
Adaptive Hybrid Agents for Tactical Decisions in
Pedestrian Environments

Luca Crociani, Andrea Piazzoni, Giuseppe Vizzari
CSAI - Complex Systems & Artificial Intelligence Research Center,

University of Milano-Bicocca, Milano, Italy
{luca.crociani,giuseppe.vizzari}@disco.unimib.it

a.piazzoni@campus.unimib.it

Abstract—This paper presents a hybrid agent architecture for
modeling different types of decisions in a pedestrian simulation
system. In particular, the present work focuses on tactical
level decisions that are essentially related to the choice of a
route to follow in an environment comprising several rooms
connected by openings. These decisions are then enacted at the
operational level by mean of a floor-field based model, in a
discrete simulation approach. The described model allows the
agent taking decisions based on a static a-priori knowledge of the
environment and dynamic perceivable information on the current
level of crowdedness of visible path alternatives. The paper
presents the model formally, motivating the adopted choices with
reference to the relevant state of the art. The model is also
experimented in benchmark scenarios showing the adequacy in
providing adaptiveness to the contextual situation.

Index Terms—Pedestrian Simulation, Tactical Level, Hybrid
Agents.

I. INTRODUCTION

The simulation of complex systems is one of the most
successful areas of application of agent-based approaches:
even though models, mechanisms and technologies adopted
by researchers in different disciplines are not necessarily up-
to-date or in line with the most current results in the computer
science and engineering area about agent technologies [1],
the area still presents interesting challenges and potential
developments for agent research.

The simulation of pedestrians and crowds is an example
of already established yet lively research context: both the
automated analysis and the synthesis of pedestrian and crowd
behaviour, as well as attempts to integrate these complemen-
tary and activities [2], present open challenges and potential
developments in a smart environment perspective [3].

Even if we only consider choices and actions related to
walking, modelling human decision making activities and
actions is a complicated issue: different types of decisions are
taken at different levels of abstraction, from path planning
to the regulation of distance from other pedestrians and
obstacles present in the environment. Moreover, the measure of
success and validity of a model is definitely not the optimality
with respect to some cost function, as in robotics, but the
plausibility, the adherence to data that can be acquired by
means of observations or experiments. Putting together tactical
and operational level decisions, often adopting different ap-
proaches (typically behaviour-based for operational decisions,

and at knowledge level for tactical ones) in a comprehensive
framework preserving and extending the validity that, thanks
to recent extensive observations and analyses (see, e.g., [4]),
can be achieved at the operational level represents an urgent
and significant open challenge.

This paper presents a hybrid agent architecture for mod-
eling different types of decisions in a pedestrian simulation
system. In particular, the present work focuses on tactical
level decisions that are essentially related to the choice of a
route to follow in an environment comprising several rooms
connected by openings. These decisions are then enacted at
the operational level by mean of a floor-field based model,
in a discrete simulation approach. The described model that
integrates within an organised and comprehensive framework
different spatial representations, types of knowledge and deci-
sion making mechanisms, allows the agent taking decisions
based on a static a-priori knowledge of the environment
and dynamic perceivable information on the current level of
crowdedness of visible path alternatives.

The paper presents the relevant state of the art in the
following Section. The tactical level part of the model is
formally presented in Section III-B whereas its experimental
application in benchmark scenarios showing the adequacy in
providing adaptiveness to the contextual situation is given in
Section IV.

II. RELATED WORKS

The research on pedestrian dynamics is basically growing
on two lines. On the analysis side, literature is producing
methods for an automatic extraction of pedestrian trajectories
(e.g. [5], [4]), charactertization of pedestrian flows (e.g. [6])
automatic recognition of pedestrian groups [7], recently gain-
ing importance due to differences in trajectories, walking
speeds and space utilization [8]. The synthesis side – where
the contributions of this work are concentrated – has been even
more prolific, starting from preliminary studies and assump-
tions provided by [9] or [10] and leading to quite complex,
yet not usually validated, models exploring components like
panic [11] or other emotional variables. To better understand
the model presented in the next section, the following will
provide a brief description of related works on pedestrian
dynamics modeling and simulation.
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[12]1 provides a well-known scheme to model the pedestrian
dynamics, describing 3 levels of behavior:
• Strategic level: the person formulates his/her abstract

plan and final objective motivating the overall decision to
move (e.g. “I am going to the University today to follow
my courses and meet my friend Paul”);

• Tactical level: the set of activities to complete the plan is
computed and scheduled (e.g. “I am going to take the 8:00
AM train from station XYZ then walk to the Department,
then meet Paul at the cafeteria after courses, then . . . ”);

• Operational level: each activity is physically executed,
i.e., the person perform the movement from his/her
position to the current destination (e.g. precise walking
trajectory and timing, such as a sequence of occupied
cells and related turn in a discrete spatial representation
and simulation).

Most of the literature has been focussed on the reproduction
of the physics of the system, so on the lowest level, where a
significant knowledge on the fundamental diagram achieved
with different set of experiments and in different environment
settings (see, e.g, [14], [15]) allows a robust validation of the
models.

Literature of this level can be classified regarding the scope
of the modeling approach. Macroscopic models describe the
earliest approach to pedestrian modeling, basing on analogies
between behavior of dense crowds and kinetic gas [9] or
fluids [10], but essentially abstracting the concept of individ-
ual. A microscopic approach is instead focused on modeling
the individual behavior, effectively improving the simulations
precision also in low density situations.

The microscopic approach is as well categorized in two
classes describing the representation of space and movement:
continuous models simulate the dynamics by means of a force-
based approach, which finds its basis on the well-known social
force model by [16]. These models design pedestrians as
particles moved by virtual forces, that drive them towards their
destination and let them avoid obstacles or other pedestrians.
Latest models on this class are the centrifugal force model
by [17] and the stride length adaptation model by [18]. Other
examples consider also groups of pedestrians by means of
attractive forces among person inside the group [19].

The usage of a discrete environment is mostly employed by
the cellular automata (CA) based models, and describes a less
precise approach in the reproduction of individuals trajectories
that, on the other side, is significantly more efficient and
still able to reproduce realistic aggregated data. This class
derives from vehicular modeling and some models are direct
adaptations of traffic ones, describing the dynamics with ad
hoc rules (e.g. [20], [21]). Other models employs the well-
know floor field approach from [22], where a static floor
field drives pedestrians towards a destination and a dynamic
floor field is used to generate a lane formation effect in
bi-directional flow. [23] is an extension of the floor field
model, introducing the anticipation floor field used to manage
crossing trajectories and encourage the lane formation. [24]

1A similar classification can be found in vehicular traffic modeling
from [13].

discussed methods to deal with different speeds, in addition
to the usage of a finer grid discretization that decreases the
error in the reproduction of the environment, but significantly
impacts on the efficiency of the model. An alternative approach
to represent different speeds in a discrete space is given
by [25]. [26] is another extension of the floor-field model,
where groups of pedestrians are also considered.

The tactical level has gained interest only recently in the
literature of pedestrian dynamics modeling and simulation,
despite its relevance for the simulation of a realistic behavior
(especially by thinking to evacuation situations). Path planning
algorithms have been widely investigated and proposed in the
field of computer graphics and gaming by means of graph-
based methods (e.g. [27], [28]), but with aims not necessarily
matching the requirements of pedestrian simulation, since the
point is mainly to reach a visual realism.

On the pedestrian dynamics side, a relevant recent work is
the one from [29], mainly dealing with tactical level decisions
during evacuation, providing an approach to find the quickest
path towards the exit, i.e. the way that implies the fewest
time. The approach is tested on the basis of four strategies
for the route choice management, given by the combination
of applying the shortest or quickest path, with a local (i.e.,
to go out from the room) or global (i.e., to reach the desti-
nation) strategy. The global shortest path is calculated with
the well-known Floyd-Warshall algorithm, implying therefore
a computational time that can become an issue by having
a large number of nodes or by considering special features
in the simulated population (i.e. portion of the path where
the cost differs from an agent to another). The work in this
paper will propose an alternative and efficient approach to
find a global path, where each agent will be able to consider
additional costs in sub-paths without adding particular costs
to the computation.

III. A MODEL FOR TACTICAL LEVEL OF PEDESTRIANS

The model described in this work provides a methodology
to deal with tactical choices of agents in pedestrian simulation
systems. Due to constraints on the length of the paper, the de-
scription of the part of the model dedicated to the operational
level, thoroughly described in [30], will not be provided.

A. A Cognitive Representation of the Environment for Static
Tactical Choices

The framework that enables agents to perform choices on
their plan implies a graph-like, topological, representation of
the walkable space, whose calculation is defined in [31] and
briefly reported in this section. This model allows agents to
perform a static path planning, since dynamical information
such as congestion is not considered in the graph. These
additional elements will be considered in the extension that
is presented in the next section and represent the innovative
part of this paper.

The environment abstraction identifies regions (e.g. a room)
as node of the labeled graph and openings (e.g. a door) as
edges. This so-called cognitive map is computed starting from
the information of the simulation scenario, provided by the
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(b)

Fig. 1. An example environment (a) with the resulting cognitive map (b), by
applying the procedure from [31].

user and necessarily containing: (i) the description of the walk-
able space, that is, the size of the simulated environment and
the positions of obstacles and walls; (ii) the position of final
destinations (i.e. exits) and intermediate targets (e.g. a ticket
machine); borders of the logical regions of the environment
that, together with the obstacles, will define them. Approaches
to automatically configure a graph representation of the space,
without any additional information by the user, have been
already proposed in the literature (e.g. [32]), but they are not
leading to a cognitively logical description, i.e., a topological
map. A cognitive definition of the space allows, in fact, a
proper definition of portions of the environment where, for
example, the behavior of a person is systematically different
(e.g. the change of speed profile in stairs or ramps), or that
contain relevant intermediate targets for the agent plan (e.g. a
ticket machine).

The cognitive map is defined as a graph CM = (V, E)
generated with a procedure included to the floor field diffusion,
starting from the statements that each user-defined opening
generates a floor field from its cells and spread only in the
regions that it connects, and that each region has a flag
indicating its properties among its cells. The floor fields
diffusion procedure iteratively adds to CM the couple of nodes
found in the diffusion (duplicates are avoided) and labeled with
the region id and the edge labeled with the id of the opening.
Each final destination, different from the normal openings
since it resides in only one region, will compose an edge
linking the region to a special node describing the external
universe. Intermediate targets will be mapped as attributes of
its region node. An example of environment together with the
resulting cognitive map is presented in Fig. 1.

To allow the calculation of the paths tree, that will be
described in the following section, functions Op(ρ) and

Dist(ω1, ω2) are introduced describing respectively: the set
of openings accessible from the region ρ2 and the distance
between two openings linking the same arbitrary region. While
the first one is trivial and outputs the edges linking ρ, the
function Dist(ω1, ω2) describes the distance that will be
perceived by agents for their path planning calculation. To
obtain a scalar from the sets of cells associated to ω1 and ω2,
the value of the floor field in their center cell is used, defined
as:

Center(ω) =

(⌊∑
xi
|ω|

⌋
,

⌊∑
yi
|ω|

⌋)
, (xi, yi) ∈ ω.

The distance between ω1 and ω2 is then calculated as the
average between the floor field values in the two center cells,
i.e., the value of the floor field of ω1 in Center(ω2) and vice-
versa.

B. Modeling Adaptive Tactical Decisions with A Paths Tree

To enhance the route choice and enable dynamical, adaptive,
decisions of the agents in a efficient way, a new data structure
has been introduced, containing information about the cost
of plausible paths towards the exit from each region of the
scenario.

Using the well-known Floyd-Warshall algorithm, in fact,
can solve the problem but introduces issues in computational
time: the introduction of dynamical elements in the paths cost
computation (i.e. congested paths) implies a re-computation of
the cost matrix underlying the algorithm every step. More in
details, the penalty of a congested path is a subjective element
for the agents, since they are walking with different desired
velocities, thus the calculation cost increases also with the
number of agents.

The approach here proposed implies an off-line calculation
of the data-structure that we called paths tree, but is com-
putationally efficient during the simulation and provides to
the agents direct information about the travel times describing
each path. The method is described in the following para-
graphs.

1) The Paths Tree: We define the Paths Tree as a tree
data-structure containing the set of “rational” paths towards
a destination, that will be its root. Before describing what we
mean with the attribute rational, that can be seen as a fuzzy
concept, a general definition of path must be provided.

A path is defined as a finite sequence of openings X →
Y → . . . → Z where the last element represents the final
destination. It is easy to understand that not every sequence
of openings represents a path that is walkable by an agent.
Firstly, a path must be a sequence of consecutive oriented
openings regarding the physical space.

Definition III.1 (Oriented opening). Let E = R1, R2 be
a opening linking the regions R1 and R2, (R1, E,R2) and
(R2, E,R1) define the oriented representations of E.

An oriented opening will therefore describe a path from an
arbitrary position of the first region towards the second one.

2Its Id, described in the label of the edge mapped to it.
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Definition III.2 (Valid path). let C a sequence of oriented
openings X → . . .→ Z. C is a valid path if and only if:
• |C| = 1
• |C| = 2 : by assuming C = X− > Y , the third element

of the triple X must be equal to the first element of Y
• |C| > 2: each sub-sequence S of consecutive openings

in C where |S| = 2 must be a valid path.
The last oriented opening in the path leads to the universe
region.

Given a set of paths, the agent will consider only complete
paths towards its goal, starting from the region where the agent
is located.

Definition III.3 (Start and Destination of a path). Given p
a path (R1, E,Rx) → ... → (Ry, O, universe), the function
RS(p) = R1 will return the region R1 where an agent can
start the path p. S(p) = E and D(p) = p will respectively
return the first opening (E) and the destination (O) of the path.

Definition III.4. Let p a path, T(p) is the function which
return the expected travel time from the first opening to the
destination.

T (p) =
∑

i∈[1,|p|−1]

Dist(openingi, openingi+1)

speed
(1)

Another basic rule is that a path must be loop-free: by
assuming the aim to minimize the time to reach the destination,
a plan passing through a certain opening more than once would
be not rational.

Definition III.5 (opening loop constraint). A path X → . . .→
Z must not contain duplicated openings.

This will not imply that an agent cannot go through a certain
opening more than once during the simulation, but this will
happen only with a change of the agent plan.

By assuming to have only convex regions in the simulated
space, we could easily achieve the set of rational paths by
extending III.5 as to let a path not containing duplicated
regions. However, since the definition of region describes also
rooms, concave regions must be considered. Some paths may,
thus, imply to pass through another region and then return to
the first one to reduce the length of the path.

As we can see by the Figure 2 both paths starts from
r1, go through r2, and then return to r1. However, only the
path represented by the continuous line is rational, even if
the constraint III.5 is respected by both of them. Before the
definition of the constraint that identifies the correct paths, the
concept of sub-path has to be defined.

Definition III.6 (Sub-path). Let p a path, a sub-path p′ of p is
a sub-sequence of oriented openings denoted as p′ ⊂ P which
respects the order of appearance for the openings in p, but the
orientation of openings in p′ can differ from the orientation in
p. p′ must be a valid path.

The reason of the orientation change can be explained with
the example in Fig. 3: given the path p = (r1, o2, r2) →
(r2, o1, r1) → end, the path p′ = (r2, o2, r1) → end
is a valid path and is considered as a sub-path of p, with

Fig. 2. A concave region can imply the plausibility of a path crossing it
twice, but its identification is not elementary.

Fig. 3. The correct paths for this environment. Inside r2 the choice between
the two openings is also determined by the congestion.

a different orientation of o2. In addition, given the path
p1 = (r2, o2, r1) → end, the path p2 = (r1, o2, r2) →
(r2, o1, r1)→ end is as well a minimal path if and only if the
travel time of p2 is less than p1. It is easy to understand that
this situation can emerge only if r1 is concave. As we can see,
the starting region of the two paths is different, but the key
element of the rule is the position of the opening o2. If this
rule is verified in the center position of the opening o2, this
path will be a considerable path by the agents surrounding o2
in r1.

In Figure 3 the correct paths for this example environment
are shown. An agent located in r2 can reach r1 and then
the destination D using both of the opening considering the
congestions. An agent located in r1 can go directly to the exit
or chose the path o2→ o1→ D.

Definition III.7 (Minimal path). p is a minimal path if and
only if it is a valid path and ∀p′ ⊂ p : S(p′) = S(p)∧D(p′) =
D(p) =⇒ T (p′) > T (p)

The verification of this rule is a sufficient condition for the
opening loop constraint III.5 and solve the problem on the
region loop constraint independently from the configuration
of the environment (i.e. convex or concave regions).

At this point the constraint that defines a minimal path has
been provided. This can be used to build the complete set
of minimal paths towards a destination before running the
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simulation. It must be noted that an arbitrary path represents
a set of paths itself, since it can be undertaken at any region it
crosses. Indeed every path p provides also information about
the sub-paths achieved by cutting the head of p with an
arbitrary number of elements. So a minimal representation of
the set is a tree-like structure defined as:

Definition III.8 (Paths tree). Given a set of minimal paths
towards a destination, the Paths-Tree is a tree where the root
represents the final destination and a branch from every node
to the root describes a minimal path, crossing a set of openings
(other nodes) and region (edges). Each node has an attribute
describing the expected travel time to the destination.

2) An Algorithm to Compute the Paths Tree: The algorithm
we are proposing build the the Paths Tree in a recursive way,
starting from a path containing only the destination and adding
nodes if and only if the generated path respects the definition
of minimality.

Formally the Paths Tree is defined as PT = (N,E) where
N is the set of nodes and E the set of edges. Each node n is
defined as a triple (id, o, τ) where:
• id ∈ N is the id of the node
• o ∈ O is the name of the opening
• τ ∈ R+ is the expected travel time for the path described

by the branch.
Each edge e is defined as a triple (p, c, r) where:
• p ∈ O is the id of the parent
• c ∈ O is the id of the child
• r ∈ R is the region connecting the child node to its

parent.
To allow a fast access to the nodes describing a path that

can be undertaken from a certain region, we added a structure
called M that maps each r in the list of p : (p, c, r) ∈ E (for
every c).

Given a destination D = (rx, universe), the paths tree
computation is defined with the following procedures.

Algorithm 1 Paths tree computation
1: add (0, D, 0) to N
2: add 0 to M [rx]
3: ∀s ∈ O ShortestPath[s] ←∞
4: expand region(0, D, 0, Rx, ShortestPath)

With the first line, the set N of nodes is initialized with
the destination of all paths in the tree, marking it with the
id 0 and expected travel time 0. In the third row the set of
ShortestPath is initialized. This will be used to track, for
each branch, the expected travel time for the shortest sub-
path, given a start opening s. ExpandRegion is the core
element of the algorithm, describing the recursive function
which adds new nodes and verifies the condition of minimality.
The procedure is described by Alg. 2.

In line 2 a list of openings candidates is computed, contain-
ing possible extensions of the path represented by parentId.
Selecting all the openings present in this region (except for
the one labeled as parentName) will ensure that all paths
eventually created respect the validity constraint III.2.

Algorithm 2 ExpandRegion
Require: input parameters (parentId, parentName,

parentT ime,RegionToExpand, ShortestPath)
1: expandList← ∅
2: opList = Op(RegionToExpand) \ parentName
3: for o ∈ opList do
4: τ = parentT ime+ D(o,parentName)

speed

5: if CheckMinimality(ShortestPath, o, τ) == True
then

6: add (id, o, τ) to N
7: add (parentId, id, r) to E
8: ShortestPath[o]← τ
9: nextRegion = o \ r

10: add id to M [nextRegion]
11: add (id, o, τ, nextRegion) to expandList
12: end if
13: end for
14: for el ∈ expandList do
15: ExpandRegion(el, ShortestPath)
16: end for

At this point, the minimality constraint III.7 has to
be verified for each candidate, by means of the function
CheckMinimality explained by Alg. 3. Since this test re-
quires the expected travel time of the new path, this has to be
computed before. A failure in this test means that the examined
path – created by adding a child to the node parentId – will
not be minimal. Otherwise, the opening can be added and the
extension procedure can recursively continue.

In line 6, id is a new and unique value to identify the
node, which represents a path starting from the opening o and
with expected travel time τ ; line 7 is the creation of the edge
from the parent to the new node. In line 8, ShortestPath[o]
is updated with the new discovered value τ . in line 9 the
opening is examined as a couple of region, selecting the
one not considered now. In fact, the element nextRegion
represents the region where is possible to undertake the new
path. In line 10 the id of the starting opening is added to
M [nextRegion], i.e., the list of the paths which can be
undertaken from nextRegion. In line 11 the node with his
parameter is added to the list of the next expansions, which
take place in line 13-14. This passage has to be done to ensure
the correct update of ShortestPath.

Algorithm 3 CheckMinimality
Require: input parameter (ShortestPath, o, τ )

1: if ShortestPath[o] > τ then
2: return True
3: else
4: return False
5: end if

To understand how the constraint of minimality is verified,
two basical concepts of the procedure need to be clarified.
Firstly, the tree describes a set of paths towards a unique
destination, therefore given an arbitrary node n, the path
described by the parent of n is a subpath with a different
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Fig. 4. Examples of surroundings of different sizes, for two configurations
of the environment.

starting node and leading to the same destination. Furthermore,
the expansion procedure implies that once reached a node of
depth l, all the nodes of its path having depth l − k, k > 0
have been already expanded with all child nodes generating
other minimal paths.

Note that the variable ShortestPath is particularly impor-
tant since, given p the current path in evaluation, it describes
the minimum expected travel time to reach the destination
(i.e. the root of the tree) from each opening already evaluated
in previous expansions of the branch. Thus, if τ is less than
ShortestPath[o], the minimality constraint III.7 is respected.

3) Congestion Evaluation: The explained approach of the
paths tree provides information on travel times implied by each
path towards a destination. By only using this information, the
choice of the agents will be still static, essentially describing
the shortest path. This may also lead to an increase of the
experienced travel times, since congestion may emerge without
being considered.

For the evaluation of congestion, we provide an approach
that estimates, for each agent, the additional time deriving by
passing through a jam. The calculation considers two main
aspects: the size of the eventually arisen congestion around an
opening; the average speed of the agents inside the congested
area. Since the measurement of the average speed depends on
the underlying model that describes the physical space and
movement of the agents, we avoid to explain this component
with full details, by only saying that the speed is estimated
with an additional grid counting the blocks (i.e. when agents
maintain positions at the end of the step) in the surrounding
area of each opening. The average number of blocks defines
the probability to move into the area per step, thus the speed
of the agents inside. For the size of the area, our approach is to
define a minimum radius of the area and (i) increase it when
the average speed becomes too low or (ii) reduce it when it
returns normal.

As we can see in Figure 4, the presence of an obstacle in
the room is well managed by using floor field while defining
the area for a given radius. If a lot of agents try to go through
the same opening at the same time, a congestion will arise,
reducing the average speed and letting the area to increase its
size. When this one becomes too big and the farthest agents
inside are not slowed by the congestion, the average speed
will start increasing until the area re-sizing will stop.

During this measurement the average speed value for each
radius is stored. Values for sizes smaller than the size of
the area will be used by the agents inside it, as will be

explained in the next section. Two function are introduced
for the calculation:
• size(o): return the size of the congestion around the

opening
• averageSpeed(o, s) : return the average speed estimated

in the area of size s around the opening o.
4) Agents Dynamical Path Choice: At this point we have

defined which information an agent will use to make its
decision:
• the Paths Tree, computed before the simulation, will be

used as a list of possible path choice;
• the position of the agent, will be used to adjust the

expected travel time considering the distance between the
agent and the first opening of a path (d(a, o));

• the information about congestion around each opening,
computed during the simulation, will be used to estimate
the delay introduced by each opening in the path.

The agent, who knows in which region Rx he is located,
can access the Paths Tree using the structure M [Rx]. The
structure returns a list of nodes, each representing the starting
opening for each path. At this point the agent can compute the
expected travel time to reach each starting opening and add it
to the travel time τ of the path.

To consider congestion, the agent has to estimate the delay
introduced by each opening in a path, by firstly obtaining the
size of the jammed area.

sizea(o) =

{
size(o) if d(a, o) ≥ i(x)
d(a, o) otherwise

(2)

At this point, the agent can suppose that for the length of the
area it will travel at the average speed around the opening.

delay(o) =
sizea(o)

averageSpeed(o)
− sizea(o)

speeda
(3)

If the agent is slower than the average speed around an
opening, the delay will be lower than 0. In this case it is
assumed that the delay is 0, implying that the congestion will
not increase his speed.

At this point the agent can estimate the delay introduced by
all openings.

pathDelay(p) =
∑

o∈p
delay(o) (4)

This is an example of omniscient agents, since they can
always know the status of each opening. Another option is to
suppose that the agent can only see the state of the opening
located in the same region of the agent. In this situation the
agent must be able to remember the state of the opening when
it left a region, otherwise the information used to estimate
the travel time at each time will not be consistent during the
execution of the plan.

Time(p) = τp +
d(a, S(p))

speeda
+ pathDelaya(p) (5)

Where:
• τp : the expected travel time of the path p
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Fig. 5. Example scenario with the respective paths tree.

• d(a,S(p)
speeda

: the expected time to reach S(p) from the
position of the agent

• pathDelaya(p) : the estimation of the delay introduced
by each opening in the path, based on the memory of
the agent (which may or may not be updated for each
opening).

IV. APPLICATIONS IN EXAMPLE SCENARIOS

In order to show the reliability and potentials of the pro-
posed approach, results of two example scenarios will be
presented in this section.

The aim of the first experimental scenario is to show the
output of the paths tree generation algorithm. Figure 5 shows
the environment and the associated data structure. The tree
contains two information on each node, describing the Id of
the mapped opening and the estimated time associated to its
path. In addition, each edge is labeled with the Id of the region
crossed by the path. The result shows that the possible minimal
paths have been represented in the tree. In particular, child
nodes of o1 and o2, passing inside r2, have not been added
since that would imply a path passing from o3 or o4 and
describing a not rational way through r2 and the corridor at
the bottom of r1. Paths like p = o2 → o4 → end or p =
o2 → o4 → end have been considered instead, since they
could be plausible for pedestrians being in the top left corner
of the scenario.

Results of the second experiment are shown in Figure 6:
the illustrated environment have been populated with 200
agents, generated in the Start object with an arrival frequency
of around 7 pers/sec. The heat maps contain the cumulative
mean densities of pedestrians, describing a cumulative value
of density in each cell for a fixed time window (in this case the
duration is 50 steps, equal to 12.5 seconds). It must be noted
that at each step the values are accumulated only in pedestrians

(a) scenario (b) step 0 – 50

(c) step 50 – 100 (d) step 100 – 150

(e) step 150 – 200 (f) step 200 – 250

Fig. 6. The test scenario (a) with cumulative mean density maps of the
simulation for various time windows (b – f).

positions, in order to give an idea of what pedestrians have
perceived during the simulation. The stream of pictures shows
that the arrival rate cannot be sustained from the opening at
the top left of the environment, describing the shortest path
towards the exit, thus a growing congestion arises in front of it.
This increases the time perceived by the agents to employ the
shortest path, leading a significant part of them to change their
route preferring the other opening, that will get also congested
in the third time window. The arrival rate stops at about step
150 and from this moment the environment starts to get empty.

V. CONCLUSIONS

The paper has presented a hybrid agent architecture for
modeling tactical level decisions, related to the choice of a
route to follow in an environment comprising several rooms
connected by openings, integrated with a validated operational
level model, employing a floor-field based approach. The
described model allows the agent taking decisions based on
a static a-priori knowledge of the environment and dynamic
perceivable information on the current level of crowdedness
of visible path alternatives. The model was experimented
in benchmark scenarios showing the adequacy in providing
adaptiveness to the contextual situation. The future works, on
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one hand, are mainly aimed at defining requirements and an
approach for the validation of the results achieved through the
model: this represents an open challenge, since there are no
comprehensive data sets on human tactical level decisions and
automatic acquisition of this kind of data from video cameras
is still a challenging task [33]. Even the mentioned [29], like
most works on this topic, just explores the different alternatives
that can be generated with distinct modeling choices, whereas
a constrained form of validation was described in [34], al-
though reported data are not sufficient for a quantitative cross
validation of our approach. On the other hand, the addition of
specific area actions (e.g. wait after reaching a certain point of
interest indicated by a marker) and events (e.g. the arrival of a
train) triggering agents’ actions and, more generally, allowing
the elaboration of more complicated agents’ plans is also a
planned extension on the side of model expressiveness.
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