
Why, How and What Should be Taught about
Formal Methods?

Maximiliano Cristiá

CIFASIS and UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar

I started to teach formal methods (FM) in an undergraduate, mandatory
course of a Computer Science degree at Universidad Nacional de Rosario (Ar-
gentina) in 1998. After all these years I still have more questions than answers.
In particular, I still can’t find satisfactory answers to questions I asked to myself
back in 1998. However, at the same time, I still believe that I am doing the right
thing. I would like to share and discuss with all of you my doubts and what
I have learned during all these years regarding what should or should not be
taught about FM to undergraduate students.

This talk will be more a collection of questions and doubts rather than (firm)
statements. So let’s begin with some of them. Should we teach FM to under-
graduate students? I dislike absolute answers to sociological questions (teaching
is, after all, a sociological activity). For instance, should we teach FM regardless
of the length of the plan of study? The answer would be yes provided FM are
considered so fundamental to the profession that none of them can graduate
without passing a course on FM. So, are FM that fundamental to the profession
of programmers? Here, the discussion can be forked again: a) Fundamental to do
what? What is the profession under the umbrella of informatics? Does the pro-
fessional working on the avionic system of an aircraft need the same education
as a system administrator?; and b) Do we really mean programmers? Why don’t
we say software engineers? Is the same a programmer as a software engineer?
Should both of them know FM? But, let’s go back to the previous question,
the one referring to ‘fundamentals’. Are FM fundamental to Computer Science
or to Software Engineering? I think that if they are fundamental to something
it’s (just) to Software Engineering. David Parnas has already stated the differ-
ence between Computer Science and Software Engineering [2]. He has been quite
critical about how FM were designed and used. He says that they don’t reflect
the way mathematics is used in other engineering disciplines. And this makes
software engineers to seldom use FM. So, should we teach FM to undergraduate
students of Software Engineering degrees?

Let’s assume for a moment that we should teach FM to future software
engineers. What FM should we teach? As you know, there are dozens of mathe-
matical approaches to software development that fall within the realm of FM. It
simply makes no sense to teach all of them as it make no sense to teach all the
programming languages. Choosing what programming languages to teach might
seem easier: just pick the top 3 used in industry. Why 3? Why not just 1? Why
the top used in industry? Are the top programming languages used in indus-
try fundamental to the software professional? I think that most of us will agree

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 1



that ‘used in industry’ is not the best criterion to choose what programming
languages we should teach. This is a fortunate conclusion because it would be
very hard to use it to choose what FM to teach. Instead, we would agree that
we should teach programming languages belonging to different programming
paradigms. Why the paradigm-based criterion seems better? In my opinion, be-
cause it allows students to use the best tool for each problem. Hence, I use the
same guidelines to select a menu of FM to be taught. (Yes, I teach more than
one formal method!) Why? Because from my point of view they are tools that fit
best for different problems. For example, a Statecharts model is good to describe
reactive systems, while a Z model is better to describe a payroll system. As you
wouldn’t admit that a Software Engineering plan of study including only one
programming language is complete, why would you deem it as complete if it in-
cludes only one formal method? Aren’t there different formalization paradigms?
Probably yes, but, wasn’t there the point that FM are fundamental to software
engineers? If we should teach them because they are fundamental, then seeing
them as tools could seem a contradiction to some of us.

Once we agree on what formal methods we should teach, we need to decide
how are we going to teach them. Let’s say we decided to teach Z. Should we
start by teaching set theory? Probably not because we can assume students have
already learned set theory. Should we start by teaching its syntax and semantics?
I guess that we all have already learned that this is not the best way. If FM are
tools, then the best way to learn them is by using them. Then, we present some
(functional) requirements and show to students how they can be formalized in
Z. At this point many technical questions can be raised. Should we continue
by teaching how to verify the model? Should we continue by teaching how to
implement the model? Should we teach refinement calculus? In my opinion the
answers to these questions depend on many factors (such as the length of the
plan of study), but in general I tend to think that ‘no’ is the right answer in
most of the cases. For example, I have found more useful to show that: a) formal
models could be automatically turned into prototypes; b) to link the formal
model with the design of the system (i.e. the document describing the software
components, their functionality and the relationships between them [1, chapter
4]); and c) to show how test cases can be generated from the formal models. All
these activities would allow students to put FM in the bigger picture of software
production.

References

1. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of software engineering (2nd
ed.). Prentice Hall (2003)

2. Parnas, D.L.: Software engineering programs are not computer science programs.
IEEE Software 16(6), 19–30 (1999), http://doi.ieeecomputersociety.org/10.

1109/52.805469

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 2




