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Abstract—Market mechanisms, such as auctions and negoti-
ations, are often used for efficient task allocation in multi–robot
domains where tasks are characterized by quality parameters
that are related to the way the task is executed depending on the
specific robot capabilities. In these cases, usually robots negotiate
their respective assignments in order to optimize task distribution
according to their own utility function. In this work, a market–
based negotiation mechanism is proposed to allocate tasks to a set
of robots by taking into account end–to–end requirements that the
complete allocation should meet in terms of the considered quality
parameters. Negotiation takes place on these parameters that are
considered goods to be traded by the individual robots, depending
on their strategies, so that they can successfully negotiate to obtain
the task allocation.

I. INTRODUCTION

Networked robotic devices, such as mobile robots, drones,
unmanned vehicles and position sensors, are starting to be
concretely employed in many real contexts, especially in
emergency and rescue activities, where navigation and search
operations take place both in indoor and outdoor environments
with the human supervision. In this context, the use and the
arrangement of multiple robots has been proven to help in
achieving the task, both in terms of execution speed, increase
of robustness, reliability, quality and performance of solutions
in general. However the displacement of multiple robots comes
with the cost of coordination to allocate resources and tasks
among them in a way that enables them to accomplish their
mission efficiently and reliably.

Researchers have recently applied the principles of market
economies to multi–robot coordination [1]. Market mecha-
nisms, such as auctions and negotiations, are often used for
efficient task allocation in multi–robot domains [2]. More
specifically, they are used to determine the optimal alloca-
tion (distribution) of tasks to robots by considering it as an
optimization problem with some cost functions, such as, for
example, distance to travel, battery consumption or battery
autonomy. These functions depend on the specific application,
and they are usually expressed as a minimization of the robots
individual costs, or the total cost of the mission, although
others are possible. In any case, the optimal task allocation
problem is known to be NP–hard.

In this work, our assumption is that, in a more broad
context, ubiquitous robots can be represented as heterogeneous
self–interested agents that can provide different services (e.g.,
to execute a specific task) depending on their own capabilities,
which are a priori defined. According to their capabilities,
robots may provide services with different performance levels,
which can be evaluated depending on dynamic information
and that can be traded, so allowing robots to dynamically
adjust the performance they execute a task with, in order to
be assigned the task. Of course, it is not possible to obtain
an optimal allocation, but any allocation of tasks that meets
global constraints on the complete allocation is considered an
acceptable solution.

II. MULTI-ROBOT TASK ALLOCATION

Mobile robot teams can fulfill a goal more efficiently than a
single robot by sharing the workload and by optimizing the use
of available resources. In fact, a given system–level (or global)
task can be divided into m sub–components {T1, . . . , Tm}
which can be assigned to individual n robots {R1, . . . , Rn}
that can execute them. How a global task is decomposed is a
crucial problem addressed by the planning methods, while the
distribution of subtasks to robots is known as task allocation.

A task decomposition algorithm has to consider both the
tasks nature, and restrictions in order to accommodate them
among the agents for the execution. Tasks can be long-term
(e.g. monitoring an environment) or transient (e.g. looking for
objects), they can have different complexity and specificity, and
they can be performed by a single robot or multiple robots.
Tasks have a well–defined set of constraints depending on the
problem domain, the use of limited technologies, the scarcity
of resources, and environment conditions. The most common
ones are:

• Partial ordering, i.e. a task has to be completed before
or after one or more others;

• Coupling, i.e. two or more tasks have be executed
concurrently;

• Incompatibility, i.e. two or more tasks can not be
concurrently executed;
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• Time windows, i.e. a task has a duration condition (i.e.
a deadline) to be met;

• Mobility interferences, i.e. robot’s ability to perform a
task is limited (e.g., it can not move in a narrow space
due to its dimensions).

Such constraints model the functional relationships among
tasks that can be expressed using a particular data structure.
There are several planning approaches to generate such con-
strained decompositions that can be expressed by task trees. In
[3], Doherty et al. presented a task specification language and
an abstract distributed data structure, called Task Specification
Tree (TST). Each node of a TST represents a task. A TST has
a constraint network formed by a constraint model for each
node and tree constraints, expressing the relations between
the nodes. Hierarchical Task Networks (HTN) are used to
represent various levels of task semantics, that have been
extensively used for planning in AI domains, and have been
imported to the robotic domain in abundant researches and
applications.

In the literature [4], tasks may be also characterized by
different parameters that are related to the way the task is
executed, i.e. to non–functional attributes whose values are
determined by the specific robot able to execute it. The most
common parameters are:

• Cost, i.e., a measure of the effort made by the robot
to execute a task, in terms of time to reach a goal,
energy and resources consumed, and so on [5];

• Accuracy, i.e., a characterization of goodness of the
task execution [6] performed by a robot (e.g. the map
accuracy produced using a laser range-finder);

• Reward, i.e., a measure of the profit gained by the
robot for performing a task [7];

• Priority, i.e., the task urgency required for its execution
(higher priority tasks have to be executed before lower
priority ones [8]).

When a complex task has to be executed by a team of
robots with specific values of these non–functional parameters,
the allocation of subtasks to the suitable robots, is an NP–hard
decision problem. Market–based approaches for task allocation
have received significant attention within the robotics research
community [1], [9], in order to efficiently produce sub–optimal
allocations [2].

Generally, in reply to a task request, robots may submit bids
based on their abilities to perform the tasks and the highest
(lowest) bid wins the assignment. Moreover, when more than
one task can be assigned to each robot (and the evaluation of
the robot non–functional parameters depends on its complete
assignment), the robots can negotiate their respective assign-
ments in order to optimize the task distribution. Typical alloca-
tion approaches adopt optimization algorithms based on some
utility function. Indeed, the measure of utility is considered
as a combination of these non–functional parameters, and it is
used for evaluating the impact of the chosen tasks execution
on the system performance. Utility functions can be based
on different parameters, such as sensors-based metrics [10]
or sophisticated planner–based measures [11] (multi–attribute

utility theory). Utility represents a trade–off between accuracy
and costs able to obtain an approximated result [10].

III. QOS MARKET–BASED NEGOTIATION FOR TASK
ALLOCATION

The problem of allocating subtasks composing a complex
task with specific non–functional constraints to a team of
robots is similar to select services for delivering a compo-
sition of services with Quality of Service (QoS) constraints.
So, service–based computing technologies can be effectively
integrated and utilized into robotic applications [12], [13].

In this work, we propose the use of automated negotiation
as a mechanism to allocate subtasks to a set of robots, by
allowing the individual robots to negotiate on the values of
the non–functional parameters characterizing the complex task.
These values may depend on dynamic conditions of each
robot, such as its computational and physical resources at the
time the allocation process starts, the number of tasks it was
already allocated, the reward it gets, and so on. It is crucial
to adopt allocation mechanisms that can take into account of
such a variability. In addition, robots may decide to change
the values of these non–functional parameters to accommodate
some global requirements specified for the complex task in
order to have the subtask assigned.

Here, it is assumed that a complex task is represented
as a task tree, we refer to as an Abstract Task Tree (ATT),
whose leaves are the subtasks composing it, we refer to
as Abstract Tasks (Ts). The complex task is required to be
executed with specific QoS end–to–end requirements, referring
to non-functional attributes of the complex task. The request
is managed by an agent, we refer to as the Task Allocator
Agent (TAA), responsible for finding an allocation of these
subtasks to a team of robots providing them with values of
the considered attributes that, once aggregated, meet the end–
to–end requirements. Robots are modeled as task providers,
i.e. “market vendors” of tasks characterized by QoS values
accounting for these non–functional attributes. They negotiate
these values with the TAA, so that a successful negotiation
determines an allocation of subtasks to the robots able to exe-
cute them with suitable values of the non–functional attributes.
Robots, referred to as Task Provider Agents (TPAs), aim to win
the negotiation so to obtain the allocation of the task, and they
may change the QoS values they provide during negotiation
according to their own negotiation strategies. In fact, while
some values may depend only on the robot capabilities, others
can be modified proactively by the robot. For example, it
can dynamically modify the execution speed of a task or the
accuracy of a provided sampling.

More specifically, each robot is modeled as composed of:

• a deliberative layer responsible for negotiating with
the TAA the allocation of tasks;

• a dispatching layer responsible for scheduling the
tasks allocated to the robot;

• an execution layer responsible for the actual execution
of the allocated tasks.

In the following only the deliberative layer is addressed,
while the other two layers are outside the scope of the work.
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The negotiation mechanism adopted in this work is based
on the one proposed in [14], a one–to–many iterative protocol,
used to select services when a composition of services is
required with specific end–to–end requirements. It allows a
composer agent, acting on behalf of the consumer, to nego-
tiate QoS attribute values of the functionality requested in
the composition, both with different providers of the same
functionality, and with the providers of different functionalities
in a coordinated way, since it is not always possible to
decompose these requirements in individual requirements for
each functionality of the composition.

Here the same negotiation protocol is adopted, while new
negotiation strategies are provided, specifically designed for
the multi–robot task allocation domain.

The negotiation protocol consists of a number of negotia-
tion rounds proceeding until either the negotiation is successful
(i.e., all subtasks are allocated), or a deadline (i.e., a maximum
number of allowed rounds) is reached. The deadline can be set
according to the nature of the required tasks, or other criteria
depending on the considered scenario. At each negotiation
round, the TAA sends n call for proposals (cfps), one for
each available TPA, specifying the subtasks in the ATT to be
allocated ({T1, . . . , Tm}), with n ≥ m, and it waits for replies
for a given time, known as the expiration time of a negotiation
round. Each TPAj provides an offer oj containing the k
QoS values qi,k for each of the Ti it is able to perform, and
m− k NULL values for the Ti it is unable to perform. Such
QoS values represent measures of non–functional parameters
characterizing the way the robot can execute the task Ti (such
as for example battery consumption, the speed, the accuracy,
and so on). Hence, the TAA receives a set of offers {o1, ..., on},
with n the number of TPAs.

At the first negotiation iteration, the TAA checks if there
are offers for each required subtasks specified in the ATT. If
there are no offers for all the required subtasks, it declares
a failure since it is not possible to find a set of TPAs for
all required Ti. Otherwise, it evaluates the received offers
and the iteration number, and, according to the result of such
evaluation, it performs one of the following actions:

1) if the aggregated QoS values of the received offers
do not meet the global QoS requirements and the
deadline is not reached (not final iteration), it asks
for new offers by sending again n cfps, so starting
another negotiation round;

2) if the aggregated QoS value of the received offers
meets the global QoS requirements (final iteration), it
selects the best set of offers, in terms of its own utility,
and it accepts such offers and rejects the others, so
ending the negotiation successfully.

3) if the deadline is reached without a success, it de-
clares a failure to all robots that took part in the
negotiation (final iteration).

A. Negotiation strategies

In order to decide whether to accept a set of offers, the TAA
evaluates first if there is a combination of offers satisfying the
global end–to–end requirements, intended as upper bounds for
the aggregated offers values. The evaluation function used by

the TAA is a solver of an Integer Linear Programming problem
formulated as follows:

n∑

j=1

xi,j = 1,∀i = 1, . . . ,m (1)

aggri(

n∑

j=1

xi,j · qi,j,k) ≤ Qk,∀k = 1, . . . , r (2)

n∑

j=1

xi,j · qi,j,k 6= NULL,∀k = 1, . . . , r (3)

Hence, there are n·m decision variables xi,j , where i identifies
one of the m Ts, and j identifies one of the n TPAs that replied
to the cfp. Such variables assume value 1 if the j − th TPA
is selected for the i − th T, 0 otherwise. Equation 3 verifies
that agent j is able to execute the task corresponding to the
i − th T. Equation 1 verifies that exactly one TPA has to be
selected for each T (such value can be changed in case task
replication is required). Equation 2 evaluates that the global
constraint for each considered non–functional parameter is
met. Typically, additive (e.g., price and execution time) and
multiplicative (e.g., reliability and availability) parameters are
considered [15], so aggr is either a sum or a multiplication
over the number of Ts.

Once that combinations of offers that satisfy the ILP are
found, the TAA selects the one that maximizes its own utility,
that is evaluated as follows:

UTAA =
1

r

r∑

k=1

Qmax′(k) − aggri(
∑n

j=1 xi,j · qi,j,k)
Qmax′(k) −Qmin′(k)

(4)

where, Qmax′(k) = aggrk(max(qi,j,k)) aggregates the local
maxima of the offers received for the i− th task, Qmin′(k) =
aggrk(min(qi,j,k)) aggregates the corresponding local min-
ima, and qi,j,k are the values of one offer of the found
combinations.

The adopted negotiation mechanism is one–sided, since
the TAA cannot make counterproposals, but it only evaluates
offers in an aggregated manner, while TPAs can send new
offers. The TAA could formulate counterproposals relying on
heuristics methods to decompose the end–to–end requirements
into individual requirements. But this approach is not followed
in the present work, since it increases the constraints to be
satisfied by individual offers. In fact, when an aggregated value
is required, it is possible that individual offers are acceptable
when aggregated with the others, while they are not acceptable
according to the chosen decomposition criteria.

TPAs are provided with strategies and tactics to generate
offers to send at each negotiation round to the TAA for the
subtasks they are able to execute. Several strategies and tactics
have been proposed in the literature for different types of nego-
tiation [16]. Here, a stochastic monotonic concession strategy
is adopted for the TPAs, that models a cooperative behavior
coming from the robot objective to obtain the allocation of the
task.
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IV. A PRACTICAL EXAMPLE

In our reference scenario, we assume that robots may
execute different type of tasks, and that they have the goal
of maximizing the number of tasks to be executed according
to the resources they have. For simplicity, we consider as a
working example a global task ATT that consists in covering
a specific total distance, and it is requested to be executed with
a global completion time TCTreq, that represents the only
constraint to be met. The task is decomposed in 3 subtasks
{T1, T2, T3}, each one characterized by a pair < xi, diri >,
where xi is a distance in a specific direction diri. The tasks
have to be executed sequentially. At each negotiation, the 3
subtasks will be assigned to 3 different robots if the negotiation
is successful, i.e. if the sum of the execution times tcti
proposed by each triple of robots does not exceed the upper
bound TCTreq:

3∑

i=1

(

n∑

j=1

xi,j ∗ tcti,j) ≤ TCTreq (5)

where n is the number of available robots. Hence, the negoti-
ation is single–issue and the issue is additive.

It is assumed that each robot is able to cover a distance
only in a specific direction, so it is able to execute only one of
the 3 tasks, i.e. each subtask has to be allocated to a different
robot.

The TAA initiates the negotiation by issuing the n call
for proposals, one for each robot (or TPA), containing the
reference to the 3 subtasks to be executed. Each robot Rj will
reply providing an offer characterized by a triple of values,
with a NULL value for the subtasks it is unable to execute,
and a task completion times tcti,j the robot Rj offers for the
subtask Ti it is able to execute. The offered time tcti,j depends
on the velocity vi,j the robot j decides to cover the distance
of subtask Ti with.

Each robot Rj is represented by a state s affecting the
offers it provides to the TAA for a specific task Ti. In
particular, it is assumed that the state s of each robot is a n–
tuple composed of the current battery level bs ∈ [bmin, bmax],
depending on the current task allocation, a function f deter-
mining the battery consumption according to the velocity the
robot offers to cover the distance of a task Ti with, the tasks
{Tk, . . . , Th} that it committed to execute and that are in its
agenda, and a minimum allowed velocity vmin that is the
minimum functioning robot velocity (i.e., it depends on the
robot and not on the task).

The initial state is defined as s0 =< bs0, f, {}, vmin >,
and it is updated at the end of each negotiation. The maximum
level of battery bs0 can be different for each robot, and it
determines the maximum velocity the robot can execute a task
with, when it is fully charged (a maximum initial value when
the robot is not committed to execute any task), i.e. bs0 =
α · vmaxi,j · xi. Hence, if the robot executes the task at the
maximum velocity, it will use all its battery.

In order to reply to a cfp, the j − th robot evaluates
its current state in terms of the current battery level bs, to
determine the maximum velocity it can execute a task with
(vmaxi,j), where

vmaxi,j = bs/Ti. (6)

Fig. 1. An example of Gaussian functions for two robots j and k.

To model a stochastic behavior of robots taking part in
the negotiation, the offers generation strategy is given by a
Gaussian function, representing the probability distribution of
the offers in terms of the robot utility, as proposed in [17]. In
particular, the Gaussian function depends on the specific task
Ti, and it accounts for the robot utility obtained when covering
the distance of the task Ti at velocity vi,j (tcti,j = xi/vi,j). As
shown in Figure 1, the mean value of the Gaussian Ui,j(vmin)
represents the best offer the Rj may propose in terms of its
own utility with the highest probability to be selected, and it
corresponds to the maximum tcti,j it may provide the Ti with,
i.e. the one obtained by executing the task at the minimum
velocity possible. The rationale of this choice is that the robot
prefers to use the less battery possible when providing the task,
so that it can try to maximize the number of tasks it may be
assigned, so its most convenient offer is the one that minimizes
the battery discharge. The standard deviation σ represents the
attitude of the Rj to concede during negotiation, and it is given
by σi,j = vmaxi,j − vmin, if vmaxi,j > vmin, 0 otherwise.
It takes into account the computational load of the robot in
terms of the number of tasks it was assigned to execute. In fact,
at each new negotiation the σ is decreased according to the
battery consumption due to an assigned task since the vmaxi,j
depends on the remaining battery level, so generating a new
Gaussian function to be used in the new negotiation. The value
vmaxi,j represents the reservation value for the robot, since it
is the maximum velocity it can execute the task with its current
level of battery. Furthermore, the robot can make an offer only
if the remaining battery level allows it to cover the distance of
the task Ti at the minimum velocity. The parameter σ varies
from robot to robot providing the same task Ti, in such a way
that the lower its computational load (in terms of available
battery) is, the more it is available to concede in utility, and
the lower its reservation value is.

The battery consumption is assumed to be linearly depen-
dent on the velocity the robot can cover the distance xi of the
task Ti, according to the following equation:

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

132



f = α · vi,j · xi (7)

Whenever the robot Rj is selected for executing task Ti at
the end of a negotiation, it adds it to its agenda and evaluates
the remaining battery as follows:

bs′ = bs − α · vi,j · xi (8)

The new state will be s′ =< bs′ , f, {Ti}, vmin >.

In Figure 1, the functions associated to two different robots
for the same Ti are reported. The best offer is the same for both
robots (i.e., Ui,1(vmin) = Ui,2(vmin)), since it is assumed
that the robots have the same minimum velocity, while their
concession strategies are different according to their workload
when the negotiation takes place. In fact, σi,1 is greater than
σi,2 meaning that R1 has a lower computational load than R2,
so it concedes more in utility than R2.

At each negotiation round, each robot generates, following
its Gaussian distribution, a new utility value corresponding
to a new offer. If this value is lower than the one offered
in the previous round and within the negotiation set, then
the robot proposes the new value. The negotiation set is
[Ui,j(vmin);Ui,j(vmin+σi,j ]. If the new utility value gener-
ated is higher than that offered in the previous round, or it is
outside the negotiation set, the robot proposes the same value
offered in the previous round. This strategy allows to simulate
different and plausible behaviors of robots that prefer not
having a consistent loss in utility, even though by increasing
the number of negotiation rounds the probability for the robot
to move towards its reservation value increases.

A. Results

In our testing scenario, we evaluate the behavior of a set of
negotiations carried out with 9 TPAs to allocate the complex
task ATT composed of 3 subtasks T1, T2, T3. There are 3
robots able to perform one of the three tasks.

Multiple negotiations are carried out since the TAA aims
to allocate as many complex tasks as possible with the
available robots. In this preliminary analysis it is assumed
that each xi = 3m, diri = north, south, west, and each
robot can perform the task with a velocity vj in a range
between vminj = 0.05m/s and vmaxj = 0.3m/s. The initial
battery for each robot is bs0 = vmaxj ∗ xi, and the battery
consumption is computed as defined in Equation 8 with α = 1.

In such scenario, if a robot performs a single task with
its minimum velocity (vminj = 0.05m/s), each task is
completed in tcti,j = 60 seconds, while the complex task
requires TCTreq = 180 seconds. Hence, at the minimum
velocity, each robot could execute 6 subtasks before consuming
all its battery. Without considering the global constraint, 18
complex tasks (ATT ) could be allocated to the robots. So, we
set the maximum number of negotiations at 18. If we assume
that robots perform the tasks at maximum velocity, each robot
can execute only 1 task, so 3 complex tasks could be allocated
to the available robots.

We simulate the set negotiations with 3 different global
time constraints for the complex task (TCTreq1 = 100s,

TCTreq2 = 130s and TCTreq1 = 160s), and, for each
configuration, we perform 100 runs. The deadline of each ne-
gotiation is 100 rounds. Table I reports for each configuration
the following information: average values, standard deviation,
maximum and minimum values of the number of allocated
complex tasks, the number of tasks allocated to each robot, the
remaining battery at the end of the all negotiations, the time
to complete each complex task, and the number of rounds
for successful negotiations (i.e., the ones terminated with a
complete allocation).

When a global constraint is required, the possibility to offer
different values of the constraint parameter, allows to allocate
a greater number of complex tasks with respect to a static
allocation at a fixed velocity for each robot, in fact, at a fixed
maximum or medium velocity, only 3 complex tasks could
be allocated. As expected, when increasing the required TCT
for the task execution, the number of complex tasks allocated
increases, with a consequent increase in battery consumption.
Moreover, let us note that the probabilistic distributions of
offers lead to a global time value that is lower than the set
constraint. Hence, different concession strategies may further
improve these results on the constraints satisfaction. Finally,
the number of rounds necessary to reach a complete allocation
is smaller in the first negotiations, while it drastically increases
in the final ones since it is more difficult to find a complete
allocation once the battery level of the robots decreases. This
is also shown by the high values of standard deviation for the
Rounds number reported.

More specifically, this behavior is shown in Figures 2 and
3, reporting respectively, for one run of a complete set of
negotiations with the TCTreq = 130s, the battery levels for
each robot and the number of rounds for each negotiation.
As shown in Figure 3, in the first four negotiations, robots
easily find an agreement in 1 round; while, from the forth
to the seventh negotiation the number of rounds in order
to reach an agreement increases considerably leading to a
lack of agreements from the seventh negotiation onward.
This behavior is explained in Figure 2 where the trends of
the battery level for each robot show that after the seventh
negotiation the battery levels decreased for each robot. In
addition the stochastic behavior of the offers generation leads
to different final battery levels for different robots.

V. CONCLUSION

In this paper, we investigated the possibility to adopt
heuristic approaches to find allocations of tasks to teams
of robots when tasks are characterized by non–functional
attributes, and the complete allocation has to meet global con-
straints expressed as end–to–end requirements of these non–
functional attributes. A market–based negotiation mechanism
where robots are modeled as task providers with negotiable
non–functional parameters is proposed as an heuristic method
to address the NP–hard task distribution problem.

This preliminary study showed that the adopted negotiation
mechanism is a promising approach when trying to optimizing
the number of complete allocations given a fixed number of
available robots in the team.

The approach relies on the possibility for the robots to
change the values of the parameters characterizing the tasks
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Limit 100s 130s 160s
AVG SD MIN MAX AVG SD MIN MAX AVG SD MIN MAX

Allocated Tasks 5.02 0.43 4 6 6.27 0.55 5 7 8.06 0.51 7 9
Tasks for each robot 1.67 0.48 1 3 2.08 0.55 1 3 2.68 0.58 1 4
Remaining Battery 37% 9% 2% 64% 30% 7% 19% 50% 21% 6% 7% 39%
Time 83 15 70 93 99 27 85 109 116 38 106 126
Rounds 9 16 1 97 5 10 1 97 4 7 1 100

TABLE I. NEGOTIATION RESULTS WITH TCTreq =100S, 130S AND 160S.

Fig. 2. Robot battery consumption trends for one set of negotiations.

Fig. 3. Negotiation rounds for one set of negotiations.

they can execute dynamically, so modeling an innovative
behavior of robots that can make decisions on how to perform
a task.

Further investigation is necessary to optimize the battery
level consumption of each involved robot that allows to still
meet the constraints so leading to an increased number of
complete allocations.
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