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Abstract—This paper describes an approach for designing,
formalizing and implementing sentinels that detect errors in
fail-uncontrolled multiagent systems, and controllers that identify
particular situations in ambient intelligence (AmI) systems. The
formalism we use for representing the expected patterns of actions
along with exceptions, timeouts, and their handlers, is that of
constrained global types extended with features for dealing with
these new constructs. We provide the syntax and semantics of
the extended constrained global types and examples of their use,
in the different contexts of fail-uncontrolled and AmI systems.

I. INTRODUCTION

Multiagent protocols are usually intended as a means
to regulate communicative interactions among agents. The
literature on agent interaction protocols is huge and despite
its long tradition dating back to the dawn of the research on
agents and multiagent systems [1], [2], it is still a hot research
topic [3], [4], [5], [6], [7].

In this paper we adhere to a general definition of protocols
as a means to define legal sequences or concurrent combina-
tions of actions without regard to the meanings of those actions
[8]: our protocols define patterns of actions in the environment,
rather then just conversations.

The purpose of our research is to provide the multiagent
system developer with a framework for designing, formalizing
and implementing the following monitoring agents on top of
existing agent environments:

1) sentinels that detect errors in fail-uncontrolled multi-
agent systems and

2) controllers that identify particular situations in ambi-
ent intelligence (AmI) systems.

Despite the different contexts where sentinels and con-
trollers are expected to operate, both must be able to monitor
the system’s behavior and to properly deal with failures and
exceptional situations that may arise during the multiagent
system (MAS for short) functioning.

The language we propose for formalizing the expected
patterns of actions in the environment is that of constrained
global types [9], [10], [11] extended with features for dealing
with exceptions, timeouts, and their handlers. These extensions
are used to describe specific situations that must be managed
before they lead to an error or to a dangerous or unwanted
situation.

The basic mechanism for runtime verification that an event
which took place in the environment is compliant with the
protocol has already been described in our previous works
[9], [6], [12], where we presented a working framework for
Jason [13], chosen as a paradigmatic example of logic-based
MAS language and framework, and for JADE [14], chosen
because of its wide adoption both in academic and industrial
environments.

In this paper we describe the extensions to constrained
global types to cope with the newly introduced concepts such
as events, timeouts etc, as described in Section III. Although
the updating of the existing and working prototypes for Jason
[9] and JADE [6] to include these new features is still under
way, we are confident on the positive outcomes of our efforts.
In fact, we already implemented an SWI Prolog extended
interpreter that properly deals with these new features and
which is presented in Section III, and we tested it as a
standalone application (Section IV). The missing final step
is to substitute the interpreter for monitoring MASs that is
already integrated on top of Jason (resp. JADE) with this
new, enhanced interpreter. This requires to take care of minor
syntactic issues so it does not come completely for free, but
is should not even raise relevant technical problems.

We consider two different types of systems, fail-
uncontrolled MASs and AmI systems, to prove the usability
of constrained global types for representing patterns of events
(that we also name situations when referred to AmI systems,
or protocols, coherently with the terminology used in the liter-
ature about security) that should drive the runtime monitoring
activity of sentinels and controllers.

In fail-uncontrolled multiagent systems, the protocol mod-
eling the normal expected behavior of the MAS is explicitly
represented and involves events of any type (not limited
to communicative ones); sentinels observe the system under
monitoring and execute user-defined, domain-dependent code
when a deviation from the expected behavior takes place.
Deviations are modeled as exceptions to the normal flow of
actions that the protocol models, and the user code must
implement the exception handlers.

In AmI systems, where usually there is no explicit protocol
driving the agents’ behavior, but rather agents are free to act as
they wish in any ambient, we only model particular situations
that must be identified as soon as they arise: in this way we
can respect the autonomy of agents and deal with unforeseen
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events, but we are still able to check that specific situations are
identified as “wrong” ones and their consequences are avoided.

By exploiting the abstraction of “event type” supported
by constrained global types, we can model events which are
observed in the monitored system and that are relevant for
the monitored application, but also events which are not inter-
esting and hence should be discarded (uninteresting events).
Unexpected exceptions can be captured and managed as well.

Since sentinels and controllers are agents like any other
one, they can be “part of the protocol” as well, hence being
both promoters and targets of the monitoring activities1. For
example, if the protocol states that – when an exception has
been detected – the controller must always send a message to
the agent that caused it, and this does not happen, the controller
can realize that it is violating the protocol and should repair
its own code.

In order to avoid bottlenecks, the monitoring activities may
be distributed among many different and independent sentinels
(resp. controllers), each observing a subset of the events based
on their type, the location where they take place, or other
criteria. An approach for distributing the monitoring activity
by projecting the protocol onto subsets of agents involved in
it has been explored in [15].

The proposed approach is general enough to be imple-
mented on top of any MAS or AmI framework where events
can be observed and translated into a suitable representation,
amenable for formal reasoning.

The paper is structured in the following way: Section II
provides the background to this work. Section III describes
the extension of constrained global types with exceptions,
timeouts, and their handlers. Section IV provides examples
in different contexts. Section V concludes.

II. BACKGROUND AND RELATED WORK

The classification of system failures and the definition of
fail-uncontrolled system we refer to, is that provided in [16],
which in turn refers to [17]:

The most generally accepted failure classification
can be found in [17]:

1) A crash failure means a component stops
producing output; it is the simplest failure
to contend with.

2) An omission failure is a transient crash
failure: the faulty component will eventually
resume its output production.

3) A timing failure occurs when output is pro-
duced outside its specified time frame.

4) An arbitrary (or byzantine) failure equates
to the production of arbitrary output values
at arbitrary times.

Given this classification, two types of failure models
are usually considered in distributed environments:
• fail-silent, where the considered system al-

lows only crash failures, and

1This “introspective” model can work only if sentinels and controllers
perform the very same monitoring activity whatever the agent being monitored,
including themselves.

• fail-uncontrolled, where any type of failure
may occur.

In such a context,

a sentinel is an agent, and its mission is to guard
specific functions or to guard against specific states
in the society of agents. The sentinel does not partake
in domain problem solving, but it can intervene
if necessary, choosing alternative problem solving
methods for agents, excluding faulty agents, alter-
ing parameters for agents, and reporting to human
operators. Being an agent, the sentinel interacts with
other agents using semantic addressing. Thereby it
can, by monitoring agent communication and by
interaction (asking), build models of other agents.
It can also use timers to detect crashed agents (or a
faulty communication link) [18].

Exceptions can be informally defined as:

[...] abnormal conditions that arise during the ex-
ecution of a process. The importance of exceptions
stems from the simple fact that they are an essen-
tial feature of real-life processes. Businesses, for
example, entertain exceptional requests from cus-
tomers in the interest of better customer service.
Conversely, exceptions that occur in a process may
lead to poor user satisfaction. Therefore, businesses
must accommodate exceptions in their underlying
systems and their interactions with other businesses.
For concreteness, let us review a classification of
exceptions proposed by Eder and Liebhart [19]:

1) Basic failures, which are system-level fail-
ures such as network failures.

2) Application failures, such as database trans-
action failures.

3) Expected exceptions, which are deviations
from the normal flow that occur infrequently
but often enough to be incorporated into the
process model.

4) Unexpected exceptions, which are not mod-
eled and hence require a change in the de-
sign of the process when they are discovered.

An alternate classification of exceptions distin-
guishes among system level exceptions, program-
ming language exceptions, and pragmatic excep-
tions. Among these, pragmatic exceptions are the
most acute and the most difficult to handle [20].

According to our analysis of the state of the art in fault
tolerant multi-agent systems, we can distinguish two broad
classes of approaches:

1) approaches where the multiagent protocol is repre-
sented in an explicit way, and fault tolerance amounts
to handling exceptions due to a non-compliant behav-
ior w.r.t. the protocol [8], [20]; in such approaches,
multiagent protocols are usually limited to express
constraints on communicative actions;

2) approaches where no protocol exists, and fault toler-
ance amounts to detecting crashed agents and repli-
cate them in a transparent way [21], [16].
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Our approach falls in the first category.

With respect to AmI systems, the idea of implementing
them using an agent-based approach dates back to the late
nineties. Among the very first projects in this area we may
mention the Intelligent Room project at MIT [22] that con-
centrated on making the room responsive to the occupant by
adding intelligent sensors to the user interface, the ACHE
system [23] which also aimed at energy saving and increased
personal comfort by learning the user preferences automati-
cally by observing the behavior of the persons in the building,
and the work by Paul Davidsson and Magnus Boman [24]
who used multiagent principles to control building services,
with agents that decompose systems by function rather than
behavior. The synergy between ambient intelligence and intel-
ligent software agents has become stronger and stronger, and
nowadays there are tens of papers and projects in this area.
Among the most relevant ones, we may mention [25], [26],
[27]. The impressive growth in the last years [28], [29], [30],
[31], [32] is also witnessed by the Multi-Agent Systems and
Ambient Intelligence (MASAI) special track at the Practical
Applications of Agents and Multi-Agent Systems (PAAMS)
2014 and 2015 conferences.

Among the most recent works in the MAS & AmI area,
the closer to our proposal is [33]. That paper presents a
concrete software architecture dedicated to AmI features and
requirements. The proposed behavioral model, called Higher-
order Agent (HoA) captures the evolution of the mental repre-
sentation of the agent and the one of its plan simultaneously.
Plan expressions are written and composed using a formal
algebraic language named AgLOTOS which is very similar to
our formalism based on constrained global types although less
expressive because of the lack of concatenation and recursion.
In [33], the planning process is improved with two new
services which provide a guidance for the mental process
and a model checking approach to analyze some temporal
properties over the agent plan. Both services are based on
a transition system called Contextual Planning Systems that,
similarly to the traces of our constrained global types, can
represent the different execution traces the agent could perform
from a given HoA configuration, assuming the information
context of the HoA configuration holds. With AgLOTOS it is
possible to handle actions and plans failures, as we do. The
main differences between the approaches, besides the lower
expressive power of AgLOTOS w.r.t. the formalism that we
adopt, are that our approach is more general than the one
discussed in [33] and it can be implemented on top of any
existing MAS framework, as the only requirement is that the
sentinels and controllers can observe events taking place in
the environment, but the approach based on AgLOTOS is in
a more mature development stage and has been experimented
on the field in a Smart-Campus Project.

Finally, we may observe that our approach of supervising
the ongoing activities of the MAS, being it an AmI sys-
tem or a more generic distributed open system, is similar
to the “Monitoring by overhearing” approach presented in
[34], where an overhearing agent monitors the exchanged
communications between the system’s agents and uses the
observed communications to independently assemble and infer
the needed monitoring information.

III. MULTIAGENT PROTOCOLS WITH TIMEOUTS,
EXCEPTIONS, AND HANDLERS

Our proposal is general enough to be applied to many
languages and environments for MASs. The only needed
requirement is that some agents (the sentinels or controllers)
can be given the power and the capability to observe (some
of) the actions taking place in the environment.

As far as sentinels are concerned, the four types of failure
identified in [17] are all resorted to a behavior that does not
comply with the multiagent protocol:

• a timing failure can be detected thanks to implicit
and explicit timeouts on the actions: if an expected
action does not take place within the given timeout,
then a time failure takes place. More successive timing
failures may mean either an omission or a crash
failure;

• a byzantine failure can be detected by verifying that
the occurred action was (or was not) expected by the
protocol in the current state and time.

Sentinels implementation verifies at run-time that perceived
events are compliant with the protocol. This verification activ-
ity is necessary when the multiagent protocol is designed and
the MAS is tested, but cannot guarantee any fault tolerance,
as the output of the verification in any given time instant is
just “yes” or “no”. In order to capture deviations from the
expected flow and manage them, so to possibly recover to some
acceptable state when the verification fails, the sentinel must
pro-actively intervene by executing some recovery plan. We
have designed the mechanism that allows a sentinel to capture
the expected failures of the protocol by means of exceptions,
and the recovery intervention by means of exception handlers.

In this section we present the formalism of constrained
global types introduced by Ancona, Mascardi et al. [9], [10],
[11], extended to cope with any kind of observable event
instead of only communicative actions and to model exceptions
and timeouts. Although never exploited, dealing with uninter-
esting events was already possible with the original versions
of the formalism and hence does not represent a real extension
to it.

In the sequel, we will take the perspective of constrained
global types as a powerful means to specify multiagent pro-
tocols, but they can be used to specify AmI situations as
well, and for the same reasons. For readability, we will avoid
repeating “or AmI situations”, but we emphasize that our
assertions hold for them as well.

Intuitively, a constrained global type represents the state
of an multiagent protocol from which several transition steps
to other states (that is, to other constrained global types) are
possible, with a resulting event.

Exceptions are the mechanism we have introduced in order
to cope with byzantine failures, whereas timeouts are used to
detect and cope with omission, timing and crash failures.

A. Syntax

Event. An event e is any observable event taking place
in the MAS environment, including communicative actions,
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actions performed by agents, agent location and move, and
actions performed by artifacts. We do not face the transduction
problem and assume that events are translated into symbols
that agents can manipulate by some mediator between the
agents and the environment. For the purposes of our work,
events are symbolic expressions.

Example 1:
transport(policeman(marcus), prisoner(alice),
from(jail), to(room1), by(car)).

Example 2:
collect_parcel(agent2, parcel3, parcelweight(4, kg)).

The event “transport” is characterized by the involved
entities (the policeman and the prisoner, identified by their
names), the departure and arrival places and the means of
transport.

Event type. A “normal” event type η is a predicate on
events. Its interpretation is the set of events that verify η; we
write e ∈ η to mean that η is true on e, and we also say that
e has type η.

Example 1:
transport(policeman(marcus), prisoner(alice), from(jail),
to(room1), by(car)) ∈ move(alice, jail, room1).

Example 2:
collect_parcel(agent2, parcel3, parcelweight(4, kg))
∈ collect_parcel.

With respect to the actual event that took place in the
environment and that was transduced into a symbolic form,
the event type may abstract some details which are not
relevant for the sentinel monitoring activities (like in Example
2), and can be identified by a different predicate with different
arguments (like in Example 1, where “move(...)” is the event
type of “transport(...)” event).

Exception type. An exception type E is – from a logical
point of view – a quadruple <type of the event that will fire
the exception, type of the exception, pointer to the exception
handler, arguments of the exception handler>. We represent
exceptions in a more compact way, as a couple whose second
element has the type of the exception as functor, and the
pointer to the exception handler along with its arguments as
argument.

An exception type is a way for stating that perceiving a
specific event in the current state of the protocol represents an
exceptional situation and must be handled as such, calling an
ad-hoc piece of code.

Example:
(exception(move(A, key_room, treasure_room),

illegal_move_exc(
entering_treasure_room_without_permission(A)))).

The events whose type is move(A, key_room,
treasure_room) may raise an exception (if they take

place in the state of the protocol where the exception
type may be reached) whose type is illegal_move_exc,
and that must be handled by the code pointed to by
entering_treasure_room_without_permission, with
argument A.

Set timeout type. From a logical point of view, a set
timeout type ST is a couple <type of the event that will
cause the alarm to be set, list of triples (timeout label l , delay
timeout d and its omission handler, crash timeout c and its
crash handler)>.

A timeout is set on occurrence of one event whose type
is specified as first element of the couple and causes two
alarms to be set and, later on, raised in an automatic way
by the system. The first alarm will be automatically raised
by the system after the delay timeout, unless an event tagged
with label l took place before, and will be handled using
the associated “omission handler”. The second alarm will be
automatically raised by the system after the crash timeout,
unless an event tagged with label l took place before. The
crash timeout must be greater than the delay timeout and will
be handled using the associated “crash handler”.

The link between the two alarms set and the condition
under which they should have no consequences on the system
behavior is given by the label l. In fact, if – after having set the
alarms – an event is perceived and it matches a check timeout
(explained in the sequel) identified by the same label l, then it
means that the condition associated with the alarms has been
satisfied and they can be switched off.

From an implementation viewpoint, a set_timeout event
should save the information in the associated list for succes-
sive retrieval using the label as a key. In our SWI-Prolog
prototype described in Section III-B, this is done by calling
the set_alarm predicate which, for each element in the list,
asserts it, computes the time when the two alarms should be
raised based on the current time and the delay and crash
timeouts, and generates the two awake events which will
actually take place in the system at due time.

Example:
set_timeout( (first_move(A, _SomeRoom, key_room),0),
[timeout_setting(t1(A),
d(1000, handlerOmission(A)),
c(2000, handlerCrash(A)) ) ] ).

When one event whose type is first_move(A,
_SomeRoom, key_room) takes place2, two timeouts labeled
with t1(A) together with their handlers are set:

• one whose expiration may be due to omission failures
d(1000, handlerOmission(A)), meaning that if
some check timeout event labeled with t1(A) will
not take place within 1000 time units from the current
time, then the agent or component that should make
the condition associated with label t1(A) become true
will be considered delayed;

2The fact that the event type is represented as a couple
(first_move(A, _SomeRoom, key_room),0) with a 0
as second element means that the type is a “producer event type”. This notion
is introduced in the sequel.
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• and one whose expiration may be due to crashes
c(2000, handlerCrash(A)), meaning that if the
check timeout events labeled with t1(A) will not take
place within 2000 time units from the current time,
then the agent or component that should make the
condition associated with label t1(A) become true
will be considered crashed.

When the timeout will expire, the corresponding event of type
“awake” (explained later) will be generated by the sentinel,
and the handler will be used to manage the failure.

In this specific example, since the agent identity is part
of the label itself, the agent whose delay or crash is under
monitoring is A. As soon as A makes its first_move into
the key_room, two countdowns start. If A does not ask the
key to the key_keeper (see example below) within 1000
time units, he will be considered delayed. If he does not ask
the key in 2000 time units, he will be considered crashed.

Check timeout type. A check timeout type CT is, from
an abstract point of view, a quadruple <type of the event that
should take place within the timeout, label of the timeout,
pointer to the timeout exception handler, arguments of the
timeout exception handler>. As for the exception type, we
use a more compact representation as a term with its functor
and arguments.

Example:

check_timeout((ask(A, key_keeper, key),0),timeout_exc(t1(A),
handlerEventWithDelay(ask(A, key_keeper, key))).

When one event of type ask(A, key_keeper, key)
takes place, a check if it is on time or not is performed,
by retrieving the information associated with the label
t1(A). In our implementation, this means looking for a fact
previously asserted by set_alarm whose label unifies with
t1(A). If the event is on time, the protocol is respected
and alarms associated with label t1(A) are switched off
(namely, it is tagged as “done” and the awake events that
have been already generated by set alarm will have no
effect). If the event is not on time, then one or both alarms
associated with t1(A) have expired and the corresponding
handlers have been executed. Note that the crash handler
is supposed to be executed when there is a high degree
of confidence that the expected event will not take place
anymore. Since handlers could be generic ones, we leave
the developer the possibility to specify some further code,
handlerEventWithDelay(ask(A, key_keeper, key))
in this case, to be executed when the delayed event takes place.

Awake type. An awake event type AW is a couple <awake
type (delay or crash), label of the timeout>.

It is automatically generated when the countdown
associated with a delay or crash alarm reaches 0.

Example:

awake_delay(t1(A)) (resp. awake_crash(t1(A))).

When one event typed with these awake types takes place,
then the delay (resp. crash) handler defined when the timeout
for t1(A) was set will be called in order to cope with the
omission (resp. crash) failure.

Uninteresting events. Events which are not interesting for
the monitoring purposes can be tagged as uninteresting ones
just by exploiting the event type. For example, the following
definition of the has_type predicate states that all the actual
events observed in the system which do not unify either with
truck_at_dock(_, _, _), or with drop_parcel(_, _),
etc, have type uninteresting_event.
has_type(Event, uninteresting_event) :-

/* must list explicitly all the interesting events, as
different (\=) from the current one */

Event \= truck_at_dock(_, _, _),
Event \= drop_parcel(_, _),
Event \= move_to_free_shelf(_, _, _, _),
Event \= collect_parcel(_, _),
Event \= move_to_truck(_, _, _, _).

Any multiagent protocol can be defined as the interesting
part of the protocol, interleaved with the uninteresting one.
Interleaving is modeled by the fork operator “|” (see more
details below) and the branch of the protocol modeling the
uninteresting events can be defined in a standard way as

DISCARD = (uninteresting_event, 0): DISCARD

meaning that a DISCARD constrained global type is defined
as an infinite sequence (sequence operator “:”) of uninteresting
events.

Producers and consumers. In order to model constraints
across different branches of a constrained fork (explained
later in this section), we introduce two different kinds of event
types, called producers and consumers, respectively. Each
occurrence of a producer event type must correspond to the
occurrence of a new event; in contrast, consumer event types
correspond to the same event specified by a certain producer
event type. The purpose of consumer event types is to impose
constraints on event sequences, without introducing new
events. A consumer is an event type η, whereas a producer is
an event type η equipped with a natural superscript n. In the
Prolog concrete syntax that we use, ηn is represented by the
couple (η, n).

Constrained global types. A constrained global type τ
represents a set of possibly infinite sequences of events, and
is defined on top of the following type constructors:

• λ (empty sequence): the singleton set {ε} containing
the empty sequence ε.

• ηn:τ (seq-prod): the set of all sequences whose first
element is an event e matching type η (e ∈ η), and
the remaining part is a sequence in the set represented
by τ . The superscript n specifies the number n of
corresponding consumers that coincide with the same
event type η; hence, n is the required number of times
e ∈ η has to be “consumed” to allow a transition
labeled by e.

• η:τ (seq-cons): a consumer of event e matching type
η (e ∈ η), and followed by any sequence in the set
represented by τ .
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• τ1+ τ2 (choice): the union of the sequences of τ1 and
τ2.

• τ1|τ2 (fork): the set obtained by shuffling the se-
quences in τ1 with those in τ2.

• τ1 · τ2 (concat): the concatenation of the sequences of
τ1 and τ2.

• The “meta-construct” fc (for finite composition) takes
τ , the constructor cn, and the positive natural number
n as inputs and generates the “normal” constrained
global type (τ cn τ cn ... cn τ ) (n times, hence
fc(τ, cn, 1)=τ ).

Constrained global types are regular terms, that is, can be
cyclic (recursive), and hence they can be represented by a
finite set of syntactic equations. To make the treatment simpler,
we limit our investigation to contractive (a.k.a. guarded) and
deterministic constrained global types. A constrained global
type τ is contractive if all infinite paths3 in τ contain an
occurrence of the “:” constructor. Determinism ensures that
dynamic checking can be performed efficiently without back-
tracking. Intuitively, a constrained global type is deterministic
if, in case more transition rules can be applied when event e
takes place, they lead to equivalent constrained global types.
The formal definition is given in the next section.

B. Semantics

The state of a constrained global type τ can be represented
by τ itself. In this section, when talking about constrained
global types we will refer to their current state. Also, we will
use “constrained global type” and “protocol” interchangeably.

The interpretation of a constrained global type is based on
the notion of transition, a total function δ:N × CT × A →
Pfin(CT ×N), where CT and A denote the set of contractive
and constrained global type and of events, respectively. The
next/5 Prolog predicate discussed below implements the δ
transition function that we do not show in this paper for space
constraints. If τ1 represents the current state of the protocol
and the event e takes place, then the protocol can move to τ2
iff δ(0, τ1, e) = (τ2, 0), that we write as τ1

e� τ2.

Moving from the definition of δ to its Prolog implementa-
tion, the following relationship holds:

δ(N,T1, Ev) = (T2,M) iff next(N,T1,Ev,T2,M).

The auxiliary function ε( ), implemented by the empty/1
Prolog predicate, specifies the constrained global types whose
interpretation contains the empty sequence ε. Intuitively, a
constrained global type τ s.t. ε(τ) holds specifies a protocol
that is allowed to successfully terminate.

Let τ0 be a contractive and constrained global type. A run ρ
for τ0 is a sequence τ0

e0� τ1
e1� . . .

en−1� τn
en� τn+1

en+1� . . .
such that (1) either the sequence is infinite, or it has finite
length k ≥ 0 and the last constrained global type τk verifies
ε(τk); and (2) for all τi, ei, and τi+1 in the sequence,
τi

ei� τi+1 holds. We denote by A(ρ) the possibly empty or

3By “path of a constrained global type” we mean “path in the possibly
infinite tree corresponding to the term that represents the constrained global
type”.

infinite sequence of events e0e1 . . . en . . . contained in ρ. The
interpretation Jτ0K of τ0 is the set {A(ρ) | ρ is a run for τ0 }.
A contractive constrained global type τ is deterministic if for
any possible run ρ of τ and any possible τ ′ in ρ, if τ ′ e→ τ ′′,
and τ ′ e→ τ ′′′, then Jτ ′′K = Jτ ′′′K.

The next and empty predicates.

The next predicate implements the δ function defining the
semantics of constrained global types extended with constructs
to deal with exceptions, timeouts and their handlers. Besides
the definition of transition rules for “normal” constrained
global types, in the sequel we describe the additional transition
rules for the new constructs introduced in this paper.

Basic cases for “normal” constrained global types.

If the constrained global type is a sequence (“:” operator)
consisting of a producer event type EvType with associated
number N, followed by the constrained global type T (second
argument), and the actual event perceived in the environment
is Ev (third argument), and Ev has type EvType, then (Ev-
Type,N):T can move to T (fourth argument). If there were no
events of type EvType to be consumed (first argument of next
is zero), now N events of EvType are generated and must be
consumed (fifth argument of next is N, which is the number
associated with EvType in the second argument)

next(0,(EvType,N):T,Ev,T,N) :- has_type(Ev, EvType).

This rule is similar to the previous one, but the event type
EvType is a consumer (in fact, it has no number associated)
and, if the actual event Ev perceived from the environment has
type EvType, then EvType:T1 moves to T1 and the events of
type EvType still to be consumed are decreased by one.

next(M,EvType:T1,Ev,T1,N) :-
EvType \= (_,_), has_type(Ev, EvType),
M > 0, N is M - 1.

If T1 can move to T2, then the choice between T1 and any
other constrained global type, T1+ , can move to T2 (and the
converse for the second rule)
next(M,T1+_,Ev,T2,N) :- next(M,T1,Ev,T2,N).
next(M,_+T1,Ev,T2,N) :- !, next(M,T1,Ev,T2,N).

If T1 can move to T3, then the interleaving between T1
and T2, T1|T2, can move to T3|T2 (and the converse for the
second rule)
next(N,T1|T2,Ev,T3|T2,M) :- next(N,T1,Ev,T3,M).
next(N,T1|T2,Ev,T1|T3,M) :- next(N,T2,Ev,T3,M).

If T1 can move to T3 and T2 can move to T4, and T1
produces event types which can be consumed by T2, then T1
and T2 can synchronize and T1|T2 can move to T3|T4 (and
the converse for the second rule)
next(N,T1|T2,Ev,T3|T4,P) :-

next(N,T1,Ev,T3,M), M > 0, next(M,T2,Ev,T4,P).
next(N,T1|T2,Ev,T4|T3,P) :-

!,next(N,T2,Ev,T3,M), M > 0, next(M,T1,Ev,T4,P).

If T1 can move to T3, then the concatenation T1*T2 can
move to the concatenation T3*T2; if T1 contains ε, that is,
empty(T1) holds (second rule), then T1*T2 can move to T3 if
T2 can move to T3

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

70



next(M,T1*T2,Ev,T3*T2,N) :-
next(M,T1,Ev,T3,N).

next(M,T1*T2,Ev,T3,N) :-
!,empty(T1), next(M,T2,Ev,T3,N).

Rule for finite composition of constrained global types.
fc(T, T1, C, N) :- N>1, copy_term(T1, Fresh1),
N1 is N-1, fc(T2, T1, C, N1), T =.. [C, Fresh1, T2].
fc(Fresh1, T1, _C, 1) :- copy_term(T1, Fresh1).

Additional rule for dealing with exceptions.

If the constrained global type is a sequence consisting of an
event of type EvType, which raises an exception to be handled
with the Handler code, followed by T, and the actual event
perceived in the environment is Ev, and Ev has type EvType,
then the Handler is executed and exception(EvType,Code):T
moves to T.
next(0, exception(EvType,Handler):T, Ev,T,0) :-

has_type(Ev, EvType), call(Handler).

Additional rules for dealing with timeouts.

If the constrained global type is a sequence consisting of a
set timeout event with its parameters, followed by T, and the
perceived event Ev has type EvType, then the alarm is set by
calling the set alarm code. We do not show the rule dealing
with the case where EvType is a consumer event type rather
than a producer.
next(0,set_timeout((EvType,N), List):T, Ev,T,N) :-

has_type(Ev,EvType), set_alarm(List).

If the constrained global type is a sequence consisting
of a check timeout event with its parameters, including the
label of the timeout handler to check and the Code to execute
if the timeout is expired, followed by T, and the perceived
event Ev has type EvType, then the actual time is retrieved
together with the timeout settings associated with label L. If
the timeout is expired, then Handler is executed, otherwise the
two alarms are switched off by setting their handlers to “done”.
The constrained global time moves to T. We do not show the
rule dealing with the case where EvType is a consumer event
type rather than a producer.
next(0,check_timeout((EvType,N), timeout_exc(L, Handler)):T,
Ev,T,N) :-

has_type(Ev, EvType), get_time(CurrentTime),
timeout_setting(L, d(Delay, _HandlDTimeExp), _C),
(CurrentTime > Delay ->
call(Handler);
(retract(timeout_setting(L, d(Delay, _), c(Crash, _))),
assert(timeout_setting(L, d(Delay, done), c(Crash,

done))))
).

If the constrained global type is a sequence consisting of
an awake delay event with a label L as argument, followed
by T, and the perceived event is awake delay(L) which is
automatically generated when a timeout expires, then the code
associated with that awake event is executed and this fact
is recorded by setting the handler to “done” for avoiding
successive re-executions. The constrained global time moves
to T.
next(N,awake_delay(L):T,awake_delay(L),T,N) :-

timeout_setting(L, d(Delay, HandlDTimeExp), C),
HandlDTimeExp \== done,
call(HandlDTimeExp),

retract(timeout_setting(L, d(Delay, HandlDTimeExp), C)),
assert(timeout_setting(L, d(Delay, done), C)), !.

next(N,awake_crash(L):T,awake_crash(L),T,N) :-
timeout_setting(L, D, c(Crash, HandCTimeExp)),
HandCTimeExp \== done,
call(HandCTimeExp),
retract(timeout_setting(L, D, c(Crash, HandCTimeExp))),
assert(timeout_setting(L, D, c(Crash, done))), !.

Code for setting the alarms.

set_alarm([]).

set_alarm(
[timeout_setting(L, d(D, HandlDTimeExp),

c(C, HandCTimeExp))|T]) :-
asserta(timeout_setting(L, d(D, HandlDTimeExp),

c(C, HandCTimeExp))),
get_time(CurrentTime), !,
DT is CurrentTime + D,
CT is CurrentTime + C,
generate_event(DT, awake_delay(L)),
generate_event(CT, awake_crash(L)),
set_alarm(T).

The empty predicate is true on the empty constrained
global type lambda. If T1 or T2 contains ε, then T1 + T2
contains ε. If both T1 and T2 contain ε, then T1|T2 and
T1 ∗ T2 contains ε.
empty(lambda) :- !.
empty(T1+T2) :- (empty(T1),!;empty(T2)).
empty(T1|T2) :- !,empty(T1),empty(T2).
empty(T1*T2) :- !,empty(T1),empty(T2).

IV. EXAMPLES

In all the examples of this paper, event types have the
same syntax of the events they refer to, apart from the
“uninteresting event” type which must be explicitly defined
as all the events which do not unify with an interesting event.
This means that, apart from uninteresting ones, event e has
event type e.

A. Example 1: illegal moves

This protocol states that, in order to enter the treasure room,
an agent first moves to the key room, asks for the key of the
treasure room to the key keeper within 1000 secs, waits for
an acceptance, enters the treasure room and then exits it. If
the key keeper refuses to give the key, the agent must exit the
key room. One exception to this normal flow is that from an
external room (we do not care which one) the agent enters the
treasure room with some trick without asking the permission
to the key keeper and without waiting for the key. In this case,
an exception is raised and the exception handler associated
with this “illegal move” exception must be executed. Among
the actions implemented by the handler, some will be executed
(and consequently monitored too) by the sentinel. In particular,
the sentinel will sanction the agent, which will be transported
out of the treasure room, and in jail. After some time, the agent
will be set free again. Note that here, the sentinel monitors
one of its actions, sanction(sentinel, A), implementing
a form of introspection.

The last line of the protocol models the case when the event
that has been sensed is unknown. If the unknown_event(A)
event type holds on all the events that the sentinel is not able
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to manage, then this exception will be thrown whenever the
sentinel is facing an unexpected exception. The handler can be
some general code trying to ensure the vital functions of the
system even if the normal flow has some fail.
T = ((set_timeout((move(A, _SomeRoom, key_room),0),

[timeout_setting(
t1(A),
d(1000, handlerDTimeoutExpiration(A)),
c(2000, handlerCTimeoutExpiration(A)))]):

((check_timeout((ask(A, key_keeper, key),0),
timeout_exc(
t1(A),
handlerEventWithDelay(ask(A, key_keeper, key)))):
(

((accept(key_keeper, A, key),0):(give(key_keeper, A,
key),0):

(move(A, key_room, treasure_room),0):(move(A,
treasure_room, key_room),0):

(give(A, key_keeper:key),0):lambda)
+

((refuse(key_keeper, A, key),0):
(move(A, key_room, _AnotherRoom),0):lambda)

)*T)
+

((exception(move(A, _SomeRoom, treasure_room),
illegal_move_exc(

entering_treasure_room_without_permission(A)))):
(sanction(sentinel, A),0):(transport(A, treasure_room,

key_room),0):
(transport(A, key_room, jail),0):(transport(A, jail,

_AnyRoom),0):lambda)
)
)

+
((exception(unknown_event(A), unknown_event_exc(A))):lambda

)).

Now we show some events traces compliant with the
protocol, generated using SWI Prolog implementing the next
predicate defined in Section III and the accept predicate that
accepts (or generates, if the free variables can be grounded
when has_type is called) sequences of events with a given
length N, which respect the constrained global type T. By using
the findall builtin predicate on accept, we were able to
generate all the accepted traces of a given length.
accept(N,T,[*]) :- empty(T), N==0,!.
accept(0,_,[]) :- !.
accept(N,T1,[Ev|L]) :-

next(0,T1,Ev,T2,0), M is N-1, accept(M,T2,L).

Correct traces with length 6 include:
move(alice, room1, key_room),
ask(alice, key_keeper, key),
accept(key_keeper, alice, key),
give(key_keeper, alice, key),
move(alice, key_room, treasure_room),
move(alice, treasure_room, key_room)

move(alice, room1, key_room),
ask(alice, key_keeper, key),
refuse(key_keeper, alice, key),
move(alice, key_room, room1),
move(alice, room1, key_room),
ask(alice, key_keeper, key)

move(alice, room1, key_room),
ask(alice, key_keeper, key),
refuse(key_keeper, alice, key),
move(alice, key_room, room2),
move(alice, room2, key_room),
ask(alice, key_keeper, key)

Some traces with length 6 where an exception is found and
the sentinel sanctions alice are:
move(alice, room1, key_room),

move(alice, key_room, treasure_room),
sanction(sentinel, alice),
transport(alice, treasure_room, key_room),
transport(alice, key_room, jail),
transport(alice, jail, room1)

move(alice, room1, treasure_room),
sanction(sentinel, alice),
transport(alice, treasure_room, key_room),
transport(alice, key_room, jail),
transport(alice, jail, room1),
move(alice, room1, key_room)

B. Example 2: dock loading and unloading

This example is a simplified version of the scenario de-
scribed in [35]:

In the loader dock several workers wander around
or carry parcels between incoming trucks and the
shelves. Their job is to unload parcels from a
full truck, or to deliver parcels to an empty one,
whenever trucks arrive at the store. The dock itself
contains shelves where parcels can be placed tem-
porally. The shelves are separated by corridor ways,
which are used by workers to transport the parcels.
... When a worker makes an intention to move
somewhere, it communicates this intention to other
ones for the purpose of coordination. A trajectory of
the movement, described by points and exact time-
values, is sent to each worker, so it can update its
beliefs about future changes in the environment. This
information is stored in a domain time model repre-
senting the beliefs concerning prospective workers’
positions. This information guides the planning pro-
cess of each worker, so none of them intersects a
path of another.

In this example we assume that workers and trucks are
represented as agents, which are free to execute many actions
including those related to the work in the dock loader. The
next code manages a simplification of the described example,
without monitoring for example that agents will not crash
while moving: its aim is to give a flavor of how we can use the
uninteresting events to specify only the subset of the actions
that are relevant for the controller.

The protocol starts when a Truck arrives at the dock
(UNLOAD_TRUCK), carrying NumberOfParcels parcels, which
must be unloaded (so, after this event, the protocol moves on
with UNLOAD_ALL_PARCELS, that is created repeating the trace
UNLOAD_PARCEL for each parcel in a parallel way using the |
constructor). The protocol part identified by UNLOAD_PARCEL
states that the correct sequence is that firstly an agent comes
to the Truck position, then it collects a parcel, moves to a
free shelf and leaves there the parcel.

We model the positions inside the dock as couples of
points, and the time slots as couples of minutes.

To model the fact that we are only interested in monitoring
the events specified in the previous traces, but not the others
(that is, if one event that is not related to this protocol takes
place during the protocol, it is not a violation of it!), we
add in the trace UNLOAD_TRUCK a fork (| operator) with
DISCARD, so that any event of type uninteresting_event,
at any time, is caught by the trace DISCARD (that simply
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skips that event and waits for the next one). The type
uninteresting_event is defined differently from all the
other events: an uninteresting_event is whatever event
that is not move_to_truck, collect_up_parcel, and so
on.
UNLOAD_PARCEL =
(move_to_truck(Agent, _FromPosition, TruckPosition,

_TimeSlot),0):
(collect_parcel(Agent, P),0):
(move_to_free_shelf(Agent, TruckPosition, _FreeShelfPosition

, _SuccTimeSlot),0):
(drop_parcel(Agent, P),0):
lambda,
fc(UNLOAD_ALL_PARCELS, UNLOAD_PARCEL, |, NumberOfParcels),
UNLOAD_TRUCK =
(((truck_at_dock(_TruckId,TruckPosition,NumberOfParcels)

,0):
UNLOAD_ALL_PARCELS)|

DISCARD),
DISCARD = (uninteresting_event, 0): DISCARD.

An example of a trace (including events not interesting
for the protocol) which is recognized as compliant with the
protocol is:
snoring(a1),
truck_at_dock(truck1, (0, 0), NumberOfParcels),
move_to_truck(a1, (6, 21), (0, 0), (10, 15)),
collect_parcel(a1, p1),
move_to_truck(a2, (12, 3), (0, 0), (15, 18)),
snoring(a1),
smiling(a1),
move_to_free_shelf(a1, (0, 0), (54, 3), (15, 22)),
drop_parcel(a1, p1),
move_to_truck(a1, (54, 3), (0, 0), (10, 15)),
collect_parcel(a2, p2),
snoring(a2),
dancing_tiptap(a1),
move_to_free_shelf(a2, (0, 0), (43, 78), (18, 21)),
drop_parcel(a2, p2),
move_to_truck(a1, (4, 9), (0, 0), (30, 35)),
collect_parcel(a1, p3),
move_to_truck(a3, (44, 9), (0, 0), (31, 37)),
collect_parcel(a3, p4),
move_to_free_shelf(a3, (0, 0), (6, 24), (37, 49)),
drop_parcel(a3, p4),
move_to_free_shelf(a1, (0, 0), (1, 24), (35, 43)),
drop_parcel(a1, p3),
snoring(truck),
smiling(truck),
drinking_a_beer(truck)

whereas the following trace is not compliant because parcel
p1, collected up by agent a1 (third event), is dropped by agent
a4 (fourth event) instead of being dropped by a1.
truck_at_dock(truck1, (0, 0), NumberOfParcels),
move_to_truck(a1, (6, 21), (0, 0), (10, 15)),
collect_parcel(a1, p1),
drop_parcel(a4, p1).

C. Example 3: air conditioning

The last example relates to the AmI context, where we
assume to manage a building for social events (concerts,
workshops and so on): in this building there are many rooms,
and we would add some intelligence to the system itself,
specifying some rules that should be respected in the building.
In particular, if there are more then 1000 visitors and the tem-
perature inside the building is >30, then if the air conditioning
is closed, it must be switched on, otherwise, no more visitors
can enter the building.

This situation is (partially) described by the constrained
global type AC:

SAFETY_CHECK =
(
(

((counted_more_than_1000_visitors,0):
lambda)

|
((temperature_higher_than_30_celsius,0):
lambda)

)

*
(

((air_conditioning_off,0):
(switch_air_conditioning_on,0):
lambda

)
+
((air_conditioning_on,0):
(do_not_admit_other_visitors,0):
lambda

)
)

)

*
SAFETY_CHECK,
AC = (SAFETY_CHECK | DISCARD),
DISCARD = (uninteresting_event, 0): DISCARD.

Some examples of traces which are recognized as compliant
with the protocol are:

counted_more_than_1000_visitors,
temperature_higher_than_30_celsius,
air_conditioning_on,
do_not_admit_other_visitors.

counted_more_than_1000_visitors,
temperature_higher_than_30_celsius,
air_conditioning_off,
switch_air_conditioning_on

temperature_higher_than_30_celsius,
concert_begins,
counted_more_than_1000_visitors,
air_conditioning_off,
switch_air_conditioning_on

In this case the constrained global type is used to con-
trol that if a specific situation happens (visitors > 1000
and temperature > 30, with events perceived in any order),
some specific action (do_not_admit_other_visitors or
switch_air_conditioning_on) is taken.

V. CONCLUSIONS

In this paper we described an approach for designing,
formalizing and implementing sentinels that detect errors
in fail-uncontrolled multiagent systems, and controllers that
identify particular situations in AmI systems. Our approach
– like all the approaches aimed at runtime verification of
system properties – requires that a formal representation of
the system property (a MAS protocol in our case) is available.
We used constrained global types extended with constructs for
modeling exceptions, timeouts, and handlers as representation
formalism. We implemented the SWI Prolog interpreter for this
formalism and we run different tests in different application
domains.

Representing a protocol using our formalism may not be
trivial, but the more expressive is the formalism, the more
difficult is using it. When used for runtime verification, our
formalism is more expressive than linear time temporal logic
(LTL [36]) because it can represent a protocol like anbn which
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cannot be expressed using LTL4. For this reason it should not
be surprising that our formalism is more complex than, for
example, LTL.

There are however many benefits in using such a formal-
ism:

• having a protocol formalization can help testing the
MAS itself, since our Prolog translation can be ex-
ploited to generate and test correct, an not correct,
simulations of the system, and constrained global
types have already been proven a powerful language,
able to model complex protocols (as shown in [12]);

• in AmI systems, controllers can be added on top of
the already existing agents, as an independent layer,
improving the modularity of the overall system and
simplifying the design, development and maintenance
phases while, in fail-uncontrolled MASs, sentinels may
help to identify and recover from error situations by
separating the errors management from the normal
protocol flow;

• the basic version of our approach, without the ex-
tensions discussed in this paper, works for JADE
and Jason, two among the most used platforms for
MAS development; the transition rules providing the
semantics of the improved formalism presented in this
paper have been already translated into Prolog, the
language we used for implementing our approach on
top of JADE and Jason, so we claim that extending the
JADE and Jason prototypes with exceptions, timeouts,
and handlers should raise no technical problems;

• the extensions presented in this paper enhance the
“MAS control layer” with the possibility to manage
both MASs where a predefined global protocol does
not exist (AmI systems) and MASs where errors may
arise and must be formalized and managed in a
controlled way.

The formalism that we have discussed in this paper seems
suitable for being integrated into a sensor network in order
to capture what happens in the environment, as we did in
[12]. Thanks to its modularity it could be used to monitor
and supervise environments where physical agents (robots)
can fail leading to exceptional situations and need to be either
reconfigured or replaced at runtime.

The feasibility of the approach is limited to situations
where a formal representation of entities, messages and in
general events, exists: so, when considering dynamic and
open large-scale MASs as those in AmI and wireless sensor
networks, we assume that all the agents that can join the
MAS (maybe developed by third parties), are foreseen in the
formalization. Our work is meant to provide a set of tools and
languages for monitoring distributed systems, without claiming
to be able to solve all the related problems.

For example, although we can automatically project the
protocol onto subsets of agents (it means that the protocol
itself can be split into separated parts) and then allocate to

4The protocol where one agent sends n messages of type a to another
agent (with n that can be any positive number) and the receiver answers with
n messages of type b.

different controllers the supervision of those parts of the MAS,
we have not solved the problem of how to identify the best
protocol distribution, which is not even always possible. In a
similar way, the decision of what to do in case of a failure is
demanded to the protocol formalization or to the actual agent
code, and is out of the scope of our work.

As part of our future work, we are investigating how
expressing more complex behaviors when specifying timeout,
and how managing timeouts related to the same agent. From a
more theoretical point of view, the relationships between our
formalism and timed linear time temporal logic [37] should be
deeply analyzed.
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