
Large-scale and Model-based
Interactive Systems

Proceedings of the

1st International Workshop on

Approaches and Challenges (LMIS 2015)

Co-located with the 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS 2015)

June 23, 2015, Duisburg, Germany

Proceedings of LMIS 2015 Workshop
Workshop on Large-scale and model-based Interactive Systems: Approaches and Challenges,
June 23 2015, Duisburg, Germany.
Copyright c© 2015 for the individual papers by the papers’ authors. Copying permitted
only for private and academic purposes.

Publication Online-CEUR Proceedings (CEUR-WS.org)
CEUR-WS Vol-1380
Publication Year 2015
http://ceur-ws.org/Vol-1380/

Edited by:
Ronny Seiger1, Bashar Altakrouri2,
Andreas Schrader2, Thomas Schlegel1

1Software Engineering of Ubiquitous Systems Group,
Technische Universität Dresden, Dresden, Germany
2Ambient Computing Group,
Universität zu Lübeck, Lübeck, Germany

The workshop was partially supported by the
German Federal Ministry of Education and
Research (BMBF) (Code - 16SV6369).

http://ceur-ws.org/Vol-1380/

CONTENTS

1 INTRODUCTION 4

2 WORKSHOP ORGANIZERS 6

2.1 Ronny Seiger . 6

2.2 Bashar Altakrouri . 7

2.3 Andreas Schrader . 8

2.4 Thomas Schlegel . 9

3 PROGRAM COMMITTEE 10

4 PROGRAM 11

5 ACCEPTED PAPERS 13

5.1 Navigation in Ambient Spacess . 14

5.2 Ambient Reflection: Towards self-explaining devices 16

5.3 A Framework for Rapid Prototyping of Multimodal Interaction Concepts . 21

5.4 Challenging Documentation Practices for Interactions in Natural User In-

terfaces . 29

5.5 A Concerted Model-driven and Pattern-based Framework for Developing

User Interfaces of Interactive Ubiquitous Applications 35

5.6 Model-driven UI Development integrating HCI Patterns 42

1 INTRODUCTION

Pervasive and ubiquitous computing introduce a new quality of interaction both into our
lives and into software engineering. This has led into an unprecedented interest in imp-
lying the full potential of the human body’s sensory and motor systems for multi-modal
interactivity, manifested by new market initiatives for motion gestures, brain-computer
interfaces, multi-touch devices, etc. Whilst this new Post-WIMP interaction paradigm
provides rich interaction possibilities and fertile ground for innovation, its increasing po-
pularity imposes new critical challenges for the adoption of interaction techniques in real-
world ambient spaces. Software becomes increasingly dynamic, requiring frequent changes
to system structures, distribution and behaviour. The aforementioned needs and challen-
ges are mainly caused by increased user mobility, increased heterogeneity of available
interaction resources, and increased diversity of physical abilities (i.e., diversity of user
population).
This workshop discusses various approaches to handle these challenges to support flexible,
context-aware and interactive spaces. We put special focus on promising approaches for
coping with dynamics and uncertainties inherent to interactive ubiquitous systems, par-
ticularly model-based interaction at runtime and large-scale interaction ensembles (i.e.,
combining and adapting multiple interactions at runtime). The workshop was held as
a full day workshop and aimed to provide a forum for discussing new ideas, issues and
approaches. It included a keynote speech, presentation of participants’ contributions and
various forms of interactive discussions concerning the presented topics.

Workshop Topics
In this workshop, we were mainly interested in exposing those challenges and potential
approaches for tackling them. The workshop aimed to stimulate a discussion on the afo-
rementioned core research questions by inviting position papers between 4 and 6 pages in
length on any of the the following topics:

• Model-driven architecture (MDA) in the context of interactive systems

• Advantages and potential problems of using MDA in the interactive systems domain

• Distributed user interfaces and UI migration at runtime

• Model-driven generation of (intelligent) interfaces

• Tools and frameworks for supporting the model-driven development

• Concepts for context-awareness and self-adaptation of interactive systems

• Requirements, insights and experiences from existing mobile and pervasive settings

• Architectural concepts for dynamic runtime deployment of interaction techniques

LMIS 2015 Proceedings 4

• Formal languages, notations, and concepts for describing interactions for NUIs

• Designing and implementing highly adaptive interaction techniques

• Studies on users’ diversity in NUI, including age, physical limitations, etc.

• Studies on user challenges in highly adaptive interactive environments

• Analysis of limitations of existing NUI middleware frameworks and systems

• Analysis and evaluation of HCI community practices and norms for disseminating
interaction techniques

• Adjustable, customizable, and modular interactive systems

LMIS 2015 Proceedings 5

2 WORKSHOP ORGANIZERS

2.1 Ronny Seiger

Software Engineering of Ubiquitous Systems Group

Technische Universität Dresden

01062 Dresden
Germany

ronny.seiger@tu-dresden.de

Ronny Seiger has been a research assistant within the research project VICCI, funded by
ESF, at SEUS at Technische Universität Dresden. His research interests include distribu-
ted systems architectures, security and privacy, web technologies, business process, event
processing, and software engineering. During his studies, he has been a student assistance
whithin the projects Theseus/Texo and FlexCloud at the chair for computer networks.
In addition, he has been a working student and thesis student within the new business
development department at T-Systems Multimedia Solutions GmbH. In the VICCI pro-
ject, he is responsible for the design and implementation of a dynamic, highly adaptive
runtime environment for complex cyber-physical systems, applying means for central and
decentral communications, complex event processing and process orchestration.

LMIS 2015 Proceedings 6

2 WORKSHOP ORGANIZERS

2.2 Bashar Altakrouri

Ambient Computing Group

University of Lübeck

23562 Lübeck
Germany

altakrouri@itm.uni-luebeck.de

Bashar Altakrouri is currently a senior researcher at the Ambient Computing Group at the
Institute of Telematics at Lübeck University. He worked previously as a research associate
at the Embedded Interactive Systems group at Lancaster University (Lancaster, The
United Kingdom), research assistant at the International School of Digital Media (Lübeck,
Germany), intern at the Open University of Netherlands (Netherlands), and Computer
Lab Assistant at the Palestine Polytechnic University (Hebron, Palestine). He is mainly
involved in designing, prototyping and implementing Context-aware Systems, Internet of
Things (IoT), Natural User Interfaces, and Mobile Services and Applications. His work
is currently focused on frameworks for deployable and adaptive interaction techniques for
inclusive smart interactive environments for elderly and physically challenged users.

LMIS 2015 Proceedings 7

2 WORKSHOP ORGANIZERS

2.3 Andreas Schrader

Ambient Computing Group

University of Lübeck

23562 Lübeck
Germany

schrader@itm.uni-luebeck.de

Andreas Schrader is a professor for Ambient Computing and head of the Ambient Compu-
ting Working Group at the University of Lübeck realizing interactive and context-sensitive
multimedia applications in ubiquitous and pervasive computing systems. Current focus
area is the development of concepts for Ambient Assisted Living as a means for serving
an ageing society. In a number of third-party funded projects (BMBF and others) the
group develops frameworks for context-aware mobile services, dynamic composition of
interaction channels in spontaneous device ensembles and ambient health solutions in co-
operation with several clinical partners. Prof. Schrader has published more than 75 papers
and achieved several awards for best paper (IEEE iThings 2013) and best demo (IEEE
Percom 2013, IoT 2012). He has performed lectures at various universities in Germany,
Sweden, Lithuania and Latvia. He is member of ACM and GI, committee member for
many international scientific conferences and journals and acts as reviewer for German
and Austrian national boards. He is also holding patents in Germany, Japan and the U.S.

LMIS 2015 Proceedings 8

2 WORKSHOP ORGANIZERS

2.4 Thomas Schlegel

Software Engineering of Ubiquitous Systems Group

Technische Universität Dresden

01062 Dresden
Germany

thomas.schlegel@tu-dresden.de

Thomas Schlegel is heading the Junior Professorship SEUS at the Technical University
of Dresden since 2010. He contributed to more than 60 publications, numerous activities
in program committees as well as reviewer and various academic courses and scientific
cooperation, he engages in research and academics in the field of Software Engineering of
Ubiquitous Systems, focusing on interaction, models, processes and software systems. He
perviously worked for different companies like HP, Daimler, Agilent and ETAS/Bosch, and
Fraunhofer IAO, where he initiated and coordinated a series of national and international
research projects.

LMIS 2015 Proceedings 9

3 PROGRAM COMMITTEE

• Ulf Blanke, ETH Zuerich, Switzerland

• Daniel Burmeister, University of Lübeck, Germany

• Mirko Fetter University of Bamberg, Germany

• Mehmet Aydin Baytas, Koc University, Turkey

• Jo Vermeulen, University of Birmingham, UK

• Simo Hosio, University of Oulu, Finland

• Beat Signer, Vrije Universiteit Brussel Brussels, Belgium

• Peter Forbrig, University of Rostock, Germany

• Jan van den Bergh, Hasselt University, Belgium

• Heinrich Hussmann, Ludwig-Maximilian University Munich, Germany

• Anette Weisbecker, Fraunhofer IAO, Stuttgart, Germany

• Stefan Sauer, University of Paderborn, Germany

• Philippe Palanque, University of Toulouse, France

• Fabio Paterno, CNR-ISTI, Italy

• Gerhard Weber, Technische Universität Dresden, Germany

• Florian Daniel, University of Trento, Italy

• Gerrit Meixner, Heilbronn University, Germany

• Philippe Palanque, IRIT Toulouse, France

• Thomas Springer, Technical University of Dresden, Germany

• Jürgen Ziegler, University Duisburg-Essen, Germany

• Birgit Bomsdorf, Hochschule Fulda, Germany

• Romina Kühn, Technische Universität Dresden, Germany

• Christine Keller, Technische Universität Dresden, Germany

• Martin Christof Kindsmüller, Brandenburg University of Applied Sciences, Germany

LMIS 2015 Proceedings 10

4 PROGRAM

1st Workshop on Large-scale and Model-Based Interactive Systems:
Approaches and Challenges
Duisburg, Germany – June 23, 2015, 9:00–17:30

9:00 Welcome and Introductions

9:15 Keynote

• Johannes Schöning
Navigation in Ambient Spaces

10:00 Paper Presentations

• Daniel Burmeister, Bashar Altakrouri and Andreas Schrader
Ambient Reflection: Towards self-explaining devices

10:30 Coffee Break

11:00 Paper Presentations

• Ronny Seiger, Florian Niebling, Mandy Korzetz, Tobias Nicolai and
Thomas Schlegel
A Framework for Rapid Prototyping of Multimodal Interaction
Concepts

• Bashar Altakrouri and Andreas Schrader
Challenging Documentation Practices for Interactions in Natural User
Interfaces

• Jürgen Engel, Christian Märtin and Peter Forbrig
A Concerted Model-driven and Pattern-based Framework for
Developing User Interfaces of Interactive Ubiquitous Applications

LMIS 2015 Proceedings 11

4 PROGRAM

12:30 Lunch

14:00 Paper Presentations

• Enes Yigitbas, Bastian Mohrmann and Stefan Sauer
Model-driven UI Development integrating HCI Patterns

14:30 Discussions and Visual Roadmapping I

15:30 Coffee Break

16:00 Discussions and Visual Roadmapping II

17:00 Conclusions and Outlook

LMIS 2015 Proceedings 12

5 ACCEPTED PAPERS

Invited Keynote:

• Navigation in Ambient Spaces
Johannes Schöning

Accepted Papers:

• Ambient Reflection: Towards Self-explaining Devices
Daniel Burmeister, Bashar Altakrouri and Andreas Schrader

• A Framework for Rapid Prototyping of Multimodal Interaction Concepts
Ronny Seiger, Florian Niebling, Mandy Korzetz, Tobias Nicolai and Thomas Schlegel

• Challenging Documentation Practices for Interactions in Natural User
Interfaces
Bashar Altakrouri and Andreas Schrader

• A Concerted Model-driven and Pattern-based Framework for Developing
User Interfaces of Interactive Ubiquitous Applications
Jürgen Engel, Christian Märtin and Peter Forbrig

• Model-driven UI Development integrating HCI Patterns
Enes Yigitbas, Bastian Mohrmann and Stefan Sauer

LMIS 2015 Proceedings 13

Keynote:(Navigation(in(Ambient(Spaces(
 Johannes Schöning

Expertise Centre for Digital Media
Hasselt University – tUL – iMinds
johannes.schoening@uhasselt.be

ABSTRACT(
More and more spaces and environments are now sensitive
and responsive to the presence of their users and not longer
in a research prototype stage. In my talk I will highlight
several interaction challenges that arise for the users in
these novel and complex so-called “smart” environments.
In particular, I will focus on how people can be guided
through these spaces with the help of novel interface
technologies. While these space may offer hundreds of
different services and experiences to their users, still this
fundamental problem will remain as the users need to
actively navigate in these environments. In the talk I will
present different of our approaches to help people "find
their ways" in these environments with novel interfaces.
Personal wearable devices can play an important role to
assist the users. One example highlighted in the talk,
besides others [1], will be the StripeMap prototype [3].
Small wearable devices present new challenges for
cartography as well as HCI. In cartography large display
sizes have significant advantages. The StripeMaps is a
system that adapts the mobile web design technique of
linearization for displaying maps on smartwatches' small
screens. Just as web designers simplify multiple column
desktop websites into a single column for easier navigation
on mobile devices, StripeMaps transforms any two-
dimensional route map into a one-dimensional "stripe". A
conducted user study shows show that this simplification
allows StripeMaps to outperform both traditional mobile
map interfaces and turn-by-turn directions for pedestrian
navigation using smartwatches.

Author(Keywords(
Smartwatches; Cartography; Mobile Maps; Pedestrian
Navigation

ACM(Classification(Keywords(
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—input devices and strategies, interaction styles

(

ABOUT(THE(SPEAKER(
Johannes Schöning a professor of computer science with a
focus on HCI at Hasselt University. In addition, he is a
visiting lecturer at UCL London within the Intel
Collaborative Research Institute for Sustainable Cities. His
main research interests are new methods and interfaces to
navigate through spatial information. In general Johannes
Schöning is developing new intelligent user interfaces that
help people to solve daily tasks more effectively [2]. Before
taking over the faculty position in Hasselt he worked in
industry and at the German Research Centre for Artificial
Intelligence DFKI in Saarbrücken from 2009 to 2011.

Workshop on Large-scale and model-based Interactive Systems:
Approaches and Challenges, June 23 2015, Duisburg, Germany.
© Copyright 2015 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is
published and copyrighted by its editors.

Figure 1: The StripeMaps concept. As screen space and
interaction possibilities are limited on smartwatches, the

StripeMaps application converts a 2D map to a 1D stripe. The
original path on the 2D map is shown on the mini-map in the

upper left corner. The cut (shown on the smartwatch)
indicates the direction of the turn the user needs to make to

navigate along the path.

14

During that time Mr. Schöning received a PhD in computer
science at the Saarland University in 2010 and a Master in
Geoinformatics at the University of Münster at the Institute
for Geoinformatics in 2007. His research and work was
awarded with several prices and awards, such as two
Google Research Awards, the ACM Eugene Lawler Award
or the Nokia Innovator Award.

REFERENCES(
1.! Maaret Posti, Johannes Schöning & Jonna Häkkilä:

Unexpected Journeys with the HOBBIT – The Design
and Evaluation of an Asocial Hiking App. DIS 2014:
Proceedings of the International Conference on
Designing Interactive Systems, (2014)

2.! Johannes Schöning: Interaction with geospatial data. it
- Information Technology: Volume 57, Issue 1, (2015)

3.! Dirk Wenig, Johannes Schöning, Brent Hecht, Rainer
Malaka: StripeMaps: Improving Map-based Pedestrian
Navigation for Smartwatches. MobileHCI 2015:
Proceedings of the International Conference on
Human-Computer Interaction with Mobile Devices and
Service, 2015

5.1 Navigation in Ambient Spaces

LMIS 2015 Proceedings 15

Ambient Reflection: Towards self-explaining devices
Daniel Burmeister

University of Lübeck
Institute of Telematics
burmeister@itm.uni-

luebeck.de

Bashar Altakrouri
University of Lübeck
Institute of Telematics

altakrouri@itm.uni-luebeck.de

Andreas Schrader
University of Lübeck
Institute of Telematics

schrader@itm.uni-luebeck.de

ABSTRACT
In the course of ubiquitous and pervasive computing a vari-
ety of smart devices are developed and entering our every-
day life. These devices increasingly rely on novel interac-
tion modalities from the field of Natural Interaction, such as
gesture control. Common concepts to explain and illustrate
devices’ interaction possibilities can’t be applied to these in-
teraction techniques due to embedding of devices and as a
consequence disappearing interfaces as well as distribution
of functionalities among device ensembles in terms of IoT,
AAL and Smart Home. These emerging and currently ex-
isting problems in accessing devices’ interaction possibilities
present users with new challenges. In addition, current pos-
sibilities for device documentation provide only a limited vi-
able option to learn devices. Hence, a general documentation
for interconnected devices and thus functionality can not be
created manually. In order to counteract these problems we
present an approach for in-situ generation of an ambient man-
ual for interconnected smart devices.

Author Keywords
Ambient Computing; Human Computer Interaction
Guidance

ACM Classification Keywords
H.5.2. User Interfaces: Training, help, and documentation

INTRODUCTION
As a result of the ongoing research and development in the ar-
eas of ubiquitous and pervasive computing the variety of het-
erogenous commercial devices with rich functionalities and
novel interaction techniques arise. Particularly with regard
to the fields of Ambient Assisted Living (AAL), Internet of
Things (IoT) and Smart Home, users are increasingly faced
with natural interaction. While bulk of HCI research strives
to create interaction techniques that are easy to learn, natu-
ral, self-explaining, and novel, documentation of interaction
techniques is generally an underestimated and ignored issue
or simply considered luxury and unnecessary. Considering
the progressive complexity in ambient scenarios containing
heterogenous devices and interaction techniques, this results

Workshop on Large-scale and model-based Interactive Systems: Approaches and
Challenges, June 23 2015, Duisburg, Germany.
Copyright c© 2015 for the individual papers by the papers’ authors. Copying
permitted only for private and academic purposes. This volume is published and
copyrighted by its editors.

into an increasing gap between the users’ ability to learn and
remember these techniques and the provided functionality.

Currently, documentation of smart devices’ interaction tech-
niques in ambient space scenarios is usually spatial dis-
tributed and highly eco-centric, if accessible at all. Concern-
ing the ongoing interconnection of devices and interaction
behavior in terms of IoT, such documentation can’t be real-
ized manually. In total, the variety of current Smart Objects
challenge users in accessing and operating. It is reasonably
assumed, that these interaction challenges will increase sig-
nificantly caused by complexity and unpredictable intercon-
nections in ambient spaces.

SMART AMBIENT SPACES
Ambient spaces are manifested by an expanding world of in-
terconnected Smart Objects full of rich interaction capabil-
ities driven by ubiquitous and pervasive technologies. Re-
search and industrial development in this area have resulted
into vast increase in the number of smart commodity devices
and objects (thereafter, called Smart Objects) seamlessly in-
terweaving in a wide range of inhabited environments (e.g.,
households). A recent study conducted by BITKOM (Fed-
eral Association for Information Technology, Telecommuni-
cations and New Media) revealed that every household in
Germany owns at least 50 electrical devices with an increas-
ing tendency towards more devices [4] and half of all house-
hold devices are expected to be connected as part of a network
by 2018 as reported by RWE Effizienz GmbH [25].

While users are currently familiar with handling normal phys-
ical objects and with interacting with simple and often limited
number of electrical devices [25], the variety and diversity
of functions and handlings of Smart Objects pose new chal-
lenges, especially to enable and familiarize users with inter-
action possibilities in ambient spaces [5, 28].

The increasing number of devices as well as the increasing
diversity of offered functions imposes serious learning issues
for the user according to Poppe et al. [20]. In one of his ar-
ticles, Norman argued that this may easily lead to long-term
usability obstacles and inflate problematic and irrational use
of devices [16]. For instance, in case of a time change, dif-
ferent clocks in households offer inconsistent ways and inter-
action modalities for modifying the time. Hence, even this
simple operation normally challenges the user [11]. Such
challenges easily evolve with more emphasis on the required
implicit knowledge of users and the lack of adequate docu-
mentation [30]. Sometimes devices can’t even be controlled
without the use of additional material [27].

16

The interaction challenges and difficulties with current and
future smart devices and artifacts were also the subject of
Norman’s book, titled Living with Complexity [17]. In this
book, Norman drew a clear distinction between complexity
and complication. While complexity refers to the form of pre-
sentation of possible interaction states and transitions, com-
plication donates the psychological state of a person who tries
to learn an interaction with an object. Hence, complex ob-
jects and artifacts are not necessarily complicated to interact
with. Complication barriers can appear due to different rea-
sons including changing the environment and simultaneously
changing artifacts. We believe that ambient spaces may result
into various complication barriers due to three inherited char-
acteristics reported by Pruvost et al. [23], namely, the hetero-
geneity and distributivity (containing a variety of devices with
various capabilities); dynamic media mobility (interaction ca-
pabilities are highly dynamic as interaction devices may join
and leave the ambient space at any time), and user mobility
(challenging users to attend to interaction needs). This leads,
very commonly, to missing the natural mapping of offered
functionality and adequate interaction modalities [15, p. 12],
as well as to hindering the user from building the correct men-
tal model of the system.

OPPORTUNITIES AND CHALLENGES OF NATURAL
USER INTERFACES
Recent advancements in HCI research have revealed new and
novel interaction techniques to operate and control devices in
ambient spaces by using Natural User Interfaces (NUIs) as
in multi-touch gestures, motion-gestures, gaze-interactions,
etc. [8]. In literature, different definitions of interactions with
NUIs were elaborated and most of them refer to the user’s
natural abilities, practices, and activities to control interactive
systems. Many of those interactions are mostly caused and
characterized by motion and movement activities, ranging
from pointing, clicking, grasping, walking, balancing, danc-
ing, etc. as discussed in [1].

In the last 10 years, NUIs, using touch and motion en-
abled technologies, found their way commercially and be-
came widely accessible to the end user. Moreover, users are
becoming more acquainted with using different body parts
to interact with applications such as gaming (e.g., motion-
controlled active play by Microsoft Kinect or the Wii system),
data browsing, navigation scenarios (e.g., tilting for scrolling
photos as in iOS and Android devices), and many more. This
has encouraged the HCI community to continuously expand
towards the NUI paradigm and currently various new calls
have been arisen to explore new potential in designing for the
whole body in motion [7, 9]. Despite the efforts towards in-
tuitive and simple interfaces, the NUI paradigm is challenged
by an expanding user population and diversity with respect
to age and physical abilities, as discussed in [1]. On the one
hand, the naturalness of NUI does not imply the simplicity
to recall and use interaction techniques [18]. On the other
hand, utilizing the human body and its parts for interaction
comes with its own set of complexities. Simple commands,
like ”raise your arm”, may have very different interpretations.
Different aspects are important to consider for correctly exe-

cuting such a simple command, for instance movement direc-
tion, involved body parts, timing information, etc.

GUIDANCE IN AMBIENT SPACES
In order to correctly use simple or complex technologies, the
availability and accessibility of relevant information are es-
sential for the user. Therefore, Norman [14] coined the term
affordances in respect of objects’ self-revealing interaction
possibilities to easily enable users interacting with them. The
same applies for the interaction in ambient spaces, however
the current concept of affordances does not apply to the on-
going embedding of devices and accordingly their interac-
tion possibilities [26, 22]. The dynamic nature of ambient
spaces imposes different learning and affordance challenges
on users. In this regard, relaying solely on visual appearance
and affordances of a smart object to explain its logic and func-
tion are not enough [26]. Hence, adequate documentation and
presentation of interaction possibilities and the utility of an
object are essential part for learning ambient spaces, which
aim at correct usage of devices and optimized user mental
models.

In ambient spaces, documentation is not only vital for the use
of objects but also for the design process itself and for a suc-
cessful share and exchange of components and knowledge.
Although different device manufacturers pay attention to the
consistency of interaction patterns and product descriptions,
there are currently no consistent and unified standards for de-
scribing smart objects and their offered interaction possibil-
ities in ambient spaces. Based on this, users have to repeat-
edly remember how to interact with such devices [24]. This
recurring state of knowledge between beginner and expert in
interacting with a device is called perpetual intermediate [6,
p. 42].

Our previous work on reviewing existing documentation-
related tools for NUIs revealed four general observations or
shortcomings, namely the lack of widely adopted tools by
NUI designers, the absence of dedicated NUI documentation
tools, the lack of end-user support, and the lack of support
and considerations of body movements and postures as part of
the interaction descriptions (if at all found). Furthermore, the
review revealed that there is a lack of formalized languages
and notations of generic motion documentation [1, 3]. For
the previously mentioned reasons and potentially more, peo-
ple turn to rely on other learning approaches and methods.
Trial-and-Error is a very common practice to unveil adequate
system interactions used by users. However, it is not neces-
sarily the most effective approach in many cases. This was
the subject of many research studies in the area of safety and
critical environments. A study has revealed that 70% of sur-
geons and 50% of nurses demonstrated problems dealing with
medical devices in operating theaters [12], where 40% of the
respondents indicated that the ignorance of adequate opera-
tion guidelines of medical devices have resulted into repeat-
edly occurring hazards. In a previous study [1], the majority
of reported respondents of a questionnaire (more than 90%)
rely on try and error to learn interactive techniques of per-
sonal interactive devices (e.g., smart phones, interactive TVs,
handhelds, and game consoles). This can be due to the limited

5.2 Ambient Reflection: Towards self-explaining devices

LMIS 2015 Proceedings 17

range and simplicity of interaction features currently avail-
able in the users’ commodity devices (e.g., swipe, shake, and
pan). Nonetheless, there is a strong evidence that learning and
memorizing interaction techniques will become more com-
plex due to the vast growth of multi-touch- and motion-based
interactions in terms of, but not limited to, the number of in-
teractions proposed, the increasing complexity of interaction
techniques, expanding diversity of interaction types, involved
body parts, involved actions, and runtime ensembles of in-
teraction techniques [7, 9, 13, 2]. This clearly advocates the
need for reference documentation of interaction techniques as
a necessity and an aid tool for users [19]. In fact, interactiv-
ity in ambient spaces is becoming even increasingly dynamic
(interaction environments are becoming increasingly hetero-
geneous and dynamic and no longer static and closed [23]),
adaptive (required for sustainable utility and usability), and
multi-modal. Hence, interactive ambient spaces are created
in an ad-hoc manner, where multiple interaction techniques
grouped together to adapt the available interaction resources
and possibilities to the user’s physical context and abilities.
This shift towards an evolving world of interactivity (smart
spaces, user mobility, anthropomorphic abilities and disabili-
ties, preferences, etc.) requires new dissemination, deploy-
ment, and adaptation mechanisms for NUI. For these rea-
sons, documentation for training, demonstration, and refer-
ence purposes plays a major role to set the limits and bound-
aries for NUI deployment and adoption in interactive ambient
spaces.

A FRAMEWORK FOR AMBIENT REFLECTION
In order to offer a possibility to compensate the previously
mentioned emerging problems in interaction and documen-
tation, we strive for developing a three-divided framework
for Ambient Reflection as an integral component of reflective
systems self-x properties [21, p. 322 et seq.]. By providing
this framework as a feasible solution, we foster the multi-
modal self-description of (interconnected) devices regarding
interaction possibilities. In total, our envisioned framework
consists of three building blocks, namely an Ambient Reflec-
tive Documentation Language, Documentation Fusion and
Presentation Oriented Publishing. In the following para-
graphs, these components are described in detail.

Ambient Reflective Documentation Language
Current possibilities for technical documentation are limited
to unstandardized media entities, i.e., each device is described
in different modalities using different types of media in var-
ious formats. Hence, caused by this diversity an automated
processing is not possible. In order to achieve this prop-
erty a unified extensible documentation language for ambi-
ent spaces should be provided, covering a structured descrip-
tion about devices specification and interaction possibilities
on a high granularity (further referred as micro-level). More-
over, a documentations content should be decoupled from its
presentation in order to achieve more flexibility for further
processing, which already has successfully been done (e.g.
by [29]). This approach of presentation-neutral describing of
Smart Objects may guarantee distributivity, extensibility and
further presentation oriented processing.

Figure 1. Ambient Reflection Framework

Documentation Fusion
Given the assumption, that relevant devices in an ambient
space scenario were described by an ambient reflective doc-
umentation, the documentation fusion will take place. In the
following, a device with access to its remote located or at-
tached documentation is called documentation entity. Includ-
ing the current context and environmental state, the fusion
step performs in-situ processing and merging of distributed
documentation entities. As result it generates a presentation-
neutral adaptive ambient space manual for interconnected en-
sembles of Smart Objects in ubiquitous and pervasive envi-
ronments, considering just involved devices and interaction
possibilities.

Distributing the generated material to a dedicated coordinat-
ing engine will enable a guidance system to offer further in-
structions regarding interaction of device ensembles at the
time the user needs or asks for support. Nonetheless, the
fusion step might be skipped to provide even single device
interaction guidance as well.

Presentation Oriented Publishing
Using concepts of presentation oriented publishing for
markup languages [10] adds an additional abstraction layer
between the generated manual and the final presentation of
instructions to the user. The formerly mentioned decoupling

5.2 Ambient Reflection: Towards self-explaining devices

LMIS 2015 Proceedings 18

properties of presentation-neutral documentation facilitates
the documentation language translation into other renderable
languages. Furthermore, the inclusion of a standardized style
description to the translated language concerning presenta-
tional aspects will offer a possible solution for adaptivity in
presentation. Finally, the fused documentation should be de-
ployed to appropriate rendering devices. E.g. a fused docu-
mentation might be translated into the Scalable Vector Graph-
ics format using different color sets for color-blind users and
visualized by an internet browser’s rendering engine.

EXEMPLARY SCENARIO
In order to further illustrate the frameworks’ working-process
the following scenario is assumed (see figure 1): A user re-
sides in an environment containing of n Smart Objects. Since
a device ensemble, consisting of Smart Object 1 and 2, was
built, the user needs guidance in usage. Object 1 is al-
ready described by using the Ambient Reflective Documen-
tation Language, where Object 2 still needs to be described.
Therefore, an adapter is used to translate existing documen-
tation, written by the manufacturer, into the documentation
language. It is likewise conceivable, that an ambient reflec-
tive documentation is remote located, whereas the device just
provides the destination (as done by Smart Object n). The
Fusion Engine fetches and merges the documentation of the
involved Objects as well as applying a stylesheet based on the
users preferences. Finally, the generated manual is deployed
to rendering devices 2 and k and by association delivered to
the user. It should be noted, that a rendering device might be
equal to a Smart Object in the environment and thus might
also be documented. Hence, a set of documented rendering
devices might form a device ensemble with other Smart Ob-
jects and thus are by definition documentation entities.

CONCLUSION
Considering the current development in the areas of IoT, AAL
and Smart Home face users with new challenges in terms of
Human Computer Interaction. Devices’ and their functional-
ity are progressively interconnected, embedded and new in-
teraction techniques within the scope of Natural Interaction
arise. As a result of the ongoing disappearing of user inter-
faces as well as the emerging usage of gesture control, the
current concept of affordances may not apply to current de-
velopments. Existing difficulties in HCI will increase in the
areas of ubiquitous and pervasive computing, caused by the
environments high complexity, heterogeneity and dynamic.
Beyond this, present technical documentation does not fol-
low a common pattern or is adapted to the user’s needs. As a
possible solution to tackle these problems, we presented the
approach of a conceptual ambient reflection framework, con-
sisting of three major components: An Ambient Reflection
Documentation Language for describing interaction possibil-
ities of Smart Objects on a micro-level, documentation fusion
using the description language to merge documentation enti-
ties of interconnected devices for generating an ambient man-
ual tailored to the users’ context and needs as well as the pre-
sentation oriented publishing for multi-modal rendering the
manual in-situ. In total, we strongly believe to counteract
emerging interaction problems in ambient space scenarios by
further investigating this framework.

FUTURE WORK
Next, we take to carry out a study to identify different con-
texts and therefore needs of users with respect of documen-
tation and guidance in interaction. Including these findings
and further research regarding description languages, we will
develop a unified Ambient Reflective Description Language
for Smart Objects and apply it to a representative set of Smart
devices, composed of different device categories. In addition,
we try to determine a set of generic rules and processes in or-
der to achieve a consistent manual generated by the fusion
engine. Upon this, the development of interweaving style
description and documentation and the delivery to rendering
devices should enable Smart Objects to describe themselves.
Finally, we plan to evaluate our framework by carrying out
a scenario-based evaluation to determine the precision of the
fusion itself as well as the usefulness of our provided guid-
ance for the user.

REFERENCES
1. Altakrouri, B. Ambient Assisted Living with Dynamic

Interaction Ensembles. PhD thesis, University of
Lübeck, the Department of Computer
Sciences/Engineering, published by Zentrale
Hochschulbibliothek Lübeck, August 2014.

2. Altakrouri, B., and Schrader, A. Towards dynamic
natural interaction ensembles. In Fourth International
Workshop on Physicality (Physicality 2012) co-located
with British HCI 2012 conference, A. D. Devina
Ramduny-Ellis and S. Gill, Eds. (Birmingham, UK, 09
2012).

3. Altakrouri, B., and Schrader, A. Describing movements
for motion gestures. In 1st International Workshop on
Engineering Gestures for Multimodal Interfaces (EGMI
2014) at the sixth ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS14)
(Rome, Italy, June 2014).

4. BITKOM Bundesverband Informationswirtschaft,
Telekommunikation und neue Medien e. V. Leitfaden
zur Heimvernetzung Band 2, 2011.

5. Bongers, B. Interacting with the disappeared computer.
In Mobile HCI, Physical Interaction Workshop on Real
World User Interfaces. (Udine, Italy, 2003).

6. Cooper, A., Reimann, R., and Cronin, D. About Face 3:
The Essentials of Interaction Design. Wiley, 2007.

7. England, D. Whole body interaction: An introduction.
In Whole Body Interaction. Springer, 2011, 1–5.

8. Estrada-Martinez, P. E., and Garcia-Macias, J. A.
Semantic interactions in the internet of things.
International Journal of Ad Hoc and Ubiquitous
Computing 13, 3 (2013), 167–175.

9. Fogtmann, M. H., Fritsch, J., and Kortbek, K. J.
Kinesthetic interaction: revealing the bodily potential in
interaction design. In Proceedings of the 20th
Australasian Conference on Computer-Human
Interaction: Designing for Habitus and Habitat, ACM
(2008), 89–96.

5.2 Ambient Reflection: Towards self-explaining devices

LMIS 2015 Proceedings 19

10. Goldfarb, C. F., and Prescod, P. The XML Handbook.
Prentice-Hall, Upper Saddle River, New Jersey, 1998.

11. Leitner, G., Hitz, M., Fercher, A. J., and Brown, J. N. A.
Aspekte der Human Computer Interaction im Smart
Home. HMD - Praxis Wirtschaftsinform. 294 (2013).

12. Matern, U., Koneczny, S., Scherrer, M., and Gerlings, T.
Arbeitsbedingungen und Sicherheit am Arbeitsplatz OP.
Deutsches Ärzteblatt 103, 47 (November 2006), A 3187
– 3192.

13. Navarre, D., Palanque, P., Ladry, J.-F., and Barboni, E.
Icos: A model-based user interface description
technique dedicated to interactive systems addressing
usability, reliability and scalability. ACM Transactions
on Computer-Human Interaction (TOCHI) 16, 4 (2009),
18.

14. Norman, D. A. Affordance, conventions, and design.
interactions 6, 3 (1999), 38–43.

15. Norman, D. A. The Design of Everyday Things. Basic
books, 2002.

16. Norman, D. A. Simplicity is not the answer. interactions
15, 5 (2008), 45 – 46.

17. Norman, D. A. Living with complexity. MIT Press, 2010.

18. Norman, D. A., and Nielsen, J. Gestural interfaces: A
step backward in usability. interactions 17, 5 (Sept.
2010), 46–49.

19. Pham, D. T., Dimov, S., and Setchi, R. Intelligent
product manuals. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and
Control Engineering 213, 1 (1999), 65–76.

20. Poppe, R., Rienks, R., and van Dijk, B. Evaluating the
future of hci: challenges for the evaluation of emerging
applications. In Artifical Intelligence for Human
Computing. Springer, 2007, 234–250.

21. Poslad, S. Ubiquitous Computing: Smart Devices,
Environments and Interactions. Wiley, 2009.

22. Preim, B., and Dachselt, R. Die Interaktion mit
Alltagsgeräten. In Interaktive Systeme. Springer, 2010,
135–161.

23. Pruvost, G., Heinroth, T., Bellik, Y., and Minker, W.
User interaction adaptation within ambient
environments. In Next Generation Intelligent
Environments. Springer, 2011, 153–194.

24. Quesenbery, W. Balancing the 5Es of Usability. Cutter
IT Journal 17, 2 (2004), 4–11.

25. RWE Effizienz GmbH. Wendepunkte der
Energiewirtschaft. Online, 2014.
http://www.rwe.com/app/Pressecenter/Download.
aspx?pmid=4012118&datei=1.

26. Streitz, N., Prante, T., Röcker, C., Van Alphen, D.,
Stenzel, R., Magerkurth, C., Lahlou, S., Nosulenko, V.,
Jegou, F., Sonder, F., et al. Smart artefacts as affordances
for awareness in distributed teams. In The Disappearing
Computer, Interaction Design, System Infrastructures
and Applications for Smart Environments, Springer
(2007), 3 – 29.

27. Thimbleby, H., and Addison, M. Intelligent adaptive
assistance and its automatic generation. Interacting with
Computers 8, 1 (1996), 51–68.

28. van der Vlist, B. J., Niezen, G., Hu, J., and Feijs, L. M.
Semantic connections: Exploring and manipulating
connections in smart spaces. In Proceedings of the 15th
IEEE Symposium on Computers and Communications,
ISCC 2010, IEEE (June 2010), 1–4.

29. Walsh, N. Docbook 5: The definitive guide. Online,
2010. http://docbook.org/tdg5/.

30. Zandanel, A. Users and households appliances: Design
suggestions for a better, sustainable interaction. In
Proceedings of the 9th ACM SIGCHI Italian Chapter
International Conference on Computer-Human
Interaction: Facing Complexity, CHItaly, ACM (New
York, NY, USA, 2011), 96–100.

5.2 Ambient Reflection: Towards self-explaining devices

LMIS 2015 Proceedings 20

A Framework for Rapid Prototyping of Multimodal
Interaction Concepts

Ronny Seiger
Technische Universität

Dresden
Dresden, Germany

ronny.seiger@tu-dresden.de

Florian Niebling
Technische Universität

Dresden
Dresden, Germany

florian.niebling@tu-dresden.de

Mandy Korzetz
Technische Universität

Dresden
Dresden, Germany

mandy.korzetz@tu-dresden.de

Tobias Nicolai
Technische Universität

Dresden
Dresden, Germany

tobias.nicolai@mailbox.tu-
dresden.de

Thomas Schlegel
Technische Universität

Dresden
Dresden, Germany

thomas.schlegel@tu-
dresden.de

ABSTRACT
Ubiquitous systems provide users with various possibilities of
interacting with applications and components using different
modalities and devices. To offer the most appropriate mode
of interaction in a given context, various types of sensors are
combined to create interactive applications. Thus, the need
for integrated development and evaluation of suitable inter-
action concepts for ubiquitous systems increases. Creation
of prototypes for interactions is a complex and time consum-
ing part of iterative software engineering processes, currently
not well supported by tools as prototypes are considered to
be short-living software artifacts. In this paper, we introduce
the framework Connect that enables rapid prototyping of in-
teraction concepts with a focus on software engineering as-
pects. The framework allows the definition and modification
of event-to-action mappings for arbitrary interaction devices
and applications. By applying Connect, model-based proto-
types of multimodal interaction concepts involving multiple
devices can be created, evaluated and refined during the en-
tire engineering process.

ACM Classification Keywords
H.5.2 User Interfaces: User-centered design

Author Keywords
interaction framework; interaction concepts; multimodal
interaction; rapid prototyping; software engineering

INTRODUCTION
Ubiquitous Systems as coined by Weiser [22] describe user-
centered systems at the intersection of mobile and pervasive
computing combined with ambient intelligence. In addition

Workshop on Large-scale and model-based Interactive Systems: Approaches and
Challenges, June 23 2015, Duisburg, Germany.
Copyright © 2015 for the individual papers by the papers’ authors. Copying permitted
only for private and academic purposes. This volume is published and copyrighted by
its editors.

to the high degree of embeddedness of pervasive systems,
ubiquitous systems are characterized by a high level of mobil-
ity, often consisting of a large number of heterogeneous and
possibly resource-limited devices, which are loosely-coupled
into dynamic network infrastructures. The emergence of
smart spaces (smart homes, smart factories, smart offices)
shows the increasing importance and spreading of ubiquitous
systems throughout different areas of everyday life.

As user interaction with devices that disappear into the back-
ground often cannot be realized using traditional metaphors,
new ways of interaction have to be explored during the
software engineering process for creating ubiquitous system
components. The development and improvement of multi-
modal interaction concepts (i. e., interactions using one or
more input modalities [21]) is thereby not limited to initial
prototyping, but equally important during implementation,
testing and evaluation stages.

Existing tools for interaction design and rapid prototyping
of ubiquitous user interaction can be successfully employed
during the initial prototyping phases. In later development
phases as well as in iterative engineering processes such as
user-centered design (UCD), their applicability is often re-
stricted due to their limited ability to automatically propagate
changes in prototypes to subsequent stages of development.
The mostly informal descriptions and implementations of in-
teraction concepts and interactive applications limit their ex-
tensibility with respect to new interaction devices and modal-
ities. The lack of models and formalism also prevents pro-
totypes for interactions from being used and matured in later
stages of the development process, which is why prototypes
are usually considered to be short-living software artifacts.

In this paper, we propose a model-driven framework for pro-
totyping of interaction concepts that can be applied through-
out the different phases of iterative software engineering pro-
cesses. The focus of the introduced Connect framework for
interaction design is placed on software engineering aspects

21

and models. It enables the rapid development of prototypes
and enhancement at runtime during expert evaluation and user
studies. Extensibility concerning new types of interaction de-
vices as well as interactive components is easily achieved by
inheritance in the object-oriented framework architecture. As
a result of a high-level, model-based design of interaction
concepts, modifications to the interactions–even of very early
prototypes–can be reused and advanced from beginning to
end of the development cycle. The framework supports indi-
vidualizations concerning different groups of users as well as
distinct scenarios by customizing interaction concepts using
specialization and configuration. We introduce a tool based
on the Connect framework that facilitates the creation and
customization of interaction concepts at runtime even by non-
programmers. The framework is demonstrated developing an
interaction prototype within a Smart Home–a ubiquitous en-
vironment consisting of various devices for multimodal inter-
actions with physical and virtual entities.

RELATED WORK
Prototypes are useful tools for assessing design decisions and
concepts in early but also in advanced stages of the software
engineering process. Especially in iterative design processes
for creating usable systems, future users have to be involved
continuously to provide feedback and to improve concepts
and software artifacts [9]. According to Weiser, one of the
essential research and development methods for interactive
ubiquitous systems is the creation of prototypes [23]. The
rapid prototyping technique aims at creating prototypes in a
time and resource efficient way to mature artifacts in agile
software engineering processes [15]. The focus of our work
is on providing a framework for the rapid development and
evaluation of multimodal interactions for ubiquitous systems.
Especially within the UCD process, prototypes are needed to
evaluate design ideas and improve the usability of interac-
tive systems [17]. Complex interaction scenarios involving
multimodal interactions require the use of technically mature
prototypes to improve the usability of the system or applica-
tion [14].

The basis for our prototyping framework is the OpenInter-
face platform developed by Lawson et al. [13]. The plat-
form allows the integration of arbitrary heterogeneous com-
ponents as interaction devices and applications. OpenInter-
face provides a lightweight framework and runtime environ-
ment leveraging the prototyping of multimodal interaction
concepts using high-level data fusion and pipeline concepts
to connect interaction devices with interactive applications.
In contrast to other frameworks for prototyping of interac-
tions [7, 4], OpenInterface is based on a platform and tech-
nology independent description of a component’s functional-
ity and interface. Our framework adapts these concepts with
a stronger focus on the underlying models and component
descriptions in order to facilitate the extension, runtime adap-
tation and reuse of components and interactions during the
iterative stages of UCD. Other existing interaction and proto-
typing frameworks (e. g., CrossWeaver [20] and STARS [16])
are realized in a more informal way for specific scenarios and
therefore lack extensibility of software components, interac-
tion devices and modalities as well as reusability. The Open-

Interface workbench [13] provides developers with a compre-
hensive toolset for configuring components and interactions.
Our aim is to provide an easy to use tool also enabling non-
programmers to rapidly create interaction prototypes.

In [10] Hoste et al. describe the Mudra framework for fusing
events from multiple interaction devices in order to leverage
multimodal interactions. Mudra provides means for process-
ing low-level sensor events and for inferring high-level se-
mantic interaction events based on a formal declarative lan-
guage. The framework is primarily focused on combining
multiple interaction devices to enable advanced forms of in-
teraction input. It can be used complementary to the Connect
framework as part of defining and integrating low-level and
high-level sensor components. However, the application of
the formalism and semantic models that Mudra is based on
increases the effort and complexity for rapidly prototyping
interaction concepts and introduces a number of additional
components to the lightweight Connect framework.

In addition to the work of Dey et al. [6], one of the first
conceptual frameworks for the rapid prototyping of context-
aware applications predominant in ubiquitous systems, the
iStuff toolkit [3] and its mobile extension by Ballagas et al. [2]
represent further related research our Connect framework is
based on. These toolkits offer a system for connecting in-
teractive physical devices and interaction sensors with digi-
tal applications and software components. The iStuff toolkit
suite supports multiple users, devices and applications as
well as interaction modalities. However, due to the limited
software models applied within these tools, the set of sup-
ported interaction devices is rather static. A model-based ap-
proach for dynamically creating multimodal user interfaces
composed of several components is described by Feuerstack
and Pizzolato [8] as part of their MINT framework. Mappings
between user interface elements, user actions and actions to
be executed can be formally defined with help of this frame-
work and used for dynamically generating interactive appli-
cations. Both the iStuff and MINT framework are intended
to be used in the design and development process of user in-
terfaces whereas our focus lies on the prototyping and evalu-
ation of interaction concepts (i. e., event-to-action mappings)
in different stages of the UCD process. However, in order to
prototype and develop interactive applications including in-
teraction concepts and user interfaces, the iStuff and Connect
framework can be used complementary.

The ProtUbique framework by Keller et al. facilitates the
rapid prototyping of interactive ubiquitous systems [11]. It
supports an extensible set of interaction channels transmitting
low-level interaction events from heterogeneous devices and
sensors. These interaction events are unified by the frame-
work and accessible programmatically in order to prototype
interactive applications. As ProtUbique offers interfaces to
access its interaction channels, it is possible to directly com-
bine both the ProtUbique and Connect framework. Interac-
tion channels are integrated into Connect in the form of sen-
sors supplying interaction events. Connect can then be used
to map these events to actions that will be executed by actua-
tors or applications.

5.3 A Framework for Rapid Prototyping of Multimodal Interaction Concepts

LMIS 2015 Proceedings 22

With the emergence of ubiquitous systems, users play a cen-
tral role in the software development process. Prototypes
are well suited for involving users in the design process and
for improving concepts and software artifacts based on user
feedback. Various frameworks for the prototyping of inter-
active applications including user interfaces and interaction
concepts exist. These frameworks are often focused on the
use of prototyping techniques in early development stages
and limited in the set of supported software components and
interaction modalities. However, agile and iterative software
engineering processes are required for developing interactive
ubiquitous systems. Therefore, we propose a model-driven
framework for the rapid prototyping of multimodal interac-
tion concepts. By applying models for the definition of inter-
active components and their interrelations, extensibility and
reusability of interaction concepts and interactive prototypes
in multiple design stages is facilitated. In that way, the us-
ability and user experience of applications and systems for
ubiquitous environments can be increased.

INTERACTION FRAMEWORK

Structure
We designed the Connect framework from a software engi-
neering point of view using abstract models and their build-
ing blocks as a starting point. The framework adheres to a
basic class structure consisting of multiple types of compo-
nents, which are interconnected with each other. Fig. 1 shows
the class diagram using UML notation. A Component is a
software entity having a defined interface and known behav-
ior [13]. In analogy to control systems linking physical sen-
sors with actuators, we distinguish between SensorCompo-
nents representing entities that are able to produce interaction
events and ActuatorComponents able to consume interaction
events and trigger subsequent actions. ComplexComponents
combine these capabilities. In addition, specializations of
complex components are used to enable the logical and tem-
poral combination of sensor and actuator components. Ports
describe the components’ interfaces in order to define interac-
tions and connections between multiple components. Event-
Ports define the types of events a sensor component is able
to produce and ActionPorts represent the types of actions an
actuator component is able to perform. The activation of an
event port leads to the activation of the action ports the event
port is connected to. A central Manager class handles the in-
stantiation of components and maintains a list of all active
component instances, which are accessible from within the
scope of the framework.

Sensor Components
Sensor components represent devices and applications that
are able to detect interactions and produce corresponding in-
teraction events. The SensorComponent is an interface sen-
sors have to implement, e. g., by an adapter connecting the
sensor device via its API to the Connect framework. An
EventPort is a wrapper for every type of event the sensor com-
ponent is able to trigger. The sensor component maintains a
list of all its events and creates corresponding event ports. By
implementing the sensor component interface, new types of

Figure 1. Class diagram of the Connect framework

interaction devices and arbitrary event sources can be inte-
grated into the framework. In order to integrate new types
and corresponding instances of sensor components into the
framework, an adapter for receiving the sensors’ events has to
be implemented. On receiving an event from the sensor, the
state of the corresponding event port is updated, i. e., the port
is activated or deactivated. An event port can be connected
to one or more action ports of one or more actuator compo-
nents. The event port’s activation leads to the activation of the
connected action ports. As arbitrary event sources are sup-
ported, interactive devices independent of modality and num-
ber can be combined to be used for multimodal interactions,
i. e., using one or more input modalities. Currently, only bi-
nary states for events (active/inactive) without additional data
payload are supported by the Connect framework.

An example of a locally integrated sensor component is the
computer’s keyboard. The event ports correspond to the set
of the individual keys. A smartphone device sending touch
events via a dedicated app to an instance of the Connect run-
time is an example of a remotely integrated sensor compo-
nent. The set of touch events provided by the smartphone and
supported by the app represent the event ports.

Actuator Components
Actuator components represent devices and applications that
are able to actively perform and execute actions. Analogous
to a sensor component, the ActuatorComponent is an inter-
face actuators have to implement in order to connect the ac-
tuator to the Connect framework. An ActionPort is a wrapper
for an action or method the actuator component is able to ex-
ecute. New types of actuator components can be integrated
into the framework as implementations of the interface Ac-
tuatorComponent. Adapters for calling the actuator compo-
nents’ particular operations from inside the framework have
to be implemented for every type of actuator. An action port
can be connected to one or more event ports of one or more
sensor components. Upon receiving an activation from an
event port connected to an action port, the actuator compo-
nent activates the action port and executes the corresponding
method. Arbitrary local and remote devices and applications
can be integrated into the framework as actuator components.
Currently, we support the activation of methods without the
processing of input or output parameters.

An example of an actuator component is a service robot
whose movement functionality is provided in the form of

5.3 A Framework for Rapid Prototyping of Multimodal Interaction Concepts

LMIS 2015 Proceedings 23

directed movement actions (e. g., forward, backward, left,
right). For each direction there is a corresponding action port.

Complex Components
Complex components represent devices and applications that
combine sensor and actuator functionalities. These entities
can contain multiple event and action ports, i. e., they are able
to produce events for actuator components and receive events
from sensor components. The ComplexComponent class is
viewed as an abstract class that has to implement both the
SensorComponent and the ActuatorComponent interfaces in
order to be integrated into the Connect framework.

An example of a complex component is a smartphone sending
touch interaction events and providing executable operations
(e. g., for taking pictures or switching on the its light).

Logical and Temporal Components
Logical Components are viewed as specializations of com-
plex components. They are used for creating logical connec-
tions (AND, OR, NOT, XOR, etc.) between multiple event
ports of one or more sensor components. The logical compo-
nent’s action ports are used as input ports for events from the
sensor components and its event ports are used as output ports
producing events for the activation of subsequent actuator
components. By cascading these logical components, com-
plex logical circuits for sensor events triggering actions of
actuator components can be created. In addition, we integrate
flip-flop and trigger components for saving of and switching
between states. That way, it is possible to define more com-
plex interaction concepts involving multiple interaction de-
vices in advanced stages of the engineering process and also
to introduce modes of interaction (i. e., state-dependent be-
havior of the interactive prototypes).

Besides logical components, Temporal Components for de-
scribing temporal dependencies between sensor events are
supported as extensions of complex components. That way
we are able to define the activation of higher level events,
e. g., after a defined number of repeating sensor events or after
the appearance of an event within a defined time frame. The
functions and algorithms–including additional attributes–that
are executed when the logical or temporal component is acti-
vated have to be provided for each new type of complex com-
ponent. As new types of components are introduced into the
framework’s underlying class model by inheritance, only the
base classes’ methods have to be overwritten to use instances
of these new components.

Dynamic Components
Thus far we are able to extend the set of sensor, actuator and
complex components by introducing implementations and
specializations of the appropriate classes into the model at
design time. In order to add new types of components at run-
time, we extend the framework by the concept of Dynamic
Components. These components are created by Connect’s
runtime based on a formal model of a component’s function-
ality and ports. Currently, we support the use of a WSDL
(Web Services Description Language [5]) document describ-
ing the available operations of a service-based actuator com-
ponent. The WSDL format provides a suitable formalization

Figure 2. Extensions of the SensorComponent to support BCI input
modes

of an actuator’s callable methods and their parameters, which
can be parsed in order to automatically create an actuator
component implementing the ActuatorComponent interface
and the corresponding action ports.

PROTOTYPING MULTIMODAL INTERACTION CONCEPTS

Exemplary Sensors
Brain Computer Interface
In order to show the framework’s capability of supporting
multimodal interactions and its applicability within the Smart
Home scenario, we extended the core sensor component by
the Emotiv EPOC1 EEG brain computer interface (BCI) act-
ing as a source of interaction events [19]. The BCI used in our
setting provides interaction modes enabling the recognition of
thoughts (Cognitive), facial expressions (Expressive), emo-
tions (Affective) and head movement (Gyroscope). Each of
these modes is introduced as a subclass of the abstract Brain-
ComputerInterface class, which implements the SensorCom-
ponent interface (see Fig. 2). Event ports are created for ev-
ery possible type of sensor event produced by the BCI in each
mode (e. g., for blink, wink left, look right, smile, and laugh
in the Expressive mode). Upon instantiation of an object of
one of the interaction mode classes, a listener for event ports
corresponding to the sensor events is initialized.

Tablet
The second exemplary sensor component from the Smart
Home domain that we integrated into our test setting is an
Android-based tablet device. A dedicated app sends inter-
action events regarding the pressing of specific buttons and
events detected by the tablet’s gyroscope sensor to an instance
of the Connect framework. In order to support this event
source, we introduce the abstract Tablet class implementing
the SensorComponent interface. From that class, the Button
and Gyroscope modes are derived as subclasses (see Fig. 3).
Event ports representing the particular buttons and gyroscope
movement directions (i. .e., forward, backward, left, right) en-
able the detection of the corresponding interaction events and
connection to other components.

Exemplary Actuators
Service Robot
A TurtleBot 22 service robot plays the role of an actuator in
the context of our Smart Home scenario [19]. We abstracted
its movement functionality into two operational modes ex-
tending the abstract ServiceRobot class: Manual Movement
1https://emotiv.com/epoc.php
2http://www.turtlebot.com/

5.3 A Framework for Rapid Prototyping of Multimodal Interaction Concepts

LMIS 2015 Proceedings 24

Figure 3. Extensions of the SensorComponent to support tablet input
modes

Figure 4. Extension of the ActuatorComponent to support a service robot
actuator

and Automatic Movement (see Fig. 4). The manual movement
mode supports the fine-grained control of the robot platform
by direct movement commands (i. e., forwards, backwards, to
the left, to the right). Using the automatic movement mode,
the robot can be send to specific locations in a room or build-
ing. In automatic mode, driving, path planning and obstacle
avoidance are handled by the robot itself. The action ports for
these two actuator component modes correspond to the avail-
able movement directions (manual mode) and to the specific
target locations (automatic mode).

Service-based Light Switch
The capability of dynamically adding new components at run-
time is an important feature of the Connect framework. As it
supports the automated generation of an actuator component
based on a WSDL document, we implemented a web service
for the remote control of a light switch providing a switch on
and a switch off operation. Upon parsing of the WSDL file
and creation of action ports for both operations, the Connect
runtime acts as a client sending requests to the web service.

Security Component
In order to prevent incorrect behavior and actions caused
by imprecise interaction devices and unintended user inter-
actions at runtime, a Security Component is introduced into
the framework as an implementation of the actuator compo-
nent. This component provides an operation for deactivating
all event and action ports and thereby disabling the current

Figure 5. Complex network of input and output components forming an
interactive prototype

interactions and listeners for new events. The security com-
ponent’s second operation resets all ports to the inactive state
and re-enables the event listeners to continue with the inter-
action. Both operations can be connected to the event ports
of an arbitrary–preferably reliable–sensor component.

Prototyping Tool
We implemented a Java application based on the Connect
framework. The tool allows the graphical instantiation of
known types of sensor, actuator and complex components.
The lists of available ports, individual attributes as well as the
component’s graphical representation are coded into the class
structure and component’s data model. Instantiated compo-
nents can be configured using the tool. In addition, it is pos-
sible to generate service-based actuator components from a
WSDL file. Connections between component ports are cre-
ated and modified graphically at runtime using drag and drop
gestures (cf. Pipeline metaphor [13]). That way, circuits for
interactions consisting of sensors, actuators, logical compo-
nents and temporal components can bes designed. For certain
types of sensor events there are sliders that are used for setting
activation thresholds. As many interaction devices provide
sensor data in the form of numerical values–not just Boolean
values for the active/inactive states–the definition of activa-
tion thresholds increases the accuracy of event detection/acti-
vation and supports individual user configurations.

Fig. 5 shows a screenshot of the configuration tool’s user in-
terface containing three instances of sensor components (BCI
modes), logical components and an actuator component (ser-
vice robot). The tool’s user interface provides visual feedback
regarding currently active sensor events, connections, and ac-
tions as well as numerical values for sensor input.

Prototype Configurations and User Profiles
The composition of components as well as their intercon-
nections, attributes and port thresholds can be persisted in
individual prototype configurations and user profiles based
on the class model presented in the previous section. These
settings are saved in and loaded from XML-based files. In
this way, individual interaction concepts can be created for
specific prototypes, component configurations, scenarios and

5.3 A Framework for Rapid Prototyping of Multimodal Interaction Concepts

LMIS 2015 Proceedings 25

users according to their capabilities. These model-based con-
figurations can then be used as templates for creating new
interaction concepts or for refinement at a later stage of the
development process [18]. Listing 1 shows an extract of a
prototype configuration describing an event port of a sensor
component connected to an action port.

Listing 1. Extract from a prototype configuration

<conf>
<component>
<c l a s s >IO . Tab le tBut tonComponent </ c l a s s >
<id>Table tBut tonComponen t </ id>
<p o r t s>
<p o r t>

<c l a s s >Core . E v e n t P o r t </ c l a s s >
<id>Up</ id>
<s t a t e >f a l s e </ s t a t e >
<c o n n e c t e d P o r t s>
<c o n n e c t e d P o r t>
<componentId>T u r t l e B o t </ componentId>
<p o r t I d>MoveForward</ p o r t I d>
</ c o n n e c t e d P o r t>

</ c o n n e c t e d P o r t s>
</ p o r t>

</ p o r t s>
</ component>

<component>
. . .

</ conf>

Prototyping and Evaluation
With the help of the Connect framework and the configuration
tool, interaction concepts describing mappings between inter-
action devices and active controllable components can be cre-
ated. Once integrated into the framework, multiple instances
of multimodal sensor, actuator and complex components are
ready to be used and loosely-coupled at runtime for a partic-
ular setting. Connections between sensors and actuators and
their respective ports are modifiable at runtime (create, up-
date, delete). Compared to hard-wired event-to-action map-
pings, model-based prototypes of interaction concepts can be
created and modified quickly with the help of Connect in or-
der to test and evaluate their usability and suitability for con-
crete use cases as part of the software engineering process.

Connect can be part of various user-centered prototyping
and evaluation methods and stages reusing models that de-
scribe components and their interrelations. As the prototyp-
ing tool follows known metaphors from the WIMP paradigm
and integrates easy to understand graphical metaphors
(e. g., pipelines and circuits), it is also possible for designers,
non-programmers and end-users to understand and define in-
teraction concepts for a given scenario. That way, future users
can be involved in early stages of the design process lead-
ing to more intuitive interactions and usable applications for
ubiquitous systems.

Due to the model-driven approach for describing components
and their interrelations applied in Connect, it is possible to
persist and reload component configurations and their con-
nections. Prototypes of interaction concepts can be repeat-
edly tested, reused and refined in order to increase the usabil-
ity of the interactive application that is under development.

By creating user profiles for specific users, user groups and
scenarios, the corresponding prototypes can be used for user-
centered evaluation methods (e. g., user studies and expert
evaluation) during various stages of the software development
process. In addition, user profiles facilitate the creation of in-
teractive applications according to a user’s individual cogni-
tive capabilities and preferences.

The extensibility of the framework’s underlying models for
components and interactions allows for the integration of
new interactive devices and applications at later engineer-
ing stages. That way, interaction concepts can be developed
starting from simple event-to-action mappings and evolved
to more complex models and scenarios for interactive ubiq-
uitous systems. Changes within these models can be propa-
gated to the affected software artifacts. By adding a mech-
anism for model versioning, traceability for the evolution of
these interaction models in iterative stages of the design pro-
cess is achieved and templates of interaction concepts can be
created for reuse in new projects.

DISCUSSION
The introduced Connect framework for the creation and iter-
ative advancement of interaction concepts is built on model-
based components and configurations. Our chosen design al-
lows for convenient extension through the inclusion of addi-
tional arbitrary interaction components (i. e., sensors and ac-
tuators) via concepts of object-orientation. Basic design pat-
terns reduce the effort for developers to extend the set avail-
able interaction devices and applications. At runtime, interac-
tion components can be rapidly combined into pipelines and
circuits to form complex interaction concepts. Modifications
of interaction concepts as well as persisting and loading of
interaction and component configurations are supported by
the framework. Compared to related research, this approach
allows for a high level of reusability and refinement of inter-
active prototype applications and configuration in succeeding
development stages. With the help of the graphical configura-
tion tool it is possible to rapidly create working prototypes for
multimodal interactive applications and use these prototypes
for test and evaluation purposes.

Due to the use of known metaphors, e. g., pipelines and cir-
cuits, the creation and configuration of complex interaction
concepts can be achieved even by non-programmers such as
interaction designers or end users, supporting different phases
of iterative software engineering processes like UCD. By pro-
viding model-based abstractions for component design and
data flow, interaction design may be advanced from sim-
ple prototypes during requirement analysis to complex mul-
timodal interaction concepts containing numerous different
sensors and actuators in subsequent phases of development.
This iterative improvement of existing concepts proved to be
especially helpful during usability testing using expert evalu-
ation and end user studies.

On the one hand, the introduction of logical and tempo-
ral components into more complex interaction concepts al-
lows for the use of multiple interactive input devices. On
the other hand, these components enable interaction modes

5.3 A Framework for Rapid Prototyping of Multimodal Interaction Concepts

LMIS 2015 Proceedings 26

and the definition of interaction sequences to prevent unin-
tended interaction events. These mechanisms become neces-
sary when using imprecise and “always on” interaction de-
vices (e. g., brain-computer interfaces and eye trackers) to
prevent Midas touch. With respect to the BCI, a double-blink
within a certain timeframe could, for example, be used to trig-
ger an action instead of a simple “natural” blink. As shown
in the prototyping tool, thresholds defining the activation of
sensor ports can be defined for sensor events containing Inte-
ger or Double values. This mechanism also helps interaction
designers with the integration of imprecise devices. Lastly, a
security component can be added to the interaction concept
and test environment to stop all ongoing interactions in case
of any malfunctions. This is especially helpful when interact-
ing with real world physical devices in ubiquitous systems.

The Connect framework is a prototyping tool for engineer-
ing interactive applications. It can be employed during the
development process for designing and testing of interaction
concepts. In combination with other frameworks for the pro-
totyping of user interfaces (e. g., MINT [8], iStuff [2]), in-
teractions (e. g., OpenInterface [13]) and interaction devices
(e. g., ProtUbique [11]) as well as for the fusion of high-level
sensor events (e. g., Mudra [10]), Connect represents an ad-
dition to the engineering toolchain for interactive ubiquitous
systems. Due to its extensibility and model-driven develop-
ment approach, interaction and configuration models created
with Connect could be used as input for subsequent tools and
phases in the software engineering process.

The current development state of the Connect framework still
contains some shortcomings that will be improved in con-
secutive versions. Until now, user defined data types beyond
simple Boolean values at event and action ports are not sup-
ported. To be able to accommodate analogue sensors, at least
some form of floating point data and complex data types will
have to be included into the extensible data model. In ad-
dition, aggregation of components attached to distributed in-
stances of the framework is not yet possible. With the avail-
ability of active components that contain significant process-
ing power themselves such as smartphones, integration of
preprocessed sensor values can be simplified by combining
multiple networked Connect systems.

CONCLUSION & FUTURE WORK
Engineering software for interactive ubiquitous systems re-
quires flexible and iterative development processes. The con-
tinuous involvement of future users throughout the entire
process is a key aspect of the user-centered design and de-
velopment methodology for ubiquitous systems. Prototypes
are a well suited tool for the development, test and evalua-
tion of theoretical concepts in almost all stages of the soft-
ware engineering process. We developed an extensible and
easy to use framework that supports rapid prototyping, evo-
lution and evaluation of interaction concepts for ubiquitous
systems. The Connect framework is based on a modular
object-oriented software model, which views interaction de-
vices as sensor components and interactive applications as
actuator components. Interaction concepts can be defined,
modified and tested at runtime by connecting these compo-

nents. The framework follows a model-driven software en-
gineering approach enabling the extension and integration of
new types of components into interactive prototypes as well
as the reuse of component and prototype configurations dur-
ing development. Related frameworks and concepts generally
lack extensibility, flexibility and reusability due to the limited
use of models and other formalisms. Therefore, interaction
frameworks often support only a static set of interaction de-
vices and applications that can be used for the development
of short-living interaction prototypes at early design stages.
With Connect, the set of software components can be easily
extended to support new types of devices and applications,
which can be combined to create multimodal interactions.
Connect’s runtime and user-friendly prototyping tool facili-
tate the use of multiple input and output devices as entities
involved in interactions as well as dynamic reconfiguration
of interactions at runtime. The model-based descriptions of
components and interactions leverage the reuse and iterative
refinement of components, concepts and prototypes for the
user-centered software engineering process of ubiquitous sys-
tems.

Regarding future work, we will extend the component models
in order to be able to process non-Boolean input and output
values and states for event and action ports. The use of a
formal definition language for describing the interfaces of a
sensor component will add the ability to also introduce new
types of sensor components to Connect at runtime. By com-
bining the prototyping framework ProtUbique [11] for defin-
ing interaction sources and high-level interaction events with
service-based communication for sending interaction events
to Connect, we will create a flexible toolchain for developing
prototypes of interactive multimodal applications. In addi-
tion, dynamic component platforms (e. g., OSGi [1]) can be
employed to introduce additional runtime flexibility concern-
ing the support of new types of software components. We will
also look into the distributed communication among several
instances of the Connect runtime. An instance of Connect
running on one computer could be used as a sensor com-
ponent within another Connect instance, which allows the
preprocessing and derivation of higher order events on local
computers in order to save resources and simplify the mod-
eling of complex interactions. To evaluate the framework’s
applicability, we will use Connect for the prototyping of in-
teractive software components as part of the engineering pro-
cess for Smart Home applications [19, 12].

REFERENCES
1. OSGi Alliance. 2003. Osgi service platform, release 3.

IOS Press, Inc.

2. Rafael Ballagas, Faraz Memon, Rene Reiners, and Jan
Borchers. 2007. iStuff mobile: rapidly prototyping new
mobile phone interfaces for ubiquitous computing. In
Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 1107–1116.

3. Rafael Ballagas, Meredith Ringel, Maureen Stone, and
Jan Borchers. 2003. iStuff: a physical user interface
toolkit for ubiquitous computing environments. In

5.3 A Framework for Rapid Prototyping of Multimodal Interaction Concepts

LMIS 2015 Proceedings 27

Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 537–544.

4. Jullien Bouchet and Laurence Nigay. 2004. ICARE: a
component-based approach for the design and
development of multimodal interfaces. In CHI’04
extended abstracts on Human factors in computing
systems. ACM, 1325–1328.

5. Erik Christensen, Francisco Curbera, Greg Meredith,
Sanjiva Weerawarana, and others. 2001. Web services
description language (WSDL) 1.1. (2001).

6. Anind K Dey, Gregory D Abowd, and Daniel Salber.
2001. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware
applications. Human-computer interaction 16, 2 (2001),
97–166.

7. Pierre Dragicevic and Jean-Daniel Fekete. 2001. Input
device selection and interaction configuration with
ICON. In People and Computers XVInteraction without
Frontiers. Springer, 543–558.

8. Sebastian Feuerstack and Ednaldo Pizzolato. 2011.
Building multimodal interfaces out of executable,
model-based interactors and mappings. In
Human-Computer Interaction. Design and Development
Approaches. Springer, 221–228.

9. John D Gould. 2000. How to design usable systems.
Readings in Human Computer Interaction: Towards the
Year (2000), 93–121.

10. Lode Hoste, Bruno Dumas, and Beat Signer. 2011.
Mudra: a unified multimodal interaction framework. In
Proceedings of the 13th international conference on
multimodal interfaces. ACM, 97–104.

11. Christine Keller, Romina Kühn, Anton Engelbrecht,
Mandy Korzetz, and Thomas Schlegel. 2013. A
Prototyping and Evaluation Framework for Interactive
Ubiquitous Systems. In Distributed, Ambient, and
Pervasive Interactions. Springer, 215–224.

12. Suzanne Kieffer, J-YL Lawson, and Benoit Macq. 2009.
User-centered design and fast prototyping of an ambient
assisted living system for elderly people. In Information
Technology: New Generations, 2009. ITNG’09. Sixth
International Conference on. IEEE, 1220–1225.

13. Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad, Jean
Vanderdonckt, and Benoit Macq. 2009. An open source
workbench for prototyping multimodal interactions
based on off-the-shelf heterogeneous components. In
Proceedings of the 1st ACM SIGCHI symposium on
Engineering interactive computing systems. 245–254.

14. Linchuan Liu and Peter Khooshabeh. 2003. Paper or
interactive?: a study of prototyping techniques for
ubiquitous computing environments. In CHI’03
extended abstracts on Human factors in computing
systems. ACM, 1030–1031.

15. Luqi. 1989. Software evolution through rapid
prototyping. Computer 22, 5 (1989), 13–25.

16. Carsten Magerkurth, Richard Stenzel, Norbert Streitz,
and Erich Neuhold. 2003. A multimodal interaction
framework for pervasive game applications. In
Workshop at Artificial Intelligence in Mobile System
(AIMS), Fraunhofer IPSI.

17. Martin Maguire. 2001. Methods to support
human-centred design. International journal of
human-computer studies 55, 4 (2001), 587–634.

18. Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The proximity
toolkit: prototyping proxemic interactions in ubiquitous
computing ecologies. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology. ACM, 315–326.

19. Ronny Seiger, Tobias Nicolai, and Thomas Schlegel.
2014. A Framework for Controlling Robots via
Brain-Computer Interfaces. In Mensch & Computer
2014–Workshopband: 14. Fachübergreifende Konferenz
für Interaktive und Kooperative Medien–Interaktiv
unterwegs-Freiräume gestalten. Walter de Gruyter
GmbH & Co KG, 3.

20. Anoop K Sinha and James A Landay. 2003. Capturing
user tests in a multimodal, multidevice informal
prototyping tool. In Proceedings of the 5th international
conference on Multimodal interfaces. ACM, 117–124.

21. Wolfgang Wahlster. 2006. SmartKom: foundations of
multimodal dialogue systems. Vol. 12. Springer.

22. Mark Weiser. 1991. The computer for the 21st century.
Scientific american 265, 3 (1991), 94–104.

23. Mark Weiser. 1993. Some computer science issues in
ubiquitous computing. Commun. ACM 36, 7 (1993),
75–84.

5.3 A Framework for Rapid Prototyping of Multimodal Interaction Concepts

LMIS 2015 Proceedings 28

Challenging Documentation Practices for Interactions in
Natural User Interfaces

Bashar Altakrouri
Ambient Computing Group

Institute of Telematics
University ofLübeck

Lübeck, Germany
altakrouri@itm.uni-luebeck.de

Andreas Schrader
Ambient Computing Group

Institute of Telematics
University of Lübeck

Lübeck, Germany
schrader@itm.uni-luebeck.de

ABSTRACT
Dozens of novel natural interaction techniques are proposed
every year to enrich interactive eco-systems with multitouch
gestures, motion gestures, full body in motion, etc. We
present a novel investigation of the community’s applied doc-
umentation practices for Natural User Interfaces (NUI). Our
investigation includes analyzing a survey targeted at NUI de-
signers and a large sample of recently published multitouch
and motion-based interaction papers. To the best of our
knowledge, this paper is the first to offer a close investiga-
tion of this kind. The results reveal that good NUI documen-
tation practices are rare and largely compromised. Thus, we
argue that engineering interactive systems for large-scale dy-
namic runtime deployment of existing interaction techniques
is greatly challenged.

Author Keywords
Natural User Interfaces (NUI); Gesture Interfaces; Motion
Interfaces; HCI modeling; HCI documentation; HCI sharing.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g., HCI):
Miscellaneous; H.5.2 Information interfaces and presentation
(e.g., HCI): User Interfaces

INTRODUCTION
Calls arise to explore new potential in designing for the whole
body in motion as part of the NUI paradigm [3][4], to fa-
cilitate users’ interactions with real-world pervasive ecosys-
tems (ambient spaces). In the literature, different definitions
of NUI [6] were elaborated, which mostly refer to the user’s
natural abilities, practices, and activities to control interactive
systems. Devised from Wachs et al. [10], interactions with
NUI can be shortly defined as voice-based and kinetic-based
interactions. Kinetic-based interactions are mostly caused
and characterized by motion and movement activities, rang-
ing from pointing, clicking, grasping, walking, etc. [2]

Workshop on Large-scale and model-based Interactive Systems: Approaches and
Challenges, June 23 2015, Duisburg, Germany.
Copyright c© 2015 for the individual papers by the papers’ authors. Copying
permitted only for private and academic purposes. This volume is published and
copyrighted by its editors.

Herein, we focus on a subset of Kinetic-based interactions,
namely multitouch- and motion-based interactions. In the last
decade, touch and motion enabled technologies found their
way commercially and became widely accessible to the end
user, in various application domains such as gaming (e.g.,
motion-controlled active play by Microsoft Kinect1 or the Wii
system2), data browsing, navigation scenarios (e.g., tilting for
scrolling photos as in iOS3 and Android4 devices) and many
more.

Despite the immense progress and success in different ap-
plication domains, interactive environments will pose addi-
tional significant challenges to the design, engineering and
deployment of NUI technologies. Considering user hetero-
geneity, e.g. due to aging and demographic change (”come-
as-you-are” paradigm), user mobility to unknown environ-
mental settings at design time (interaction context) and spon-
taneous construction of interactive environments in-situ at
runtime, the isolated design of natural interface devices will
not be sufficient any more, regardless of the quality and
naturalness of the proposed interaction scheme per se. In
their work, Altakrouri and Schrader [2] proposed a shift to-
wards completely dynamic on-the-fly ensembles of interac-
tion techniques at runtime. The Interaction Ensembles ap-
proach is defined as ”Multiple interaction modalities (i.e., in-
teraction plugins) from different devices are tailored at run-
time to adapt the available interaction resources and possibil-
ities to the user’s physical abilities, needs, and context” [2].
A shift of this kind imposes new dissemination, deployment,
and adaptation requirements for engineering interaction tech-
niques and interactive systems for NUI. Precisely for those
reasons, better understanding and analysis of the practiced
documentation habits of interaction techniques for NUI plays
a major role to bridge the possible gaps between designing
interaction techniques and engineering interactive systems.

In this paper, we present a novel investigation of the com-
munity’s applied documentation practices for interactions in
NUI. We believe that an investigation of this kind is essential
to understand some of the challenges for engineering inter-
active systems in ambient spaces and setting proper interac-
1http://www.microsoft.com/en-us/kinectforwindows/, latest access
on 25.03.2015.
2http://www.nintendo.com/wii, latest access on 25.03.2015.
3http://www.apple.com/ios/, latest access on 25.03.2015.
4http://www.android.com/, latest access on 25.03.2015.

29

tion dissemination guidelines, where interactions are becom-
ing increasingly dynamic, adaptive and multi-modal.

Our novel investigation is concluded by analyzing a survey
targeted at NUI designers and a large sample of recently pub-
lished multitouch and motion-based interaction papers. Al-
though limited in scale, we believe that this investigation
opens the door for important open research issues for the CHI
and EICS community around this problem domain.

In this paper, the term documentation is used to capture the
way an interaction technique is defined and described by the
interaction designer (i.e. developer). Principally, documen-
tation refers to any written material, visual clues, animated
clues, formal description models and languages, etc, used to
describe or disseminate the developed interaction. The liter-
ature covers various approaches to describe touch-based in-
teractions. An extensive review on those approaches is out of
the scope of this paper. In their work about formal descrip-
tions for multitouch interactions, Hamon et al. [5] analyzed
the expressiveness of various user interface description lan-
guage (an extension to [8]) and suggested the ICO formalism
for modeling multitouch interactions. Principally, modeling
includes data description, state representation, event repre-
sentation, timing, concurrent behavior, dynamic instantiation,
etc. Recently, Altakrouri et al. [1] targeted their effort to
describe the movement aspects of motion-based gestures and
the physical context (i.e., abilities and disabilities) of the user.

Documenting interaction technique is relevant for the correct
execution of interactions by end users, the preservation of
technique by designers, the accumulation of knowledge for
the community, and the engineering of interactive systems.
We argue that documenting interactions should be treated as
an important resource of context information about the in-
teraction technique, which can be also utilized by interactive
systems for various reasons. For instance, filtering relevant
interaction techniques at runtime in response to the user’s
physical context (e.g., disabilities) as in the Interaction En-
semble approach mentioned above.

Better understanding of the currently applied documenta-
tion practices does not only reveal the current dissemina-
tion strategies but also triggers possible needs for new tools,
guidelines, and systems that improve those practices and ulti-
mately bridge the gap between the design of single interaction
techniques and the development of interactive systems.

In this paper we will substantiate the following main contri-
butions and findings:

• We present a number of observations regarding the NUI de-
signers’ most commonly applied documentation choices,
most importantly, documentation frequency and media
type of choice.

• We unveil that NUI documentation is largely underesti-
mated and compromised by NUI designers due to the lack
of adequate documentation tools, absence of documenta-
tion standards, and irregularity of documentation habits.

METHODOLOGY
Our study included two investigation areas: (1) analyzing a
tailored survey targeted at NUI designers and (2) coding and
analyzing a large sample of recently published multitouch and
motion-based interaction papers. In this section, we first out-
line our approach before we present the results in the follow-
ing section.

Survey on NUI documentation
The first step in our review was to capture a snapshot on the
current most employed practices for NUI documentation by
carrying out an online survey. The survey aimed to partially
characterize a number of designers’ documentation practices,
including: (1) The adoption level and frequency of documen-
tation practices and standards in design and development of
NUI; (2) The designers’ satisfaction with their practiced NUI
documentation habits; (3) The needs for new documentation
tools and methods; (4) The commonly used documentation
methods, tools, and media types; and (5) The perceived im-
portance of documentation for sharing, acceptance, user ex-
perience, and correctness.

The survey was targeted at both NUI designers (i.e. NUI de-
velopers) and users, it was split into two sections accordingly.
In this paper, we only focus and report about the designer
section, which contained a total sum of 11 different multiple
choice and likert scale questions. The survey was bound to
a maximum completion time of 3 minutes to maximize the
number of voluntary participations. The survey included an
introductory section where the notion of NUI, specially for
multitouch- and motion-based interfaces, as well as the pur-
pose of the survey were introduced.

The survey was distributed online through specialized HCI
mailing lists (including BCS-HCI run by the British Com-
puter Society Human-Computer Interaction Group5), ubiqui-
tous computing mailing lists (including Ukubinet-announce
run by the Imperial College London6 and announce-
ments@ubicomp.org7), Lübeck university mailing lists, and
social networks (i.e. Facebook, Twitter, and ResearchGate).
The survey was open for participation for about 3 weeks.

Analyzing the interaction publications landscape
The second step in our review intended to capture a closer
look at the published work in the area of interaction tech-
niques. In order to find out how the community expresses,
documents, and shares interaction techniques, we have de-
cided to base our investigation on a collection of the most
recent ACM published work under the ACM classification
(H.5.2 Information Interfaces and Presentation: User Inter-
faces - Input devices and strategies) for the years 2012 and

5https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=bcs-hci, latest
access on 25.03.2015.
6https://mailman.ic.ac.uk/mailman/listinfo/ukubinet-announce, lat-
est access on 25.03.2015.
7http://mail.ubicomp.org/mailman/listinfo/announcements ubicomp.org,
latest access on 25.03.2015.

5.4 Challenging Documentation Practices for Interactions in Natural User Interfaces

LMIS 2015 Proceedings 30

2013 (until 22.08.2013). Out of 518 total papers in this cate-
gory, we manually coded and analyzed a total sum of 93 pa-
pers that matched one of two categories: (1) papers present-
ing novel interaction techniques; (2) papers applying or an-
alyzing existing interaction techniques in various scenarios.
Our filtering criteria excluded all none touch or none motion
gesture papers (as considered out of the focus of this inves-
tigation), video papers (as those papers don’t have enough
space to cover the interaction technique and only convey very
limited aspects of the work), and duplicated paper entries (if
the same work was presented in multiple venues but with dif-
ferent contribution size, e.g., work-in-progress papers, short
papers, full papers). In the case of duplication, the latest and
longest contribution was considered. Our aim was not to con-
duct a complete and detailed review of all published papers.
Instead, we aimed at providing a snapshot at the most recent
published work as a living example of the current practiced
documentation habits.

Our analysis and classification are based on the published
paper and any corresponding material directly mentioned,
linked, or attached with the published work (e.g., many pub-
lished papers have also videos attached within the ACM li-
brary, or links to external resources). Other materials out of
the aforementioned criteria were considered hidden and were
not included in the study, such as in application help menus
or offline accessible manuals.

The papers were coded based on four main aspects: Type
- gesture types discussed in the paper including multitouch
and motion gestures; Still - used still media types to doc-
ument and describe the gesture including text, images, and
sketches; Animated - used animated media types to document
and describe the gesture including videos, animations, per-
sonal walkthrough, and onscreen walkthrough; and finally
Authoring - reported or used authoring and documentation
tools and formal languages. Our main goal of this analysis
was to highlight general practices and habits rather than fo-
cusing on a particular paper title or the authors. Hence, we
reference the reviewed papers by the unique identification key
(ACM ID) instead of the papers’ full title or author names.

RESULTS AND OBSERVATIONS
In this section, we present the results for each of our inves-
tigation areas. We have supported the data with a number of
general observations to enhance the readability of the results.
The observations are numbered and marked with an abbrevia-
tion to the corresponding section (D: Designer survey section
and P: Papers analysis section).

Survey
A total of 332 anonymous individual responses were
recorded, split into 267 NUI users (80% of the total respon-
dents) and 65 NUI designers (20% of the total respondents).

The designer respondents are split to 11 expert designers, 14
professional designers, 28 competent designers, 10 advanced
beginners, and finally 2 novice designers. This categorization
is based on an explicit survey question about expertise self-
assessment.

We have applied Kruskal Wallis test to identify any statisti-
cally significant differences among expertise groups. In most
cases, no statistical differences amongst groups were found
unless explicitly mentioned in the text.

Observation - D1: Small majority of NUI designers are sat-
isfied with their current documentation practices: 57% of the
designers responded positively to a question on the satisfac-
tion with their current documentation habits.

Observation - D2: Only a small minority of NUI designers
practice NUI documentation continuously: Figure 1 shows
how often the designer respondents document designed NUI,
independent of form or documentation type. The figure re-
veals that the majority of the respondents practice documen-
tation either sometimes (42%) or frequently (38%). Merely
small minority of designers (14%) practice documentation
regularly. Statistically significant difference was identified
among expertise (H(4) = 13.466, p = 0.009) with a mean rank
of 43.93 for proficient, 33.75 for competent, 32.91 for expert,
18.70 for advanced beginner, and 18.0 for novice designers.
Higher mean ranks indicate a more frequent documentation
practice.

Figure 1. Practicing NUI Documentation and Complying with Stan-
dards

Observation - D3: The vast majority of NUI designers never
or rarely apply documentation standards: One interesting as-
pect in this survey is to highlight the designers’ habits to ap-
ply standard documentation approaches, as shown in Figure
1. The survey unveils that about half of the respondents never
apply any documentation standards and merely a third did on
rare occasions. Small number of respondents apply documen-
tation standards either sometimes (14%) or frequently (3%).

Observation - D4: The majority of NUI designers indicated
a lack of NUI documentation tools and methods: The respon-
dents answered positively (66%) when asked whether there is
a lack of NUI documentation methods and tools available for
them to use.

Observation - D5: NUI are mostly documented using text,
pictures, sketches, and videos respectively: Another goal of
the survey was to identify the dominant media types used by
designers to document interaction techniques. Figure 2 il-
lustrates the distribution of used NUI documentation media
types by designers. Text is the most used medium to describe

5.4 Challenging Documentation Practices for Interactions in Natural User Interfaces

LMIS 2015 Proceedings 31

and document NUI. Still visual documentation records (i.e.
pictures and sketches) follow next. Moreover, animated vi-
sual records come fourth. Additionally, audio and formal lan-
guages come last with very low percentages.

Figure 2. Medium for Documentation

Observation - D6: NUI are rarely documented using formal-
ized languages: Figure 2 also shows clearly designers don’t
follow formalizations as a documentation media type.

Observation - D7: The most ranked importance of NUI docu-
mentation is acknowledged for sharing NUI, followed by user
experience: Figure 3 illustrates the designers’ perceived im-
portance of NUI documentation for sharing, experience, ac-
ceptance, and correctness. The vast majority of responders
scored documentation as a very important (45%) or an im-
portant (37%) factor for a successful sharing of NUI. Re-
garding user experience, the majority of respondents scored
the documentation as an important (48%) or a very impor-
tant (11%) factor respectively. Moreover, designers scored
NUI documentation for user acceptance as very important
(14%), important (40%), moderate (25%), and of little im-
portance (18%). Merely 3% negatively scored documentation
as unimportant for the user acceptance. Finally, the majority
of respondents scored documentation as either an important
(40%) or very important (26%) factor for the correctness of
NUI execution. Approximately one third of the respondents
scored documentation as moderate or of little importance for
correctness.

Scientific publications
Figure 4 illustrates the complete classification of the analyzed
papers based on the previously presented methodology. Pa-
pers that satisfy the conditions are distinguished with a cod-

Figure 3. The Designers’ Perceived Importance of Documentation for
Acceptance, Correctness, Experience, and Sharing of NUI

ing mark as shown in the figure. The analyzed papers were
motion (51%) and touch based (68%) interaction papers (note
that a paper may fall into more than one category).

Observation - P1: NUI in publications are mostly docu-
mented using text, sketches, and pictures respectively: As ex-
pected, figure 4 shows that text descriptions as a medium for
documenting interaction techniques is used in all of the pa-
pers that we have reviewed. Sketches (59%) come second
with a very close match with the designer survey in Figure 2.
Pictures (53%) come third, slightly lower than in the designer
survey.

Moreover, personal walkthrough is reported by 16% (the de-
veloper introduces the interaction technique to other develop-
ers or users by demonstration). Videos are reported by 11%.
This percentage matches the survey’s results (Figure 2). In
research papers, mentioning and linking to video content is
usually neither required nor critical for the acceptance of the
research paper. Hence, videos related material to the tech-
nique are often hidden. The use of animations is reported
only once. This matches to a large extend the designer survey
results in Figure 2. On the other hand, other media types such
as onscreen walkthrough are hardly used.

Observation - P2: NUI in publications are never documented
using formalized languages or interaction authoring tools:
To our expectations, none of the papers reported or used
languages (including notations and formalisms) or interac-
tion authoring tools (including gesture authoring tools). Fi-
nally, we found no statistical difference between the two main
aforementioned analyzed groups of papers.

DISCUSSION
In this section, we present a number of interesting aspects
regarding NUI documentation practices and possible impact
on designing and engineering interactive systems.

Documentation habits: Ignorance or underestimation?
Our results show that the majority of the designer respon-
dents are satisfied with their current NUI documentation prac-
tices (D1). Nonetheless, this satisfaction is not necessarily
reflected on the quality and extend of applied documentation
practices (D2, D3). Those observations unveil that NUI docu-
mentation is generally an underestimated or ignored problem
by interaction designers and developers.

Clearly, the NUI paradigm vastly grows in terms of the num-
ber of interaction proposed, the diversity of interaction types,
involved body parts, involved actions, etc. [3][4][8]. Great
advancements, in terms of innovation and usability evalua-
tion, of this type of interaction are usually proposed and pre-
sented at various venues and conferences such as ACM CHI
(Human Factors in Computing Systems) and UIST (User In-
terfaces Software and Technology). Despite this effort, some
researchers believe that very little effort is actually targeted to
improve the reliability of systems offering and adoption these
kinds of novel interaction techniques [8].

Soon the lack of adequate interaction documentation and dis-
semination will lead to challenge the design and engineer-
ing of interactive systems. Documentation can be used to

5.4 Challenging Documentation Practices for Interactions in Natural User Interfaces

LMIS 2015 Proceedings 32

Figure 4. ACM Multitouch and Motion based Interaction Papers Review - Interaction Documentation Practices and Habits Analysis for The Years 2012
and 2013 (until 22.08.2013)

extract information about the type of movements involved
in the interaction, involved body parts, adequate interaction
execution, etc. The absence of such information will nec-
essarily lead to burden the deployment of interaction tech-
niques in automated interactive systems, especially processes
such as context acquisition, reasoning, interaction filtering,
etc. are greatly hindered. The absence of documentation in-
evitably challenges analyzing the proposed interaction tech-
niques. For instance, requirement analysis can be greatly
compromised, analyzing physical requirements for NUI users
is not possible, or correctly reproduce or extend a particu-
lar interaction techniques becomes an extremely challenging
task.

Documentation types and methods
The results show that various media types are used by design-
ers for documentation. From one hand, designers reported
that the most used media types for documenting NUI are
text, pictures, sketches, and videos respectively (D5). The
academic paper investigation on the other hand shows text,
sketches, and pictures respectively used in the analyzed pa-
pers (P1). Despite the aforementioned difference, it is clearly
visible that designers rarely use formalized languages or ap-
proaches as a documentation medium (D3, D6, P2). Formal-
ized description of NUI are an important mean to document
various aspects on the interaction to insure integrity and cor-
rectness of execution, and the possibility of replicability.

Designers are not in favor of formal languages and audio.
This can be due to the complexity of language learning, and
the complexity of describing movements respectively. Whilst
formalized languages can be hard to learn and apply, they
are often used in different fields for documenting movements.
Formalized languages have a clear benefit to preserve and
transfer the technique to other designers without endanger-
ing the originality and vital aspects of the technique. Using

the currently applied media such as text, pictures, sketches,
and videos may lead easily to losing parts of the movements,
overly complicated descriptions, losing timing information,
etc.

In fact, according to Navarre et al. [8], formal interfaces
description languages support interaction at the development
(e.g., prototyping) as well as the operation phase, while con-
ventional empirical or semiformal techniques lack to provide
adequate and sufficient insights about the interaction (e.g.,
comparing two design options with respect to the reliability
of the human-system cooperation).

The notion of movement is of particular importance for Ki-
netic Interactions, as it resides at the core of this type of inter-
actions. Movement documentation is a very relevant and gen-
erally a very unresting problem for many fields such as dance
choreography, movement rehabilitation, motion recognition
and analysis, and human movement simulation. Accord-
ing to Kahol et al. [7], having such languages and notations
features three main qualities: facilitate teaching and learn-
ing of movement styles, permit the writing of universally-
understood scores of movement, and provide a universal lan-
guage to communicate movements. Nonetheless, Kahol et
al. [7] still acknowledge the lack of a formalized languages
and notations of generic motion, matching our investigation
results (especially D4). We share the same viewpoint as in
[8], lacking adequate and formalized documentation lead in-
evitably to increase the gap between the design and (commer-
cial) deployment of developed interaction techniques.

The importance of documentation
Designers recognize the importance of documentation for the
users’ experience, the acceptance of NUI techniques, and
correctness of use. The most important use of documenta-
tion is for sharing NUI techniques (D7). Sharing is particu-

5.4 Challenging Documentation Practices for Interactions in Natural User Interfaces

LMIS 2015 Proceedings 33

larly important for different purposes such as communicating
NUI to other peer designers, improving NUI functionality by
other designers, adopting NUI techniques in various interac-
tive eco-systems, and reaching user audience. Even though
designers recognized these important roles, their documenta-
tion practices appear generally ignorant to this importance.

Documentation challenges in future ambient spaces
So far we have discussed the current NUI documentation
practices, but the shift towards future ambient spaces imposes
new requirements, and challenges the current practices.

This type of interactive systems aims at avoiding mismatch
problems between user’s needs and device’s offers, by em-
ploying the best matching interactions to the given context,
hence the user independence (acceptability by permitting cus-
tomizability) and usability qualities required by Wachs et al.
[10] are inherently enhanced. Pruvost et al. [9] noted that
interaction environments are becoming increasingly hetero-
geneous and dynamic, hence they are no longer static and
closed; the interaction context is becoming increasingly more
complex; and, increasing adaptability is required for sustain-
able utility and usability.

Current NUI documentation practices, as discussed in this pa-
per, are greatly challenged by such a system. The current
documentation practices and strategies are not adequate and
fail to meet the challenge of dynamically created documen-
tation for interaction ensembles. Interactions are currently
ego-centric and designed in isolations, so is the documenta-
tion. Such isolation implies a complete absence of informa-
tion about the interaction’s behavior as part of an ensemble in
a dynamically changing eco-system.

FUTURE WORK
As part of our research roadmap, we will continue to ex-
plore this field by (1) extending our investigation to study the
differences and similarities between NUI documentation in
academic and commercial settings (as in motion-based and
touch-based application market initiatives); (2) extending our
analysis to include NUI users and their learning habits; and
(3) extending our ongoing work on a dedicated tool for docu-
menting NUI

CONCLUSION
We have presented an investigation on the applied practices
and habits to document and share developed interaction tech-
niques. The analysis included: (1) an online exploratory sur-
vey on documenting Natural User Interfaces (NUI) answered
by 64 designer; and, (2) coding and analyzing a sample of
93 recently ACM published multitouch and motion-based in-
teraction papers. Our study reveals that good documentation
practices are rare and largely compromised. Our survey re-
veals that there is a lack of documentation tools, methods, and
formal languages; designers almost never follow or apply any
documentation standards; and designers never use available
interaction authoring tools. Hence, the creation of a collec-
tive long lasting interaction heritage remains unachievable.
Moreover, the gap between developing and rightly dissem-
inating interaction techniques increases. Thus, engineering

interactive systems for large-scale dynamic runtime deploy-
ment of existing and future interaction techniques is greatly
challenged.

REFERENCES
1. Altakrouri, B., Gröschner, J., and Schrader, A.

Documenting natural interactions. In CHI ’13 Extended
Abstracts on Human Factors in Computing Systems, CHI
EA ’13, ACM (New York, NY, USA, 2013), 1173–1178.

2. Altakrouri, B., and Schrader, A. Towards dynamic
natural interaction ensembles. In Fourth International
Workshop on Physicality (Physicality 2012) co-located
with British HCI 2012 conference, A. D. Devina
Ramduny-Ellis and S. Gill, Eds. (Birmingham, UK, 09
2012).

3. England, D. Whole body interactions: An introduction.
In Whole Body Interaction, D. England, Ed. Springer
London, 2011, ch. Whole Body Interactions: An
Introduction, 1–5.

4. Fogtmann, M. H., Fritsch, J., and Kortbek, K. J.
Kinesthetic interaction: revealing the bodily potential in
interaction design. In Proceedings of the 20th
Australasian Conference on Computer-Human
Interaction: Designing for Habitus and Habitat, OZCHI
’08, ACM (New York, NY, USA, 2008), 89–96.

5. Hamon, A., Palanque, P., Silva, J. L., Deleris, Y., and
Barboni, E. Formal description of multi-touch
interactions. In Proceedings of the 5th ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems, EICS ’13, ACM (New York, NY, USA, 2013),
207–216.

6. Iacolina, S., Lai, A., Soro, A., and Scateni, R. Natural
interaction and computer graphics applications. In
Eurographics Italian Chapter Conference, E. Puppo,
A. Brogni, and L. D. Floriani, Eds., Eurographics
Association (Genova, Italy, 2010), 141–146.

7. Kahol, K., Tripathi, P., and Panchanathan, S.
Documenting motion sequences with a personalized
annotation system. IEEE MultiMedia 13, 1 (2006),
37–45.

8. Navarre, D., Palanque, P., Ladry, J.-F., and Barboni, E.
Icos: A model-based user interface description
technique dedicated to interactive systems addressing
usability, reliability and scalability. ACM Trans.
Comput.-Hum. Interact. 16, 4 (Nov. 2009), 18:1–18:56.

9. Pruvost, G., Heinroth, T., Bellik, Y., and Minker, W.
User Interaction Adaptation within Ambient
Environments, next generation intelligent environments:
ambient adaptive systems ed. Springer, Boston (USA),
2011, ch. 5, 153–194.

10. Wachs, J. P., Kölsch, M., Stern, H., and Edan, Y.
Vision-based hand-gesture applications. Commun. ACM
54 (February 2011), 60–71.

5.4 Challenging Documentation Practices for Interactions in Natural User Interfaces

LMIS 2015 Proceedings 34

A Concerted Model-driven and Pattern-based Framework
for Developing User Interfaces of Interactive Ubiquitous

Applications
Jürgen Engel

Augsburg University of Applied
Sciences

Augsburg, Germany
juergen.engel@hs-augsburg.de

Christian Märtin
Augsburg University of Applied

Sciences
Augsburg, Germany

christian.maertin@hs-augsburg

Peter Forbrig
University of Rostock

Rostock, Germany
peter.forbrig@informatik.uni-

rostock.de

ABSTRACT
Modeling and building interactive user interfaces (UI)
typically requires the skills of software developers and HCI
experts who cooperate with platform and marketing experts
in order to arrive at solutions with the required software
quality, usability, and user experience. The combination of
model-driven user interface development practices with
pattern-based approaches that specify HCI- and software-
patterns in a formalized way and respect emerging
standards offers potentialities to facilitate and at least
partially automate the user interface development process,
therefore reduce the time-to-market and development costs,
and lead to solutions that can easily be adapted to varying
contexts and target devices. Such pattern-aided UI
adaptation is not limited to design time decisions but can
also be applied during runtime. This paper highlights the
architecture and capabilities of the Pattern-Based Modeling
and Generation of Interactive Systems (PaMGIS)
framework to broadly support the construction and
adaptation of user interface models. It is discussed, how
pattern descriptions that capture important parts of the
design knowledge should be organized in order to be
automatically processed during the modeling process.

Author Keywords
User interfaces; interactive systems; model-driven
development; pattern-based development.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
User Interfaces.

INTRODUCTION
Highly interactive software has become a crucial ingredient
of modern human life. Independent of time and location,
people are used to interact with products built around
interactive software components, such as web applications,
telecommunication devices, car navigation systems, smart
home appliances, wearables, or other electronic equipment.
Nowadays users expect that software products run on a

variety of heterogeneous devices with a consistent look and
feel, invariable high usability, and an extremely high degree
of appealing user experience. Additionally, users tend to be
impatient and want to have the software available for their
different devices at the same point in time. Therefore, time-
to-market is vital for software suppliers.

It is nearly impossible to meet all requirements simultane-
ously when exercising traditional software engineering and
development processes. A promising way out of this
dilemma is the application of a model-driven approach that
allows for describing the particular aspects of the intended
user interface by means of distinct models at different
abstraction levels which can be created - at least partially -
by automatic transformations.

We have combined model-driven user interface
development practices with pattern-based approaches that
specify HCI-patterns in a formalized way [6]. Result is the
fundamentally renovated PaMGIS 2.0 framework which is
presented in the following sections.

RELATED WORK
Model-based user interface development environments
(MB-UIDE) introduce models to the development process
of interactive applications. A variety of existing MB-UIDE
and model-driven approaches for facilitating the
development process of interactive systems can be found in
the literature. Related recapitulations and discussions are
provided in [3] [5] [9] [12]. The models used by these
approaches are usually task-based or object-oriented and
contain functional domain and data requirements at
different abstraction levels for the interactive system under
development. Typically, the models are also used for
mapping and linking the functional requirements of the
business logic to the different abstract and concrete
representations of the user interface with the intent to
achieve high user interface quality, usability, and good user
experience for the user of the final interactive application.
Possible solutions to avoid practical problems and
discrepancies between the automatic derivation of user
interfaces and their usability are discussed in [11]. Benefits
from using model-based user interface development and
meaningful use cases are provided in [8].

Workshop on Large-scale and model-based Interactive Systems:
Approaches and Challenges, June 23 2015, Duisburg, Germany.
Copyright © 2015 for the individual papers by the papers’ authors.
Copying permitted only for private and academic purposes. This volume is
published and copyrighted by its editors.

35

The role of the various models used in MB-UID
environments varies with respect to the modeling purpose.
Typically more than one model is exploited during the
development process to construct the desired solution
interactively or (semi-) automatically. Some degree of
standardization was brought into the diversity of MB-
UIDEs by the CAMELEON Reference Framework (CRF)
[1]. CRF proposes the use of domain, context-of-use, and
adaptation models. Here, the domain model combines task
and concepts sub-models, the context-of-use model consists
of user, platform, and environment models, and the
adaptation model is separated into evolution and transition
models. With regard to model abstraction levels, CRF
distinguishes task-oriented specification, abstract user
interface, concrete user interface, and final user interface.

HCI patterns are a means to document design decisions
based on established design solutions or best practice work
and therefore capture fundamental principles for good
design. In general, patterns represent a relation between a
certain design problem and a solution in a given context. In
addition, they are simple and easily readable for designers,
developers and researchers, and they alleviate the
collaboration between the involved people. In order to
ensure a certain standard, patterns are organized in so-
called pattern catalogs [1]. A catalog of related patterns that
belongs to a common domain is called a pattern language
[14]. Since many pattern authors pick their own formal
description styles and formats with often different
understanding of pattern attributes, several standardization
approaches have been introduced, e.g. the Pattern Language
Markup Language (PLML) version 1.1. PLML unifies the
description schemes of different authors with the help of
XML tags which represent the particular characteristics of
the patterns. According to PLML 1.1 the documentation of
a pattern should consist of the following elements: a pattern
identifier, name, alias, illustration, descriptions of the
respective problem, context and solution, forces, synopsis,
diagram, evidence, confidence, literature, implementation,
related patterns, pattern links, and management information
[7]. A recapitulation and discussion of existing pattern
description standardization approaches is provided in [4].

PAMGIS FRAMEWORK

Basic Concepts
The intention of the PaMGIS framework is to assist and
support its users in the process of developing highly interactive
user interfaces. As illustrated in Figure 1, the basic concept is
to combine both model-driven and pattern-based development
methods and techniques.

Hence, descriptions of HCI patterns are equipped with model
fragments that on one hand can be used as building blocks for
the diverse models and on the other hand allow influencing
model transformations. In addition, usability evaluation results
can be fed back in order to draw conclusions and improve the
patterns, models, and the resulting user interfaces.

Figure 1. Basic concepts of the PaMGIS Framework

The framework supports our research with respect to the
potentials and limits of automated UI development. In order
to enable automatic processing, all model entities as well as
pattern specifications are expressed and stored in an XML-
compliant format.

Model-driven Aspects
The model-driven part of the framework as illustrated in
Figure 2 is designed in the style of the CAMELEON
Reference Framework. Particularly, the ontological domain
and context-of-use models are used as proposed by the CRF.
However, we decided to split the CRF platform model into a
device model and a UI implementation model. While the
former comprises all relevant characteristics of the respective
end device the latter holds information about the UI elements
that are available on the respective underlying software
platform. This avoids redundancies especially in cases where
the same software basis supports significantly different
devices, e.g. Android on smartphones and tablet computer.

The framework is organized in six abstraction levels, i.e,
domain, context of use, abstract user interface (AUI), concrete
user interface (CUI), final user interface (FUI), and runtime
level. As the most abstract representation, the domain level
embodies the domain model which in turn consists of the task
and concept sub-models. The task model provides information
of domain-specific user goals and the entirety of process steps
and actions which must be executed in order to attain these
goals. The concepts model can be understood as a type of data
model describing all UI-relevant data elements and artifacts
which are required in the course of task completion. Hence,
these two models are closely interrelated. In the context of
PaMGIS, the task model is represented in a ConcurTaskTrees
(CTT) notation [10] with some specific adaptations and
enhancements which primarily refer to the specification of
relationships between certain tasks and the data elements that
are required for the execution of these tasks. The concept
model is specified on the basis of XML Schema Definition
(XSD). The context-of-use model consists of the user,
environment, and the already mentioned device and UI
implementation sub-models. While the user model holds
information about particular characteristics of individual users
or clusters of users, e.g. preferences or possible disabilities, the

5.5 A Concerted Model-driven and Pattern-based Framework for Developing User
Interfaces of Interactive Ubiquitous Applications

LMIS 2015 Proceedings 36

environment model describes environmental influence factors,
e.g. lighting conditions, noise, or air pollution.

The knowledge captured within the domain model is used to
construct an abstract user interface model which is a canonical
representation of the rendering of the domain concepts which

is independent from the actually available UI elements as
specified within the UI implementation model. At this
juncture, the concepts model indicates which AUI objects are
required while the task model’s hierarchical structure and
inherent temporal dependencies enforce the definition of the
relationships between these objects.

Figure 2. Overview of utilized models and abstraction levels.

A list of feasible AUI objects is provided Table 1.

Abstract UI
Object Description

Activator
Activates another object or initiates
a call of a business logic function

Navigator
Facilitates the navigation to another

dialog

Output
Displays (read-only) objects of

diverse data types

Editor
Similar to Output, but manipulable

by the user

SingleChoice
Selection of exactly one item out of

several

MultiChoice
Selection of none, one, or more

items out of several

Table 1. Examples of supported abstract user interface
objects.

The information contained within the context-of-use model is
used to control the subsequent transformations of the diverse
UI models and to substantiate deliberate design decisions. For
instance, some tasks or sub-tasks might be undesired,
impractical or impossible to be carried out within a certain
context of use due to user-, device-, and/or environment-
related restrictions. In this case, the corresponding parts of the
AUI have to be eliminated. Furthermore the design of the

dialog structure is defined in consideration of the given context
of use by means of dialog graphs [13].

Once the AUI model is completed, it can be transformed into a
concrete user interface model. For this purpose, the abstract
user interface objects are replaced by appropriate concrete
ones. In this sense, the most appropriate CUI object is the one
that fits best to both the requirements and restrictions which
result from the various aspects of the context-of-use model.

Further, a first impression of the final look-and-feel is created
by roughly determining the layout, i.e., positioning, and the
appearance, e.g. color, font, and size, of the CUI objects. In a
last step, the final user interface can be automatically generated
from the CUI model.

Figure 3 recapitulates the necessary transformation steps
between the four different levels of abstraction as specified in
the CAMELEON reference framework. The process starts
with the domain model followed by the abstract and concrete
model levels and finally arrives at the final user interface.
Please note, that the framework user may perform manual
adjustments at any step of the development process.

From a runtime perspective, there are three general options
how to deal with FUIs. Firstly, the FUI is available as source
code that can be transformed into an executable format by
means of a compiler. Secondly, the FUI has the format of a
script that can be executed by an interpreter. Thirdly, the FUI
can be executed by a runtime engine provided with the
development framework. The advantage of such a runtime
engine is that it is not necessarily bound to the FUI level, but

5.5 A Concerted Model-driven and Pattern-based Framework for Developing User
Interfaces of Interactive Ubiquitous Applications

LMIS 2015 Proceedings 37

can also create at least executable UI prototypes from higher
abstraction levels, i.e., CUI and AUI models, and therefore
enables framework users to identify design problems in early
stages of the development process.

Figure 3. Overview of PaMGIS model transformations.

The utilization of default values within the respective model
allows executing UI prototypes on the basis of not yet finalized
models. In addition, the use of a runtime engine also allows for
implementing model-based responsive designs and runtime
adaptive behavior of the user interface.

Pattern-based Aspects
Within our combined development approach, patterns are
used as means to alleviate the complexity of the model-
driven processing. The patterns provide pre-assembled
building blocks which can be used for domain and UI
model construction. In addition, certain patterns provide

valuable input to the various model transformation steps
shown in Figure 3.

For this purpose it is essential to specify the patterns in a
uniform and machine-readable manner and equip them with
the required information. Further, it must be possible to
compose pattern languages, i.e., to define the interrelation-
ships between the patterns.

Hence, we developed the PaMGIS Pattern Description
Language (PPSL) which is suitable to fulfil the
aforementioned requirements.

Figure 4. Overview of the PaMGIS Pattern Specification Language.

5.5 A Concerted Model-driven and Pattern-based Framework for Developing User
Interfaces of Interactive Ubiquitous Applications

LMIS 2015 Proceedings 38

We reviewed existing pattern description standardization
approaches as well as pattern tools in order to define PPSL
in a way that patterns which are specified in the related
formats can be transformed to PPSL. Thus, the entirety of
all PLML 1.1 description elements is covered in PPSL,
where required in a restructured or modified form. The only
exception is the PLML element Evidence which is not
directly included, but whose two sub-elements Example and
Rationale are part of PPSL. Further, the PLML description
element Literature can be mapped to References and
Related-Patterns to Relations.

In addition, we introduced new description attributes for
storing the supplementary information required by
PaMGIS. An overview of the description elements of PPSL
is provided in Figure 4. Pattern specifications are organized
in four top level elements, i.e., Head, Body, Relationships,
and Deployment.

The Head element incorporates metadata such as unique
pattern identification, pattern classification, pattern name
and aliases, information about pattern authors, credits,
pattern evolution, and references to further sources and
literature. The Body element is split into the two sub-
elements Theory and Practice. The former provides
theoretical background, including – amongst others –
descriptions of the underlying problem, the context in
which the pattern can be applied, and the proposed solution
of the given problem. The latter demonstrates how the
pattern was applied in practice by means of illustrations,
examples, and counter-examples. The Relationships
element serves as resource for the specification of the
relationships between the various patterns and therefore
allows the construction of pattern languages. Finally, the
Deployment element contains – amongst others – model
fragments of different types and abstraction levels as
usability feedback. The model fragments are used as
building blocks for the domain and the diverse UI models.

The model fragments are stored within the
Deployment/PaMGIS/ModelFragments element and
provide ready-to-use modelings of the pattern’s inherent
solution. During the process of constructing the domain
model, the framework user can search, select, and apply
patterns, i.e., automatically insert the respective task and
concept model fragments into the domain model. It is also
possible to store prefabricated AUI, CUI, or FUI model
fragments with the pattern which can be directly embedded
into the UI models of the corresponding abstraction levels.
While patterns typically contain only one task and one
concept model fragment, they might possess multiple AUI,
CUI, and FUI model fragments for different contexts of
use. This allows both applying different UI design solutions
during design time and even during runtime, i.e.,
substituting one model fragment by another one. This
mechanism is not limited to model fragments of the
selfsame pattern. In fact, it is even possible to substitute
whole patterns by alternative ones.

Regarding the process of finding appropriate patterns the
framework offers multiple methods: pattern browsing,
keyword search, free text search, exploiting pattern
relations, or evaluating formal context descriptions which
are stored as logical expressions within the
Body/Theory/Context/Digest element.

Usability Evaluation Aspects
Running user interfaces – either on the basis of a complete
FUI or in form of a prototype based on more abstract UI
models – can be evaluated in terms of their usability and
user experience using pertinent techniques and methods.
The evaluation itself is not in the scope of PaMGIS. Hence,
the framework does not offer any support for evaluation
preparation, execution, and post-processing. But it is
possible to document relevant insights within the system.
Since the origin of model elements is captured inside the
PaMGIS domain model and the various UI models, it is
possible to locate the respective pattern and post the
evaluation results to the pattern definition. For this purpose
we introduced the pattern description element named
Body/Practice/UsabilityFeedback.

A second, more automated option is to specify and utilize
special usability evaluation (UE) patterns. They can be
integrated in the domain model where they add some
measuring instrumentation. For instance, the Textual User
Usability Feedback Dialog pattern ensures, that an
appropriate dialog is available allowing the user to record
and send his or her opinion about certain aspects of the user
interface at hand back to the PaMGIS framework. In the
simplest case, this dialog is composed at least of an Output
object providing some textual explanations for the user, an
Editor object for the acquisition of the actual textual user
feedback, and two Activators for either submitting the
feedback or canceling the action. The aforementioned
pattern includes the required task and concept model
fragments as well as AUI and optionally less abstract UI
model fragments. In this sense, the underlying domain-
specific pattern language can be enriched by such UE
patterns in order to capture usability feedback. At least in
the case that the user interface is executed by means of the
runtime environment, it is possible to automatically attach
the user feedback directly to the respective pattern.
Otherwise the information can be temporarily stored in a
log file outside the scope of PaMGIS and fed back
manually or in a semi-automatic way at a later point in
time.

The collected usability feedback can be used to improve the
quality of the patterns, the diverse models, and therefore of
the final user interface.

Functional Framework Architecture
The PaMGIS framework consists of several logical function
units, each supporting the various users in different fields of
activities. An overview of the functional framework
architecture is provided within Figure 5.

5.5 A Concerted Model-driven and Pattern-based Framework for Developing User
Interfaces of Interactive Ubiquitous Applications

LMIS 2015 Proceedings 39

The core components are the two repositories, the Pattern
Repository for storing the pattern specifications and the
Model Repository to accommodate the diverse models as
shown in Figure 2.

Access control is managed by means of the User Database
which is administered via the Framework User
Administration component. PaMGIS distinguishes several
general types of users, i.e., unregistered users, registered
users, pattern authors, power users, and administrators.
Unregistered users are allowed to access a restricted part of
the pattern specifications solely in read-only mode. In
addition, they may register themselves to the framework.
Registered users gain more insight into pattern details, have
very limited write permissions, and may use certain

collaboration functions, such as sending messages to pattern
authors. The pattern authors have full access to the pattern
descriptions and may create new patterns and modify
existing ones. Power users can read entire pattern
specifications and are allowed to make copies to which they
have full read and write access. In addition, they can use
and control the model-driven part of the framework.
Finally, administrators take over the responsibility of
managing the framework, e.g. creating, modifying, and
deleting users, granting and withdrawing access rights, and
maintaining the PaMGIS meta-models via the Pattern Meta
Model Administration and the Model Meta Model
Administration components.

Figure 5. Overview of the functional PaMGIS architecture.

On the one hand, the Pattern and Pattern Language
Administration unit supports pattern authors in creating and
modifying patterns. On the other hand, power users can
copy particular patterns to a private workspace where they
can modify them according to their needs and build up
pattern languages by specifying interrelationships between
patterns.

The Pattern and Pattern Language Dissemination tool can
be used by unregistered users to browse, search, and display
certain aspects of the pattern descriptions which are
released for this purpose. Additionally, it allows registered
users to view more pattern details, send feedback and
comments to pattern authors, and attach information about
existing implementations to the pattern specifications. For
this purpose we introduced the Body/Practice/KnownUses
description element.

The Domain Model Editor, Context-of-Use Model Editor,
and UI Model Editor allow power users to create and
modify the respective PaMGIS models manually. In

contrast, the Pattern Selection and Assignment component
helps power users to search and find adequate patterns
which can be selected and applied, i.e., insert the attached
model fragments automatically into the domain, context-of-
use, and/or different UI models. The Model
Transformations unit supports the execution of the model
transformations summarized in Figure 3 and can be
configured to a certain extent.

The Runtime Environment is a means to execute user
interfaces in the form of final UIs or prototypes as
described above. The File Export component is used for
exporting models in the form of text files for further
external processing or documentation purposes.

Finally, the Usability Feedback unit offers support
regarding the import of usability evaluation results into the
framework and write it back to the respective patterns
and/or models.

5.5 A Concerted Model-driven and Pattern-based Framework for Developing User
Interfaces of Interactive Ubiquitous Applications

LMIS 2015 Proceedings 40

CONCLUSION
In this paper we presented our concerted pattern-based and
model-driven approach for the development of interactive
ubiquitous systems and provided an overview of the
functional architecture of the related PaMGIS framework.

We strongly believe that the mélange of model- and
pattern-related methods and techniques has the potential to
alleviate weaknesses of the individual approaches and can
create benefits in terms of reducing complexity and
realizing reuse of already existing design knowledge.

The implementation of the framework is indeed work in
progress, but major components already exist at least in
prototypical form. Many patterns and several pattern
languages have been developed, amongst others a pattern
language for the domain of public transportation ticket
selling.

The framework is a cornerstone for our further research on
the potentials and limits of automated UI development.
Moreover, we will intensify our work on supporting
wearable computers with the PaMGIS framework.

REFERENCES
1. C. Alexander, S. Ishikawa, and M. Silverstein. 1977. A

Pattern Language.Oxford University Press.

2. G. Calvary, J. Coutaz, L. Bouillon, M. Florins, Q.
Limbourg, L. Marucci, F. Paternò, C. Santoro, N.
Souchon, D. Thevenin, and J. Vanderdonckt. 2002. The
CAMELEON Reference Framework. Retrieved April
15, 2015 from http://giove.isti.cnr.it/projects/cameleon/
pdf/CAMELEON%20D1.1RefFramework.pdf.

3. Paulo Pinheiro da Silva. 2001. User Interface
Declarative Models and Development Environments: A
Survey. In DSV-IS’00 Proceedings of the 7th
International Conference on Design, Specification, and
Verification of Interactive Systems, 207-226.

4. J. Engel, C. Herdin, and C. Märtin. 2012. Exploiting
HCI Pattern Collections for User Interface Generation.
In Proceedings of PATTERNS 2012, 36-44.

5. J. Engel, C. Herdin, and C. Märtin. 2014. Evaluation of
Model-based User Interface Development Approaches.
In Proceedings of HCII 2014. 295-307.

6. J. Engel and C. Märtin. 2009. PaMGIS: A Framework
for Pattern-based Modeling and Generation of
Interactive Systems. In Proceedings of HCI
International ‘09. San Diego, USA, 826-835.

7. S. Fincher and J. Finlay. 2003. Perspectives on HCI
Patterns: Concepts and Tools (Introducing PLML).
Interfaces, Vol. 56, 26-28.

8. G. Meixner, G. Calvary, and J. Coutaz. 2014.
Introduction to Model-Based User Interfaces. W3C
Working Group Note 07 January 2014. Retrieved May
27, 2015 from http://www.w3.org/TR/mbui-intero/.

9. Brad A. Myers. 1992. State of the Art in User Interface
Software Tools. Advances in Human-Computer
Interaction, Vol. 4, Ablex Publishing.

10. F. Paternò. 2000. The ConcurTaskTrees Notation. In
Model-Based Design and Evaluation of Interactive
Applications, Springer Berlin Heidelberg, 39-66.

11. A. Pleuss, B. Hauptmann, D. Dhungana, and G.
Botterweck. 2012. User Interface Engineering for
Software Product Lines: The Dilemma Between
Automation and Usability. In Proceedings of the 4th
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. Copenhagen, Denmark,. 25-34.

12. Egbert Schlungbaum. 1996. Model-based User
Interface Software Tools - Current State of Declarative
Models. GVU TECH REPORT. Graphics, Visualization
and Usability Centre, Georgia Institute of Technology.

13. E. Schlungbaum and T. Elwert. 1996. Dialogue
Graphs: A Formal and Visual Specification Technique
for Dialogue Modelling. In Proceedings of the 1996
BCS-FACS Conference on Formal Aspects of the
Human Computer Interface FAC-FA'96, Sheffield,
UK.

14. A. Seffah. 2010. The evolution of design patterns in
HCI: from pattern langauges to pattern-oriented design.
In Proceedings of the 1st Interational Workshop on
Pattern-Driven Engineering of Interactive Computing
Systems (PEICS’10), 4-9.

5.5 A Concerted Model-driven and Pattern-based Framework for Developing User
Interfaces of Interactive Ubiquitous Applications

LMIS 2015 Proceedings 41

Model-driven UI Development integrating HCI Patterns

Enes Yigitbas

University of Paderborn

s-lab – Software Quality Lab

eyigitbas@s-lab.upb.de

Bastian Mohrmann

University of Paderborn

basti86@mail.upb.de

Stefan Sauer

University of Paderborn

s-lab – Software Quality Lab

sauer@s-lab.upb.de

ABSTRACT

An important criterion for user acceptance of interactive

systems is software ergonomics. Therefore, a variety of HCI

or usability patterns has been defined in the past. Although

HCI patterns promise reusable best-practice solutions, the

lack of formalization and effective tool support hinder their

usage in a model-driven development process. To overcome

this deficit, we propose a model-driven user interface

development (MDUID) process that integrates HCI patterns.

For showing the feasibility of our approach, we formalized

and implemented a set of GUI patterns, a particular category

of HCI patterns, based on IFML. We present our pattern

application concept and our tool-support based on a

customized MDUID process for generating rich internet

applications (RIAs).

Author Keywords

HCI, Model-driven UI Development, Pattern, GUI Pattern

ACM Classification Keywords

H.5: Information interfaces and presentation (e.g., HCI):

H.5.2: User Interfaces.

INTRODUCTION
An important criterion for user acceptance and user

experience, particularly in the context of interactive systems,

is software ergonomics. Therefore, a variety of HCI and

usability patterns has been defined in the past [1]. Similar to

software development patterns, HCI patterns are reusable

best-practice solutions. The difference is that HCI patterns

address the usability domain and the improvement of

software ergonomics rather than general software

architecture or code structure. One particular category of

HCI patterns are GUI patterns. In [2] GUI patterns are

described as patterns that “specify one or more abstract

interaction objects, their relationships, and their interactive

behavior” and that these patterns “are primarily aimed at

good usability”. The integration of GUI patterns in the

MDUID process appears to be a promising way to overcome

the lack of usability of automatically generated user

interfaces. However, this solution entails two problems.

The first is that HCI patterns are mostly described informally

in practice (1). However, model-driven approaches are based

on formalisms like MOF meta-models or XML schemes.

These formalisms are needed for automatized model-to-

model and model-to-code transformations. The second

problem is that there is barely no tool support for applying or

instantiating HCI patterns, particularly GUI patterns in

practice (2). In [3] it is reasoned that the lack of tools

“hinders the use of HCI patterns within fully automated

processes”, like the MDUID approach.

In this work, we design and implement a customized

MDUID process that integrates GUI patterns. The remainder

of this paper is structured as following: First, we describe

related work in the area of MDUID and HCI pattern

integration approaches. Then we present our GUI pattern

catalog and its formalization based on the abstract user

interface language IFML. Afterwards we explain the

implementation of our approach and the corresponding tool-

support. In the end, we conclude our own contributions and

outline future research activities.

RELATED WORK

Focusing on the topic of model-driven UI development

(MDUID) integrating HCI patterns, multiple aspects have to

be taken into account. Therefore our work is related to and

influenced by a broad range of research fields in order to

overcome the gap between HCI and MDUID. In the

following we will briefly sum up existing MDUID

approaches and pattern integration approaches and set them

in relation to our own solution.

MDUID Approaches

MDUID brings together two subareas of software

development, which are model-driven development (MDD)

and user interface development (UID). The core idea behind

MDUID is to automatize the development process of UI

development by making the models the primary artifact in

the development process rather than application code. An

MDUID process usually involves multiple UI models on

different levels of abstractions that are stepwise transformed

to the final user interfaces by model transformations.

The CAMELEON Reference Framework (CRF) [4] provides

a unified reference framework for MDUID differentiating

between the abstraction levels Task & Concept, Abstract

User Interface (AUI), Concrete User Interface (CUI) and

Final User Interface (FUI).

Workshop on Large-scale and model-based Interactive Systems:

Approaches and Challenges, June 23 2015, Duisburg, Germany.
Copyright © 2015 for the individual papers by the papers’ authors. Copying

permitted only for private and academic purposes. This volume is published

and copyrighted by its editors.

42

There are various state-of-the-art modeling languages for

covering the different abstraction levels of the CRF. For

example MARIA XML (Model-based lAnguage foR

Interactive Applications) [5] and IFML (Interaction Flow

Modeling Language) [6] provide both an AUI modeling

language and a tool-support to create and edit AUI models.

Based on these AUI models further transformations can be

performed to transform them into platform-specific CUI

models which eventually are needed for generating the final

user interfaces (FUI). The described MDUID approaches

enable the specification and also support the generation of

UIs, but they do not offer explicit mechanisms for specifying

HCI patterns like GUI patterns. Therefore the existing

MDUID tools show a lack of pattern formalization,

instantiation and tight integration in the development

process.

Pattern Integration Approaches

Engel [7] presents the concept of the PaMGIS (Pattern-Based

Modeling and Generation of Interactive Systems) framework

for pattern-based modeling. The PaMGIS framework

combines model-based and pattern-based approaches on

different levels of abstraction. The core component of the

framework is the pattern repository, a collection of

``different types of patterns and pattern languages''. Within

the repository, the patterns are described by the PPSL

(PaMGIS Pattern Specification Language). Beside the

definition of HCI patterns, their meaning, their idea etc.,

PPSL also provides means to define relations between

pattern models and other models. Such relations contain

information about the particular pattern, the related FUI,

(hierarchical) relationships to other patterns and back links

to other object-oriented models, e.g. an AUI or CUI model

of the interactive system. This information is necessary for

model-to-model and model-to-code transformations.

However, the PaMGIS approach leaves two issues open.

First, it does not become completely clear if the mentioned

model-to-code transformation can be defined on the model

level or has to be defined for each instance over and over

again. Secondly, no concepts for data binding have been

discussed in this approach.

Radeke [8] proposes in his work a pattern application

framework that describes a general concept of how patterns

can be integrated in model-based approaches. This

framework relies on three phases. In the first phase the user

selects the pattern from the pattern repository that he wants

to apply. The pattern repository contains hierarchically

structured patterns and sub-patterns defined in a common

pattern language. The generic part of the pattern is

instantiated in the pattern instantiation phase with regard to

the context of use. The outcome is an instantiated pattern that

can be integrated in the development process. Although this

approach suggests an interesting pattern instantiation

concept, it integrates HCI patterns in a model-based rather

than model-driven way. We overcome this deficit in our

approach through a tight integration of the formalized GUI

patterns by representing them in automatic model

transformations.

PATTERN INTEGRATION CONCEPT

In order to overcome the previously mentioned problems (1)

and (2), a general concept for integrating patterns in MDUID

was developed that aims at increasing the usability of

generated user interfaces. The main goal of this concept is

the automatized application of GUI patterns within a model-

driven process. Therefore, the CRF was extended by

instantiation parameters and application conditions of GUI

patterns like depicted in figure 1. Let us start with a short

explanation concerning these two terms.

Figure 1. Overview of the pattern integration concept

Following the concepts of Wendler [12] and Radeke et al.

[8], GUI patterns consist of a static and a dynamic part. The

static part of a pattern describes the core solution idea of the

pattern and can contain information about navigation, user

interface elements or layout. It does not change among

application scenarios. The dynamic part, however, depends

on the prevailing pattern application context and therefore

has to be set during the user interface modelling process.

Since these dynamic parts determine the instantiation of a

pattern, Wendler defines them as the instantiation

parameters. The second important aspect is given by the

conditions under which a pattern is advisable. In order to

decide, when which pattern shall be applied, so-called

pattern application conditions are helpful. Pattern application

conditions are formal and describe situations in which a

specific GUI pattern is reasonable. The advantage of

formalised conditions is that they can be validated

automatically, e.g. in the model-driven transformation

process. Such a validation determines if a pattern is applied

or not. After introducing the relevant terms, we will now

explain the concept.

Referring again to figure 1, the pattern integration concept

based on the CRF is depicted. It contains three abstract

components: An MDUID process implementation with its

different meta-models (AUI, CUI, Platform), an

instantiation parameter extension for the AUI meta-model,

and an application condition extension for the model-to-

model transformation. These components have to be

specified when the pattern integration concept is

5.6 Model-driven UI Development integrating HCI Patterns

LMIS 2015 Proceedings 43

implemented. As explained above, instantiation parameters

depend on a pattern’s application context. Because of that,

they have to be set during the initial user interface

specification. In our case, the user interface is initially

specified on the AUI layer and hence the instantiation

parameters are integrated in the AUI meta-model by

additional types and/or features. The application conditions

are integrated in the transformation from the AUI to the CUI

model by means of transformation rules. They are validated

on the AUI model and therefore reusable for any target

platform, like the AUI model itself. If the conditions are

valid, the pattern is applied and the according platform-

dependent CUI elements are generated.

GUI PATTERN CATALOG

The developed pattern integration concept was implemented

for a choice of GUI patterns. Therefore, the abstract

components introduced in the previous section were

instantiated. The resulting customized MDUID process is

depicted in figure 2. The AUI layer is realized with IFML

and the model-to-model transformation is realized with an

ATL [13] plugin. In order to integrate GUI patterns, a choice

of GUI patterns was identified and then formalized by

instantiation parameters and application conditions

conforming to the extended components, the IFML meta-

model and the ATL plugin. The formalized patterns are

represented by the extension components in figure 2.

All integrated patterns were documented in a pattern catalog

comprising the pattern’s general meaning, its formalized

instantiation parameters and application conditions. The

formalisation of the instantiation parameters is described by

means of an extension of IFML while the formalization of

application conditions is described by means of

transformation rules extending the ATL model-to-model

transformation. Currently, the pattern catalog includes seven

GUI patterns that were chosen based on their frequent use in

interactive applications and their occurrence in pattern

catalogs [1]. Further, the patterns in the pattern catalog are

structured according to pattern categories taken from [9] and

presented in a defined description scheme.

In the following, we want to present the Wizard pattern entry

according to this description scheme in order to give an

example of the pattern formalization:

Wizard

Description

The Wizard pattern is used when a user “wants to achieve a

single goal but several decisions need to be made before the

goal can be achieved completely” ([11]). Regarding a

complex task inside a software system that is performed

rather rarely and that is too long to fit into a single page, the

Wizard pattern suggests to separate the complex task into

several steps that are organized in a prescribed order. The

user can deal with each of these steps in a discrete mental

space and therefore has a simplified view on this task ([10]

p.55).

Figure 2. Architecture of the customized MDUID process

Instantiation Parameters

From the above description we can derive the following

instantiation parameter when a task is separated into several

decision steps: The amount of steps, the order of steps and

the content of the particular steps. Like illustrated in figure

3, a step is formalised as a Step class that inherits from the

ViewContainer class. Hence, the amount of steps and any

view elements, like Events, Fields or Lists that are the

content of a step can be defined. Furthermore, the inherited

outInteractionFlow association enables the definition of

NavigationFlows between steps and thus the order of the

steps. In the related figure, the coloured classes are part of

the IFML meta-model while the white class is a custom

extension.

Figure 3. Simplified Wizard extension

5.6 Model-driven UI Development integrating HCI Patterns

LMIS 2015 Proceedings 44

Pattern Application Condition

The Wizard pattern is applied whenever a ViewContainer

element with at least two containing Steps is modelled. All

contained Steps must be connected with NavigationFlows, so

their order can be determined. Below, these conditions are

implemented by means of an ATL transformation rule code

snippet with a source pattern and a guard.

IMPLEMENTATION AND TOOL-SUPPORT

In this section, the implementation of the pattern integration

approach and the corresponding tool-support is presented in

detail. The implementation is in a state where it already could

be successfully applied in an industrial setting. The

architecture of the implemented approach is depicted in

figure 2. This architecture partially implements the four

abstraction layers (Task & Concept, AUI, CUI, FUI) of CRF

indicated by the colored rectangles. The UML 2.0 language

on the Task & Concept layer enables the modeling of the

application’s domain, e.g. by a class diagram. As can be seen,

the AUI layer is realized by IFML. In particular, we reused

the IFML-metamodel.ecore, an implementation of the IFML

standard, which can be downloaded from the official website

and extended this meta-model by a choice of specific AUI

elements and GUI pattern instantiation parameters. IFML

provides dedicated extension points for this purpose. We

realized the CUI layer with a custom meta-model,

RIACUI.ecore, which is specific for rich internet

applications. The RIACUI.ecore enables to describe user

interface as they are perceived by the end user including the

layout, colors and concrete interaction types. On the FUI

layer, the user interface is finally represented by

JavaServerPages, JavaScript code and CSS style sheets. The

Transformation Workflow component manages the model-

to-model and the model-to-code transformation. As can be

seen in figure 2, the model-to-model transformation is

realized with ATL and produces a RIA-specific CUI model

from an IFML model and the related UML 2.0 domain

model. ATL provides a feature called rule inheritance. Rule

inheritance helps to reuse transformation rules and is similar

to inheritance relations in the object oriented domain.

Subsequently, the model-to-code transformation, realized in

Xtend [16], generates application code from a previously

produced RIA-specific CUI model. The advantage of Xtend

is, since it is based on Java, a statically-typed programming

language which employs template-based text generation.

This is particularly helpful when it comes to code generation

for application code organised in different files and

programming languages as it is the case for the FUI of rich

internet applications.

The tool support is given by a graphical editor that is an

extension to the IFML open source editor based on EMF [15]

and the Sirius [14] framework. The editor is available at

Github and was extended within this work by graphical

representations and create/read/update/delete operations for

the IFML extensions. Figure 4 depicts a screenshot of the

editor showing the working area, the palette and the

properties tab. This editor is an eclipse plug-in [17]. In the

working area the current IFML model is displayed,

Figure 4. Screenshot of the extended IFML editor

5.6 Model-driven UI Development integrating HCI Patterns

LMIS 2015 Proceedings 45

represented in its concrete syntax. The use of meaningful

icons and graphical representations helps for a better and

faster understanding of the editor. The user can create new

IFML model elements via Drag & Drop from the palette on

the right hand side. The palette is structured in multiple

sections where different ViewElements like List, Window

and NavigationFlow are available. The Step entry in the

palette also indicates that instantiation parameters of GUI

patterns are configurable. The editing of IFML model

elements mostly takes place in the properties tab located at

the bottom. Here, all attributes and associations of model

elements can be set, modified or deleted. Once such an IFML

model is specified, it serves as the input of the transformation

chain which can be triggered manually from the editor’s

context menu. The outcome is a RIA-specific CUI model in

XML format and the FUI represented by multiple

JavaServerPages, JavaScript files and CSS style sheets.

CONCLUSION AND OUTLOOK

In this paper, we presented the design and implementation of

a customized MDUID process that integrates GUI patterns.

As a basis of our solution concept we first described our

general pattern integration concept. Then we presented our

GUI pattern catalog and its formalization based on the

abstract user interface language IFML. The feasibility of our

approach was then shown by a tool-support which extends

the existing IFML editor by integrated GUI patterns. The

implementation of the customized MDUID process and the

practical usage of the tool-support was shown in the context

of generating rich internet applications (RIAs). With regard

to future work we intend to evaluate our implemented

solution in an industrial case study. In the evaluation we will

especially focus on the influence of the integrated GUI

patterns to the usability of the automatically generated RIAs.

REFERENCES

1. HCI Patterns. Retrieved April 2, 2015 from

http://www.hcipatterns.org/patterns

2. Christian Märtin, Christian Herdin, and Jürgen Engel.

2013. Patterns and Models for Automated User Interface

Construction – In Search of the Missing Links, in: M.

Kurosu (Ed.), Human-Computer Interaction, Part I,

HCII 2013, LNCS 8004, 401-410.

3. Kai Breiner, Marc Seissler, Gerrit Meixner, Peter

Forbrig, Ahmed Seffah, and Kerstin Klöckner. 2010.

PEICS: towards HCI patterns into engineering of

interactive systems. In Proc. of the 1st International

Workshop on Pattern-Driven Engineering of Interactive

Computing Systems (PEICS '10).

4. Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin

Limbourg, Laurent Bouillon, and Jean Vanderdonckt.

2003. A Unifying Reference Framework for Multi-

target User Interfaces. In: Interacting with Computers,

289-308.

5. Fabio Paterno', Carmen Santoro, and Lucio Davide

Spano. 2009. MARIA: A universal, declarative,

multiple abstraction-level language for service-oriented

applications in ubiquitous environments. ACM Trans.

Comput.-Hum. Interact. 16, 4, Article 19 (November

2009), 30 pages.

6. IFML Spec. Retrieved April 2, 2015 from

http://www.omg.org/spec/IFML/

7. Jürgen Engel. 2010. A model- and pattern-based

approach for development of user interfaces of

interactive systems. In Proceedings of the 2nd ACM

SIGCHI symposium on Engineering interactive

computing systems (EICS '10). ACM, New York, NY,

USA, 337-340.

8. Frank Radeke and Peter Forbrig. 2007. Patterns in task-

based modeling of user interfaces. In Proceedings of the

6th international conference on Task models and

diagrams for user interface design (TAMODIA'07),

Marco Winckler, Philippe Palanque, and Hilary Johnson

(Eds.). Springer-Verlag, Berlin, Heidelberg, 184-197.

9. Marco Brambilla and Piero Fraternali. Interaction Flow

Modeling Language: Model-Driven UI Engineering of

Web and Mobile Apps with IFML. Morgan Kaufmann,

2014.

10. Jenifer Tidwell. Designing interfaces – patterns for

effective interaction design (2. ed.). O’Reilly, 2011.

11. Matijn Van Welie. A pattern library for interaction

design. Retrieved April 2, 2015 from

http://www.welie.com/patterns/

12. Stefan Wendler, Danny Ammon, Ilka Philippow, and

Detlef Streitferdt. A factor model capturing

requirements for generative user interface patterns. In

PATTERNS 2013, the Fifth Int. Conf. on Pervasive

Patterns and Applications, Valencia, Spain, IARIA,

Lecture Notes in Computer Science, pages 34–43, 2013.

13. ATL. Retrieved April 2, 2015 from

https://eclipse.org/atl/

14. Sirius. Retrieved April 2, 2015 from

https://eclipse.org/sirius/

15. EMF. Retrieved April 2, 2015 from

https://www.eclipse.org/modeling/emf/

16. Xtend. Retrieved April 2, 2015 from

https://eclipse.org/xtend/

17. Eclipse. Retrieved April 2, 2015 from

https://eclipse.org/

5.6 Model-driven UI Development integrating HCI Patterns

LMIS 2015 Proceedings 46

	INTRODUCTION
	WORKSHOP ORGANIZERS
	Ronny Seiger
	Bashar Altakrouri
	Andreas Schrader
	Thomas Schlegel

	PROGRAM COMMITTEE
	PROGRAM
	ACCEPTED PAPERS
	Navigation in Ambient Spacess
	Ambient Reflection: Towards self-explaining devices
	A Framework for Rapid Prototyping of Multimodal Interaction Concepts
	Challenging Documentation Practices for Interactions in Natural User Interfaces
	A Concerted Model-driven and Pattern-based Framework for Developing User Interfaces of Interactive Ubiquitous Applications
	Model-driven UI Development integrating HCI Patterns

