
An application of learning agents to smart energy
domains

Alba Amato, Marco Scialdone, Salvatore Venticinque
Department of Industrial and Information Engineering

Second University of Naples - Aversa, Italy
Email: {alba.amato,marco.scialdone,salvatore.venticinque}@unina2.it

Abstract—The main requirement for building an Internet of
Things is the definition of smart objects in which it needs
to put intelligence. The pervasive deployment of smart objects
will add value to applications by capabilities of communication,
negotiation, learning and distributed reasoning. In this paper
we investigate how the paradigm shift from objects to agents
is the driver for developing these capabilities by a case study
in the context of Smart Energy application domain. In fact the
paradigm shift we are seeing in these years is to consider the
electricity network like an Internet of Energy, where each and
every electrical device and generator will be connected in a
network and able to communicate data and receive and react in
real time to events and stimuli that arrive from other devices
or from the grid: a scattered network of sensors, actuators,
communication nodes, systems control and monitoring. Here we
present the learning-based approach for power management in
smart grids providing an agent-oriented modeling of the energy
market. The main issue we focus on is a reasonable compromise
between the resolution of the consuming profile representation
and the performance and real time requirements of the system.

Index Terms—Intelligent Agents; Smart Grid; Learning

I. INTRODUCTION

The Internet of Things (IoT) aims at controlling the phys-
ical world from a distance but it requires integration and
collaboration of different technologies in wireless and wired
networks, heterogeneous device platforms and application-
specific software. The IoT refers to a globally connected,
highly dynamic and interactive network of physical and virtual
devices [1].

Similarly Object-oriented programming (OOP), is a pro-
gramming paradigm based on the concept of objects, which
abstracts entities in terms of status and provided services by
attributes and methods. By a bottom up approach abstract
entities (objects) are identified as parts of the system. Their
properties and the interrelationships between computer pro-
grams are designed by making them out of objects that interact
with one another.

Despite of these similarities OOP just breaks software and
information into functional units. This programming paradigm
does not deal with providing smartness to objects for enabling
intelligent interaction models [2]. The building block of the
IoT is the smart object and the novelty is the pervasive
deployment of such embedded systems connected to the
Internet, interacting with one another. In fact smart objects
are mostly fully functional on their own, but value is added

Fig. 1. Internet of Energy Overview

by capabilities of communication, negotiation, learning and
distributed reasoning.

The rapidly growing trend of introducing computing capa-
bilities into everyday objects and places allow us to investigate
how the paradigm shifts from objects to agents is the driver
for exploiting these capabilities by a case study in the context
of Smart Energy application domain.

We are seeing in these years a new generation of electricity
network, which behaves like an Internet of Energy, where each
and every electrical device and generator will be connected in
a network and able to communicate data and receive and react
in real time to events and stimuli that arrive from other devices
or from the grid: a scattered network of sensors, actuators,
communication nodes, systems control and monitoring. In fact
the power grid today is no longer designed as a simple network
that delivers energy according to one direction: from few large
power generation to many small consumption points at the end
users.

In particular we address the problem of exploiting the
increasing availability of distributed renewable energy sources
such as photo-voltaic (PV) panels to improve the energy
efficiency in a neighborhood.

In fact, the increasing decentralized production of green
energy by photo-voltaic panels has changed the classical
model of power supply from the grid to the households.

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

11

Nowadays each house becomes a micro-grid connected to
the network where energy producers and consumer exchange
energy between themselves and with the grid as shown in
Figure 1.

As we all know, the electricity demand varies during the
day and over the seasons. The electrical current is designed
to withstand the maximum level of demand, and then in the
absence of constant peaks turns out to be over-sized and
underutilized.

The main challenge here is to provide intelligence to
consuming and producing devices like photo-voltaic panels,
energy storages, appliances, sensors and actuators to let them
collaborate in order to agree on the best schedule of energy
consumptions according to monitoring information and pre-
dictions.

The object oriented paradigm appears to be very useful to
represent and manage this type of problem but it is not enough
because we need to provide the devices with all advanced
capabilities to collaborate as intelligent actors of the IoT.

Intelligent agents will act on behalf of devices learning
energy requirements and predicting energy availability. The
energy profiles will be then used to negotiate energy exchanges
according to which the best global schedule, within a neigh-
borhood, will be built.

In this paper we present the learning-based approach for the
distributed energy market. The main issue we focus on is a
reasonable compromise between the resolution of the profile
representation and the performance and real time requirements
of the system. We discuss some experimental results obtained
running a prototype implementation.

II. RELATED WORK

Several studies have been conducted regarding the ap-
plication of multi-agent system in the energy management
and negotiation. Paper [3] describes an application of MAS
for management of distributed energy resources. Through
a software simulation authors demonstrate that is possible
to apply a distributed coordination approach to coordinate
distributed energy systems. In [4] and [5] a MAS, developed
in JADE, is presented for generation scheduling of a micro-
grid. The architecture provides several types of agents. For
example there is the controller agent that is associated to each
device that produces energy such as photo-voltaic panel or
wind turbine; load controller agent represents corresponding
controllable load in the system. Other several studies have been
conducted regarding modeling of the loads. Paper [6] presents
a new methodology for modeling common electrical loads.
Authors derive their methodology empirically by collecting
data from a large variety of loads and showing the significant
commonalities between them. A large variety of statistical and
artificial intelligence techniques have been developed for short-
term load forecasting [7]. Some typical approaches are:

• Similar-load approach. This approach is based on search-
ing historical data about loads to identify similar char-
acteristics to predict the next load. The forecast can be

a linear combination or regression procedure that can
include several similar loads.

• Regression methods. Regression is the one of most widely
used statistical techniques. For electric load forecasting
regression methods are usually used to model the rela-
tionship of load consumption and other factors such as
weather, day type, and customer class.

• Time series. Time series methods are based on the as-
sumption that the data have an internal structure, such as
autocorrelation, trend, or seasonal variation. Time series
forecasting methods detect and explore such a structure.

In this paper we use a similar-load approach for short-term
learning.

Our contribution, and in particular the CoSSMic project
[8], is going beyond the state of art by using a distributed
negotiation among users’ devices on real power grids, that to
the authors’ knowledge has not been implemented before. The
framework will be validated on real infrastructures by trials
that involve inhabitants of two different European countries
(Germany and Italy). Both software and hardware will be
integrated and customized ad hoc to be compliant with existing
installations. In [9] we presented a Multi Agent System (MAS)
for the deployment of producer and consumer agents that will
participate in the energy distribution. We defined a virtual
Market that supports the energy negotiation based on XMPP1

protocol. Agents can make calls for proposals, accept offers
and negotiate with other agents. Additional details about how
network of agents have been exploited in other applications
domains are described in [10].

Load forecasting has always been important for planning
and operational decision conducted by utility companies[7],
with the deregulation of the energy industries, it will be even
more important. However it is critical to predict the evolution
of the load demand because it depends on human activity and
changes over time with cycles that are daily, weekly, seasonal.

We focus here on a learning approach for short-term load
forecasting to estimate load flows and to make decisions about
task scheduling. The learning approach means each consuming
device behave like an adaptive, intelligent agent, gradually
adapting to its environment, and gaining more confidence in its
predictions. This has the advantage that great part of the smart-
grid configuration is leveraged by agents. The big disadvantage
is that the agent has to learn from scratch, which means it
might take a some time before the agent can make accurate
decisions.

III. THE COSSMIC PROJECT

CoSSMic (Collaborating Smart Solar-powered Micro-grids.
FP7-SMART CITIES, 2013) is an ICT European project
that aims at fostering a higher rate of self-consumption of
decentralised renewable energy production by innovative au-
tonomic systems for the management and control of power
micro-grids on users’ behalf. This will allow households to
optimise consumption and power sales to the network by

1Extensible Messaging and Presence Protocol

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

12

a collaborative strategy within a neighborhood. In fact the
increasing of the decentralized production of green energy is
affecting the current energy management scheme both at the
grid and at the user level. The amount of electricity used and
the energy produced by photovoltaic systems varies over the
course of the day, from season to season and depending on
the weather conditions. On the other hand the users may not
have the opportunity to turn on their appliances when the PV is
producing because they do not know when or because they are
outside or simply because they do not need those appliances
at that time. For this reason there is not an alignment during
the time between production and consumption. At the user
level this limits both the optimal utilization of green energy
and affects the budget spent.

The CoSSMic project proposes an intelligent scheduling
of user’s consumptions within a micro-grid. A micro-grid is
typically confined to a smart home or an office building, and
embeds local generation and storage of solar power, and a
number of power consuming devices. The main goal is to
enable the collaboration among households so that the energy
produced by the PVs is consumed by any available consumer
in the neighborhood. An autonomic system will able to shift
the loads in each neighborhood, according to users’ constraints
and preferences, in order to find an optimal match between
consumption and production during the day, so that the use
of renewable energy is maximized. Appliances (refrigerators,
washing machine, drier and dishwasher, water heaters, air con-
ditioners) equipped with intelligent controllers are represented
by software agents negotiating energy exchanges according
to availability, demand, user’s preferences and constraints.
The energy negotiation between agents will be based on
rewards for local producers. To obtain the maximization of
self consumption, a predictive approach can be considered,
but we need to predict PV production based on the weather
forecast and the parameters of the plant. Moreover the power
consumed by each device must be known in advance or
learned from monitoring information. Also the behaviour of
consuming devices can change each day according to a number
of parameters (e.g. the external temperature for the refrigerator
or the air conditioner, the user’s needs for the electric cars or
for the oven), which are often unpredictable.

IV. OVERVIEW OF THE COSSMIC SOLUTION

Figure 2 shows the main components of our architecture
playing the CoSSMic scenario. A detailed description is pro-
vided in [9].

The Graphical User Interface (GUI) supports interactive
control and configuration of the system. It allows to plan the
usage of appliances defining constraints and preferences. It
also provides to the user real time monitoring information,
statistics on historical data and predictions.

Mediator Services are used for storing and management
of smart grid information. Mediator services are accessed by
device drivers to store measures and by agents to collect
information about energy production and consumption of the
household. The same services are used to save data about the

Fig. 2. CoSSMic Platform - Components View

schedule of local devices. In fact the allocation of energy to
devices is modeled as task schedule with energy and time
constraints.

The algorithm to find the best scheduling of the consum-
ing appliances is designed and implemented as a distributed
negotiation among software agents.

Agents are classified according to two categories:
• Consumers: they buy energy for consuming devices. E.g.

they will run in houses to manage objects that absorb
energy: electric car, computers, ovens, washing machines,
etc.

• Producers: they can sell energy. In this category there
are, for example, power generators, solar panels, wind
turbines.

Those devices, which are able both to produce and consume
energy such as energy storages or electric cars, will be rep-
resented by a couple of agents belonging to the two different
classes defined above.

For the energy negotiation there is not a concrete market-
place, but a virtual market is implemented by a negotiation
protocol that uses P2P overlay of agents.

The user will define preferences and constraints about the
utilization of his appliances. This policy will be used by
the smart devices to find the best plan that maximize the
energy self-consumption of the neighborhood. Besides the
user’s constraint and preferences each agent should know the
energy/power profile of its device.

A requirement for producer agents is the knowledge of the
energy availability in the future. The prediction about how
much energy will be produced by PV panels is computed using
weather forecast, properties of the PV plants and historical
series.

A requirement for the consumer agents is the knowledge
of the consuming profile of the managed device. Of course
such a profile will depend on different parameters. In the case
of a washing machine the energy consumed could depend
on the operation mode, on the amount of clothes, but in the
case of an air conditioner or of a freezer the temperature is a
relevant feature to take into account. In this case monitoring

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

13

information will be used to learn the energy profile while the
CoSSMic platform is running.

Devices in the home can send information about electricity
consumption through wireless interfaces (for example UHF
or Zigbee). Mobile devices (e.g. electric cars), instead, send
information through the CoSSMic Cloud. In both cases the
information, through the Mediator, reach the agent platform.
The mediator integrates also a number of device drivers, which
allow to send real time commands to electric devices in the
smart house. For example, through device drivers the mediator
APIs allow to switch on or switch off devices, when it does
not violates any constraints, in order to save energy.

V. PROFILE LEARNING

In the following subsection we focus on consuming devices.
The prediction of energy production from PV panels will use
a different approach and is out of the scope.

A. Energy profiles

In CoSSMic optimization of task scheduling use device
profiles. Profiles include some meta-data and time series, i.e.
series of time value pairs, which describe the cumulative
energy consumed or produced when the device is running.
Each device may have more profiles. In fact, as we said before
dishwashers and washing machines typically have different
operation modes, and in that case there will need one device
profile for each mode.

Static or synthetic profile can be used just for the first run.
However profiles may change run by run, therefore dynamic
profiling is needed. In CoSSMic a learning approach is used
to improve dynamically the device profile in real time. For
instance, the consumption profile of a heater depends on
the ambient temperature. Initial measurements for a certain
ambient temperature can be used for the first run. However
using monitoring information within the current environment
and for the current operation mode will be exploited to update
the profile dynamically and to improve the prediction for the
next schedule.

B. Learning model

Before the start of the trials and until the software is not
available, we used monitoring information to test learning
algorithm and to evaluate the proposed approach.

In particular during the trial the user will program the device
by the CoSSMic interface and making the system aware about
the starting time and the operation mode on the next run. In
the following example we used raw energy time-series, which
have been collected using a PG&E Landys+Gyr smart meter.

The problem here is that time-series include different work-
ing modes which are different for profile and duration and it
is necessary to identify the different runs. Another problem
is that the samples come at a different rate, according to the
energy consumed. To identify different runs of a time series
of a washing machine, we split the energy time-series using a
supervised approach.

Different runs are recognized by looking at sequence of
values whose variation for a certain period (e.g. 10 minutes)

Fig. 3. Cumulative energy of different runs of a washing machine

Fig. 4. 3th degree polynomial representation of monitored profile

is below a threshold (e.g. 0.01 kW). In fact in this case
we suppose that the washing machine is off and the run is
terminated. A new energy increment above the threshold will
correspond to the starting time of the next run.

In a second steps we clustered the different runs according
to their duration and the amount of consumed energy to
identify different operation modes. In Figure 3 the cumulative
energy consumption of different runs of a washing machine
are shown. The time series run9 and run13 correspond to the
same operation mode.

The problem is the best approximation of the profile using
two or more time-series by a compact representation that does
not affect performance and real time requirements.

In Figure 4 the blue points and the red crosses are the
samples from run9 and run13. The black line represent the
polynomial 3rd degree polynomial curve that fits the points
with a minimal square root error. This representation will
introduce of course a residual error, but it is monotone and
needs only 5 float parameters to be represented (4 coefficients,
duration and residual error), independently from the amount

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

14

Fig. 5. B-spline representation of monitored profile

raw samples.
In order to improve the resolution of our representation we

also considered the utilization of a b-spline. The b-spline is a
piecewise polynomial function of degree k. Polynomial curves
meet and are continuous in a number of control points. We can
control the resolution increasing the number of control points.

In Figure 5 the black line is a b-spline representation of
degree k=3 of the best fitting of run9 and run13. In this case
5 control points have been fixed at regular time intervals and
the number of float parameters to be transmitted is 27.

VI. SLA BASED ENERGY NEGOTIATION

The main objective of a negotiation is to reach an agreement
between a vendor and a customer. A Service Level Agreement
(SLA) defines an agreement between a provider and a client
in the context of a particular service provision and can be
between two (one-to-one) or more (one-to-many or many-to-
many) parties.

In our scenario an energy consumer and an energy producer
agree to shift the energy workloads of a device to optimise the
mapping between production and consumption, but within a
time period defined by the earliest start time and the latest start
time defined by the user. For this reason the emergent behavior
of whole multi agents system will implement a distributed
scheduler that allocates consuming and producing tasks for
each device within the neighbourhood.

The negotiation protocol will be implemented by an overlay
of agents which exchange FIPA2 messages using XMPP as
transport layer. The XMPP server is used for authentication
and to support communication across firewalls. Moreover
many concepts of the XMPP protocol has been re-used (friend-
ship, presence, multi-user chat, etc..). Alternative server-less
solution will be investigated in future works.

2Foundation Intelligent Physical Agents

Fig. 6. Negotiation Protocol

In Figure 6 a sequence diagram about the agents it is shown.
A consumer that wants to schedule his consuming tasks will
execute the following steps:

• Connects and login to the XMPP server to join the
neighbourhood.

• Estimates its own need of energy.
• Brokers the producer that can offer the required energy
• Send a proposal (SLA template)
On the other hand, the producer will:
• Connect and login to the XMPP server
• Wait for incoming proposals
• Evaluate the proposal accepting or not
• Send the related response
Consumers will adopt a ranking mechanism to broker the

producer to be contacted. Every consumer associates a rank
to each producer, that is an integer that indicates the quality
of the producer. Each time the producer accepts the proposal,
this number is incremented by 1. The consumer will continue
to call the producer which has the highest ranking.

Each producer will try to allocate the consuming workload
according to the model presented in the previous section
choosing the start time for the incoming task that satisfies
the user requirements, but minimizing the use of energy from
grid compared to its own production profile.

The negotiation protocol is started by a consumer agent each
time a new execution is planned for the handled device sending
a proposal. The message body of a proposal is a machine
readable SLA template.

Templates used by agents for negotiation define the energy
requirements, by the profile discussed above, including user’s
preferences and constraints (e.g. start date, termination date,
cost, etc.). The SLA will complement the energy requirements
with the negotiation parties and actual start time.

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

15

A producer can eventually withdraw an SLA if its prediction
of production change and the negotiation will be restarted by
the consumer.

Of course the algorithm may be affected by the problem
of local minima that may bring to a not optimal employment
of available energy. The final formulation of the optimization
algorithm is not available yet, but it is related to a distributed
approach where each agent as limited knowledge of the sys-
tem. We will accept a sub-optimal solution that can be obtained
with limited processing and communication resources.

VII. EXPERIMENTS

After a scouting of available technologies we evaluate
performances of SPADE and JADE agent platforms working
with different XMPP implementations.

SPADE [11] is an open source agent platform written in
Python. SPADE provides a library (SPADE Agent Library)
that is a module for the Python programming language for
building agents. The library contains a collection of classes,
functions and tools for creating agents that can work with the
SPADE Agent Platform.

JADE is an agent platform fully implemented in Java lan-
guage. It simplifies the implementation of multi-agent systems
through a middle-ware that complies with the FIPA specifica-
tions. It also provides a set of graphical tools that supports the
debugging and deployment phases [12]. For communication,
SPADE is based on the XMPP technology. XMPP [13] is
an open, XML-inspired protocol for near-real-time, extensible
instant messaging (IM) and presence information. It has also
been used for publish-subscribe systems, signaling for VoIP,
video, file transfer, gaming, Internet of Things applications. An
XMPP server provides various types of services: user account
registration, authentication, channel encryption, prevention of
address spoofing, message relaying, etc. Nothing prevents to
deploy across the network servers that can route and relay
messages for workload balancing purpose. SPADE and JADE
is fully compliant with FIPA specifications. SPADE use XMPP
natively as transport protocol. We developed a plugin for JADE
to support XMPP as transport protocol for agent’s FIPA-ACL
messages .

We experimented three different XMPP server technolo-
gies:Tigase, OpenFire and the light implementation provided
by SPADE itself. Tigase [14] is an open source project
providing XMPP server implementation in Java. OpenFire [15]
is an instant messaging and groupchat server that uses XMPP
server written in Java and licensed under the Apache License.

The testbed is one host equipped with a 2.67 GHz i5
processor, 4 GB of memory amount and Windows 7 operating
system. Here we evaluate the performance running a single
consumer and a single producer that always accepts negoti-
ation requests. Message exchanged have an empty payload
because the purpose is to evaluate the technology.

In Figure 7 the chart shows the average time to close
a transaction. It is clear that with one consumer and one
producer, SPADE on OpenFire exhibits the best performance

Fig. 7. Performance comparison among SPADE with embedded XMPP server
and SPADE and JADE with OpenFire and with Tigase

although the difference with JADE on OpenFire and SPADE
with its embedded server is really minimal.

Thanks to this experiment we can affirm that using empty
messages the agent platform does not affect performance
whereas the time depends on server performance.

In the second experiment we replaced the producer agents
that accepted each requests without any computation overhead
with a new agent that makes 1.000 floating point operations
to simulate the optimization algorithm. We have one producer
that always accepts requests and 50 consumers.

Fig. 8. Comparison between SPADE and JADE with and without operations
before response

From figure 8 we noticed that in JADE the time to complete
the experiment is greater than SPADE. Moreover, we can
note that in SPADE the mean time to close a transaction
increases slightly, but in JADE it grows faster. The reason
is that Python outperforms Java. As the project trials will
use Raspberry Pi to host our software, our choice is SPADE.
Because of the limited amount of resources required by its
XMPP server we have also decided to host on the Raspberry
Pi the SPADE XMPP server. Server to server connection will
be used for the communication between agents executing in
different households.

In the last experiment we used two RaspberryPi as testbed. It
hosts 10 consumers and 1 producer to simulate an household
with 10 passive devices and 1 solar panel. Each device is

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

16

represented by one SPADE agent. Here we evaluate how the
resolution of the profile will affect the performance.

Consumer agents chose randomly the producer to be con-
tacted only the first time whereas for the next time each
agent, using a learning mechanism, will contact the most
reliable producer. In the experiments to implement the learning
capacity we use a ranking mechanism. Each agent creates a
vector with all active producers and a ranking is associated to
each producer. The ranking is an integer initialized to zero
incremented by one each time the corresponding producer
accepts the proposal. The consumer will contact the producer
that has the maximum ranking and it will continue to contact
the same producer until a proposal is refused.

In order to simulate a real scenario we introduce a delay
between a request and the subsequent that follows a Poisson
distribution with an interarrival of 500 ms.

The request message from consumer is divided in two
sections: in the first one there are metadata information, in
the second one there is the energy profile.

In listing 1 there is a message example where the meaning
of the fields is:

• deviceID: an ID the identify univocally a device in the
household;

• EST: Earliest Start Time, the minimum time when the
device can be started. The time is expressed using the
Unix Epoch Time;

• LST: Latest Start Time, the maximum time when the
device can be started. The time is expressed using the
Unix epoch time;

• execution type: the type of execution of that particular
device;

• mode: the mode of operation of that particular device;
• taskID: the ID of task;
• dataload: three real coefficients and a value that indicated

the duration.

Listing 1. Request Message Example
{ ” m e t a l o a d ” :

[
{” d e v i c e I D ” : ” 61 ” } ,
{”EST” : ” 62340 ” } ,
{” e x e c u t i o n t y p e ” : ” s i n g l e r u n ” } ,
{”LST” : ” 80340 ” } ,
{”mode” : ” D e l i c a t e s ” } ,
{” t a s k I D ” : ” 29 ” }] ,

” d a t a l o a d ” :
[” 0 .1223 ” , ” 0 .2342 ” , ” 0 .4351 ” , ” 1426607214 ”]

}

The real parameters represent the coefficients of a 3th

degree polynomial curve. For lake of space we do not show
the results when the raw profile is sent, but we can see that
such solution is not feasible with the available resource. The
response message contains the Actual Start Time (AST) for
the current run, i.e. the time when the producer can provide
energy.

We observed that the mean time to obtain the response
is of about 5.3 seconds with a standard deviation of 676

milliseconds in the case of 10 consumers and 1 producer for
each Raspberry, using a delay between requests and adopting
a ranking protocol for brokering.

Fig. 9. Number of Requests in each time interval

The chart in Figure 9 represents the number of simultaneous
requests per producer within intervals of 10 seconds. The
producers manage an average of 11 requests each 10 seconds,
more than 1 every second.

It can be seen that when a producer finished the energy, all
the consumers move ask to the other producer. We concluded
that number of requests that the system greater that the arrival
rate in the real case.

VIII. CONCLUSION

This paper focused the exploitation of software agents as
the building blocks of IoT, whose main challenge is the
to design and development of application by the interaction
of pervasive smart objects. We presented the approach and
activities of the European Project CoSSMic that investigates
the optimization of the decentralized energy production from
photo-voltaic panels. We introduced the concept and the high
level architectural. We focused on the design of smart devices
that collaborate to find the best schedule of consumptions
by a distributed negotiation. In particular a preliminary in-
vestigation about the learning model to predict the energy
profiles of consuming devices and performance evaluation of
the negotiation prototype have been presented.

ACKNOWLEDGMENTS

This work has been supported by CoSSMic (Collaborating
Smart Solar powered Micro grids - FP7 SMARTCITIES 2013
- Project ID: 608806).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] L. Benedicenti, “Rethinking smart objects: building artificial intelligence
with objects.” ACM SIGSOFT Software Engineering Notes, vol. 25,
no. 3, p. 59, 2000.

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

17

[3] M. S. Narkhede, S. Chatterji, and S. Ghosh, “Multi-agent systems (mas)
controlled smart grid a review,” IJCA Proceedings on International
Conference on Recent Trends in Engineering and Technology 2013, vol.
ICRTET, no. 4, pp. 12–17, May 2013.

[4] T. Logenthiran, D. Srinivasan, A. Khambadkone, and H. Aung, “Multi-
agent system (mas) for short-term generation scheduling of a microgrid,”
in Sustainable Energy Technologies (ICSET), 2010 IEEE International
Conference on, Dec 2010, pp. 1–6.

[5] D. Srinivasan, T. Logenthiran, A. Khambadkone, and H. Aung, “Scalable
multi-agent system (mas) for operation of a microgrid in islanded mode,”
in Power Electronics, Drives and Energy Systems (PEDES) 2010 Power
India, 2010 Joint International Conference on, Dec 2010, pp. 1–6.

[6] S. K. Barker, S. Kalra, D. E. Irwin, and P. J. Shenoy, “Empirical
characterization and modeling of electrical loads in smart homes,” in
International Green Computing Conference, IGCC 2013, Arlington, VA,
USA, June 27-29, 2013, Proceedings, 2013, pp. 1–10.

[7] E. Feinberg and D. Genethliou, “Load forecasting,” in Applied Mathe-
matics for Restructured Electric Power Systems, ser. Power Electronics
and Power Systems, J. Chow, F. Wu, and J. Momoh, Eds. Springer
US, 2005, pp. 269–285.

[8] A. Amato, R. Aversa, B. Di Martino, M. Scialdone, S. Venticinque,
S. Hallsteinsen, and G. Horn, “Software agents for collaborating smart
solar-powered micro-grids,” in Smart Organizations and Smart Artifacts,
ser. Lecture Notes in Information Systems and Organisation, L. Capo-
rarello, B. Di Martino, and M. Martinez, Eds. Springer International
Publishing, 2014, vol. 7, pp. 125–133.

[9] A. Amato, B. Di Martino, M. Scialdone, S. Venticinque, S. O. Hallstein-
sen, and S. Jiang, “A distributed system for smart energy negotiation,” in
Internet and Distributed Computing Systems - 7th International Confer-
ence, IDCS 2014, Calabria, Italy, September 22-24, 2014. Proceedings,
2014, pp. 422–434.

[10] A. Amato, B. Di Martino, and S. Venticinque, “Semantically augmented
exploitation of pervasive environments by intelligent agents,” in ISPA.
IEEE, 2012, pp. 807–814.

[11] M. E. Gregori, J. P. Cámara, and G. A. Bada, “A jabber-based multi-
agent system platform,” in Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems, ser. AA-
MAS ’06. New York, NY, USA: ACM, 2006, pp. 1282–1284.

[12] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “Jade: a software
framework for developing multi-agent applications. lessons learned,”
Information and Software Technology Journal, vol. 50, pp. 10–21, 2008.

[13] P. Saint-Andre, “Extensible messaging and presence protocol (XMPP):
Core,” Internet Engineering Task Force (IETF), Tech. Rep., 2011.

[14] T. Inc., “Tigase XMPP server,” http://projects.tigase.org/projects/tigase-
server.

[15] I. Realtime, “OpenFire XMPP server,”
http://www.igniterealtime.org/projects/openfire/.

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

18

