
Foundations of Semantics and Model Checking
in a Software Engineering Course

Henning Bordihn1, Anna-Lena Lamprecht1, and Tiziana Margaria1,2

1 Institute of Computer Science, University of Potsdam, Germany
{henning,lamprecht}@cs.uni-potsdam.de

2 University of Limerick and Lero - The Irish Software Research Centre, Ireland
tiziana.margaria@lero.ie

Abstract. Formal methods provide systematic and rigorous techniques
for software development and we believe that they should be part of
academic software engineering education. In this paper, we describe how
we included a selection of formal methods in a foundational Bachelor-
level Software Engineering course. We show how we introduce the basic
elements of modeling and programming language semantics, and discuss
how we address the theory and practice of model checking within the
scope of the two semesters of the course.

1 Motivation and Organization of the Courses

As formal methods provide systematic and rigorous techniques for software de-
velopment, we believe that their contribution is foundational to the formation of
the next generation of software developers, and as such they should be integral
part of academic software engineering education already at the Bachelor level. At
the University of Potsdam, the courses Software Engineering 1 and 2 are manda-
tory for Bachelor students of Computer Science and related subjects in their
second year, that is, after they have completed foundational courses on math-
ematics, algorithms, data structures and programming during their first year.
Hence, these courses are suitable to introduce basic formal methods education
into the standard B.Sc. level curriculum. Starting in 2009, we have reformed the
previously more traditional Software Engineering (SE) curriculum accordingly,
which brought about a complete change of the philosophy and organization.

The outcome were the new SE 1 and SE 2 courses that we have refined and
improved until today: aimed at teaching methods and mentality rather than
facts and a collection of techniques, the new version made use of agile, process-
oriented techniques from the very beginning, incorporating for the first time
formal methods in the syllabus and integrating the two terms of project
experience into the two-term course. In both terms, each week comprises 2h of
lectures and 2h of tutorial/lab devoted to the discussion of problems and solving
sample tasks during the session, without assignments given beforehand.

– In the first term, SE 1 (6 ECTS) focuses on design: the domain level and mod-
eling languages, addressing and contrasting traditional vs. agile software de-
velopment. It introduces model-driven (MDSD) approaches, domain-specific

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 19



languages (DSLs) as fundamental feature of MDSD approaches, and meta-
modeling as a tool for determining the abstract syntax of a DSL. While the
focus is on the concepts and the modeling attitudes underlying these ap-
proaches and technologies, some of them are practiced using corresponding
analysis and modeling tools.

– In the second term, SE 2 (6 ECTS) focuses on development: it emphasizes
the technical level, with an introduction to IT project management, and
software architecture, object-oriented design, testing, maintenance and re-
engineering. It addresses now in practice all the phases of software develop-
ment described in the SE 1, supplemented by more modern topics like Design
by Contract (”When the type system of the language is not enough”), En-
terprise Application Architectures and Software Product Lines (SPL).

– In the concomitant project, students work together in small teams of 4-5
members to solve a more complex software engineering design (SE 1) and
development (SE 2) task, applying to this case study the concepts and meth-
ods introduced in the lectures and the techniques and tools presented in the
tutorials and labs.

– The course assessment consists of an individual final exam (written, 50%
of the final grade) and the evaluation of the project deliverables: the final
software product and the group reports (intermediate and final), in total
again 50% of the final grade.

In this paper we present the course concept and report on our experiences
from almost five years of conducting the course. In particular, we discuss how
we address the theory and practice of formal methods on the basis of formal se-
mantics and model checking. The paper is structured as follows: In the following
section we explain in greater detail how we placed formal method contents in
the reformed Software Engineering courses. Section 3 then focusses on the model
checking aspects. Section 4 discusses the learning outcomes and competencies
attained by the students of this course, and Section 5 concludes the paper with
a review of experiences and some lessons learned.

2 Overview of the Formal Methods Contents

The new course aims at a foundational and experiential education, for which we
included four formal methods blocks.

1. Model Checking [2, 7]: We start with the need to define ”user stories”
that concretize a system’s behavioral specifications as process descriptions,
for which we introduce process modeling languages. In order to convey the
idea of property-based correctness and compliance, we directly introduce
temporal logics and model checking as a formal verification technique on
the (process-) model level, together with a corresponding tool. Regarding
the models, the students build upon the notion of finite automata they al-
ready met in the first year in Theoretical Computer Science. Regarding the
properties, they have prior knowledge of propositional logic.

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 20



2. Formal Program Semantics: As the process stories end up defining a col-
lection of domain-specific actions and functionalities, the course then intro-
duces DSLs and looks at the principles of formal semantics for programming
languages. The definition of structural (small step) operational semantics
(SOS) for a simple ”While” language is treated as example. This language
captures the control structures (excl. fork/join parallelism and hierarchy)
the students used in their process models, and it corresponds to the flat-
tened process models analyzed by the model checker. How to generate a
control flow graph of a procedure from its stateless operational semantics is
demonstrated in the lecture and practiced in the lab.

3. Calculus of Communicating Systems and its SOS (CCS) [6]: with the
growing practical relevance of concurrent processes, we introduce CCS as an
alternative formal model for distributed communicating processes. The defi-
nition of CCS and its SOS semantics (that now captures simple concurrency)
is illustrated with several simple examples, then we introduce the algebraic
laws of the calculus. We expand the catalogue of properties the students
encountered so far with a discussion of several equivalence notions such
as trace or equivalence for formal languages, bisimulation, and behavioral
congruence. We discuss substitutability of (process or software) components
based on indistinguishable behaviors.

4. Static Type System: in terms of properties, and compatibility checking of
data structures and behaviors that operate on data, types and type check-
ers are the most successful technology. As illuminating example of how the
success of software projects strongly depends on the choice of appropriate
technologies, we discuss the role of the static type system for type-safe pro-
gramming. We first show some sample effects that may occur when using
script languages, and compare them to the behavior of compiled languages
in similar scenarios. We use the type determination/checking rules for
a simple expression language to illustrate benefits and limits of static type
systems and prove simple type judgements using these type rules. Using the
formalism, we show what is guaranteed about successful evaluations of ex-
pressions at runtime, and discuss which runtime errors may still be thrown.

3 Model Checking in Theory and Practice

Model checking [2, 7] provides a powerful property-based mechanism to analyze
and verify static aspects of (arbitrary) behavioral models of a system. Generally
speaking, it can be used to check whether a model M satisfies a property φ,
usually written as M |= φ, where φ is expressed in a modal or temporal logic.

We introduce it in the context of model-based software development, as an
early detection technique that supports validation in the specification and design
phase, prior to implementation. We show how it is useful to analyze global
model properties, where syntax or type checking at the component level is not
sufficient. Constraints are checked at modeling time, without execution, which
offers another range of addressable issues in addition to local validation and

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 21



usual debugging methods. We also show that the list of properties against which
the model is evaluated is easily extensible: including a new constraint in the
verification only requires to provide a formula expressing the property of interest.

Consistent with our hands-on experiential approach, we introduce early in the
course the jABC process modeling framework [8] as a technology that supports
the development of executable process models as well as the verification of static
model properties by using the GEAR model checking plugin [1].

3.1 Theory and Warm-up: Lecture and Lab Contents

Describing System Behavior The lecture introduces the basic concepts of
process modeling, Service Logic Graphs and XMDD (eXtreme Model-Driven
Development [5]), illustrating them with simple examples and one larger system
(the travel authorization and refund processes at UP designed previously by
other students). The students create the user stories as process models (called
Service Logic Graph, or SLG) using process building blocks (called Service-
Independent Building Blocks, or SIBs) from a service library in a drag&drop
fashion, and connecting them with labeled branches representing the flow of
control. As soon as the parameters of the SIBs have been configured, the process
is ready for execution. Plugins add a wealth of additional features and capa-
bilities to the jABC, ranging from simple execution by interpretation to more
sophisticated functionality like code generation and workflow synthesis Our stu-
dents use the SLG interpreter (the Tracer) for execution, and the GEAR plugin
for model-wide evaluation of static properties (expressed in terms of modal or
temporal specifications) directly on their own SLGs.

SLGs as Formal Models As suitable abstract model structure, we intro-
duce Kripke Structures, Labeled Transition Systems and Kripke Transition Sys-
tems. Semantically, SLGs are in fact Kripke Transition Systems (cf. [7]) that com-
bine classical Kripke Structures (cf., e.g., [2, Chapter 2]) with Labeled Transition
Systems (cf., e.g., [4]) into model structures where both states and transitions
are labeled. As such, they are directly amenable to formal analysis techniques,
in particular to model checking.

Temporal Logic Properties as Constraints Starting from the proposi-
tional logic already familiar to the students, we introduce Hennessy Milner Logic
(HML) [3], Propositional Linear Time Logic (PLTL, cf. [7]) and Computation
Tree Logic (CTL, [2, Chapter 3]) as languages to express behavioral properties.
While GEAR is internally a mu-calculus model checker, only CTL would be
strictly necessary. We chose to include HML and PLTL primarily for didactic
reasons, as they provide a good scaffolding for understanding CTL, especially
regarding the role of the temporal operators along the paths and the path quan-
tifiers. In the two associated labs, students practice the use of HML, PLTL,
and CTL by modeling intuitive properties in terms of these logic languages and
learning to interpret logical formulas in a comprehensible way.

Model Checking Finally, we explain how SLGs can be viewed as Kripke
Transition Systems, how to use GEAR to assign atomic propositions to the
SIBs of the SLGs, how to enter logical formulas, and how to check and debug

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 22



systems with GEAR. The use of GEAR is demonstrated by means of some simple
examples, where the level of the student’s independence is increased.

For these examples we use processes that are modeled as SLGs using only
Prototype SIBs, like the abstract web shop process shown in Figure 1 (top). These
SIBs are pure modeling means, as they do not have an actual implementation,
but as the implementation is not relevant with regard to this kind of abstract
model checking, they are sufficient for the purpose. Then system requirements
are formulated as temporal properties. The lab discusses interactively which
atomic properties (APs) need to be assigned to which nodes (SIB instances) and
how to capture the formulated requirements as CTL formulas. The students use
the AP inspector to annotate SIB instances with the atomic propositions, with
results similar to the display in Figure 1 (bottom).

Fig. 1. The abstract web shop process (standard and Atomic Propositions view).

Fig. 2. Formula manager and model checking results.

With the GEAR formula manager, students can edit CTL formulas and doc-
ument them with natural-language descriptions (see Figure 2, left). The model
checking inspector displays all currently available properties, and one can toggle
between the formulas and their high-level descriptions. In the hands-on sessions,
students learn to check all properties, finding out which hold for the entire model
(i.e. for the start SIB) as in Figure 2 (right), or individually for each node in the
model. This check mode can also be applied to individual formulas: the nodes
where the formula holds/does not hold are highlighted by green/red boxes re-
spectively, as shown in Figure 3. Please note that the small examples in the

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 23



Fig. 3. Checking a single property for the whole model.

figures are meant for illustration purposes only, and that the examples on which
the students work in their projects are larger and more complex.

3.2 Hands-on in Groups: Mastering the Project

After the lessons, tutorials, and introductory labs, the students are required to
design a more complex jABC process, express relevant process properties, and
check them with GEAR, in a project that mimics a system design from scratch.
The concrete project task in SE 1 concerns first the user requirements for a
sample Software Engineering project. Solutions are built in three steps:

1. Building a system specification via a UML Use Case Diagram supplemented
by documented and prioritized use cases. The scenarios (system behaviors)
corresponding to the use cases must be specified as process models, some as
UML Activity Diagrams and some as SLGs. This way the students compare
two exemplary modeling languages, learning to evaluate similar technologies
wrt. adequacy for a specific purpose.

2. Developing a prototype of the system, delivering an executable SLG vali-
dated through the Tracer. For this process model, the students need to spec-
ify several global behavioral properties and verify them using the GEAR.

3. Documenting and evaluating the project activities and management deci-
sions of the group, as a third part of their project solution and report.

In SE 2, the students continue the project towards the implemented product:
structural design (architecture and class model) and a documented implemen-
tation, tested by unit tests. As it often happens in real software projects, in
the second term they do not continue with their own specifications, but they
must take over the specification from a different SE 1 team, whenever possible
based on a different user story (i.e. a different system). They start over with the
assessment of plausibility, feasibility, completeness, and quality of the previous
group’s deliverable and then they complete the specifications to a point where
they feel comfortable with moving to the design and implementation.

4 Learning Outcomes and Observations

We describe the formal methods-related skills that the students acquire in our
Software Engineering course in terms of the following competence fields:

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 24



– Professional competencies: Graduates of this course have broad knowl-
edge about languages for the modeling of software. They know the principles
and theoretical foundations of model checking.

– Methodological competencies: They are able to use selected languages
and tools for the process- and object-oriented modeling of software. They can
apply model checking for the formal verification of process models. They can
assess/check the meaning of programs and their corresponding flow graphs
using structural operational semantics (SOS). They are familiar with the use
of logic calculi (axiomatic deduction systems).

– Action competencies: They are able to include formal verification meth-
ods in their software projects in addition to traditional validation and testing.

The course has so far been attended by over 250 students. Approximately
half of the participants were enrolled in the B.Sc. Computer Science (2010-2014)
or B.Sc. Computational Science (2015); the other half were students in the B.Sc.
Business Informatics. There has been no observable difference between these
groups regarding the achievements in the exercises, exams and projects. We saw
however a significant difference among the skills developed by these students and
those of the precedent years: While the previous generations were more confi-
dent in architectural issues and coding skills, our students have a more intuitive
confidence with application development and with mastering a number of dif-
ferent technologies. We saw the advantage of this abstract and behavior-driven
modeling in their approach to the subsequent module on Foundations of Service
Engineering, where the black-box character of components is really central. The
familiarity with the basic formal methods concepts was also advantageous in the
subsequent specialistic course on Formal Methods in System Design (FMSD):
taught in an e-learning fashion via teleconference-based lectures shared with the
TU Dortmund and complemented by local tutorials and labs, it was clear that
the Potsdam students had a smoother approach to the more technical material
in FMSD due to their previous experience with the basic concepts.

5 Conclusion

We strongly believe that today, facing service orientation and an increasing in-
terest in user-defined business processes, lightweight formal methods should be
integral part of the standard academic software engineering education. Accord-
ingly, since 2010 we have been teaching a foundational Bachelor-level Software
Engineering course with four embedded formal methods components at the Uni-
versity of Potsdam.

We chose on purpose only so-called ”lightweight” formal methods, i.e. such
that algorithms exist (like type checkers and model checkers), and not theorem
provers or proof techniques for program correctness like Hoare style program
verification (both presented at length in other courses), because we wished to
provide scalable approaches that have a low threshold to adoption, ease of rea-
sonably confident use in the small, and a high ease of embedding in a full fledged
model driven IDE (for us the jABC). While high-end Formal Methods continue

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 25



to require a deep knowledge of the mathematical concepts and formalisms, we
believe that IDE-embedded FMs should be made available systematically to the
next generation of Software Engineers as part of their basic profession-oriented
education. Like basic English has successfully become within a generation a
standard in the schools, establishing itself culturally as the ”lingua franca” of
international communication, the ability to take a domain-specific perspective,
to think in terms of domain specific properties, to formulate them in such a
way that both a user and a tool are able to work with them, and the ability to
conduct verifications on early models of a system are in our opinion the key to a
better understanding between IT professionals, in particular Software Engineers.

Another advantage is the ingrained sense of accountability and ownership
that comes with the ability and habit of verifying early and verifying often, by
means of tools that take an objective perspective (other than user inspections)
and provide a third party repeatable outcome. With all the limitations and draw-
backs that we know of the FM tools and approaches we have today, such a step
towards accountability for decisions and outcomes early in the design constitutes
in our opinion a central shift towards maturity of the professional figure, com-
petence beyond the production of code, and ultimately towards establishing a
new concept of ethics and responsibility in the Software Engineering profession.

References

1. M. Bakera, T. Margaria, C. Renner, and B. Steffen. Tool-supported enhancement
of diagnosis in model-driven verification. Innovations in Systems and Software En-
gineering, 5:211–228, 2009.

2. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, MA, USA, 1999.

3. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32:137–161, January 1985.

4. J.-P. Katoen. Labelled Transition Systems. In M. Broy, B. Jonsson, J.-P. Katoen,
M. Leucker, and A. Pretschner, editors, Model-Based Testing of Reactive Systems,
volume 3472 of Lecture Notes in Computer Science, pages 615–616. Springer Berlin
/ Heidelberg, 2005.

5. T. Margaria and B. Steffen. Service-Orientation: Conquering Complexity with
XMDD. In M. Hinchey and L. Coyle, editors, Conquering Complexity, pages 217–
236. Springer London, 2012.

6. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 1980.

7. M. Müller-Olm, D. Schmidt, and B. Steffen. Model-Checking - A Tutorial Introduc-
tion. In Proceedings of the 6th International Symposium on Static Analysis (SAS
’99), pages 330–354, 1999.

8. B. Steffen, T. Margaria, R. Nagel, et al. Model-Driven Development with the jABC.
In Hardware and Software, Verification and Testing, volume 4383 of Lecture Notes
in Computer Science, pages 92–108. Springer Berlin / Heidelberg, 2007.

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 26




