Usage Analysis and the Web of Data (USEWOD 2014),
2014.

A preliminary investigation into SPARQL query complexity and federation in Bio2RDF

204

Keyword Search in the Deep Web

Andrea Cal̀ı1,4, Davide Martinenghi2, and Riccardo Torlone3

1Birkbeck, University of London, UK
andrea@dcs.bbk.ac.uk

2Politecnico di Milano, Italy
davide.martinenghi@polimi.it

3Università Roma Tre, Italy
torlone@dia.uniroma3.it

4Oxford-Man Inst. of Quantitative Finance
University of Oxford, UK

Abstract. The Deep Web is constituted by data accessible through Web
pages, but not readily indexable by search engines, as they are returned
in dynamic pages. In this paper we propose a framework for accessing
Deep Web sources, represented as relational tables with so-called ac-
cess limitations, with keyword-based queries. We formalize the notion
of optimal answer and investigate methods for query processing. To our
knowledge, this problem has never been studied in a systematic way.

1 Problem definition

Basics. We model data sources as relations of a relational database and we
assume that, albeit autonomous, they have “compatible” attributes. For this,
we assume that the attributes of relations are defined over a set of abstract
domains D = {D1, . . . , Dm}, which, rather than denoting concrete value types
(such as string or integer), represent data types at a higher level of abstraction
(for instance, car or country). The set of all values is denoted by D =

⋃n
i=1Di.

In the following, we shall denote by R(A1, . . . , Ak) a (relation) schema, by
dom(A) ∈ D the domain of an attribute A, by r a relation over R, and by
r = {r1, . . . , rn} a (database) instance of a database schema R = {R1, . . . , Rn}.

Access limitations. An access pattern Π for a schema R(A1, . . . , Ak) is a mapping
sending each attribute Ai into an access mode, which can be either input or
output; Ai is correspondingly called an input (resp., output) attribute for R wrt.
Π. For ease of notation, we shall mark input attributes with an ‘i’ superscript to
distinguish them from the output ones. Let A′1, . . . , A

′
l be all the input attributes

for R wrt. Π; any tuple 〈c1, . . . , cl〉 such that ci ∈ dom(A′i) for 1 ≤ i ≤ l is called
a binding for R wrt. Π. An access α consists of an access pattern Π for a schema
R and a binding for R wrt. Π; the output of such an access α on an instance r
is the set T = σA1=c1,...,Al=cl(r). Intuitively, we can only access a relation if we
can provide a value for every input attribute. Given an instance r for a database
schema R, a set of access patterns Π for the relations in R, and a set of values
C ⊆ D, an access path (for R, Π and C) is a sequence of accesses α1, . . . , αn

on r such that each value in the binding of αi, 1 ≤ i ≤ n, either occurs in the
output of an access αj with j < i or is a value in C. A tuple t in r is said to be
reachable if there exists an access path P such that t is in the output of some

205

t31 t33

t23

t11

t21

t12

(a) Access paths

t31 t33

t23

t11

t21

t12

(b) Join graph

t31 t33

t23

t11t11

A2A1

(c) Answers

Fig. 1. Example 1: Reachable portion, corresponding join graph, and answers.

access in P ; the reachable portion reach(r,Π, C) of r is the set of all reachable
tuples in r given the values in C.

Keyword queries. A keyword query is a set of values in D called keywords.

Example 1 Consider a query q = {k1, k2}, a schema (with access patterns Π)
R = {R1(Ai

1, A2), R2(Ai
2, A1), R3(Ai

1, A2, A3)}, and an instance r such that

r1 =
Ai

1 A2

k1 c1 t11
c2 c3 t12

r2 =

Ai
2 A1

c1 c2 t21
c4 c2 t22
c1 c6 t23

r3 =

Ai
1 A2 A3

c2 c1 k2 t31
c5 c4 k2 t32
c6 c7 k2 t33

Figure 1(a) shows the reachable portion of r given the values in q along with the
access paths used to extract it, with dotted lines enclosing outputs of accesses.

Given a set T of tuples, the join graph of T is a node-labelled undirected graph
T = 〈N,E〉 constructed as follows: (i) the nodes N are labelled with tuples of
T , and (ii) there is an arc between two nodes n1 and n2 if the tuples labelling
n1 and n2 have at least one value in common.

Example 1 (cont.) The join graph of reach(r,Π, q) is shown in Figure 1(b).

Definition 1 (Answer). An answer to a keyword query q against a database
instance r over a schema R with access patterns Π is a set of tuples A in
reach(r,Π, q) such that: (1) each c ∈ q occurs in at least one tuple t in A;
(2) the join graph of A is connected; (3) for every subset A′ ⊆ A such that A′
enjoys Condition 1 above, the join graph of A′ is not connected.

It is straightforward to see that there could be several answers to a keyword
query; below we give a widely accepted criterium for ranking such answers [4].

Definition 2. Let A1,A2 be two answers of a keyword query q on an instance
r of size |A1| and |A2| respectively; we say that A1 is better than A2, denoted
A1 � A2, if |A1| ≤ |A2|. The optimal answers are those of minimum size.

Example 1 (cont.) The sets A1 = {t11, t31} and A2 = {t11, t23, t33} are an-
swers to q; A1 is better than A2 and is the optimal answer to q.

2

Keyword Search in the Deep Web

206

2 Keyword-based answering in the Deep Web

We now present a vanilla algorithm to discuss the computational complexity of
answering a keyword query q in the deep Web modeled as an instance r of a
schema R with access patterns Π. Example 1 shows that, in the worst case,
we need to extract the whole reachable portion to obtain the tuples involved
in an optimal answer. In fact, s = reach(r,Π, q) is actually a connected join
graph, since every tuple in it is in some output of some access path starting
from the values in the query (see for example Figure 1.a), but further paths may
exist between tuples in s (see Figure 1.b). Therefore, query answering requires
in general two main steps, described in Algorithm 1: (i) extract the reachable
portion s of r; (ii) if possible, remove tuples from s so that the obtained set
satisfies the conditions of Definition 1, while minimizing its size.

Algorithm 1: Computing an optimal answer (Answer(q,Π, r))
Input: Keyword query q, access patterns Π, instance r over R
Output: Answer A
1. A := reachablePortion(r,Π, q); // see Algorithm 2
2. if A does not contain all values in q then return nil;
3. else prune(A, q); // see Algorithm 3
4. return A;

A simple way of extracting the reachable portion, inspired by the procedure
described in [1], is shown in Algorithm 2. This algorithm may be allowed to
terminate early if the answer is not required to be optimal (flag ω set to false),
and thus can stop as soon as the reachable portion contains all the keywords
in the query. This is coherent with the distinct root-based semantics of keyword
search in relational databases, which provides a tradeoff between quality of the
result and efficiency of the method to evaluate it [4].

Algorithm 2: Reachable portion (reachablePortion(r,Π, q))
Input: Instance r over R, access patterns Π, initial values q
Flag: boolean ω // if ω = true the answer is guaranteed to be optimal
Output: Reachable portion RP
1. RP := ∅; C := ∅;
2. while an access can be made with a new binding b for some R ∈ R wrt. Π using values in C ∪ q

3. O := output of access to r over R with binding b;

4. RP := RP ∪ O; // cumulating all the obtained tuples into RP

5. C := C ∪⋃
A∈R,t∈O{t(A)}; // cumulating all the obtained values into C

6. if C ⊇ q ∧ ¬ω then break;
7. return RP ;

Basically, determining an optimal answer from the reachable portion cor-
responds to finding a Steiner tree of its join graph [4], i.e., a minimal-weight
subtree of this graph involving a subset of its nodes. An efficient method for
solving this problem in the context of keyword search over structured data is
presented in [2], where a q-fragment can model our notion of answer. Yet, when
optimality is not required, a simple technique (quadratic in the size of r) to
obtain an answer (steps 2–6 of Algorithm 3) consists in trying to remove any
tuple from the set as long as it contains all the keywords and remains connected.

3

Keyword Search in the Deep Web

207

Algorithm 3: Pruning (prune(T , q))
Input: Set of tuples T , keyword query q
Flag: boolean ω // if ω = true the answer is guaranteed to be optimal
Output: Minimal set of tuples T
1. if ω then return a minimal subtree of the join graph of T that contains q;
2. T ′ := T ; T ′′ := ∅;
3. while T ′′ 6= T ′

4. T ′′ := T ′;

5. for each t ∈ T ′′ if T ′ \ {t} is connected and T ′ \ {t} ⊇ q then T ′ := T ′ \ {t};
6. return T ′;

The extraction of the reachable portion of an instance r with access lim-
itations can be implemented by a Datalog program over r [1], which can be
evaluated in polynomial time in the size of the input [3]. In addition, in [2] it
is shown that the optimal q-fragments of r can be enumerated in ranked-order
with polynomial delay, i.e., the time for printing the next optimal answer is again
polynomial in the size of r. Hence, we can state the following preliminary result.

Theorem 1. An optimal answer to a keyword query against a database instance
with access limitations can be efficiently computed under data complexity.

3 Discussion and future work

In this paper, we have defined the problem of keyword search in the Deep Web
and provided some preliminary insights on query answering in this context. As
future work on the problem in question, we plan to:

– devise optimization strategies for query answering; in particular, identify
conditions under which an optimal answer can be derived without extracting
the whole reachable instance;

– leverage known values (besides the keywords), modeled as relations with only
one (output) attribute, to speed up the search for an optimal answer;

– study the problem in a scenario in which the domains of the keywords are
known in advance: in this case schema-based techniques can be used;

– consider the case in which nodes and arcs of the join graph are weighted to
model source availability and proximity, respectively.

Acknowledgments. Andrea Cal̀ı acknowledges support by the EPSRC grant
“Logic-based Integration and Querying of Unindexed Data” (EP/E010865/1).

References

1. A. Cal̀ı, D. Martinenghi. Querying Data under Access Limitations. In ICDE,
pag. 50–59, 2008.

2. B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in keyword
proximity search. In PODS, pag. 173–182, 2006.

3. M.Vardi.The complexityof relational querylanguages. InSTOC,pag.137–146,1982.
4. J. Xu Yu, L. Qin, and L. Chang. Search in Relational Databases: A Survey. IEEE

Data Eng. Bull., 33(1): 67–78, 2010.

4

Keyword Search in the Deep Web

208

Implementing Data-Centric Dynamic Systems
over a Relational DBMS

Diego Calvanese, Marco Montali, Fabio Patrizi, Andrey Rivkin

Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
calvanese,montali,patrizi,rivkin@inf.unibz.it

1 Introduction

We base our work on a model called data-centric dynamic system (DCDS) [1], which
can be seen as a framework for modeling and verification of systems where both the
process controlling the dynamics and the manipulation of data are equally central. More
specifically, a DCDS consists of a data layer and a process layer, interacting as follows:
the data layer stores all the data of interest in a relational database, and the process
layer modifies and evolves such data by executing actions under the control of a process,
possibly injecting into the system external data retrieved through service calls. In this
work, we propose an implementation of DCDSs in which all aspects concerning not
only the data layer but also the process layer, are realized by means of functionalities
provided by a relational DBMS. We present the architecture of our prototype system,
describe its functionality, and discuss the next steps we intend to take towards realizing
a full-fledged DCDS-based system that supports verification of rich temporal properties.

2 Preliminaries

A DCDS is a tuple S = 〈D,P〉, where D is the data layer and P is the process layer.
The data layer defines the data model of S; it is a tuple D = 〈C,R, E , I0〉, where: C is
a countably infinite set of constants providing data values, R is a a relational schema
equipped with equality and full denial constraints E , and I0 is an initial database instance
over C that conforms to the schemaR and satisfies the constraints E .

The process layer defines the progression mechanism for the DCDS; it is a tuple
P = 〈F ,A, ρ〉, where: F is a finite set of functions representing calls to external
services, A is a finite set of (update) actions, and ρ is a process specification.

Intuitively, the process layer captures the dynamics of the domain of interest, while
the data layer captures its static properties. More specifically, the process layer describes
the actions (A) that can be executed to query and/or update the current state of the system
(whose structure conforms to the data layer), and how/when such actions can be executed
(process ρ). Some actions need to take fresh values from the external environment; these
can be obtained by performing service calls (from F). Every action execution must
guarantee that all the constraints in E are satisfied by the data layer, so as to prevent the
exeuction of actions leading to states that are inconsistent with respect to the constraints.

An action α ∈ A is an expression α(p1, . . . , pn) : {e1, . . . , em}where α(p1, . . . , pn)
is the action signature, with α the action name and p1, . . . , pn the action parameters,

209

and {e1, . . . , em} is a set of (simultaneous) effect specifications. Each ei has the form
qi del Di, add Ai, where: qi is a query over R whose terms are variables, action
parameters, and constants from ADOM(I0)1; and Di and Ai are sets of facts from R,
whose terms include free variables of qi (which, in turn, include action parameters)
and terms from ADOM(I0). Each Ai may include Skolem terms obtained by applying a
function f ∈ F to any of the terms above. Skolem terms represent external service calls
and model the values returned by the external environment when the action is executed.

The process specification ρ, is a finite set of condition-action (CA) rules. Each CA
rule has the form Q → α, where α ∈ A and Q is a query over R, constituting the
precondition of the CA rule, whose free variables are the parameters of α (other terms
can be quantified variables or constants in ADOM(I0)). W.l.o.g., we can assume that there
is a single CA rule for each action.

As regards the process execution, it essentially amounts to iterating over the following
steps. First, an action α is chosen by the user and the corresponding CA rule in ρ is
evaluated over the current database instance I (initially I0). This produces a (finite)
set of complete bindings, for α’s parameters. Then, the user is asked to pick one of
such bindings, say ~p, so as to obtain a ground action α~p. The next step is the action
execution, which consists of applying all the action effects simultaneously. This requires
(i) evaluating all queries qi~p (with partial assignment to their variables) associated with
all effect specifications, (ii) binding the values occurring in the answers with the terms
in all del Di and all add Ai, and (iii) first deleting all the facts obtained in all Di’s, and
subsequently adding those obtained in all Ai’s, from and to the current database instance
I. In case some term t in some Ai involves a service call, the corresponding service
is called with the appropriate inputs, to obtain the value to be assigned to t. We stress
that all deletions take place at the same time, followed by all additions. Importantly,
the final update (deletions and additions) is actually performed only if the resulting
instance satisfies the constraints in E (otherwise a new iteration starts again on the
current database instance, but the current binding is no longer provided as an option to
the user). When the update is performed, a new instance I ′ is obtained, over which the
process can iterate again. For a detailed description of the execution semantics, we refer
the reader to [1]. In the next section, we describe an actual implementation of the system
based on RDBMS technology.

3 Specifying and Implementing DCDSs in a RDBMS

A DCDS specification is maintained by the RDBMS, which interacts with the Flow
Engine implemented in Java. The Flow Engine executes calls to the RDBMS, and handles
the interaction with external services through a Service Manager.

Specifically, the RDBMSs maintains: (i) a data layer specification consisting of rela-
tional tables, equipped with functional dependencies and additional domain-dependent
constraints, and (ii) a process layer specification, consisting of action metadata in the
form of a relational table containing the action names together with their parameters.
Moreover, the DBMS stores sets of stored procedures. Each stored procedure represents

1 The active domain ADOM(I) of a DB instance I is the subset of elements of C occurring in I.

Implementing Data-Centric Dynamic Systems over a Relational DBMS

210

DCDS Engine

Persistent
Storage

Designer DB Engine Flow Engine

Service
Manager ..

.

ServicesDCDS Specification

Data Spec

Workflow Spec

RDBMS

DCDS State

Fig. 1. Architecture of the DCDS implementation

(i) the evaluation of a query in the precondition of a CA rule or a query in an action
effect, or (ii) an action execution (in terms of database updates).

At each moment in time, the DBMS stores the DCDS snapshot, which is subject
to the data layer specification. The snapshot is initialized to the initial state of the
DCDS, and then manipulated by the Flow Engine. We illustrate now the operation
of the Flow Engine, which initializes the DCDS execution by querying the DBMS
about the available actions, and then repeatedly calls an action by coordinating the
activation of stored procedures according to the action execution cycle, while interacting
with external services to acquire the service call results. Specifically, with reference to
Figure 2, an action execution cycle is carried out as follows: (1) The cycle starts with
the user choosing one of the available actions presented by the Flow Engine. (2) The
Flow Engine evaluates the CA-rule associated to the chosen action α by calling the
corresponding stored procedure over the current DCDS snapshot, and stores the returned
possible parameter assignments for the action in a temporary table T . All parameters
assignments in T are initially unmarked, meaning that they are available for the user to

Choose

an action α

Evaluate

α’s CA-rule

Select and mark

parameters for α
α‘s effect

query
evaluations

Instantiate

 α’s service calls Service
manager

Service calls
tables

Perform

 α : DELETE

α : ADD
Begin

Transaction
End

Transaction

Constraints
satisfied?

YES

∃ unmarked

parameters?

NOC
o

m
m

it

Rollback

YES

NO

Fig. 2. The action execution cycle

Implementing Data-Centric Dynamic Systems over a Relational DBMS

211

choose. (3) If unmarked parameters are present in T , the user is asked to choose one of
those, which is marked as unavailable, and the Flow Engine proceeds with evaluating α
instantiated with the chosen parameters. (4) To do so, first the queries in all the effects of
α are executed, which provides values to instantiate both the arguments of the service
calls (stored in service calls tables, one for each service), and the facts to delete and
add from the current snapshot. (5) The service calls are executed by calling the service
manager, and the returned results provide the missing instantiations for the facts to add.
(6) A transaction is started to perform the delete and add operations. (7) If the DCDS
constraints are satisfied, the transaction is committed, and the next iteration of the action
execution cycle is started. Otherwise, if the constraints are not satisfied, the transaction
is aborted so that the DCDS snapshot stays unmodified, and the user is asked to choose
a different parameter from the ones still available in T . (8) If no unmarked parameters
are available, the user is asked to choose another action.

4 Conclusion and Future Work

In this paper we have presented an implementation of Data-Centric Dynamic Systems
based on the use of a Relational Database Management System, exploited to handle all
the aspects of a DCDS, including specification and execution.

The ultimate goal of this research is to build a system for model checking DCDSs.
As discussed in [1], the possible evolutions of these systems can be represented by means
of a transition system, that can thus be checked against temporal first-order properties,
see, e.g., [1,2,4]. The main problem with this task is that the state space can be infinite,
thus the standard model checking techniques cannot be applied off-the-shelf. However,
under certain conditions, namely when the active domain of all states is guaranteed to be
bounded [1,2], it is possible to build a faithful abstraction of the system that is finite-state
and can thus be checked with such techniques. Our next step will consist in extending
our prototype system with the capability to build the finite abstraction, maintaining it in
the DBMS, and exploiting state-of-the-art model checking tools, such as NuXMV [3], to
perform verification.

References

1. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of
relational data-centric dynamic systems with external services. In: Proc. of PODS. pp. 163–174
(2013)

2. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact systems. JAIR 51,
333–376 (2014)

3. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri,
M., Tonetta, S.: The nuXmv symbolic model checker. In: Proc. of CAV. LNCS, vol. 8559, pp.
334–342. Springer (2014)

4. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of ICDT. pp. 252–267 (2009)

Implementing Data-Centric Dynamic Systems over a Relational DBMS

212

Disentangling the Notion of Dataset in SPARQL

Daniel Hernández and Claudio Gutierrez

Center for Semantic Web Research,
Department of Computer Science, Universidad de Chile

Abstract. The notion of dataset in SPARQL seems to be neither a sim-
ple nor a well defined notion. In this paper we first review the literature,
current documentation and SPARQL engines to show the subleties be-
hind this apparently simple notion and some of the ambiguities of its
specification. Then we present formal specifications and algorithms to
deal with them in practice.

Introduction

The concept of dataset in SPARQL is introduced in several different parts of the
W3C documentation (for example in [2, 3, 4, 7, 9, 10, 12]). The specification
is spread around, leaves open issues, contain subtleties that result in manifold
interpretations, and even in some corner cases, contradict each other.

A first source of misunderstandings is triggered by the two related, but dif-
ferent notions of default dataset and dataset description. A dataset is defined
by the standards of SPARQL and RDF as a set {G0, (u1, G1), . . . , (un, Gn)}
where each Gi is an RDF graph and each ui is an IRI. G0 is called the default
graph and each pair (ui, Gi) is called a named graph. The default dataset is the
one a SPARQL endpoint uses when no explicit dataset description is provided
in a query request. In the mentioned documentation there is no unique model
proposed for dataset descriptions. Indeed, the standard defines two formats for
dataset descriptions: (i) In the SPARQL grammar as a sequence of ‘FROM u’ and
‘FROM NAMED u’ clauses where u is an IRI, and (ii) in the HTTP request with
the query string parameters ‘default-graph-iri’ and ‘named-graph-iri’. If a
dataset description is provided, a dataset must be generated from it. The IRI
u in the dataset description clause ‘FROM NAMED u’ is assumed to be a reference
to a resource that serializes a graph Gu. Thus, the reference is indirect. On the
contrary, in the resulting dataset, u will name directly the graph Gu.

The second source of misunderstandings comes from the use of blank nodes.
In our experience the following concepts related to blank nodes are difficult to
understand or have subtleties when applied to datasets: the scoping graph, the
operation merge when composing the default graph and the scope limited to files
that are specified for blank node labels in RDF and SPARQL. Finally, there are
extensions that allow blank nodes as names for named graphs and literals as
subjects of RDF triples.

213

Structure of this paper. The paper is structured in two main sections. In the
section 1 we thoroughly analize current misunderstantings in the documentation
regarding the definition and use of datasets. In section 2 we propose a formal
model for dataset descriptions and give algorithms to build and use the query
dataset.

1 Datasets in the literature and engines

Can blank nodes be used as names of named graphs? According to the SPARQL
specification “An RDF dataset is a set {G, (u1, G1), (u2, G2), . . . , (un, Gn)} where
G and each Gi are graphs, and each ui is an IRI. Each ui is distinct. G is called
the default graph. (ui, Gi), are called named graphs.” [4, §18.1.3]. Thus, blank
nodes as names of graphs are not allowed in SPARQL. Restricting names to IRIs
is consistent with the SPARQL need to use names to retrieve graphs from the
Web. How we interpret the clause ‘FROM :b’?. We cannot use a blank node to
identify a resource or in the Web or a graph in the default dataset. The SPARQL
grammar does not allow the clause ‘GRAPH :b { P }’; if it where allowed, then
‘ :b’ would not reference a specific graph in the dataset because blank nodes
in the query and in the data are in different scopes.

Despite the problems that blank nodes introduce in SPARQL, the RDF spec-
ification allows blank nodes as names of graphs1. “An RDF dataset is a collec-
tion of RDF graphs, and comprises: (i) Exactly one default graph, being an RDF
graph. The default graph does not have a name and MAY be empty. (ii) Zero or
more named graphs. Each named graph is a pair consisting of an IRI or a blank
node (the graph name), and an RDF graph. Graph names are unique within an
RDF dataset.” [7, §4]. There is another specification, TriG, that assumes the
possibility of blank nodes as names of graphs: “In a TriG document a graph
IRI or blank node may be used as label for more than one graph statements.
The graph label of a graph statement may be omitted. In this case the graph is
considered the default graph of the RDF Dataset.” [2, §2.2].

Let s be and endpoint and u be the name of the graph Gu in the default
dataset of s. Then, according the The SPARQL 1.1 Graph Store Protocol [9] the
IRI s?graph=u allows to retrieve the graph Gu. What happens if u is a blank
node? According to RDF a blank node must never be used as a name to access
a resource, because it “has no intrinsic name.” [7, §9]. Thus, providing an IRI
for Gu based on a blank node u contradicts the RDF semantics.

Despite these these issues, in Jena 2.0 and Virtuoso 6.1 blank nodes as names
of dataset graphs are supported.

Can an RDF triple have a literal as subject? According to the RDF specification
“An RDF triple consists of three components: the subject, which is an IRI or a
blank node; the predicate, which is an IRI; and the object, which is an IRI, a
literal or a blank node.” [7, §3.1]. Thus, an RDF triple must not have a literal as

1 Note that the concept of dataset was not defined in the earlier RDF 1.0 [6] but was
included in RDF 1.1 [7], after the inclusion of RDF datasets in SPARQL.

Disentangling the Notion of Dataset in SPARQL

214

subject. However, the definition of triple pattern suggest that RDF triples may
include literals as subject, as triple patterns do: “A triple pattern is member of
the set: (T ∪ V)× (I ∪ V)× (T ∪ V).” [4, §18.1.5]. Note that T denotes the set
I ∪B ∪L, called the set of RDF terms. Indeed, the inclusion of literals as triple
subjects has been accepted by the RDF core Working Group:

[The RDF core Working Group] noted that it is aware of no reason why
literals should not be subjects and a future WG with a less restrictive
charter may extend the syntaxes to allow literals as the subjects of state-
ments.
—Should the subjects of RDF statements be allowed to be literals?

http://www.w3.org/2000/03/rdf-tracking/#rdfms-literalsubjects

In our experience SPARQL implementations do not support literals as triple
subjects. Jena 2.0 and Virtuoso 6.1 raise an error when uploading files with
literals in the subject position.

The default dataset. The SPARQL specification states: “If a query provides
such a dataset description, then it is used in place of any dataset that the query
service would use if no dataset description is provided in a query.” [4, §13.2].
Thus, every SPARQL endpoint may provide a default dataset to be used in the
absence of a dataset description. Note that the dataset description could be
defined not only in the query but also in parameters of the request: “The RDF
dataset may also be specified in a SPARQL protocol request, in which case the
protocol description overrides any description in the query itself.” [4, §13.2]. The
description can be included in three forms: A parameter in the IRI of the HTTP
request, a parameter in the body of the HTTP request or as dataset clauses in
the query [3, §2.1].

Angles and Gutierrez [1] have interpreted the specification in a different way.
They assumed that the default dataset has no named graphs and an empty
default graph, i.e., the default dataset is always {∅}. This interpretation follows
the principle of running queries against the Web so that the evaluation of a
query does not depend on the particular SPARQL endpoint that evaluates it.
On the contrary, in the specification, a query may be evaluated against a default
dataset of the SPARQL endpoint where the query is submitted.

SPARQL federation allows using more than one dataset in the same query.
When a query includes a ‘SERVICE s { P }’ clause, then the SPARQL endpoint
identified as s may evaluate the graph pattern P against the default dataset of s.
Indeed, the specification [10, §3.2] states that the ‘SERVICE’ generate a request to
the endpoint identified as s with the query Q = ‘SELECT * WHERE { P }’. Thus,
as the query Q has no dataset description, the dataset used to evaluate P is the
default dataset of the endpoint identified by s.

Note that as subselects cannot include dataset descriptions, all dereferencing
of graphs from the Web must be done by the endpoint that receives the whole
query. Thus, endpoints that are used to delegate the evaluation of graph patterns
can only use their own default datasets.

Disentangling the Notion of Dataset in SPARQL

215

Jena 2.0 and Virtuoso 1.6 follow the SPARQL specification, i.e., they use the
default dataset in the absence of a dataset description and in federated queries.

Can graphs in RDF datasets share blank nodes? The RDF specification is clear
in allowing blank nodes to be shared across graphs: “Blank nodes can be shared
between graphs in an RDF dataset.” [7, §4]. The TriG language for serializing
datasets supports sharing blank nodes across graphs: “BlankNodes sharing the
same label in differently labeled graph statements are considered to be the same
BlankNode.” [2, §2.3.1]. Datasets engines such as Jena and Virtuoso preserve
the identity of blank nodes when loading dataset serializations that share blank
nodes across named graphs.

Despite the clarity in the standards and the assumptions made by engine
developers, this question has been a source of misunderstandings. Mallea, Are-
nas, Hogan and Polleres [8] assumed that blank nodes cannot be shared across
graphs. In a later work [5] they recognize their mistake: “This clarification may
serve as a corrigendum for our previous paper in which we stated that blank nodes
cannot be shared across graphs in SPARQL [48]. This statement is misleading
in that although blank nodes cannot be shared across scoping graphs, they can be
shared across named graphs”. Perez, Arenas and Gutierrez [11] assumed “for the
sake of the simplicity” that blank nodes where not shared by graphs in a RDF
dataset.

This misunderstanding comes from the principle that blank nodes are scoped
to files (that is, according to the specification) and the assumption that each
graph must be contained in its own file (which is wrong). “Blank node identifiers
are local identifiers that are used in some concrete RDF syntaxes or RDF store
implementations. They are always locally scoped to the file or RDF store, and are
not persistent or portable identifiers for blank nodes. Blank node identifiers are
not part of the RDF abstract syntax, but are entirely dependent on the concrete
syntax or implementation. The syntactic restrictions on blank node identifiers,
if any, therefore also depend on the concrete RDF syntax or implementation.
Implementations that handle blank node identifiers in concrete syntaxes need to
be careful not to create the same blank node from multiple occurrences of the
same blank node identifier except in situations where this is supported by the
syntax.” [7, §3.2]. “A blank node is a node that is not a URI reference or a
literal. In the RDF abstract syntax, a blank node is just a unique node that can
be used in one or more RDF statements, but has no intrinsic name.” [7, §3.2].

The SPARQL specification states that to evaluate a query, files referenced
in the dataset description must be retrieved to build the dataset. Nothing is
said about graphs that are included in the default dataset. “If a query provides
more than one FROM clause, providing more than one IRI to indicate the default
graph, then the default graph is the RDF merge of the graphs obtained from
representations of the resources identified by the given IRIs.” [4, §13.2.1]. “The
FROM NAMED syntax suggests that the IRI identifies the corresponding graph, but
the relationship between an IRI and a graph in an RDF dataset is indirect. The
IRI identifies a resource, and the resource is represented by a graph (or, more
precisely: by a document that serializes a graph).” [4, §13.2.2].

Disentangling the Notion of Dataset in SPARQL

216

The use of the merge operation to combine graphs into the default graph
suggests that blank nodes can be shared by the RDF files dereferenced when
interpreting the dataset description. Moreover, merge is not applied on named
graphs, a fact that suggest that blank nodes coming from different files can be
shared across named graphs of the dataset resulting of the evaluation of a dataset
description.

What does occur if a dataset description references only one remote file as
part of the default graph? The merge operation must be applied over a sin-
gle graph? How is evaluated the dataset description ‘FROM u FROM u’? Must the
graph resulting of dereferencing u be merged with itself?

The way in which the merge operation is applied is another source of misun-
derstandings. “In an RDF merge, blank nodes in the merged graph are not shared
with blank nodes from the graphs being merged.” [4, §13.1]. A different definition
of merge was provided by Angles and Gutierrez [1]: “The merge of graphs, de-
noted G1 + G2, is the graph G1 ∪ G′2 where G′2 is the graph obtained from G2

by renaming its blank nodes to avoid clashes with those in G1.” According the
SPARQL specification G1 + G2 does not share blank nodes with G1 nor G2 as
in the definition provided by Angles and Gutierrez.

We identify three strategies to avoid blank node clashes: (i) Rename blank
nodes when interpreting files, ensuring that no blank nodes are shared. (ii) Use
the merge operator to combine the graphs that compose the default graph. (iii)
Use both strategies, (i) and (ii).

The strategy (i) is not mentioned in the SPARQL specification, but in our
experience many people think that it must be used as a direct consequence of
the fact that blank nodes are scoped to files. The strategy (i) is sufficient to
ensure that blank nodes are scoped to files. On the contrary, the strategy (ii)
is not sufficient, as blank nodes in named graphs are not renamed, hence can
be shared. The use of merge in strategies (ii) and (iii) may introduce spurious
identities for blank nodes. For example, let u be an IRI that references a file
that serializes the graph Gu. Let us consider a dataset description that contains
both clauses: ‘FROM u’ and ‘FROM NAMED u’. Then, a blank node that occurs in Gu

may be renamed with a fresh blank node in the default graph when applying the
merge operation, losing its link with its occurrence in the named graph (u,Gu).

The documentation about merge is not clear. The SPARQL 1.1 Service De-
scription specification [12] introduces the property UnionDefaultGraph to indi-
cate that a service uses the union of the named graphs as the default graph. A
property to describe default graphs as a merge of named graphs is not intro-
duced for service descriptions. This seems preferable as in the specifications of
SPARQL and RDF 1.1 named graphs are allowed to share blank nodes. However,
it seems contrary to the use of merge to construct the default graph described
by several ‘FROM’ clauses in the query as the SPARQL specification stated.

Neither Jena nor Virtuoso allow referencing remote graphs in the dataset
description. Thus, they never dereference an IRI. Moreover, the merge operation
is never performed. Indeed, if (u1, G1) and (u2, G2) are two named graph in a
default graph of an endpoint identified as s, then the default graph specified

Disentangling the Notion of Dataset in SPARQL

217

in the dataset description ‘FROM u1 FROM u2’ is G1 ∪ G2. Thus, no blank node
renaming is done by Jena and Virtuoso at the moment of evaluating queries.

The task of renaming blank nodes to ensure the file scope of them is per-
formed by Jena and Virtuoso at the moment of loading RDF files. Both engines
rename all blank nodes of the form ‘ :bn’ with fresh blank nodes and set fresh
blank nodes for nodes that have no label. However, Virtuoso 6.1 use identifiers as
<nodeID://b01> as blank node identifiers. This kind of identifiers responds true
when evaluating the function ‘isBlank(b)’ but (as IRIs) are not scoped. This
use of blank node identifiers in Virtuoso does not follow the standard. Indeed, a
blank node identifier can be used in the query to refer a blank node in the data.
On the contrary, the standard limits the scope of blank nodes to basic graph
patterns and disallows the sharing of blank nodes across basic graph patterns
in queries. Jena follows the standard raising the error “blank node reuse is not
allowed in this point” if a blank occurs in more that one basic graph pattern.

How must be interpreted an IRI that occurs several times in the dataset descrip-
tion of a query? The SPARQL specification leaves this question open in the case
where an IRI that occurs in more that one ‘FROM’ or ‘FROM NAMED’ clauses must
be dereferenced one or more times. “The actions required to construct the dataset
are not determined by the dataset description alone. If an IRI is given twice in
a dataset description, either by using two FROM clauses, or a FROM clause and
a FROM NAMED clause, then it does not assume that exactly one or exactly two
attempts are made to obtain an RDF graph associated with the IRI. Therefore,
no assumptions can be made about blank node identity in triples obtained from
the two occurrences in the dataset description. In general, no assumptions can be
made about the equivalence of the graphs.” [4, §12.2.3]. Note that if an RDF file
is dereferenced twice the file may change during the attempts to get it, resulting
in different files. Thus, the results depend on the policy of the service to handle
different versions of an RDF file.

Let us consider the dataset description ‘FROM NAMED u FROM NAMED u’. The
specification states that names must not be repeated in the dataset. “Each ui
[the IRI that names a graph] is distinct.” [4, §18.1.3]. “Graph names are unique
within an RDF dataset.” [7, §4]. “Using the same IRI in two or more FROM NAMED

clauses results in one named graph with that IRI appearing in the dataset.” [4,
13.2.2]. Thus the question arises: What is the graph that should be used if u is
dereferenced twice (and these copies are not equal)?

Let us consider the dataset description ‘FROM u FROM u’ and let be Gu the
graph obtained of the dereferencing of u (assuming that only one request for u
was issued). If the default graph is the union of Gu with itself then the default
graph of the dataset will be Gu. On the contrary, if merge is applied, the default
graph G0 will be a graph that duplicate every triple containing a blank node in
Gu. Thus Gu will entail G0 but Gu 6⊆ G0.

Note that neither Jena nor Virtuoso handle this issue because they do not
support dereferencing IRIs that are not names of named graphs in the default
datasets.

Disentangling the Notion of Dataset in SPARQL

218

2 The notion of dataset

The Web is constituted by a finite set of HTTP servers. A server can send
HTTP requests and responses to another server. Servers can be disconnected
or added to the Web. The internal configuration of a server may change, so the
same request can be answered with different responses if the server configuration
changes between the requests.

We will assume that servers follow the REST design principles, so a GET
request does not change the internal configuration of the server that receives
it. As, an SPARQL client that sent only GET requests have no control over
changes in the data, then the order and repetition of requests cannot be used by
the client to ensure a result.

In the Web, there is a finite set of files serializing RDF graphs. Every file is
accessible sending an HTTP request GET u to an HTTP server. The request
GET u may result in a response with the file referenced by u if the server s
associate u to a file.

In the Web, there is a finite set of particular types of HTTP servers, called
SPARQL endpoints, that provide access to datasets via requests that contain
SPARQL queries. A SPARQL endpoint is identified by an IRI that can be used
to send queries. Let Q be a SPARQL query, then the request GET s?query=Q is
the SPARQL GET request that sends the query Q to the endpoint identified as
s. A successful response with a file serializing the result of Q is sent back if the
query is accepted and if no error occurs during the query execution. The result
is interpreted as a Boolean value, a sequence of mappings or an RDF graph.

A SPARQL GET request may have the following query string parameters:
‘query’ (exactly 1), ‘default-graph-uri’ (0 or more) and ‘named-graph-uri’
(0 or more). The SPARQL protocol includes also the possibility to send queries
via URL-encoded POST or via POST directly. In this paper we will focus in
SPARQL queries sent using the HTTP method GET.

The description above roughly indicates how the protocols necessary to eval-
uate SPARQL queries work. In what follows, we present a formal model that
simplifies and make explicit such protocols.

2.1 A data model for SPARQL

Let I, B, L and V be infinite disjoint sets containing the IRIs, the blank nodes,
the literals and the variables. Let IB and IBL be the sets I∪B and I∪B∪L, re-
spectively. A triple is a tuple in IB×I×IBL. A graph is a set of triples. A dataset
is set {G0, (u1, G1), . . . , (un, Gn))} where G0, . . . , Gn are graphs, u1, . . . , un are
different IRIs and n ≥ 0. G0 is called the default graph and the rest are called
the named graphs. A dataset description is a pair (A,B) where A and B are sets
of IRIs. A mapping is a partial function with a finite domain in V with range in
IBL. There is a function δ that takes a pair (u, t) where u is an IRI and t is a
positive real number representing time, and returns either null, or a graph or a
dataset. Intuitively, δ(u, t) is the data that u makes accessible at the instant t.
We call endpoints the IRIs that make datasets accessible during a period.

Disentangling the Notion of Dataset in SPARQL

219

Note that most definitions presented above where taken from the standards
and the literature, except the model of the dataset description. The definition of
a dataset description as a pair of sets (instead of a list of dataset clauses) gives
an unequivocal semantics to the order of dataset clauses and to the repetition of
dataset clauses in the syntax of the dataset description. We argued previously
that assuming order or considering repetitions makes no sense if the client has
no control over how the data changes over time.

2.2 Algorithms for the dataset

A request is a pair of IRIs (a, b) at time t. A response is a tuple (a, b, r) where
a and b are IRIs and r is null (interpreted as a not-found error message2),
a graph, a sequence of mappings or a Boolean value. A query IRI is an IRI
u that has the format s?p where prefix s is called the IRI endpoint and the
query string p must contain the parameter ‘query’ and zero or more parame-
ters ‘default-graph-uri’ and ‘named-graph-uri’. The procedure to generate
the response to a request is described by the Algorithm 1. Note that this algo-
rithm allows retrieving the whole dataset through the endpoint IRI. This is not
supported by the current standard. However, it is possible to download it with
queries or with the graph store protocol [9].

Algorithm 1: Response(a, b)

Data: A request (a, b) sent at an instant t.
Result: The response of the request (a, b).
if b is a query IRI s?p and δ(s, t) is a dataset then

return (s, a, r) where r is the result of evaluating the query and parameters
indicated in the query string p in the endpoint s, that is, using the dataset
δ(s, t) as the default dataset.

else
return (b, a, δ(b, t))

end

The procedure to generate the dataset description is presented in Algorithm
2. The endpoint must first check the parameters in the request. If no dataset
description is provided in such parameters it finds the dataset description in the
query.

Each IRI u in a dataset description must be associated with a graph Gu. If
the default daset contains a graph named u, then Gu is the graph associated
with u in the dataset. Else, the graph Gu is the result of renaming the blank

2 Every request must result in a response that occurs after the request. In the HTTP
protocol, a request may result in manifold unsuccessful results (a time out, an inter-
nal error, etc.). For the sake of the simplicity, in our model we consider an unsuc-
cessful result as a null result.

Disentangling the Notion of Dataset in SPARQL

220

Algorithm 2: DatasetDescription(a, s?p)

Data: A request (a, s?p) where s?p is a query IRI.
Result: The dataset description of (a, s?p).
Let Q be the value that occurs in p as the property ‘query’.
Let A and B be the set of IRIs that occur in p associated to the properties
‘default-graph-iri’ and ‘named-graph-iri’, respectively.
if A ∪B 6= ∅ then

return (A,B)
else if there is at least a ‘FROM’ or a ‘FROM NAMED’ clause in Q then

Let A and B be the set of IRIs that occur in Q in the clauses ‘FROM’ and
‘FROM NAMED’, respectively.
return (A,B)

else
the request has no dataset description.

end

nodes with fresh labels in the response of the request (s, u). This procedure is
formally described in Algorithm 3. Finally, Algorithm 4 describes the algorithm
to be used when answering the query.

Algorithm 3: DatasetFromDescription(A,B)

Data: A dataset description (A,B).
Result: The dataset built from the description (A,B).
Let G← ⋃

Gi for all graph Gi in the default dataset (the scoping graph); let
G0 ← ∅ (the default graph); let D ← {G0} (the resulting dataset); let D0 be the
default dataset.
for u ∈ A ∪B do

if exists (u,G′) ∈ D0 then
Let Gu ← G′

else
Send the request (s, u) and let (u, s, r) be its response.
if r is a graph then

Let G′ be the result of replacing all blank nodes in r with blank
nodes that does not occurs in G;
Let Gu ← G′

end

end
if u ∈ A then

Let G0 ← Gu

end
if u ∈ B then

Let D ← D ∪ {(u,Gu)}
end

end
return D

Disentangling the Notion of Dataset in SPARQL

221

Algorithm 4: Dataset(a, s?p)

Data: A request (a, s?p) where s?p is a query IRI and δ(s, t) is a dataset.
Result: The dataset of the request at t.
if DatasetDescription(a, s?p) is defined then

(A,B)← DatasetDescription(a, s?p);
return DatasetFromDescription(A,B)

else
return δ(s, t).

end

3 Conclusions

We have proposed a formal model that defines the dataset that is used to evaluate
every graph pattern in a query. The model was designed to be as close as possible
to the RDF and SPARQL specifications; to formalize current natural-language
specification; and to clarify some ambiguities it has.

Acknowledgements: The authors thank funding to Millennium Nucleus Center
for Semantic Web Research under Grant NC120004.

Disentangling the Notion of Dataset in SPARQL

222

Bibliography

[1] R. Angles and C. Gutierrez. SQL Nested Queries in SPARQL. In Procedings
on the Alberto Meldenzon Workshop (AMW), 2010.

[2] C. Bizer and R. Cyganiak. RDF 1.1 Trig: RDF Dataset Language. Recom-
mendation, World Wide Web Consortium, Febrary 2014.

[3] L. Feigenbaum, G. T. Willians, K. G. Clark, and E. Torres. SPARQL 1.1
Protocol. Recommendation, World Wide Web Consortium, 2013.

[4] S. Harris and A. Seaborne. SPARQL 1.1 Query Language. Recommenda-
tion, World Wide Web Consortium, 2013.

[5] A. Hogan, M. Arenas, A. Mallea, and A. Polleres. Everything you always
wanted to know about blank nodes. Web Semantics: Science, Services and
Agents on the World Wide Web, 27–28(0):42 – 69, 2014. ISSN 1570-8268.
doi: http://dx.doi.org/10.1016/j.websem.2014.06.004. URL http://www.

sciencedirect.com/science/article/pii/S1570826814000481. Seman-
tic Web Challenge 2013.

[6] G. Klyne and J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax. Recommendation, World Wide Web Consortium,
February 2004.

[7] G. Klyne, J. Carroll, and B. McBride. RDF 1.1 Concepts and Abstract
Syntax. Recommendation, World Wide Web Consortium, February 2014.

[8] A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On blank nodes. In
L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. Noy,
and E. Blomqvist, editors, The Semantic Web – ISWC 2011, volume 7031 of
Lecture Notes in Computer Science, pages 421–437. Springer Berlin Heidel-
berg, 2011. ISBN 978-3-642-25072-9. doi: 10.1007/978-3-642-25073-6 27.
URL http://dx.doi.org/10.1007/978-3-642-25073-6_27.

[9] C. Ogbuji. SPARQL 1.1 Graph Store Protocol. Recommendation, World
Wide Web Consortium, Mar. 2013.

[10] E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 Federated Query.
Recommendation, World Wide Web Consortium, 2013.

[11] J. Pérez, M. Arenas, and C. Gutierrez. Semantics of SPARQL. Technical
Report, TR/DCC-2006-17, Universidad de Chile, Octover 2006. URL http:

//users.dcc.uchile.cl/~jperez/papers/sparql_semantics.pdf.
[12] G. T. Willians. SPARQL 1.1 Service Description. Recommendation, World

Wide Web Consortium, Mar. 2013.

Disentangling the Notion of Dataset in SPARQL

223

