
Model-driven UI Development integrating HCI Patterns

Enes Yigitbas

University of Paderborn

s-lab – Software Quality Lab

eyigitbas@s-lab.upb.de

Bastian Mohrmann

University of Paderborn

basti86@mail.upb.de

Stefan Sauer

University of Paderborn

s-lab – Software Quality Lab

sauer@s-lab.upb.de

ABSTRACT

An important criterion for user acceptance of interactive

systems is software ergonomics. Therefore, a variety of HCI

or usability patterns has been defined in the past. Although

HCI patterns promise reusable best-practice solutions, the

lack of formalization and effective tool support hinder their

usage in a model-driven development process. To overcome

this deficit, we propose a model-driven user interface

development (MDUID) process that integrates HCI patterns.

For showing the feasibility of our approach, we formalized

and implemented a set of GUI patterns, a particular category

of HCI patterns, based on IFML. We present our pattern

application concept and our tool-support based on a

customized MDUID process for generating rich internet

applications (RIAs).

Author Keywords

HCI, Model-driven UI Development, Pattern, GUI Pattern

ACM Classification Keywords

H.5: Information interfaces and presentation (e.g., HCI):

H.5.2: User Interfaces.

INTRODUCTION
An important criterion for user acceptance and user

experience, particularly in the context of interactive systems,

is software ergonomics. Therefore, a variety of HCI and

usability patterns has been defined in the past [1]. Similar to

software development patterns, HCI patterns are reusable

best-practice solutions. The difference is that HCI patterns

address the usability domain and the improvement of

software ergonomics rather than general software

architecture or code structure. One particular category of

HCI patterns are GUI patterns. In [2] GUI patterns are

described as patterns that “specify one or more abstract

interaction objects, their relationships, and their interactive

behavior” and that these patterns “are primarily aimed at

good usability”. The integration of GUI patterns in the

MDUID process appears to be a promising way to overcome

the lack of usability of automatically generated user

interfaces. However, this solution entails two problems.

The first is that HCI patterns are mostly described informally

in practice (1). However, model-driven approaches are based

on formalisms like MOF meta-models or XML schemes.

These formalisms are needed for automatized model-to-

model and model-to-code transformations. The second

problem is that there is barely no tool support for applying or

instantiating HCI patterns, particularly GUI patterns in

practice (2). In [3] it is reasoned that the lack of tools

“hinders the use of HCI patterns within fully automated

processes”, like the MDUID approach.

In this work, we design and implement a customized

MDUID process that integrates GUI patterns. The remainder

of this paper is structured as following: First, we describe

related work in the area of MDUID and HCI pattern

integration approaches. Then we present our GUI pattern

catalog and its formalization based on the abstract user

interface language IFML. Afterwards we explain the

implementation of our approach and the corresponding tool-

support. In the end, we conclude our own contributions and

outline future research activities.

RELATED WORK

Focusing on the topic of model-driven UI development

(MDUID) integrating HCI patterns, multiple aspects have to

be taken into account. Therefore our work is related to and

influenced by a broad range of research fields in order to

overcome the gap between HCI and MDUID. In the

following we will briefly sum up existing MDUID

approaches and pattern integration approaches and set them

in relation to our own solution.

MDUID Approaches

MDUID brings together two subareas of software

development, which are model-driven development (MDD)

and user interface development (UID). The core idea behind

MDUID is to automatize the development process of UI

development by making the models the primary artifact in

the development process rather than application code. An

MDUID process usually involves multiple UI models on

different levels of abstractions that are stepwise transformed

to the final user interfaces by model transformations.

The CAMELEON Reference Framework (CRF) [4] provides

a unified reference framework for MDUID differentiating

between the abstraction levels Task & Concept, Abstract

User Interface (AUI), Concrete User Interface (CUI) and

Final User Interface (FUI).

Workshop on Large-scale and model-based Interactive Systems:

Approaches and Challenges, June 23 2015, Duisburg, Germany.
Copyright © 2015 for the individual papers by the papers’ authors. Copying

permitted only for private and academic purposes. This volume is published

and copyrighted by its editors.

There are various state-of-the-art modeling languages for

covering the different abstraction levels of the CRF. For

example MARIA XML (Model-based lAnguage foR

Interactive Applications) [5] and IFML (Interaction Flow

Modeling Language) [6] provide both an AUI modeling

language and a tool-support to create and edit AUI models.

Based on these AUI models further transformations can be

performed to transform them into platform-specific CUI

models which eventually are needed for generating the final

user interfaces (FUI). The described MDUID approaches

enable the specification and also support the generation of

UIs, but they do not offer explicit mechanisms for specifying

HCI patterns like GUI patterns. Therefore the existing

MDUID tools show a lack of pattern formalization,

instantiation and tight integration in the development

process.

Pattern Integration Approaches

Engel [7] presents the concept of the PaMGIS (Pattern-Based

Modeling and Generation of Interactive Systems) framework

for pattern-based modeling. The PaMGIS framework

combines model-based and pattern-based approaches on

different levels of abstraction. The core component of the

framework is the pattern repository, a collection of

``different types of patterns and pattern languages''. Within

the repository, the patterns are described by the PPSL

(PaMGIS Pattern Specification Language). Beside the

definition of HCI patterns, their meaning, their idea etc.,

PPSL also provides means to define relations between

pattern models and other models. Such relations contain

information about the particular pattern, the related FUI,

(hierarchical) relationships to other patterns and back links

to other object-oriented models, e.g. an AUI or CUI model

of the interactive system. This information is necessary for

model-to-model and model-to-code transformations.

However, the PaMGIS approach leaves two issues open.

First, it does not become completely clear if the mentioned

model-to-code transformation can be defined on the model

level or has to be defined for each instance over and over

again. Secondly, no concepts for data binding have been

discussed in this approach.

Radeke [8] proposes in his work a pattern application

framework that describes a general concept of how patterns

can be integrated in model-based approaches. This

framework relies on three phases. In the first phase the user

selects the pattern from the pattern repository that he wants

to apply. The pattern repository contains hierarchically

structured patterns and sub-patterns defined in a common

pattern language. The generic part of the pattern is

instantiated in the pattern instantiation phase with regard to

the context of use. The outcome is an instantiated pattern that

can be integrated in the development process. Although this

approach suggests an interesting pattern instantiation

concept, it integrates HCI patterns in a model-based rather

than model-driven way. We overcome this deficit in our

approach through a tight integration of the formalized GUI

patterns by representing them in automatic model

transformations.

PATTERN INTEGRATION CONCEPT

In order to overcome the previously mentioned problems (1)

and (2), a general concept for integrating patterns in MDUID

was developed that aims at increasing the usability of

generated user interfaces. The main goal of this concept is

the automatized application of GUI patterns within a model-

driven process. Therefore, the CRF was extended by

instantiation parameters and application conditions of GUI

patterns like depicted in figure 1. Let us start with a short

explanation concerning these two terms.

Figure 1. Overview of the pattern integration concept

Following the concepts of Wendler [12] and Radeke et al.

[8], GUI patterns consist of a static and a dynamic part. The

static part of a pattern describes the core solution idea of the

pattern and can contain information about navigation, user

interface elements or layout. It does not change among

application scenarios. The dynamic part, however, depends

on the prevailing pattern application context and therefore

has to be set during the user interface modelling process.

Since these dynamic parts determine the instantiation of a

pattern, Wendler defines them as the instantiation

parameters. The second important aspect is given by the

conditions under which a pattern is advisable. In order to

decide, when which pattern shall be applied, so-called

pattern application conditions are helpful. Pattern application

conditions are formal and describe situations in which a

specific GUI pattern is reasonable. The advantage of

formalised conditions is that they can be validated

automatically, e.g. in the model-driven transformation

process. Such a validation determines if a pattern is applied

or not. After introducing the relevant terms, we will now

explain the concept.

Referring again to figure 1, the pattern integration concept

based on the CRF is depicted. It contains three abstract

components: An MDUID process implementation with its

different meta-models (AUI, CUI, Platform), an

instantiation parameter extension for the AUI meta-model,

and an application condition extension for the model-to-

model transformation. These components have to be

specified when the pattern integration concept is

implemented. As explained above, instantiation parameters

depend on a pattern’s application context. Because of that,

they have to be set during the initial user interface

specification. In our case, the user interface is initially

specified on the AUI layer and hence the instantiation

parameters are integrated in the AUI meta-model by

additional types and/or features. The application conditions

are integrated in the transformation from the AUI to the CUI

model by means of transformation rules. They are validated

on the AUI model and therefore reusable for any target

platform, like the AUI model itself. If the conditions are

valid, the pattern is applied and the according platform-

dependent CUI elements are generated.

GUI PATTERN CATALOG

The developed pattern integration concept was implemented

for a choice of GUI patterns. Therefore, the abstract

components introduced in the previous section were

instantiated. The resulting customized MDUID process is

depicted in figure 2. The AUI layer is realized with IFML

and the model-to-model transformation is realized with an

ATL [13] plugin. In order to integrate GUI patterns, a choice

of GUI patterns was identified and then formalized by

instantiation parameters and application conditions

conforming to the extended components, the IFML meta-

model and the ATL plugin. The formalized patterns are

represented by the extension components in figure 2.

All integrated patterns were documented in a pattern catalog

comprising the pattern’s general meaning, its formalized

instantiation parameters and application conditions. The

formalisation of the instantiation parameters is described by

means of an extension of IFML while the formalization of

application conditions is described by means of

transformation rules extending the ATL model-to-model

transformation. Currently, the pattern catalog includes seven

GUI patterns that were chosen based on their frequent use in

interactive applications and their occurrence in pattern

catalogs [1]. Further, the patterns in the pattern catalog are

structured according to pattern categories taken from [9] and

presented in a defined description scheme.

In the following, we want to present the Wizard pattern entry

according to this description scheme in order to give an

example of the pattern formalization:

Wizard

Description

The Wizard pattern is used when a user “wants to achieve a

single goal but several decisions need to be made before the

goal can be achieved completely” ([11]). Regarding a

complex task inside a software system that is performed

rather rarely and that is too long to fit into a single page, the

Wizard pattern suggests to separate the complex task into

several steps that are organized in a prescribed order. The

user can deal with each of these steps in a discrete mental

space and therefore has a simplified view on this task ([10]

p.55).

Figure 2. Architecture of the customized MDUID process

Instantiation Parameters

From the above description we can derive the following

instantiation parameter when a task is separated into several

decision steps: The amount of steps, the order of steps and

the content of the particular steps. Like illustrated in figure

3, a step is formalised as a Step class that inherits from the

ViewContainer class. Hence, the amount of steps and any

view elements, like Events, Fields or Lists that are the

content of a step can be defined. Furthermore, the inherited

outInteractionFlow association enables the definition of

NavigationFlows between steps and thus the order of the

steps. In the related figure, the coloured classes are part of

the IFML meta-model while the white class is a custom

extension.

Figure 3. Simplified Wizard extension

Pattern Application Condition

The Wizard pattern is applied whenever a ViewContainer

element with at least two containing Steps is modelled. All

contained Steps must be connected with NavigationFlows, so

their order can be determined. Below, these conditions are

implemented by means of an ATL transformation rule code

snippet with a source pattern and a guard.

IMPLEMENTATION AND TOOL-SUPPORT

In this section, the implementation of the pattern integration

approach and the corresponding tool-support is presented in

detail. The implementation is in a state where it already could

be successfully applied in an industrial setting. The

architecture of the implemented approach is depicted in

figure 2. This architecture partially implements the four

abstraction layers (Task & Concept, AUI, CUI, FUI) of CRF

indicated by the colored rectangles. The UML 2.0 language

on the Task & Concept layer enables the modeling of the

application’s domain, e.g. by a class diagram. As can be seen,

the AUI layer is realized by IFML. In particular, we reused

the IFML-metamodel.ecore, an implementation of the IFML

standard, which can be downloaded from the official website

and extended this meta-model by a choice of specific AUI

elements and GUI pattern instantiation parameters. IFML

provides dedicated extension points for this purpose. We

realized the CUI layer with a custom meta-model,

RIACUI.ecore, which is specific for rich internet

applications. The RIACUI.ecore enables to describe user

interface as they are perceived by the end user including the

layout, colors and concrete interaction types. On the FUI

layer, the user interface is finally represented by

JavaServerPages, JavaScript code and CSS style sheets. The

Transformation Workflow component manages the model-

to-model and the model-to-code transformation. As can be

seen in figure 2, the model-to-model transformation is

realized with ATL and produces a RIA-specific CUI model

from an IFML model and the related UML 2.0 domain

model. ATL provides a feature called rule inheritance. Rule

inheritance helps to reuse transformation rules and is similar

to inheritance relations in the object oriented domain.

Subsequently, the model-to-code transformation, realized in

Xtend [16], generates application code from a previously

produced RIA-specific CUI model. The advantage of Xtend

is, since it is based on Java, a statically-typed programming

language which employs template-based text generation.

This is particularly helpful when it comes to code generation

for application code organised in different files and

programming languages as it is the case for the FUI of rich

internet applications.

The tool support is given by a graphical editor that is an

extension to the IFML open source editor based on EMF [15]

and the Sirius [14] framework. The editor is available at

Github and was extended within this work by graphical

representations and create/read/update/delete operations for

the IFML extensions. Figure 4 depicts a screenshot of the

editor showing the working area, the palette and the

properties tab. This editor is an eclipse plug-in [17]. In the

working area the current IFML model is displayed,

Figure 4. Screenshot of the extended IFML editor

represented in its concrete syntax. The use of meaningful

icons and graphical representations helps for a better and

faster understanding of the editor. The user can create new

IFML model elements via Drag & Drop from the palette on

the right hand side. The palette is structured in multiple

sections where different ViewElements like List, Window

and NavigationFlow are available. The Step entry in the

palette also indicates that instantiation parameters of GUI

patterns are configurable. The editing of IFML model

elements mostly takes place in the properties tab located at

the bottom. Here, all attributes and associations of model

elements can be set, modified or deleted. Once such an IFML

model is specified, it serves as the input of the transformation

chain which can be triggered manually from the editor’s

context menu. The outcome is a RIA-specific CUI model in

XML format and the FUI represented by multiple

JavaServerPages, JavaScript files and CSS style sheets.

CONCLUSION AND OUTLOOK

In this paper, we presented the design and implementation of

a customized MDUID process that integrates GUI patterns.

As a basis of our solution concept we first described our

general pattern integration concept. Then we presented our

GUI pattern catalog and its formalization based on the

abstract user interface language IFML. The feasibility of our

approach was then shown by a tool-support which extends

the existing IFML editor by integrated GUI patterns. The

implementation of the customized MDUID process and the

practical usage of the tool-support was shown in the context

of generating rich internet applications (RIAs). With regard

to future work we intend to evaluate our implemented

solution in an industrial case study. In the evaluation we will

especially focus on the influence of the integrated GUI

patterns to the usability of the automatically generated RIAs.

REFERENCES

1. HCI Patterns. Retrieved April 2, 2015 from

http://www.hcipatterns.org/patterns

2. Christian Märtin, Christian Herdin, and Jürgen Engel.

2013. Patterns and Models for Automated User Interface

Construction – In Search of the Missing Links, in: M.

Kurosu (Ed.), Human-Computer Interaction, Part I,

HCII 2013, LNCS 8004, 401-410.

3. Kai Breiner, Marc Seissler, Gerrit Meixner, Peter

Forbrig, Ahmed Seffah, and Kerstin Klöckner. 2010.

PEICS: towards HCI patterns into engineering of

interactive systems. In Proc. of the 1st International

Workshop on Pattern-Driven Engineering of Interactive

Computing Systems (PEICS '10).

4. Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin

Limbourg, Laurent Bouillon, and Jean Vanderdonckt.

2003. A Unifying Reference Framework for Multi-

target User Interfaces. In: Interacting with Computers,

289-308.

5. Fabio Paterno', Carmen Santoro, and Lucio Davide

Spano. 2009. MARIA: A universal, declarative,

multiple abstraction-level language for service-oriented

applications in ubiquitous environments. ACM Trans.

Comput.-Hum. Interact. 16, 4, Article 19 (November

2009), 30 pages.

6. IFML Spec. Retrieved April 2, 2015 from

http://www.omg.org/spec/IFML/

7. Jürgen Engel. 2010. A model- and pattern-based

approach for development of user interfaces of

interactive systems. In Proceedings of the 2nd ACM

SIGCHI symposium on Engineering interactive

computing systems (EICS '10). ACM, New York, NY,

USA, 337-340.

8. Frank Radeke and Peter Forbrig. 2007. Patterns in task-

based modeling of user interfaces. In Proceedings of the

6th international conference on Task models and

diagrams for user interface design (TAMODIA'07),

Marco Winckler, Philippe Palanque, and Hilary Johnson

(Eds.). Springer-Verlag, Berlin, Heidelberg, 184-197.

9. Marco Brambilla and Piero Fraternali. Interaction Flow

Modeling Language: Model-Driven UI Engineering of

Web and Mobile Apps with IFML. Morgan Kaufmann,

2014.

10. Jenifer Tidwell. Designing interfaces – patterns for

effective interaction design (2. ed.). O’Reilly, 2011.

11. Matijn Van Welie. A pattern library for interaction

design. Retrieved April 2, 2015 from

http://www.welie.com/patterns/

12. Stefan Wendler, Danny Ammon, Ilka Philippow, and

Detlef Streitferdt. A factor model capturing

requirements for generative user interface patterns. In

PATTERNS 2013, the Fifth Int. Conf. on Pervasive

Patterns and Applications, Valencia, Spain, IARIA,

Lecture Notes in Computer Science, pages 34–43, 2013.

13. ATL. Retrieved April 2, 2015 from

https://eclipse.org/atl/

14. Sirius. Retrieved April 2, 2015 from

https://eclipse.org/sirius/

15. EMF. Retrieved April 2, 2015 from

https://www.eclipse.org/modeling/emf/

16. Xtend. Retrieved April 2, 2015 from

https://eclipse.org/xtend/

17. Eclipse. Retrieved April 2, 2015 from

https://eclipse.org/

